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CHARACTERIZING SOME GENERALIZATIONS OF LINDELÖF FRAMES

SIYABONGA S. DUBAZANA AND SIMO S. MTHETHWA∗

ABSTRACT. We study frames with the property that whenever two closed sublocales with a compact
intersection cover the frame, then at least one of the closed sublocales in the cover is Lindelöf. Frames
with this characteristic will be called LJ-frames. One advantage of studying LJ-frames is that it provides
grounds to explore some interactions between connectedness, compactness, and the Lindelöf property.
The class of LJ-frames contains all connected frames without points; so not every LJ-frame is spatial. The
latter is also supported by the fact that LJ-frames are a generalization of Lindelöf frames, and Lindelöf
frames need not be spatial; the Booleanization of the frame of open sets of the real line is one example
of non-spatial Lindelöf frames. We show that almost Lindelöf Boolean frames are LJ-frames. Localic
counterparts of some results that are available in spaces are provided herein. Moreover, we characterize
LJ-frames via their remainders in compact regular frames; the latter has not been explored in spaces.

1. Introduction

In this paper, we study and characterize some classes of frames which are generalizations of the
Lindelöf ones. For details and motivation, let us recall some jargon from the literature. Throughout,
“space” means “topological space.” An LJ-space is a space X with the property that if X = A∪B,
where A and B are closed in X with A∩B compact, then either A or B is Lindelöf (see paper by Gao in
[15]). This is a generalization of the notion of a J-space that Michael introduced in [21]1 which has the
same definition modulo replacing “Lindelöf” with “compact” (also studied by Mthethwa and Taherifar
in [23, 24]).

We study LJ-spaces in a larger terrain of pointfree topology. An LJ-frame is the pointfree topology
counterpart of an LJ-space, which we defined in the abstract. A space X is an LJ-space if and only if
the frame of open sets of X is an LJ-frame. One of the nice characteristics of the pointfree counterpart
of J-spaces (called J-frames by Mthethwa in [22]), at least from a pointfree topology practitioner
viewpoint, is that a frame with no points is a J-frame precisely when it is connected. Since every J-
frame is an LJ-frame, then all connected frames with no points are examples of non-spatial LJ-frames;
a technique for constructing pointless connected frames is provided in this paper.

Here is a synopsis of this paper: §2 consists of all the basic vocabulary that we use throughout
the paper. In §3, we show, among other things, that if a frame is almost Lindelöf (à la Dube [10])
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LJ-FRAMES 2

and Boolean, then it is an LJ-frame. We construct a non-spatial example of a J-frame. Taking a
cue from Gao [15], we establish classes of frames called the strong LJ-frames, and the semi-strong
LJ-frames. The latter classes of frames satisfy conditions which are stronger than the LJ-frame
property; we provide differentiating examples. Perhaps, the interesting aspect of strong LJ-frames and
the semi-strong LJ-frames is that the interplay between connectedness, compactness, and the Lindelöf
property is witnessed: connected components of semi-strong LJ-frames and strong LJ-frame inherit
the LJ-semi-strongness and the LJ-strongness from the ambient frame. There exists a J-frame with a
connected closed sublocale that does not inherit this property. In §4, we characterize LJ-classes of
frames via remainders in compactifications; and these results do not appear in the classical topology
literature.

2. Preliminaries

2.1. Frames. Recall that a frame L is a complete lattice which satisfies the join-infinite distributive
law:

x∧
∨

S =
∨
{x∧ s | s ∈ S}

while a coframe L is a complete lattice satisfying the meet-infinite distributive law:

x∨
∧

S =
∧
{x∨ s | s ∈ S}

for every x ∈ L and every S ⊆ L. Henceforth, we will write L and M for frames. The top and bottom
elements of L will be denoted by 1 and 0, respectively. For any a,b ∈ L, we say that a is rather below
b, written as a ≺ b, if a∧ c = 0 and c∨ b = 1, for some c ∈ L. The pseudocomplement of a ∈ L is
defined by a∗ =

∨
{x ∈ L | x∧ a = 0}. A frame L is called regular if a =

∨
{x ∈ L | x ≺ a}, for all

a ∈ L. A Boolean frame is a frame L such that a∗∗ = a for all a ∈ L. A subset A ⊆ L is a cover of L if
1 =

∨
A. A frame L is compact (Lindelöf) if for any cover A ⊆ L there exist a finite (countable) S0 ⊆ S

such that 1 =
∨

S0. An element c ∈ L is connected if whenever c = a∨b and a∧b = 0, then either
a = 0 or b = 0. A frame L is connected if its top element is connected, and L is locally connected if
every element can be expressed as a join of connected elements in L. A spatial frame is a frame that is
isomorphic to a frame, O(X), of open sets of some topological space X . An element p ̸= 1 in a lattice
L is meet-irreducible if for any a,b ∈ L, with a∧b ≤ p, either a ≤ p or b ≤ p. By a point in a frame L,
we mean an element p ∈ L which is meet-irreducible.

2.2. The sublocale lattice. In a frame L, there is a binary operation →, called the Heyting operation,
such that for any a,b,c ∈ L, one has c ≤ a → b ⇐⇒ c∧a ≤ b. A sublocale of a frame L is a subset
S of L such that S is closed under arbitrary meets and for each x ∈ L and each s ∈ S, x → s ∈ S. The
sets cL(a) = ↑a = {x ∈ L | a ≤ x} and oL(a) = {a → x | x ∈ L} are sublocales of L, called the closed
and the open sublocales associated with a ∈ L. The lattice S(L) of all sublocales of a frame L is, in
general, a non-complemented coframe under inclusion (see [25, Theorem III.3.2.1]) where the meets
are precisely the intersections and the joins are as follows:∨

i∈I

Si = {
∧

A | A ⊆
⋃
i∈I

Si}

for any {Si}i∈I ⊆ S(L). The bottom element of S(L) is O := {1} (we call this the void sublocale) and L
is its top element. Throughout the paper, joins of sublocales of L will be taken in the coframe S(L). We

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

16 Oct 2024 12:48:53 PDT
231019-Mthethwa Version 3 - Submitted to Rocky Mountain J. Math.



LJ-FRAMES 3

shall say that a collection of sublocales {Si | i ∈ I} ⊆ S(L) is a cover of a sublocale S if S ⊆
∨

i Si. If all
the Si are closed (or open), we will say that {Si | i ∈ I} is a closed (or an open) cover of S. Being a
coframe, we have the co-Heyting operation ∖ on S(L), satisfying A∖B ⊆C ⇐⇒ A ⊆ B∨C for any
A,B,C ∈ S(L). For any S,R ∈ S(L), we have the following formula by Isbell [16]:

R∖S =
∨
{T ∈ S(L) | T ⊆ R and T ∩S = O}.

The supplement, L∖S, of a sublocale S in a frame L is given by:

L∖S =
∨
{T ∈ S(L) | T ∩S = O}=

⋂
{R ∈ S(L) | R∨S = L}.

For the proof of the second equality in the formula above, see [27, Lemma 1.1 (3)]. Note that
S∨ (L∖S) = L, but in general, the equation S∩ (L∖S) = O does not hold. We say S is complemented
in L if S∩ (L∖S) = O; that is, L∖S is the complement of S in the lattice S(L). We shall often use the
following fact (for example, see [22, Lemma 3.1]) for free:

Lemma 2.1. If S,T ∈ S(L) with S ⊆ T and S or T is complemented, then L∖T ⊆ L∖S.

Since the content of [13, Remarks 3.3 (a) & (b)] prevails in this paper, we paraphrase it below for
the coframe S(L):

Lemma 2.2. Let S be a complemented sublocale of L with complement L∖S. Then, for any T ∈ S(L),
we have:

(1) S∖T = S∩ (L∖T ) and T ∖S = T ∩ (L∖S).
(2) S∖ (R∖T ) = (S∩T )∨ (S∖R) whenever T is complemented. In particular, if T is complemented,
then S∖ (L∖T ) = S∩T .

