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ON THE WELL-POSEDNESS OF THE 2D EULER-BÉNARD SYSTEM WITH
NONLINEAR THERMAL DIFFUSIVITY.

OUSSAMA MELKEMI AND YOUSSOUF MAAFA

ABSTRACT. This study presents the global existence of a unique solution within the Yudovich class for
the Bénard system with nonlinear thermal diffusivity.

1. Introduction

The inviscid Bénard model is one of the systems that play an important role in the study and under-
standing of some of the terms and phenomena related to fluid dynamics and hydrodynamics. This
model is represented by the following system:

(1)


θt + v ·∇θ −div(κ(θ)∇θ) = µv2 if (t,x) ∈ R+×R2,
vt + v ·∇v+∇P = θ e⃗2 if (t,x) ∈ R+×R2,
divv = 0,
(v(0,x),θ(0,x)) = (v0(x),θ0(x)),

here v = (v1,v2) represents the velocity field which is assumed to be free-divergence, θ and P denotes
the temperature and the pression of the fluid respectively, the term θ e⃗2 referred as the buoyancy force
and the term µv2 describes the Rayleigh-Bénard convection in the gravity direction. In what follows κ

is a function stands for the thermal diffusivity. By neglecting the temperature θ in the system (1), then
we will get the Euler-equations

(2)


vt + v ·∇v+∇P = 0, if (t,x) ∈ R+×R2,
divv = 0,
v(0,x) = v0(x).

This equation have been extensively studied by many mathematicians in various function spaces.
For example, in the d−dimensional case (d > 2), Kato and Ponce [18] showed that the equation
(2) is locally well-posed, whenever the initial velocity belongs to W s,p, with d

p + 1 < s, thereafter
Chemin [8] extends this result to the Hölder class C s, with 1 < s, and then by Chae [6] in the Besov
framework. It is worth noting that until now, in 3 dimensional, the global theory for this equations still
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BÉNARD SYSTEM 2

an open problem. The concept of vorticity (w ≜ ∇×v) is very important to study and understand some
phenomena related to the system (2). For instance, Beale, Kato and Majda [2] proved the following
blow up criterion:

The lifespan T∗ is finite if and only if
∫ T∗

0 ∥w(τ)∥L∞dτ =+∞.

In the 2−dimensional case, the vorticity obeys the following transport equations

wt + v ·∇w = 0,
then as an immediate application for the (BKM)-criterion1, we can find the global existence of Kato’s
solutions. Yudovich in his famous paper [37] showed the existence/uniqueness of weak solution to the
system (2) with initial vorticity belongs to Lp ∩L∞, where p > 1. The Yudovich’s result extended by
Serfati [29], where he just needs from the vorticity to be bounded. By back to the system (1), which
can be considered as a generalization for the Euler equations, which can be divided into several cases:

• CASE 1: (isotropic case) κ is a positive constant:
Chae [7] proved the global regularity for the classical Boussinesq system (1)κ>0,µ=0, this result
extended by Hmidi and Keraani [16] to the critical Besov spaces. For other related results in the critical
Besov spaces see [14, 15, 23, 24, 26]. Concerning the Yudovich framework Danchin and Paicu [9]
showed that the systems (1)κ>0,µ=0 and (1)κ>0,µ>0 admit a unique global solution belongs to L2 ∩L∞

(see also [32, 22]).
• CASE 2: (anisotropic case) κ is a positive constant with a dissipation in one direction (∂ 2

xi
)i=1,2

instead of the full Laplacian operator:
Danchin and Paicu [10] proved the global existence of the anisotropic Boussinesq system, Adhikari et
al. investigated the anisotropic Boussinesq system in different situations in [1]. In the reference [21],
Ma and Zhang established the global weak solution for the 2D Bénard system with vertical dissipation
in the first component of the velocity field and horizontal thermal diffusivity. They also provided
global regularity criteria for this weak solution. Additionally, they demonstrated the global existence
and regularity criteria of the weak solution for the Bénard system in other cases involving partial
viscosity and thermal diffusivity. More recentely, the author [25] established the global existence of
weak solution for the Bénard system with variable viscosity. The existence uniqueness and stability
of such a system were explored by many authors, the reader can consult the following references
[4, 5, 33, 12].

