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Abstract

We give an explicit formula for the p-Frobenius number of primi-
tive Pythagorean triples, that is the largest positive integer that can
only be represented in p ways by combining the three integers of the
Pythagorean triple. When p = 0, it is the original Frobenius num-
ber in the famous Diophantine problem of Frobenius. We also obtain
closed forms for the number of positive integers, and the largest posi-
tive integer that can be represented in only p ways by combining the
three integers of the Pythagorean triple. Our generalization is natural
in terms of the Apéry set; a detailed analysis is needed, and the re-
sults are not trivial. Our method has an advantage in terms of visually
grasping the elements of the Apéry set, and is useful to determine other
related constants. In addition, as an application of our method, we can
determine the p-Frobenius number of other triples such as those associ-
ated to the sides of integer-sided triangles with an angle of 60 degrees.
This corresponds to the Diophantine equation x2 + y2 − xy = z2; in
principle, the method works for more general Diophantine equations
also whose solutions can be similarly parameterized.
Keywords: Frobenius problem, Pythagorean triples, Apéry set, Dio-
phantine equations
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1 Introduction

For integer k ≥ 2, consider a set of positive integers A = {a1, . . . , ak} with
gcd(A) = gcd(a1, . . . , ak) = 1. To find the number of non-negative integral
representations x1, x2, . . . , xn, denoted by d(n;A) = d(n; a1, a2, . . . , ak), to
a1x1 + a2x2 + · · · + akxk = n for a given positive integer n is one of the
most important and interesting topics. This number is often called the
denumerant and is equal to the coefficient of xn in 1/(1−xa1)(1−xa2) · · · (1−
xak) ([28]). Sylvester [27] and Cayley [4] showed that d(n; a1, a2, . . . , ak)
can be expressed as the sum of a polynomial in n of degree k − 1 and a
periodic function of period a1a2 · · · ak. For two variables, a formula for
d(n; a1, a2) is obtained in [31]. For three variables in the pairwise coprime
case d(n; a1, a2, a3), in [9], the periodic function part is expressed in terms
of trigonometric functions.

For a non-negative integer p, define Sp and Gp by

Sp(A) = {n ∈ N0|d(n;A) > p}

and
Gp(A) = {n ∈ N0|d(n;A) ≤ p}

respectively, satisfying Sp ∪Gp = N0, which is the set of non-negative inte-
gers. The set Sp is called p-numerical semigroup because S(A) = S0(A) is
a usual numerical semigroup. Gp is the set of p-gaps. Define gp(A), np(A)
and sp(A) by

gp(A) = max
n∈Gp(A)

n, np(A) =
∑

n∈Gp(A)

1, sp(A) =
∑

n∈Gp(A)

n ,

respectively, and are called the p-Frobenius number, the p-Sylvester number
(or p-genus) and the p-Sylvester sum, respectively. When p = 0, g(A) =
g0(A), n(A) = n0(A) and s(A) = s0(A) are the original Frobenius number,
Sylvester number (or genus) and Sylvester sum, respectively. To find such
values is one of the crucial matters in the Diophantine problem of Frobenius.
More detail descriptions of the p-numerical semigroups and their symmetric
properties can be found in [18].

The Frobenius problem (also known as the Coin Exchange Problem or
Postage Stamp Problem or Chicken McNugget Problem) has a long history
and is one of the popular problems that has attracted the attention of experts
as well as amateurs. For two variables A = {a, b}, it is known that

g(a, b) = (a− 1)(b− 1)− 1 and n(a, b) =
(a− 1)(b− 1)

2
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([28, 29]). For three or more variables, the Frobenius number cannot be
given by any set of closed formulas which can be reduced to a finite set of
certain polynomials ([5]). For three variables, various algorithms have been
devised for finding the Frobenius number. For example, in [23], the Frobe-
nius number is uniquely determined by six positive integers that are the
solution to a system of three polynomial equations. In [7], a general algo-
rithm is given by using 3× 3 matrix. Nevertheless, explicit closed formulas
have been found only for some special cases, including arithmetic, geometric,
Mersenne, repunits and triangular (see [21, 24, 25] and references therein).
We are interested in finding explicit closed forms, which is one of the most
crucial matters in Frobenius problem. Our method has an advantage in
terms of visually grasping the elements of the Apéry set, and is more useful
to get more related values, including genus (Sylvester number), Sylvester
sum [32], weighted power Sylvester sum [10, 19, 20] and so on.

We are interested in finding a closed or explicit form for the p-Frobenius
number, which is more difficult when p > 0. For three or more variables,
no concrete examples had been found until recently, when the first author
succeeded in giving the p-Frobenius number as a closed-form expression for
the triangular number triplet ([11]), for repunits ([12]), Fibonacci triplet
([16]), Jacobsthal triplets ([15, 14]) and arithmetic triplets ([17]).