The closure, S, and the interior, intL(S), of a sublocale S of L are given by:

S = {x ∈ L | x ≥
∧

S} and intL(S) =
∨
{oL(x) | oL(x)⊆ S}.

A sublocale S of L is dense if S = L. The frontier of S ∈ S(L) is the sublocale given by FrL(S) =
S∩L∖S. We speak of disjoint sublocales S and T if S∩T = O . We say that a sublocale S is connected
if the top element of S is connected in S. Here is an equivalent formulation of connectedness:

Lemma 2.3. The following conditions are equivalent:
(1) A non-void sublocale S of a frame L is connected.
(2) Whenever a,b ∈ L and S ⊆ oL(a)∨oL(b) with S∩oL(a)∩oL(b) = O, then either S∩oL(a) = O or
S∩oL(b) = O .

(3) Whenever a,b ∈ L and S ⊆ cL(a)∨ cL(b) with S∩ cL(a)∩ cL(b) = O, then either S∩ cL(a) = O or
S∩ cL(b) = O .

2.3. Definitions and examples of LJ-classes of spaces. Recall that a space X is Lindelöf if every open
cover of X can be reduced to a countable one. Now, let us recall some formal definitions from [15]:

Definition 2.4. A space X is called:
(1) a strong LJ-space if every compact K ⊆ X is contained in a closed Lindelöf A ⊆ X such that X ∖A
is connected.
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LJ-FRAMES 4

(2) a semi-strong LJ-space if every compact K ⊆ X is contained in a closed Lindelöf A ⊆ X such that
A∪C = X for some connected C ⊆ X ∖K.

(3) an LJ-space if whenever {A,B} is a closed cover of X with A∩B compact, then A or B is Lindelöf.
Collectively, the we shall call the spaces above the LJ-classes of spaces.

From [15, Theorem 1], one has the implications: Lindelöf =⇒ strong LJ-space =⇒ semi-strong
LJ-space =⇒ LJ-space. These implications are, in general, not reversible:

Example 2.5. The long line Z := [0,ω1)× [0,1) with the order topology generated by the lexicograph-
ical order is a regular Hausdorff space (for example, see Steen and Seebach Jr. [29]).

(1) The ordinal space [0,ω1) is a regular Hausdorff space [29], and it is an LJ-space which is not a
semi-strong LJ-space, by [15, Proposition 4 (1)].

(2) In [15, Example 5 (1)], a regular Hausdorff space Y (being a regular Hausdorff space Z×R+, where
R+ is a set of non-negative real numbers with the standard topology) that is a semi-strong LJ-space
but not a strong LJ-space is given.

(3) It is shown in [15, Proposition 3] that Z is a strong LJ-space, and of course, Z is not Lindelöf (see
[29]).

For more on LJ-classes of spaces, we refer the reader to [15].

3. LJ-classes of frames: properties and characterisations

Note that a sublocale S of a frame L is Lindelöf if and only if whenever S covered by a collection U of
open sublocales of L, then it is covered by countably many members of U .

Definition 3.1. A frame L is called:
(1) a strong LJ-frame if every compact sublocale K ⊆ L is contained in a closed Lindelöf sublocale
S ⊆ L such that L∖S is connected.

(2) a semi-strong LJ-frame if for every compact sublocale K ⊆ L, there exists a closed Lindelöf sublocale
S ⊆ L containing K and a connected sublocale C ⊆ L∖K with S∨C = L.

(3) an LJ-frame if whenever L = S∨T for closed sublocales S,T of L with S∩T compact, then S or T
is Lindelöf.

Collectively, we call the frames defined in Definition 3.1 the LJ-classes of frames.

Remark 3.2. Recall that a property P in pointfree topology is a conservative extension of the same
property in spaces given that a space X has property P in classical topology if and only if the frame
OX has property P in pointfree topology:

(1) It is not difficult to verify that Definition 3.1 (3) is a conservative pointfree extension of the
corresponding notion in spaces if the TD axiom is assumed; the same is true for the J-frame notion.

(2) Definition 3.1 (1) is conservative when regularity and the TD axiom is assumed; that is, a TD-space
X is a regular strong LJ-space if and only if OX is a regular strong LJ-frame.

(3) For a TD-space X , it is true that if X is a regular semi-strong LJ-space then OX is a regular semi-
strong LJ-frame. We do not know whether the converse of the latter holds true for any TD-space,
the glitch here is that a connected sublocale of OX is not expected to be induced, unless if it is a
component; in which case it would be closed (see [25, XIII.2.5.3]) and therefore, induced. Recall
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LJ-FRAMES 5

that scattered spaces are characterized by the property that every non-empty closed set contains an
isolated point. A frame L is said to be scattered if S(L) is a frame. A frame L is scattered if and only
if S(L) is a Boolean algebra, see [5]. Scatteredness is conservative since, if X is a TD-space, then X
is scattered if and only if each sublocale of S(OX) is complemented, by [4, Theorem 2.4.2]. Hence,
if X is a TD-space, then X is a scattered regular semi-strong LJ-space if and only if OX is a regular
scattered semi-strong LJ-frame.

Remark 3.3. An equivalent formulation of Definition 3.1 is provided below using elements:
(1)′ A frame L is an LJ-frame if for any a,b ∈ L such that a∧b = 0 and cL(a)∩ cL(b) is compact, either
cL(a) or cL(b) is Lindelöf. We shall use this formulation in Proposition 3.6.

(2)′ A regular frame L is a strong LJ-frame if and only if for every a ∈ L with cL(a) compact, there
exists a connected element b ≤ a in L such that cL(b) is Lindelöf.

(3)′ A regular frame L is a semi-strong LJ-frame if and only if whenever k ∈ L and cL(k) is compact,
then there exists l ≤ k with cL(l) Lindelöf and a connected sublocale C ⊆ oL(k) such that cL(l)∨C = L.
Verily, (2)′ and (3)′ are true for all frames with the property that compact sublocales are closed (e.g.,
the strongly Hausdorff frames).

The following characterization of pointless J-frames was proved in [22, Proposition 4.9] for regular
frames; we provide a proof which does not assume regularity:

Proposition 3.4. Let L be a frame with no points. Then L is a J-frame if and only if it is connected.

Proof. (=⇒) Let L be a J-frame with no points. Suppose L is not connected. Then L = S∨T for some
non-trivial closed sublocales S and T of L such that S∩T = O. Observe that S∩T is compact, and L is
a J-frame, so we may assume S is compact. But every nontrivial compact locale has at least one point,
by [18, Lemma III.1.9]; so S has at least one point. By [25, Lemma VI.3.1.1], Pt(S) = S∩Pt(L), so L
has at least one point, which is a contradiction.

(⇐=) Suppose L is connected. Let L = S∨T, where S,T are closed sublocales of L such that S∩T
is compact. If S∩T ̸= O, then S∩T has at least one point by [18, Lemma III.1.9], so L has at least one
point by [25, Lemma VI.3.1.1], which is a contradiction. Thus, S∩T = O. Since L is connected, then
S = O or T = O. Hence, S or T is compact. □

Example 3.5. Recall that the Booleanization of a frame L is the frame whose underlying set is
{a ∈ L : a = a∗∗}= {b∗ : b ∈ L}:

(i) A Boolean algebra is a distributive lattice in which every element is complemented, and a frame that
is a Boolean algebra is called a Boolean frame. Let B be a pointless Boolean frame (for example, the
Booleanization of the frame of open sets of real numbers). Then B is a disconnected frame with no
points. Thus, B is a non-spatial frame that is not a J-frame, by Proposition 3.4.

(ii) A connected frame with no points is a non-spatial J-frame; and whence a non-spatial LJ-frame. It
would be pleasant to know whether or not non-spatial examples of LJ-frame which are not J-frames
exists.