• CASE 3: κ is a positive constant and the operator −∆ is replaced by the fractional dissipation
(−∆)s2:

The system (1)κ>0,µ=0 explored by many authors, where Hmidi et al. [17] proved the global existence
for the inviscid Boussinesq system (1)κ>0,µ=0 with critical dissipation corresponding to the case
s = 1/2, the method of [17] helps to cancel the effect of the rough term of the Lipschitz norm of the
temperature. More recently, Melkemi et al. [27] proved the global existence of Yudovich’s solution
for Boussinesq system (1)κ>0,µ=0 with general source term and critical dissipation. Based on the
technique used in [17], Wu and Xue [34] proved the global existence of the Yudovich solution for the

1(BKM) is an abbreviation for Beale, Kato and Majda criterion
2For s ∈ (0,1] the operator (−∆)s is defined via its Fourier transform F

(
(−∆)sg

)
(ξ )≜ |ξ |sF (g)(ξ )
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BÉNARD SYSTEM 3

inviscid Bénard (1)κ>0,µ>0 system with subcritical dissipation, later Xu and Xue [31] investigated the
Yudovich type solution for the inviscid Boussinesq system with critical dissipation. More recently, Z.
Ye [36] was able to show the global existence of the Yudovich solution for the Bénard equation with
critical dissipation.

• CASE 4: κ is a function depends on temperature:
Dı́az and Galiano [11] proved the existence and uniqueness of solutions for the system (1)µ=0 on
domains, recently Li and Xu [19] proved the global regularity for the system (1)µ=0, when (v0,θ0) ∈(

Hs(R2)
)2

, and they have assumed that the coefficient κ is a smooth function such that 1
C0

≤ κ(·)≤C0.

Recently, Li [20], established the global regularity for the system (1)µ>0
More recently, M. Paicu and N. Zhu [28] investigated and studied the Yudovich type solution for the
system (1)µ=0, where they have assumed that the nonlinear thermal diffisuvity coefficient is sufficiently
close to some positive constant in L∞. More precisely, they assumed that, the function κ obeys the
following conditions:

• Boundedness of the function κ :

C−1
0 ≤ κ(x)≤C0, for all x ∈ R;

• boundedness of the first derivative of κ :

κ
′(x)≤C0;

• smallness condition: there exists a constant ε such that

(3) ∥κ(θ)−1∥L∞ ≤ ε.

The key idea of [28] is based on taking advantage of the heat kernel semi-group. From Duhamel’s
formula, the authors were able to get the high regularities for the temperature via using the fact that the
operator

A ( f )≜
∫ t

0
∇

2e(t−τ)∆ fx(τ)dτ

is continuous from Lr
(
(0, t);Lp) into itself and the fact that the nonlinear thermal diffisuvity coefficient

is sufficiently close to some positive constant, thus the authors get the uniform bound for the vorticity
in L2∩L∞, which is enough to obtain the global existence of solution. Then, Y. Maafa and M. Zerguine
[38] used the same technique of [28] to study the vortex patch problem of the system (1)µ=0. In 2022,
Z. He and X. Liao [13], studied the global regularity for the Boussinesq system with temperature-
dependent thermal and viscosity diffusions in general Sobolev spaces. More recently, Ye [35] dropped
the boundedness of the first derivative of the function κ , and the smallness condition (3).

Main Result

In the current paper, we are mainly interested with (CASE 4) corresponding to the case when κ is a
function depends on temperature and µ is a positive constant. To be more precise, we study the system
(1), where the initial vorticity belongs to the Yudovich class and we assume that the function κ is a
smooth function that obeys the following conditions:

κ∗ ≤ κ(z)≤ κ∗ and |κ ′(z)| ≤C0 for all z ∈ R.
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BÉNARD SYSTEM 4

and we have the following result:

Theorem 1.1. Let v0 ∈ L2(R2) such that divv0 ≜ 0 and w0 ∈ L2(R2)∩L∞(R2). We assume that µ ≥ 03

and θ0 ∈ H2(R2). Then, the system (1) has a unique global solution (v,w,θ) such that

v ∈ L∞([0,T ];L2(R2)), w ∈ L∞([0,T ];L2(R2)∩L∞(R2)),

and
θ ∈ L∞([0,T ];H2(R2)∩Ẇ 1,∞(R2)), ∆(κ(θ)∇θ)) ∈ L2([0,T ],L2(R2)).