It is well-known that the primitive Pythagorean triple (x, y, z) has the
unique expression:

x = s2 − t2, y = 2st, z = s2 + t2 ,

where s and t are positive integers having different parity with s > t and
gcd(s, t) = 1 (e.g., [30, Theorem 2.13]). In this paper, we give an explicit
formula for the p-Frobenius number of primitive Pythagorean triples. As an
application, we can also solve the analogous problem for triples of integers
that form a triangle contains an angle of 60 degrees.

Theorem 1. When s < (
√
2 + 1)t, for a nonnegative integer p with p ≤

⌊t/(s− t)⌋, we have

gp(s
2 − t2, 2st, s2 + t2)

= s
(
(s+ t)(s+ t− 2)− 2t2

)
+ p(s− t)(s2 + t2) .

When s > (
√
2 + 1)t, for a nonnegative integer p with p ≤ ⌊(s− t)/t⌋, we

have

gp(s
2 − t2, 2st, s2 + t2)

3

28 Sep 2024 19:14:30 PDT
230922-Komatsu Version 2 - Submitted to Rocky Mountain J. Math.



= s
(
(s+ t)(s+ t− 2)− 2t2

)
+ pt(s2 + t2) .

Remark. If p = 0 in Theorem 1, Theorem 2.1 in [8] is recovered as a special
case. We also give an explicit formula for the p-Sylvester number (p-genus)
of primitive Pythagorean triples (Theorem 3 below). However, the result
for p = 0 has not been discovered yet.

For integer-sided triangles with an angle of 60 degrees, the analogue of
Theorem 1 is the following result we prove.

Theorem 2. Let s and t be positive integers having different parity with
s > t, gcd(s, t) = 1 and 3 ∤ s. When s < 3t, for a nonnegative integer p with
p ≤ ⌊(2t)/(s− t)⌋, we have

gp(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (s− t− 1)(s2 + 3t2) +
(
(p+ 1)s− (p− 1)t− 1

)
(4st)− (s2 − 3t2 + 2st) .

When s > 3t, for a nonnegative integer p with p ≤ ⌊(s− t)/(2t)⌋, we have

gp(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (2t− 1)(s2 + 3t2) +
(
s+ (2p+ 1)t− 1

)
(s2 − 3t2 + 2st)− 4st .

Our method can be applied to obtain closed formulae for constants such
as the p-Sylvester (power) sum [13, 32], and the p-Sylvester weighted sum
[19, 20].

2 Preliminaries

For a positive integer p and a set of positive integers A = {a1, a2, . . . , ak}
with gcd(A) = 1, denote by Rp(A) the set of all nonnegative integers whose
representations in terms of a2, . . . , ak with nonnegative integral coefficients
have at least p ways. Note that when p = 0, R1 ∪ NR(A) = N ∪ {0} (the
set of nonnegative integers). We introduce the Apéry set (see [1]) below in
order to obtain the formulas for gp(A), np(A) and sp(A). Without loss of
generality, we assume that a1 = min(A).

Definition 1. Let p be a nonnegative integer. For a set of positive integers
A = {a1, a2, . . . , aκ} with gcd(A) = 1 and a1 = min(A) we denote by

App(A) = App(a1, a2, . . . , aκ) = {m(p)
0 ,m

(p)
1 , . . . ,m

(p)
a1−1} ,
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the p-Apéry set of A, where each positive integer m
(p)
i (0 ≤ i ≤ a1 − 1)

satisfies the conditions:

(i)m
(p)
i ≡ i (mod a1), (ii)m

(p)
i ∈ Sp(A), (iii)m

(p)
i − a1 ̸∈ Sp(A)

Note that m
(0)
0 is defined to be 0.

It follows that for each p,

App(A) ≡ {0, 1, . . . , a1 − 1} (mod a1) .

When k ≥ 3, it is hard to find any explicit form of gp(A) as well as np(A)
and sp(A). Nevertheless, the following convenient formulas are known (For a

more general case, see [13]). Though finding m
(p)
j is enough hard in general,

we can obtain it for some special sequences (a1, a2, . . . , ak).