For the next result, we consider almost Lindelöf frames; these were characterized by Dube in [10,
Proposition 4.10] as those frames with the property that whenever a,b ∈ CozL and a∨ b = 1, then
cL(a) or cL(b) is Lindelöf.
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LJ-FRAMES 6

Proposition 3.6. Let L be a Boolean frame. If L is almost Lindelöf, then L is an LJ-frame.

Proof. Suppose that L is an almost Lindelöf frame. To show that L is an LJ-frame, let a,b ∈ L be
such that a∧ b = 0 and cL(a)∩ cL(b) is compact. Since L is a Boolean frame, then a∨ a∗ = 1 and
a,a∗ ∈ L = CozL. But L is almost Lindelöf, so cL(a) or cL(a∗) is Lindelöf. If cL(a) is Lindelöf, then we

are done. If cL(a∗) is Lindelöf, then
(
cL(a)∩ cL(b)

)
∨ cL(a∗) is Lindelöf. Now, note that b = b∧a∗,

so
(
cL(a)∩ cL(b)

)
∨ cL(a∗) = L∩ cL(b∧a∗) = cL(b). Hence, cL(b) is Lindelöf. □

It is worth emphasizing again that there are non-spatial LJ-frames, which is essentially the reason
for the importance of Proposition 3.6. In the proof of the result below (and for the remainder of this
paper), we use for free the fact that the Lindelöf property is inherited by closed sublocales.

Theorem 3.7. Let L be a frame. Consider the following conditions:
(1) L is Lindelöf.
(2) L is a strong LJ-frame.
(3) L is a semi-strong LJ-frame.
(4) L is an LJ-frame.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4).

Proof. (1) =⇒ (2) Note that L = cL(0), so for any compact sublocale K of L, one has that K ⊆ cL(0),
cL(0) is Lindelöf, and L∖ cL(0) = oL(0) = O is connected. Therefore, L is a strong LJ-frame.

(2) =⇒ (3) Let K be a compact sublocale of L. So, there exists a closed Lindelöf sublocale S
of L containing K such that L∖ S is connected. Since S is complemented in L, then K ⊆ S implies
L∖S ⊆ L∖K. We have (L∖S)∨S = L, so L is a semi-strong LJ-frame.

(3) =⇒ (4) Let L = S∨ T where S,T are closed sublocales of L with S∩ T compact. Use the
LJ-strongness of L to find a closed Lindelöf sublocale A of L with S∩T ⊆ A, and a connected sublocale
C ⊆ L∖ (S∩T ) such that A∨C = L. From L = S∨T we get C = (S∩C)∨ (T ∩C). Since S∩T is
complemented in L, C ⊆ L∖ (S∩T ) implies that C∩ (S∩T ) = O. But C is connected, so S∩C = O
or T ∩C = O . If S∩C = O, then A∨C = L =⇒ S∩A = S =⇒ S ⊆ A =⇒ S is Lindelöf. Similarly, if
T ∩C = O then T is Lindelöf. So, L is an LJ-frame. □

Example 3.8. Recall that regularity and Lindelöfness are conservative properties.
(1) Since any ordinal space is a scattered, Hausdorff, and regular (see [29]), then [0,ω1) has all these
properties; in particular, it is a scattered regular TD-space. Thus, by Example 2.5 (1) and Remark 3.2
(3), we have that O([0,ω1)) is a regular LJ-frame that is not a semi-strong LJ-frame.

(2) Since each Hausdorff space is a TD-space, then for the regular Hausdorff space Y in Example 2.5
(2), OY is a regular semi-strong LJ-frame, by Remark 3.2 (3). Moreover, OY is a regular frame that is
not a strong LJ-frame, by conservativeness of the LJ-strongness for regular spaces (Remark 3.2 (2)).

(3) The frame OZ, for Z in Example 2.5 (3), is an example of a regular non-Lindelöf strong LJ-frame.

Characterizations of strong and semi-strong LJ-frames in terms of open covers of certain sublocales
are what we present next:

Proposition 3.9. The following conditions are equivalent on a regular frame L:
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(1) L is a semi-strong LJ-frame if and only if whenever K is a compact sublocale of L and W is a cover
of L∖K by disjoint open sublocales of L, then there is W ∈W and a connected C ⊆W such that L∖C
is Lindelöf.

(2) L is a strong LJ-frame if and only if whenever K is a compact sublocale of L and W is a cover of
L∖K by disjoint open sublocales of L, then there is W ∈ W and an open connected C ⊆W such that
L∖C is Lindelöf.

Proof. (1) For the forward implication, suppose K is a compact sublocale of L with L∖K ⊆
∨

W for a
collection W of disjoint open sublocales of L. Using the LJ-semi-strongness of L, we find a connected
C ⊆ L∖K and a closed Lindelöf sublocale S such that K ⊆ S with S∨C = L. Suppose C ̸=C∩W for
all W ∈ W . Fix W0 in W , and let W1 =

∨
{W ∈ W |W ̸=W0}. Then we have

C = (C∩W0)∨ (C∩W1) with (C∩W0)∩ (C∩W1) = O .

The latter is not possible since C is connected. So, C ⊆W for some W ∈W . Furthermore, since S∨C =
L, and S is complemented in L, then L∖S ⊆C. Taking supplements and using the complementedness
of L∖S, we get L∖C ⊆ S. Thus, L∖C ⊆ S, since S is closed. Therefore, L∖C is Lindelöf.

Conversely, if K is a compact sublocale of L, then by regularity of L, K is closed. So, W = {L∖K,O}
is a disjoint open cover of L∖K. By the hypothesis, there is a connected sublocale C ⊆ L∖K such
that L∖C is Lindelöf. Moreover, C ⊆ L∖K =⇒ K ⊆ L∖C ⊆ L∖C and L∖C∨C = L; so L is a
semi-strong LJ-frame.

(2) For the forward direction, proceed as in (1), but use the LJ-strongness of L to find a closed
Lindelöf sublocale S of L such that K ⊆ S and L∖S is connected. Put C := L∖S. Then C is the open
connected sublocale with the property that C ⊆W for some W ∈ W (with the same proof as in (1)),
and L∖C = S is Lindelöf.

For the reverse implication, proceed as in (1) again, but here, find an open connected C ⊆ L∖K
such that L∖C is Lindelöf. Complementedness of K and C implies that K = L∖ (L∖K)⊆ L∖C and
L∖ (L∖C) =C is connected. □

In (1)⇐⇒ (4) of Theorem 3.12, we prove the LJ-frame counterpart of Proposition 3.9. We shall
need the following lemmas:

Lemma 3.10. If B is a closed non-Lindelöf sublocale of L and a sublocale C ⊆ B is Lindelöf, then
there is a closed non-Lindelöf sublocale D ⊆ B such that D∩C = O .

Proof. Let B be a closed non-Lindelöf sublocale of L and take a collection U of open sublocales of L
such that B ⊆

∨
{U |U ∈ U } and U has no countable subcover of B. Use Lindelöfness of C to find

a countable V ⊆ U such that C ⊆
∨
{V |V ∈ V } := S. Put D := B∖S, and have D ⊆ B. Since S is

complemented in L (being open), then D∩C = (B∖S)∩C =
(
(L∖S)∩B

)
∩C = O; where the second

equality follows by Lemma 2.2 (1). □

Lemma 3.11. Let L be an LJ-frame. If W is a collection of disjoint open sublocales of L that covers
L∖K with K compact and K ⊆U for some open U ∈ S(L), then

Y = {W ∈ W |W ⊈U}

is countable.
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LJ-FRAMES 8

Proof. Let W ,K, and U be as postulated and suppose that Y is uncountable. Then W is an uncountable
set and we can partition W as W = W1 ∪W2, where W1 ∩W2 = /0, with both W1 ∩Y = {W ∈ W1 |
W ⊈U} and W2 ∩Y = {W ∈ W2 |W ⊈U} uncountable. Let V1 =