Let us say a few words about the strategy of our proof, the main difficulty lies in the presence of
the nonlinear thermal diffisuvity, which makes the control of ∥θ∥L1

T Lip seems tough. First, we start

by establishing L2−estimate of velocity, vorticity and temperature, then we move to deal with the
L∞−norm of vorticity. In [30], Sun and Zhang observed that the primitive of the function κ , which is
denoted by Φ(t,x) :=

∫
θ

0 κ(s)ds satisfies the following system:

(4)
{

Φt + v ·∇Φ−κ(θ)∆Φ = κ(θ)v2 if (t,x) ∈ R+×R2,
Φ(0,x) = Φ0(x).

So, we perform the Ḣ1−estimates of Φ, then we can get that Φ belongs to L2([0,T ], Ḣ2) therefore by
using an interpolation theorem combined with the fact that ∂iΦ = κ(θ)∂iθ and κ is bounded function
we get the following estimate ∥∇θ∥L1

T L4 <+∞, after this we move to performing Ḣ2−estimates for the
function Φ, which leads us to control ∥∇θ∥L1

T L∞ thus we obtain the L∞−norm of the vorticity, hence
the global Yudovich-solutions. The uniqueness part will be treated by adopting the Yudovich method.
This paper is arranged as follows, where in the next section, we perform some a priori estimate for
the velocity, tempurature and vorticity. In the last section we prove the uniqueness of solution for the
system (1).

Notations: As usual, throughout the paper, we agree with the following notations, where we denote by
C any positive constant which changes from one line to another and we shall use the notation X ≲ Y
instead of the notation, ∃C0 > 0 such that X ≤CY and C0 is a positive constant depending on the initial
data. For every p ∈ [1,∞],∥ · ∥Lp denotes the Lp norms. For T > 0, we denote by CT any constant
depends on the initial datum and the time T .

Proof of Theorem 1.1

In what follows, we present the proof of Theorem 1.1, we start first with some a priori estimates for the
velocity, temperature, thermal diffusivity, and vorticity.

2. A priori estimate

This section is devoted to perform some a priori estimate of the temperature, velocity and vorticity.

3For the clarity of the computations, we assume that µ = 1
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BÉNARD SYSTEM 5

L2−estimates for velocity and temperature:
The basic L2−estimates of velocity and temperature are given as follows:

Proposition 2.1. We assume that (θ ,v) is a smooth solution for (1) such that θ0,v0 ∈ L2, then

(5) ∥v(t)∥2
L2 +∥θ(t)∥2

L2 +2κ∗∥∇θ∥L2
t L2 ≤CT ,

Proof. By taking the L2 inner product of the temperature and velocity equations and integrating by
parts over the spatial variable, we obtain

d
dt

(
∥v(t)∥2

L2 +∥θ(t)∥2
L2

)
+κ∗

∫
R2

|∇θ(t,x)|2dx ≤ 2
∫
R2

θv2dx.

From the Hölder and Young inequalities, and the Gronwall inequality we obtain the required estimate.
□

L2−estimate of the vorticity:

Proposition 2.2. Let v be a smooth divergence free field with w ≜ curl v. We assume that (w,θ) a
smooth solution for (1), then we have

∥w∥L2 ≤CT .

Proof. First we observe that the vorticity w obeys the following equation

(6) wt + v ·∇w = ∂1θ .

The classical L2 estimate, ensures that

∥w(t)∥L2 ≤ ∥w0∥L2 +
∫ t

0
∥∇θ(τ)∥L2dτ.

Hölder inequality and (5) leads to

∥w(t)∥L2 ≤ ∥w0∥L2 +CT∥θ0∥2
L2 ≤CT .

□

In order to control the L∞−bound of vorticity we need to get more information about the temperature,
first, we observe that the function Φ ≡

∫
θ

0 κ(s)ds satisfies the following parabolic equation:

(7)
{

Φt + v ·∇Φ−κ(θ)∆Φ = κ(θ)v2 if (t,x) ∈ R+×R2,
Φ(0,x) = Φ0(x).

Global bound in Ḣ1:

Proposition 2.3. Let v be a smooth divergence free field. We assume that Φ a smooth solution for (7),
then we have:
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BÉNARD SYSTEM 6

(8) ∥Φ∥Ḣ1 +∥Φ∥L2
T Ḣ2 ≤CT ,

(9) ∥∇θ∥L1
t L4 ≤CT .

Proof. We start by proving (8). Multiplying (7) by −∆Φ and integrating over R2, we obtain

d
dt
∥∇Φ(t)∥2

L2 +
∫
R2

κ(θ)|∆Φ(t,x)|2dx =
∫
R2

v ·∇Φ∆Φdx−
∫
R2

κ(θ)v2∆Φ,

We know that

κ∗ ≤ κ(θ)≤ κ
∗,

and

κ∗∥∆Φ(t)∥L2 ≤
∫
R2

κ(θ)|∆Φ(t,x)|2dx

then, from the above inequalities and after integrating by parts, we obtain

d
dt
∥∇Φ(t)∥2

L2 +κ∗∥∆Φ(t)∥2
L2 ≤

∫
R2

|D jvi||DiΦ||D jΦ|dx+κ
∗
∫
R2

|∇v2||∇Φ|dx

≤ ∥w(t)∥L2∥∇Φ∥2
L4 +κ

∗∥w(t)∥L2∥∇Φ(t)∥L2

≤ ∥w(t)∥L2∥∇Φ(t)∥L2∥∆Φ(t)∥L2 +κ
∗∥w(t)∥L2∥∇Φ(t)∥L2

≤ κ
∗∥w(t)∥L2∥∇Φ(t)∥L2(1+∥∆Φ(t)∥L2)

≤ κ∗
2
∥∆Φ∥2

L2 +
κ∗
2
+Cκ∥w(t)∥2

L2∥∇Φ∥2
L2 ,

we point out that we have used in the above inequality the Young, Ladyzhenskaya inequalities and the
Calderón-Zygmund inequality. Integrating with respect to time and by using Gronwall Lemma, we
obtain

∥Φ(t)∥Ḣ1 +
κ∗
2

∫ t

0
∥∆Φ(τ)∥2

L2dτ ≤CT .

□

For (9), we apply again the Ladyzhenskaya inequality, we obtain

κ∗∥∇θ∥L4 ≤ ∥∇Φ∥L4 ≤ ∥Φ∥1/2
L2 ∥∆Φ∥1/2

L2 .

Consequently, we find out

∥∇θ∥L1
t L4 ≤CT .
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BÉNARD SYSTEM 7

Global bound in Ḣ2:

Proposition 2.4. Let v be a smooth divergence free field. We assume that Φ a smooth solution for (7),
then we have:

(10) ∥Φ(t)∥2
Ḣ2 +κ∗

∫ T

0
∥∆∇Φ(τ)∥2

L2dτ ≲CT .

Proof. We multiply (7) by ∆2Φ and integrating with respect to space variable, we obtain after using
Hölder inequality:

1
2

d
dt

∫
R2

|∆Φ|2dx+κ∗

∫
R2

|∆∇Φ|2dx ≤
∫
R2

|∇v||∇Φ||∆∇Φ|dx+
∫
R2

|v||∆Φ||∆∇Φ|dx

+
∫
R2

|κ ′(θ)||∇θ ||∆∇Φ|dx+ |
∫
R2

∇v2∇∆Φdx|

≤ ∥∇v∥L4∥∇Φ∥L4∥∆∇Φ∥L2 +∥v∥L∞∥∆Φ∥L2∥∆∇Φ∥L2

+ κ
∗∥∇θ∥L2∥∆∇Φ∥L2 +∥∇v∥L2∥∆∇Φ∥L2 ,

by using Young’s inequality, we get

1
2

d
dt

∫
R2

|∆Φ|2dx+κ∗

∫
R2

|∆∇Φ|2dx ≤ Cκ∥∇v∥2
L4∥∇Φ∥2

L4 +
κ∗
8
∥∆∇Φ∥2

L2 +Cκ∥v∥2
L∞∥∆Φ∥2

L2

+
κ∗
8
∥∆∇Φ∥2

L2 +Cκ∥∇θ∥2
L2 +

κ∗
8
∥∆∇Φ∥2

L2

+ Cκ∥∇v∥2
L2 +

κ∗
8
∥∆∇Φ∥2

L2 .

Thus

1
2

d
dt

∫
R2

|∆Φ|2dx+
κ∗
2

∫
R2

|∆∇Φ|2dx ≲ CT +∥v∥2
L∞∥∆Φ∥2

L2 .