∨
W1 =

∨
{W ∈ W |W ∈ W1} and

V2 =
∨

W2 =
∨
{W ∈W |W ∈W2}. Then L∖K ⊆

∨
{W |W ∈W }=V1∨V2 and V1∩V2 =O; the latter

because the members of W are disjoint open sublocales, and any sublocale distributes over the join of
open ones. Moreover, since each Vi is a join of open sublocales of L, then V1 and V2 are open sublocales
of L. Since V1 and V2 are complemented in L, then L∖K ⊆V1∨V2 =⇒ (L∖V1)∩ (L∖V2) = L∖ (L∖
K)⊆ K. Since K is a compact sublocale of L and (L∖V1)∩ (L∖V2) is closed, then (L∖V1)∩ (L∖V2)
is compact. Now, V1 ∩V2 = O =⇒ (L∖V1)∨ (L∖V2) = L. Therefore, L∖V1 or L∖V2 is Lindelöf,
since L is an LJ-frame. Suppose L∖V2 is Lindelöf. Therefore, V1 is Lindelöf because V1 ∩V2 = O =⇒
V1 ⊆ L∖V2 =⇒V1 ⊆ L∖V2. Put C :=V1∖U. Since U is complemented, then C = (L∖U)∩V1 ⊆V1,
so C is Lindelöf. We now show that C ⊆

∨
(W1 ∩Y ). First, use the fact that (L∖V1)∩ (L∖V2)⊆ K

and V1 ⊆ L∖V2 to get (L∖V1)∩V1 ⊆ K. Intersecting with L∖U on both sides of the previous
containment, and using the fact that K ⊆U with U complemented, gives us (L∖U)∩ (L∖V1)∩V1 ⊆
(L∖U)∩K = O . Let A =

∨
{W ∈ W1 |W ⊆U} and B =

∨
{W ∈ W1 |W ⊈U}. Then V = A∨B, and

we have (L∖U)∩ (L∖ (A∨B))∩V1 = O . That is, (L∖U)∩ (L∖A)∩ (L∖B)∩V1 = O, since A and
B are complemented. But A ⊆U , so L∖U ⊆ L∖A. This implies that (L∖U)∩ (L∖B)∩V1 = O . It
follows that (L∖U)∩V1 ⊆ L∖ (L∖B) = B =

∨
{W ∈ W1 | W ⊈ U}. That is, C ⊆

∨
(W1 ∩Y ). So,

there exists a countable cover B ⊆ W1 ∩Y of C. But W1 ∩Y is infinite and uncountable, so we can
find W0 ∈ W1 ∩Y such that W0 /∈ B. Now, W0 ⊈ U and W0 ∩W = O for all W ∈ B. Observe that
W0 ⊆

∨
W1 =V1 ⊆V1 and W0 ∩C ⊆W0 ∩

∨
B =

∨
{W0 ∩W |W ∈ B} = O. From the latter, we get

W0 ⊆ L∖C = L∖
(
(L∖U)∩V1

)
=U ∨ (L∖V1). Therefore W0 ⊆ V1 ∩

(
U ∨L∖V1

)
= V1 ∩U ⊆U.

This is a contradiction. So, Y is countable. □

Theorem 3.12. The following conditions are equivalent on a frame L:
(1) L is an LJ-frame.
(2) For any sublocale S of L with FrL(S) compact, either S or L∖S is Lindelöf.
(3) If S and T are disjoint closed sublocales of L with FrL(S) or FrL(T ) compact, then S or T is Lindelöf.
(4) If K is a compact sublocale of L and W is a collection of disjoint open sublocales of L that covers
L∖K, then L∖W is Lindelöf for some W ∈ W .

Proof. (1) =⇒ (2) Take S ∈ S(L) such that FrL(S) = S∩L∖S is compact. Observe that L = S∨ (L∖
S)⊆ S∨L∖S, therefore L = S∨L∖S. But L is an LJ-frame, so S or L∖S is Lindelöf.

(2) =⇒ (3) Let S and T be disjoint closed sublocales of L with FrL(S) or FrL(T ) compact. Suppose
FrL(S) is compact, then S or L∖S is Lindelöf, by the hypothesis. But S is closed, so S = S. Thus, S
or L∖S is Lindelöf. If S is Lindelöf, then we are done. Suppose L∖S is Lindelöf and notice that
S∩T = O =⇒ T ⊆ L∖S ⊆ L∖S. Since T is closed and L∖S is Lindelöf, then T is Lindelöf.

(3) =⇒ (1) Let L = S∨T where S,T are closed sublocales of L with S∩T compact. Suppose that
T is not Lindelöf, we show that S is Lindelöf. Since S∩T ⊆ T and S∩T is Lindelöf (being compact),
use Lemma 3.10 to find a closed non-Lindelöf sublocale D ⊆ T such that D∩ (S∩T ) = O . Therefore
S∩D = O. Notice that L = S∨T and the complementedness of S implies that L∖S ⊆ T , and since
FrL(S) = S∩L∖S ⊆ S∩T , then FrL(S) is compact. So, S or D is Lindelöf, by the hypothesis. But D
is not Lindelöf, so S is Lindelöf.
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LJ-FRAMES 9

(4) =⇒ (1) Let L = S∨T where S,T are closed sublocales of L with S∩T compact. Put K := S∩T .
Then L∖K = (L∖S)∨ (L∖T ) and (L∖S)∩ (L∖T ) = O . By (4), either L∖ (L∖S) or L∖ (L∖T )
is Lindelöf; that is, S or T is Lindelöf.

(1) =⇒ (4) Let W be a collection of disjoint open sublocales of L that covers L∖K with K compact.
We consider two cases:

Case 1: Suppose that there is a W0 ∈ W such that W0 is non-Lindelöf. Put W1 :=
∨
{W ∈ W |W ̸=

W0}. Observe that L∖K ⊆W0 ∨W1 and W0 ∩W1 = O . The latter implies that L = (L∖W0)∨ (L∖W1)
and the former implies that (L∖W0)∩ (L∖W1)⊆ K, so (L∖W0)∩ (L∖W1) is compact. Since L is an
LJ-frame, either L∖W0 or L∖W1 is Lindelöf. But W0 ∩W1 = O =⇒W0 ⊆ L∖W1 =⇒W0 ⊆ L∖W1,
so if L∖W1 is Lindelöf, then so is W0, and this is a contradiction. Thus, L∖W0 is Lindelöf. This
proves that (4) holds true for this case.

Case 2: Suppose that W is Lindelöf for all W ∈ W . We first show that L is Lindelöf. So let V
be a collection of open sublocales of L that covers L. Use compactness of K to find a finite V0 ⊆ V
such that K ⊆

∨
V0 := U . Then the set Y = {W ∈ W | W ⊈ U} is countable, by Lemma 3.11.

Write Y = {Wn | n ∈ N}. For each Wn ∈ Y , we have that Wn is Lindelöf, and since Wn ⊆
∨

V , then
Wn ⊆Wn ⊆

∨
Vn :=Vn for a countable collection Vn ⊆ V . Now, L = K∨ (L∖K)⊆U ∨

(∨
W

)
=U ∨(∨

{W ∈ W |W ⊆U}
)
∨
(∨

{W ∈ W |W ⊈U}
)
=U ∨

∨
{Wn | n ∈N} ⊆ (

∨
V0)∨

∨
{Vn | n ∈N}.

Thus, L is Lindelöf, and whence, so are the closed sublocales of L. In particular, L∖W is Lindelöf for
all W ∈ W . □

Recall that a sublocale of a frame L is called a component if it is a maximal connected sublocale.

Theorem 3.13. Let L be a regular frame. Consider the conditions:
(1) L is a strong LJ-frame.
(2) L is a semi-strong LJ-frame.
(3) L is an LJ-frame. If L is locally connected, then (1)⇐⇒ (2)⇐⇒ (3).