Integrating with respect to time, we infer that

∥Φ(t)∥2
Ḣ2 +κ∗

∫ T

0
∥∆∇Φ(τ)∥2

L2dτ ≲CT +
∫ T

0
∥v(τ)∥2

L∞∥Φ(τ)∥2
Ḣ2dτ.

In order to close the above inequality, we need to bound ∥v(τ)∥L∞ , in fact, from the interpolation
inequality, we have

∥v(τ)∥2
L∞ ≤ ∥v(τ)∥2/3

L2 ∥∇v(τ)∥4/3
L4

≤ ∥v(τ)∥2/3
L2 ∥w(τ)∥4/3

L4 .

According to Gronwall’s Lemma, we find out the desired result. □

Global bound of the vorticity in L∞:
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BÉNARD SYSTEM 8

Proposition 2.5. Let v be a smooth divergence free field with w ≜ curl v. We assume that (w,θ) be a
smooth solution for (1), then we have

∥w∥L∞ ≤CT .

Proof. From the maximum principle of (6), we have

∥w(t)∥L∞ ≤ ∥w0∥L∞ +∥∇θ∥L1
T L∞ .

We have,

(11) κ∗∥∇θ(t)∥L1
T L∞ ≤ ∥∇Φ∥L1

T L∞ .

On one hand, from interpolation inequality, we obtain

∥∇Φ∥L∞ ≤ C∥∇Φ∥1/3
L2 ∥∆Φ∥2/3

L4

≲ CT∥∆Φ∥2/3
L4 .

On the other hand, we have, from Ladyzhenskaya’s inequality:

∥∆Φ(t)∥2/3
L4 ≲ ∥∆Φ(t)∥1/3

L2 ∥∆∇Φ(t)∥1/3
L2 .

Then from Young’s inequality and (10), we arrive to

∥∆Φ(t)∥2/3
L1

T L4 ≲CT .

Hence,

∥∇θ(t)∥L1
T L∞ ≤ 1

κ∗
∥∇Φ∥L1

T L∞ ≲CT ,

from this we conclude that
∥w(t)∥L∞ ≤CT .

□

With these results we can obtain the existence of global solutions for the system (1) and it will be done
in similar way in [28], thus we omit the details.

3. Uniqueness

This part is concerned with the uniqueness of the solution for the system (1). For the proof we adopt
the Yudovich method. We assume that the system (1) admits to solutions (v1,θ1, p1) and (v2,θ2, p2)
with same initial datum and we set v̄ = v1 − v2, θ̄ = θ1 −θ2 and p̄ = p1 − p2.{

θ̄t + v2 ·∇θ̄ −div(κ(θ2)∇θ̄) =−v̄ ·∇v1 +div((κ(θ2)−κ(θ1))∇θ1)+ v̄2 if (t,x) ∈ R+×R2,
v̄t + v2 ·∇v̄+∇p̄ = θ̄ e⃗2 − v̄ ·∇v1 if (t,x) ∈ R+×R2,
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BÉNARD SYSTEM 9

From the classical L2−estimate we find out, for r ∈ [2,∞),

1
2

d
dt
(∥v̄(t)∥2

L2)≤ ∥∇v1∥Lr∥v̄∥2
L2r′ +∥v̄∥L2∥θ̄∥L2

≲ r∥∇v1∥L∥v̄∥2/r
L∞ ∥v̄∥2/r′

L2 +∥v̄∥L2∥θ̄∥L2 ,

where ∥∇ f∥L ≜ supr∈[2,∞)
∥∇ f∥Lr

r .

In a similar way, we estimate the temperature term θ̄ , where the standard L2−estimate gives

1
2

d
dt
(∥θ̄(t)∥2

L2)+κ∗∥∇θ̄∥2
L2 ≤ ∥∇θ1∥L∞∥θ̄∥L2∥v̄∥L2 +∥κ(θ2)−κ(θ1)∥L4∥∇θ1∥L4∥∇θ̄∥L2

+∥v̄∥L2∥θ∥L2

Combining Young’s inequality with an interpolation theorem, we get

1
2

d
dt
(∥θ̄(t)∥2

L2)+κ∗∥∇θ̄∥2
L2 ≤ (1+∥∇θ1∥L∞)∥θ̄∥L2∥v̄∥L2 +∥θ̄∥1/2

L2 ∥∇θ̄1∥L4∥∇θ̄∥3/2
L2

≲ (1+∥∇θ1∥L∞)∥θ̄∥L2∥v̄∥L2 +∥θ̄∥2
L2∥∇θ̄1∥4/3

L4 +
κ∗
2
∥∇θ̄∥2

L2 .

Hence,

1
2

d
dt
(∥θ̄(t)∥2

L2)+
κ∗
2
∥∇θ̄∥2

L2 ≤ (1+∥∇θ1∥L∞)∥θ̄∥L2∥v̄∥L2 +∥θ̄∥2
L2∥∇θ̄1∥4/3

L4 .

Let δ be a small parameter and by setting

Yδ (t)≜
(
∥v̄∥2

L2 +∥θ̄∥2
L2 +δ

) 1
2
.

According to the previous estimates, we find

d
dt
Yδ (t)≲ r∥∇v1∥L∥v̄∥2/r

L∞ Y1−2/r
δ

(t)+C
(

1+∥∇θ1∥L∞ +∥∇θ1∥4/3
L4

)
Yδ (t).

Setting ϒδ (t)≜ exp
(
−

∫ t
0(1+∥∇θ1(τ)∥L∞ +∥∇θ1(τ)∥4/3

L4 )dτ

)
Yδ (t).

From the above estimates, we have

2
r

ϒ
2
r −1
δ

(t)
d
dt

ϒδ (t)≲ ∥∇v1∥L∥v̄∥2/r
L∞ exp

(
− 2

r

∫ t

0
(1+∥∇θ1(τ)∥L∞ +∥∇θ1(τ)∥4/3

L4 )dτ
)
,

after an integration with respect to time, we infer that

ϒδ (t)≤
(

δ
1/r +C

∫ t

0
∥∇v1∥L∥v̄∥2/r

L∞

)r/2
.
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Since ∥∇v1∥L is locally bounded, then we can find T0 > 0 such that∫ T0

0
∥∇v1(τ)∥Ldτ <

1
2
.

Thus by letting r →+∞ we deduce that (v̄, θ̄) equals to 0 on [0,T0] and by using a bootstrap argument
we can deduce that (v̄, θ̄) equals to 0 on [0,T ], for all T > 0, which finishes the proof of the uniqueness
part.
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(1995), 95-104.

[30] Y. Sun, Z. Zhang, Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with
variable viscosity and thermal diffusivity, J. Differ. Equ. 255 (2013) 1069–1085.

[31] X. Xu, L. Xue, : Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical
dissipation. J. Differ. Equ. 256, 3179-3207 (2014)

[32] F. Xu, J. Yuan: On the global well-posedness for the 2D Euler-Boussinesq system. Nonlinear Anal, Real World Appl.
17, 137-146 (2014)

[33] J Wu,Q Zhang . Stability and optimal decay for a system of 3D anisotropic Boussinesq equations. Nonlinarity.
2021;34(8):5456-5484.

[34] G. Wu, L. Xue,: Global well-posedness for the 2D inviscid Bénard system with fractional diffusivity and Yudovich’s
type data. J. Differ. Equ. 253, 100-125 (2012)

[35] Z. Ye, Global well-posedness for 2D Euler-Boussinesq equations with temperature-dependent thermal diffusivity,
Journal of Differential Equations,

[36] Z. Ye, Global well-posedness for the 2D Euler-Boussinesq-Bénard equations with critical dissipation. Journal of
Differential Equations, 392, pp.209-254.

[37] V. I. Yudovich: Non-stationnary flows of an ideal incompressible fluid. Zhurnal Vych Matematika, 3, 1032-106
(1963).

[38] M. Zerguine and Y. Maafa, Inviscid limit for the viscous 2D Boussinesq system with temperature-dependent diffusivity.
arXiv preprint arXiv:2101.07014.

HIGHER NATIONAL SCHOOL OF RENEWABLE ENERGIES, ENVIRONMENT & SUSTAINABLE DEVELOPMENT, BATNA,
ALGERIA

Email address: ou.melkemi@hns-re2sd.dz

LABORATORY OF PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, UNIVERSITY OF BATNA 2, ALGERIA

Email address: y.maafa@univ-batna2.dz

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42


	1. Introduction
	Main Result
	Proof of Theorem 1.1
	2. A priori estimate
	3. Uniqueness
	References