Proof. We have seen from Theorem 3.7 that, in general, (1) =⇒ (2) =⇒ (3). So, let L be locally
connected. We show that (3) =⇒ (1). Suppose L is an LJ-frame and let K be a compact sublocale of
L. Let C be the collection of all distinct components of L. Then, by [25, XIII.2.5.2], elements of C are
disjoint. Since L is a locally connected frame, then by [25, Proposition XIII.3.2], L =

∨
C and each

C ∈ C is open (and closed). One can deduce from [3, Corollary 1.4] that any open sublocale U of a
locally connected frame L is a join of components of L that are contained in U . In particular, since
K is closed (being a compact sublocale of a regular frame), we have L∖K =

∨
{C ∈ C |C ⊆ L∖K}.

Therefore, by the equivalence of (1) and (4) in Theorem 3.12, there exists C0 ∈C such that C0 ⊆ L∖K
and L∖C0 is Lindelöf. Put S := L∖C0. Then S is a closed Lindelöf sublocale of L and L∖S =C0,
so L∖ S is connected. Finally, since K is complemented, the containment C0 ⊆ L∖K implies that
K ⊆ L∖C0 = S. □

It is shown in [25, Proposition XIII.2.4] that any binary join of connected sublocales having a
non-trivial intersection is again connected. A component of any frame is always a closed sublocale, by
[25, XIII.2.5.3].

Proposition 3.14.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

16 Oct 2024 12:48:53 PDT
231019-Mthethwa Version 3 - Submitted to Rocky Mountain J. Math.



LJ-FRAMES 10

(1) If L is a strong LJ-frame, so is every component of L.
(2) If L is a semi-strong LJ-frame, so is every component of L.

Proof.
(1) Suppose C is a component of L and let K be a compact sublocale of C. By the LJ-strongness of
L, there is a closed Lindelöf sublocale T ⊆ L such that K ⊆ T and L∖T is connected. If C ⊆ T,
we are done because this implies C is Lindelöf, and therefore, a strong LJ-frame by (1)=⇒(3) of
Theorem 3.7. If C ⊈ T , then C∩ (L∖T ) ̸= O since T is closed. Now, C and L∖T are connected,
and therefore, so is C ∨ (L∖ T ). But C is a component so C = C ∨ (L∖ T ). That is, L∖ T ⊆ C.
Consider the closed sublocale S := T ∩C of C. Clearly, K ⊆ S, and S is Lindelöf since it is also a
closed sublocale of the Lindelöf frame T. It is only left to prove that the supplement of S in C, C∖S,
is connected. This may be done by showing that C∖S = L∖T . First, recall from [13, Remark 4.2
(b)] that supplements in the sublocale are calculated the same as in the parent frame; in particular,
C∖S =C∩

(
L∖(T ∩C)

)
=C∩

(
(L∖T )∨(L∖C)

)
=C∩(L∖T ) = L∖T. In the previous calculation,

we use the fact that S and C are closed (in particular, complemented) in L and apply Lemma 2.2 (1)
and [13, Proposition 3.2 (5)].

(2) Suppose C is a component of L and let K be a compact sublocale of C. The LJ-semi-strongness
of L implies that there is a closed Lindelöf sublocale T ⊆ L such that K ⊆ T and a connected
sublocale D ⊆ L∖K with T ∨D = L. If C ⊆ T, then C is Lindelöf, and therefore a semi-strong
LJ-frame by (1)=⇒(2) of Theorem 3.7. If C ⊈ T, then C ∩ (L∖ T ) ̸= O . Put S := C ∩ T . Now,
T ∨D = L =⇒ L∖ T ⊆ D, and K ⊆ T =⇒ L∖ T ⊆ L∖K, so L∖ T ⊆ D∩ (L∖K) = D. Thus,
C∩ (L∖T )⊆C∩D. So, C∩D ̸= O . It follows that D∨C is connected, and since C is a component,
then D∨C =C. That is, D ⊆C. Observe that K is a sublocale of C that is contained in T , so S is a
closed Lindelöf sublocale of C with K ⊆ S. Lastly, D ⊆C∩ (L∖K) =C∖K (where the last equality
follows by Lemma 2.2 (1)), and S∨D = (C∩T )∨D = (C∨D)∩ (T ∨D) =C∩L =C. □

Example 3.15.
(1) All the closed subspaces of the J-space [0,ω1) are also J-spaces, see [15, Proposition 4]. Therefore,
the closed sublocales of the J-frame O([0,ω1)) are induced by closed subsets of [0,ω1), so they are all
J-frames. We do not know whether or not Proposition 3.14 holds true for LJ-frames, but the J-space
analog of it is not true: in [21, Example 9.2], a locally compact Hausdorff J-space X with a connected
component C which is not a J-space is constructed. In fact, C is isomorphic to R, and R is not a
J-space by [21, Proposition 2.2]. Since C is a TD-space, then OC is not a J-frame, by conservativeness
of the J-frame property for TD-spaces. It is shown in [7, Proposition 3.6] that connected subsets induce
connected sublocales in a TD-space, so the J-frame OX has a connected closed sublocale C̃ which is
not a J-frame because C̃ = cOX(X ∖C)∼=OC. We may not conclude here that C̃ is a component of
OX since connected sublocales of OX may not be induced.

(2) In general, Proposition 3.14 is not true for arbitrary closed sublocales:
(a) The long line Z is a regular strong LJ-space having a closed subspace A := [0,ω1)×{0} which is
homeomorphic to [0,ω1) and this is not a strong LJ-space, see [15, Proposition 4]. Therefore, A is
regular and OA is not a strong LJ-frame, by conservativeness of the LJ-strongness property for regular
spaces. Since Ã ∼=OA, then Ã is a closed sublocale of the strong LJ-frame OZ which is not a strong
LJ-frame.
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(b) In [15, Example 5], the author constructed a subspace Y of the regular Hausdorff Z ×R+, where
Z is the long line and R+ is the set of nonnegative real numbers with the usual topology. This Y is
a regular Hausdorff space which is semi-strong LJ-space and it has closed subspace F which is not
even an LJ-space. Since the open set lattice of a regular TD-space which is a semi-strong LJ-space is a
semi-strong LJ-frame, then OY is a regular semi-strong LJ-frame having the closed sublocale F̃ that is
not an LJ-frame (hence F̃ is not a semi-strong LJ-frame).

We now study the nature of binary closed covers of a frame that makes it to belong in an LJ-class.

Theorem 3.16. Let L be a regular frame. If {S,T} is a closed cover of L with S∩T compact, then the
following conditions are equivalent:

(1) L is a strong LJ-frame.
(2) One of S and T is Lindelöf and the other is a strong LJ-frame.

Proof. (1) =⇒ (2)
If L is a strong LJ-frame, then it is an LJ-frame by (2) =⇒ (4) of Theorem 3.7. So we may assume

that T is Lindelöf. We show that S is a strong LJ-frame, so let K1 be a compact sublocale of S. We
have a compact sublocale K = K1 ∨ (S∩T ) of L; so K ⊆ A for some closed Lindelöf sublocale A of L
such that L∖A is connected. Put A1 := A∩S,C1 := (L∖A)∩S and C2 := (L∖A)∩T . Hence, A1 is
Lindelöf, and K1 ⊆ A1. Since L∖A =C1 ∨C2, then C1 = O or C2 = O, by connectedness of L∖A. If
C2 = O, then, by Lemma 2.2 (1), we have S∖A1 = S∩ (L∖A1) = S∩ ((L∖A)∨ (L∖S)) = S∩C1 =
C1 = L∖A. Thus, S∖A1 is connected. Therefore, S is a strong LJ-frame. Suppose, C1 = O, then
L = A∨ (L∖A) =⇒ S = (S∩A)∨ (S∩ (L∖A)) = S∩A = A1, so S is Lindelöf. Thus, S is a strong
LJ-frame by (1) =⇒ (2) of Theorem 3.7.

(2) =⇒ (1) Suppose T is Lindelöf and S is a strong LJ-frame. Take a compact sublocale K of L.
Regularity of L implies that K is closed, so K∩S is a compact sublocale (being a closed sublocale of K)
contained in S. Put K1 := (K ∩S)∨ (T ∩S). We have that K1 is a compact sublocale of S; find a closed
Lindelöf sublocale A1 of S containing K1 such that S∖A1 is connected. Now, put A := A1 ∨T . Then A
is a closed Lindelöf sublocale of L. Now, observe that K = (K ∩S)∨ (K ∩T )⊆ K1 ∨T ⊆ A1 ∨T = A.
It only remains to show that L∖A is connected, which we show by arguing that L∖A = S∖A1. To see
this, first note that on the one hand L∖T ⊆ S, so L∖A = (L∖A1)∩ (L∖T )⊆ (L∖A1)∩S = S∖A1.
On the other hand, since T ∩ S ⊆ K1 ⊆ A1 ⊆ S, then (S ∖ A1)∩A = ((L∖ A1)∩ S)∩ (A1 ∨ T ) =
(L∖A1)∩ (T ∩S)⊆ (L∖A1)∩A1 = O, so S∖A1 ⊆ L∖A. Thus, L∖A = S∖A1, and whence, L∖A
is connected. □

Next, we show that the result above holds for semi-strong LJ-frames:

Theorem 3.17. Let L be a regular frame. If {S,T} is a closed cover of L with S∩T compact, then the
following conditions are equivalent:

(1) L is a semi-strong LJ-frame.
(2) One of S and T is Lindelöf and the other is a semi-strong LJ-frame.

Proof. (1) =⇒ (2) We proceed as in the proof of Theorem 3.16, but use the LJ-semi-strongness of L,
there is a closed Lindelöf sublocale A of L containing K and a connected C ⊆ L∖K such that A∨C = L.
Put A1 := A∩S,C1 :=C∩S and C2 :=C∩T . So A1 is Lindelöf and K1 ⊆ A1. Since C =C1 ∨C2, it
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follows by connectedness of C that C1 = O or C2 = O . If C2 = O, then C =C1 =C∩S, and so C ⊆ S.
A sublocale of a regular locale is regular, by [18, Proposition III.1.2 (i)]. So, S is regular, and whence
K1 is a closed (and therefore, a complemented) sublocale of S, by [18, Proposition III.1.2 (iii)]. It
follows that C ⊆ (L∖K)∩S = S∖K ⊆ S∖K1. Moreover, C∨A1 = S, so the LJ-semi-strongness of S
follows. If C1 = O, then from A∨C = L, one has S = A1, so S is Lindelöf. Thus, S is a semi-strong
LJ-frame by (1) =⇒ (2) of Theorem 3.7.

(2) =⇒ (1) Proceed as in the proof of Theorem 3.16 but with T Lindelöf and S semi-strong, and
K1 := K ∩ S. We have K1 ⊆ K, so K1 is a compact sublocale of S; find a closed Lindelöf sublocale
A1 of S containing K1 and a connected C ⊆ S∖K1 such that A1 ∨C = S. Let A = A1 ∨T. Then A is a
closed Lindelöf sublocale of L. Observe that K ⊆ A. It is now not difficult to check that C ⊆ L∖K and
A∨C = L. □

We now show that the LJ-frame analog of Theorem 3.16 and Theorem 3.17 holds true without the
assumption of regularity on the ambient frame.

Theorem 3.18. If {S,T} is a closed cover of a frame L with S ∩ T compact, then the following
conditions are equivalent:

(1) L is an LJ-frame.
(2) One of S and T is Lindelöf and the other is an LJ-frame.

Proof. (1) =⇒ (2) By definition, S or T is Lindelöf. Assume that T is Lindelöf. We shall show that S
is an LJ-frame. Suppose S = A∨B for some closed sublocales A,B of S such that A∩B is compact.
Since S is a closed sublocale of L, then A,B are closed sublocales of L. Now, L = A∨ (B∨T ) and
A∩(B∨T ) = (A∩B)∨(A∩T )⊆ (A∩B)∨(S∩T ), so A∩(B∨T ) is compact, being a closed sublocale
contained in a compact one. Thus, A or B∨T is Lindelöf, since L is an LJ-frame. If A is Lindelöf, then
we are done. If B∨T is Lindelöf, then B inherits the Lindelöf property from B∨T since B is closed.

(2) =⇒ (1) Without loss of generality, suppose that T is Lindelöf and that S is an LJ-frame. We
shall show that L is an LJ-frame. Suppose L = A∨B for some closed sublocales A,B of L such that
A∩B is compact. Now, let:

A1 = A∩S and B1 = B∩S,

A2 = A∩T and B2 = B∩T.

Then, A1 ∨B1 = (A∩S)∨ (B∩S) = (A∨B)∩S = L∩S = S and A1 ∩B1 is compact since it is a closed
sublocale contained in A∩B. Thus, A1 or B1 is Lindelöf. Assume B1 is Lindelöf, and note that B2 is
Lindelöf since it is a closed sublocale contained in T . Hence, B is Lindelöf since B1 ∨B2 = B. □

We have seen in Proposition 3.14 that components always inherit the LJ-strongness (and the LJ-
semi-strongness) from the parent frame if it has this property. In general, closed sublocales need not
behave this way, even for LJ-frames (see Example 3.15). For closed sublocales with a compact frontier,
one has:

Corollary 3.19. Let S be a closed sublocale of a frame L with FrL(S) compact.
(1) If L is a regular strong LJ-frame, so is S.
(2) If L is a regular semi-strong LJ-frame, so is S.
(3) If L is an LJ-frame, so is S.
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LJ-FRAMES 13

Proof. We show that (3) is true. Note that L = S∨L∖S and FrL(S) = S∩L∖S is compact. Since L is
an LJ-frame, then one of S and L∖S is Lindelöf and the other is an LJ-frame, by Theorem 3.18. In
particular, if L∖S is Lindelöf, then S is an LJ-frame. If S is Lindelöf, then we are done, by (1) =⇒ (4)
of Theorem 3.7. Part (1) and (2) follows by a similar argument; but in these case, one must accordingly
apply Theorem 3.16 and (1) =⇒ (2) of Theorem 3.7 for part (1), and Theorem 3.17 together with (1)
=⇒ (3) of Theorem 3.7 for part (2). □

Corollary 3.20. Let {S,T} be a closed cover of a frame L with T Lindelöf.
(1) If L is regular and S is a strong LJ-frame with FrL(S) compact, so is L.
(2) If L is regular and S is a semi-strong LJ-frame, so is L.
(3) If S is an LJ-frame, so is L.

Proof. Note that part (2) follows by the proof of (2) =⇒ (1) of Theorem 3.17 and part (3) is a
consequence of the proof of (2) =⇒ (1) of Theorem 3.18. However, part (1) does not follow by the
proof of (2) =⇒ (1) Theorem 3.16 because this proof uses the compactness of S∩T ; a condition
that we do not have here. But compactness of FrL(S) ought to be enough to rectify this. First, note
that L = S∨L∖S and S∩L∖S is compact. Now, L = S∨T and the complementedness of S implies
that L∖S ⊆ T. Thus, L∖S ⊆ T. It follows that L∖S is Lindelöf. But S is a strong LJ-frame, so by
(2) =⇒ (1) Theorem 3.16, L is a strong LJ-frame.

□

Corollary 3.21. Suppose L = S∨U where U is an open sublocale of a frame L with U compact and S
is any sublocale of L.

(1) If S is a regular strong LJ-frame, so is L.
(2) If L is regular and S is a semi-strong LJ-frame, so is L.
(3) If S is an LJ-frame, so is L.

Proof. We show that (3) is true. Let A = L∖U . Then A is a closed sublocale of S. Furthermore,
FrL(A) = A∩L∖A = A∩U ⊆U . Therefore FrL(A) is compact and it is contained in S. But S is an
LJ-frame, so A is an LJ-frame by Corollary 3.19 (3). Notice that L = A∨U , and A∩U is compact
(being a closed sublocale of L contained in U). It now follows by Theorem 3.18 that L is an LJ-frame.
The proof for (1) (respectively, (2)) follows similarly, but instead it applies Corollary 3.19 (1) and
Theorem 3.16 (respectively, Corollary 3.19 (2) and Theorem 3.17). □

Theorem 3.22. Let {S,T} be a closed cover of a frame L with S∩T non-Lindelöf.
(1) If L is regular and S and T are semi-strong LJ-frames, so is L.
(2) If S and T are LJ-frames, so is L.

Proof. (1) To show that L is a semi-strong LJ-frame, let K be a compact sublocale of a regular L.
Put K1 := K ∩ S and K2 := K ∩T . Then K1 and K2 are compact. Since K1 is compact and K1 ⊆ S,
there is a closed Lindelöf sublocale A1 of S containing K1 and connected C1 ⊆ S ∖K1 such that
C1 ∨A1 = S. Similarly, there is a closed Lindelöf sublocale A2 of T containing K2 and connected
C2 ⊆ T ∖K2 with C2 ∨A2 = T . Now, put A := A1 ∨A2 and C := C1 ∨C2. It is now clear that A is a
closed Lindelöf sublocale containing K such that C∨A= L. Also, C =C1∨C2 ⊆ (S∖K1)∨(T ∖K2) =
(S∩ (L∖K1))∨ (T ∩ (L∖K2)) = (S∩ (L∖ (K ∩ S)))∨ (T ∩ (L∖ (K ∩T ))) = (S∩ (L∖K))∨ (T ∩
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LJ-FRAMES 14

(L∖K)) = (S∨T )∩ (L∖K) = L∖K. We now argue that C is connected. We do this by showing
that C1 ∩C2 ̸= O . Note that C1 ∨A1 = S and C2 ∨A2 = T implies that S∖A1 ⊆C1 and T ∖A2 ⊆C2.
Therefore, (S∖A1)∩ (T ∖A2)⊆C1 ∩C2. We show that (S∖A1)∩ (T ∖A2) ̸= O. Suppose not, and
note that (S∖A1)∩ (T ∖A2) = O =⇒ (S∩ (L∖A1))∩ (T ∩ (L∖A2)) = O =⇒ (S∩T )∩ (L∖A) =
O =⇒ (S∩T ) ⊆ A =⇒ S∩T is Lindelöf, which is a contradiction. Thus, (S∖A1)∩ (T ∖A2) ̸= O,
and this establishes the connectedness of C.

(2) Suppose that S and T are LJ-frames. To show that L is an LJ-frame, let L = A∨B and suppose
that A∩B is compact. Put:

A1 := A∩S and B1 := B∩S,

A2 := A∩T and B2 := B∩T.

Note that A1 ∨B1 = S and A2 ∨B2 = T . Since A1 ∩B1 ⊆ A∩B and A2 ∩B2 ⊆ A∩B, then A1 ∩B1 and
A2 ∩B2 are compact. But S is an LJ-frame, so either A1 or B1 is Lindelöf. Similarly, since T is an
LJ-frame, either A2 or B2 is Lindelöf. We show that if B1 is Lindelöf, then B is Lindelöf. To this end,
suppose that B1 is Lindelöf. Observe that S∩T = (A1 ∨B1)∩ (A2 ∨B2) = (A1 ∩A2)∨ (B1 ∩A2)∨
(A1 ∩B2)∨ (B1 ∩B2)⊆ A2 ∨ (A∩B)∨B1. On the one hand, S∩T is non-Lindelöf, by the hypothesis.
On the other hand, A∩B is compact, and therefore Lindelöf. But, B1 is also Lindelöf. Putting all of
this together, we get that A2 cannot be Lindelöf, otherwise S∩T would be Lindelöf. It follows that B2
must be Lindelöf. We now have that B1 and B2 are Lindelöf, so B1 ∨B2 = B is Lindelöf. By a similar
argument, we can show that if A1 is Lindelöf, so is A. Therefore, L is an LJ-frame. □

Remark 3.23. The strong LJ-frame analog of Theorem 3.22 is not true. This can be observed from
the fact that in spaces, see [15, Example 5], one has a regular Hausdorff semi-strong LJ-space Y which
is not a strong LJ-space that has a closed cover {A,B} with A∩B non-Lindelöf, but A and B are strong
LJ-spaces. Therefore, Theorem 3.22 does not hold in frames, by conservativeness of the LJ-strongness
for regular spaces. Moreover, the semi-strong LJ-space Y (so Y is an LJ-space) in [15, Example 5]
has a closed cover {Y,F} with Y ∩F = F non-Lindelöf, but F is not an LJ-space (an therefore not a
semi-strong LJ-space). So, OY is a semi-strong LJ-frame (hence, an LJ-frame) with OY = Ỹ ∨ F̃ and
Ỹ ∩F = F̃ non-Lindelöf such that F̃ is not an LJ-frame. Thus, the converses of (1) and (2) of Theorem
3.22 are not true.

4. LJ-frames and remainders

This section contains results that do not appear in topological spaces. Here, we characterize the classes
of LJ-frames using their remainders from compact regular extension. A compact (Lindelöf) regular
frame M containing a frame L as a dense sublocale is called a compactification (Lindelöfication) of L.
The notion of a remainder of a frame in its compactification was introduced by Baboolal in [2] using
congruences. An equivalent sublocalic definition of a remainder of a frame in its compactification is
provided below:

Definition 4.1. [13] Let M be an compactification of L. The remainder of L in M is the sublocale
M∖L of M.

Theorem 4.2. Let M be a compactification of a frame L. The following conditions are equivalent:
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LJ-FRAMES 15

(1) L is an LJ-frame.
(2) If M∖L ⊆U, for an open sublocale U of M such that {W1,W2} is a disjoint open cover of U ∩L,
then L∖W1 or L∖W2 is Lindelöf.

Proof. (1)=⇒(2) Suppose L is an LJ-frame and let M ∖L ⊆ U where U is an open sublocale of M
such that U ∩L =W1 ∨W2, W1 ∩W2 = O, and each Wi is an open sublocale of U ∩L (therefore each
Wi is open in L). From M ∖L ⊆ U , one has that M ∖U ⊆ L. Put K := M ∖U. Then K is a closed
sublocale of a compact frame M. Since K is contained in L (in particular, K is complemented in
L), then K is a compact sublocale of L. Note that U is complemented (being open) in M, therefore
L∖K = L∖ (M ∖U) = U ∩L, by Lemma 2.2 (1). That is, L∖K = W1 ∨W2. It follows that K =
(L∖W1)∩ (L∖W2). Therefore, (L∖W1)∩ (L∖W2) is compact. From W1 ∩W2 = O and the fact that
each Wi is complemented in L, we get that L = (L∖W1)∨ (L∖W2). Since L is an LJ-frame, then
L∖W1 or L∖W2 is Lindelöf.

(2)=⇒(1) Let L = A∨B where A and B are closed sublocales of L with A∩B compact. We show
that A or B is Lindelöf. Since M is regular, then A∩B is a closed sublocale of M. Let U = M∖ (A∩B).
Then U is open in M. The complementedness of A∩B in M and the fact that A∩B ⊆ L implies that
M∖L ⊆ M∖ (A∩B) =U. Note that

U ∩L = (A∨B)∩ (M∖ (A∩B))

= (A∩ (M∖ (A∩B)))∨ (B∩ (M∖ (A∩B))).

We claim that A∩(M∖(A∩B))= L∖B. Indeed, since A∩B is complemented in M, then (A∩B)∩(M∖
(A∩B))=O . Hence, A∩(M∖(A∩B))⊆ L∖B. For the reverse inclusion, first note that since L=A∨B
and B is complemented in L, we must have L∖B = (A∩ (L∖B))∨ (B∩ (L∖B)) = A∩ (L∖B). That
is, L∖B ⊆ A. Now, observe that A∩B ⊆ B implies that L∖B ⊆ L∖ (A∩B)⊆ M∖ (A∩B); the last
containment is true since the supplements in L are calculated the same way as in M, by [13, Remark
4.2 (b)]. It follows that L∖B ⊆ A∩ (M ∖ (A∩B)). A similar argument can be used to show that
B∩ (M∖ (A∩B)) = L∖A. Hence,

U ∩L = (L∖B)∨ (L∖A).

Note that (L∖B) and (L∖A) are open sublocales of L which are both contained in the open sublocale
U of M, so they are open in U ∩L. Moreover, (L∖B)∩ (L∖A) = L∖ (A∨B) = L∖L = O . So, by
the hypothesis, either L∖ (L∖A) or L∖ (L∖B) is Lindelöf. By the complementedness of A and B in
L, the latter means A or B is Lindelöf; showing that L is an LJ-frame. □

We now present the strong LJ-frame analog of Theorem 4.2:

Theorem 4.3. Let M be a compactification of a frame L. Then the following conditions are equivalent:
(1) L is a strong LJ-frame.
(2) If M∖L ⊆U and U is an open sublocale of M, then there exists a closed Lindelöf sublocale T of L
such that L∖T is connected and L∖T ⊆U.

Proof. (1)=⇒(2) Suppose that M∖L ⊆U for some open sublocale U of M. Here too, M∖Uso it is a
compact sublocale of L. But L is a strong LJ-frame, so there exists a closed Lindelöf sublocale T of L
such that M∖U ⊆ T and L∖T is connected. From M∖U ⊆ T we get M =U ∨T , by [25, VI.4.5],
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LJ-FRAMES 16

where the join is taken in S(M). Intersecting with L∖T on both side of the previous equation and
using the fact that T is complemented in L, we get L∖T ⊆U.

(2)=⇒(1) Let K be a compact sublocale of L. Then K is a closed sublocale of M, by regularity of
M. Since K ⊆ L, then the complementedness of K in M implies that M∖L ⊆ M∖K. Now, M∖K is
an open sublocale of M, so by the hypothesis, then there exists a closed Lindelöf sublocale T of L such
that L∖T is connected and L∖T ⊆ M∖K. Using the complementedness of K in M again, we get
K = M∖ (M∖K)⊆ M∖ (L∖T )⊆ T ; the last containment follows from the fact that if S ∈ S(M) and
S∩ (L∖T ) = O, then S ⊆ T since T is complemented in L. □

The semi-strong LJ-frame version of Theorem 4.2 and Theorem 4.3 is presented below:

Theorem 4.4. Let M be a compactification of a frame L. Then the following conditions are equivalent:
(1) L is a semi-strong LJ-frame.
(2) If M∖L ⊆ intM(S) where S is a sublocale of M, then there exists a closed Lindelöf sublocale T of L
and a connected sublocale C of L such that M∖ intM(S)⊆ T and L∖T ⊆C ⊆ intM(S).

Proof. (1)=⇒(2) Suppose that M∖L ⊆ intM(S) for some sublocale S of M. Now, being a join of open
sublocales of M, intM(S) is open in M. So, M∖ intM(S) is a closed sublocale of M, whence, M∖ intM(S)
inherits compactness from M. Since M∖L ⊆ intM(S), then the complementedness of intM(S) in M
implies that M∖ intM(S)⊆ L. Using the LJ-semi-strongness of L, we get a closed Lindelöf sublocale
T of L and a connected sublocale C of L such that M ∖ intM(S) ⊆ T , C ⊆ L∖ (M ∖ intM(S)), and
T ∨C = L. First, the latter and the complementedness of T in L implies that L∖T ⊆C. Furthermore,
L∖ (M ∖ intM(S)) = L∩ intM(S), by Lemma 2.2 (2), since intM(S) is complemented in M. Thus,
C ⊆ L∩ intM(S)⊆ intM(S). Therefore, L∖T ⊆C ⊆ intM(S).

(2)=⇒(1) Let K be a compact sublocale of L. So, M∖K is an open sublocale of M, and whence
intM(M∖K)=M∖K. Since K ⊆ L, then the complementedness of K in M implies that M∖L⊆M∖K.
Therefore, by the hypothesis, there exists a closed Lindelöf sublocale T of L and a connected sublocale
C of L such that M ∖ (M ∖K) ⊆ T and L∖ T ⊆ C ⊆ M ∖K. So, K ⊆ T . Now, by applying [25,
VI.4.5] to L∖T ⊆C we get that L ⊆ T ∨C, where the join is taken in S(L). That is, T ∨C = L. From
C ⊆ M∖K, and the fact that C ⊆ L, one has C ⊆ (M∖K)∩L = L∖K by the complementedness of K
in M and Lemma 2.2 (1). □

The spatial versions of Theorem 4.2, Theorem 4.3, and Theorem 4.4 are presented below, and they
do not appear in the classical topology literature. Let us remind the reader that a compact Hausdorff
space is regular, and that Hausdorffness and regularity are inherited by subspaces, so X is regular and
Hausdorff (and therefore a TD-space) in the result below:

Corollary 4.5. Let Y be a compact Hausdorff space containing a space X:
(1) X is a strong LJ-space if and only if whenever Y ∖X ⊆U and U is an open subset of Y, then there
exists a closed Lindelöf subset T of X such that X ∖T is connected and X ∖T ⊆U.

(2) X is a scattered semi-strong LJ-space if and only if whenever Y ∖X ⊆ intY (S) where S is a subset
of Y, then there exists a closed Lindelöf subset T of X and a connected subset C of X such that
Y ∖ intY (S)⊆ T and X ∖T ⊆C ⊆ intY (S).

(3) X is an LJ-space if and only if whenever Y ∖X ⊆ U, and U is an open subset of Y such that
{W1,W2} is a disjoint open cover of U ∩X, then X ∖W1 or X ∖W2 is Lindelöf.
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Remark 4.6. We close the paper with the following remarks:
(i) It is worth noting that the density of L in M is not a requirement for the proofs of Theorem 4.2,
Theorem 4.3, and Theorem 4.4. Thus, these results hold true for any compact regular frame M
containing L. Note that in Theorem 4.2, Theorem 4.3, and Theorem 4.4, compactness of M is vital
for the proof of (1)=⇒(2); so one does not expect this implication to be true for a non-compact
M. However, (2)=⇒(1) holds for any regular frame M, in all cases. Madden and Vermeer ([20])
constructed a Lindelöfication for completely regular frames, the regular Lindelöf reflection λL for a
completely regular frame L. So, in particular, the implications (2)=⇒(1) of Theorem 4.2, Theorem 4.3,
and Theorem 4.4 are true for the Lindelöfication λL, where L is completely regular. It is important to
mention here that the latter is novel since the mentioned Lindelöf reflection does not exist in spaces.

(ii) A sublocale is relatively connected in the ambient frame if it is not contained in a join of two disjoint
nontrivial open sublocale of the parent frame. It was shown in [22, Theorem 5.5] that a completely
regular frame L is a J-frame if and only if the remainder βL∖L is relatively connected in βL, where
βL is the Stone-Čech compactification of L. The proof of the latter is heavily dependent on the fact
that βL is a perfect compactification (in accord with Baboolal [2]). Now, by [11, Lemma 2.4], λL is a
perfect Lindelöfication. It is, therefore, natural to wonder if a completely regular LJ-frame L can be
characterized using the remainder λL∖L in a similar (or perhaps different) way that J-frames were
characterized via βL∖L.

(iii) As pointed out in Example 3.5 (ii), we do not know whether or not non-spatial examples of
LJ-frames that are not J-frames exist. This, together with part (ii) of this remark, alerts for a general
study of the non-spatiality of J-frames, LJ-frames, and other related classes of frames. We pursue this
direction elsewhere.
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