Lemma 1. Let k and p be integers with k ≥ 2 and p ≥ 0. Assume that
gcd(a1, a2, . . . , ak) = 1. We have

gp(a1, a2, . . . , ak) =

(
max

0≤j≤a1−1
m

(p)
j

)
− a1 , (1)

np(a1, a2, . . . , ak) =
1

a1

a1−1∑
j=0

m
(p)
j − a1 − 1

2
, (2)

sp(a1, a2, . . . , ak) =
1

2a1

a1−1∑
j=0

(
m

(p)
j

)2 − 1

2

a1−1∑
j=0

m
(p)
j +

a21 − 1

12
. (3)

Remark. When p = 0, the formulas (1), (2) and (3) reduce to the formulas
by Brauer and Shockley [2], Selmer [26], and Tripathi [32], respectively:

g(a1, a2, . . . , ak) =

(
max

1≤j≤a1−1
mj

)
− a1 ,

n(a1, a2, . . . , ak) =
1

a1

a1−1∑
j=0

mj −
a1 − 1

2
,

s(a1, a2, . . . , ak) =
1

2a1

a1−1∑
j=0

(mj)
2 − 1

2

a1−1∑
j=0

mj +
a21 − 1

12
,

where mj = m
(0)
j (1 ≤ j ≤ a1 − 1) with m0 = m

(0)
0 = 0. More general

formulas using Bernoulli numbers can be seen in [10].
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3 Proof of the main theorem

3.1 The case where s2 − t2 is shortest

Let s < (
√
2 + 1)t, that is s2 − t2 < 2st. For simplicity, put

ri,j := i(2st) + j(s2 + t2)

or just (i, j) when we tabulate these values.
First, consider the case p = 0. We shall show that the (s2− t2) elements

in Ap0(A) with A = {s2 − t2, 2st, s2 + t2} are arranged as in Table 1.

(0, 0) · · · (s− t− 1, 0) (s− t, 0) · · · · · · (s− 1, 0)
...

...
...

...
(0, s− t− 1) · · · (s− t− 1, s− t− 1) (s− t, s− t− 1) · · · · · · (s− 1, s− t− 1)
(0, s− t) · · · (s− t− 1, s− t)

...
...

...
...

(0, s− 1) · · · (s− t− 1, s− 1)

Table 1: Ap0(s
2 − t2, 2st, s2 + t2) when s < (

√
2 + 1)t

Since gcd(2t2, s2 − t2) = 1, it is enough to show that

Ap0(A) :≡ {j|0 ≤ j ≤ s2−t2−1} ≡ {2jt2|0 ≤ j ≤ s2−t2−1} (mod s2−t2) .

Since rs−t+i,s−t+j ≡ ri,j (mod s2 − t2) and rs−t+i,s−t+j > ri,j (i, j ≥ 0),
any element of the form rs−t+i,s−t+j (i, j ≥ 0) is not in Ap0(A). Since
ri,s+j ≡ rt+i,j (mod s2− t2) and ri,s+j > rt+i,j (i, j ≥ 0), any element of the
form ri,s+j (i, j ≥ 0) is not in Ap0(A). Since rs+i,j ≡ ri,t+j (mod s2 − t2)
and rs+i,j > ri,t+j (i, j ≥ 0), any element of the form rs+i,j (i, j ≥ 0) is not
in Ap0(A). (See also Table 2 in these situations.) Therefore, only s2 − t2

elements in the area represented in Table 1 remain as candidates for the
elements of Ap0(A).

Now, all the elements 2jt2 (mod s2 − t2) (0 ≤ j ≤ s2 − t2 − 1) are
arranged inside of the area represented in Table 1 as follows. First,

r0,j ≡ 2jt2 (mod s2 − t2) (0 ≤ j ≤ s− 1)

and
rt,j ≡ 2(s+ j)t2 (mod s2 − t2) (0 ≤ j ≤ s− t− 1) .

If t ≤ s − t − 1, this continues for s − t ≤ j ≤ s − 1. Then, by rt,s ≡ r2t,0
(mod s2 − t2), one moves to the column of r2t,j (j ≥ 0). If t ≥ s − t, by
rt,s−t ≡ r2t−s,0 (mod s2 − t2), one moves to the column of r2t−s,j (j ≥ 0).

6
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In general, assume that ry,0 ≡ 2ht2 (mod s2 − t2) (0 ≤ y ≤ s − 1) for
some non-negative integer h. Then for j ≥ 0, ry,j ≡ 2(h+j)t2 (mod s2−t2).
If y ≥ s−t, then by ry,s−t ≡ ry−s+t,0 (mod s2−t2) one moves to the column
of ry−s+t,j (j ≥ 0) after ry,j (0 ≤ j ≤ s − t − 1). If y ≤ s − t − 1, then by
ry,s ≡ ry+t,0 (mod s2 − t2) one moves to the column of ry+t,j (j ≥ 0) after
ry,j (0 ≤ j ≤ s − 1). Since gcd(2t2, s2 − t2) = 1, any of two element of the
form 2jt2 (mod s2 − t2) (0 ≤ j ≤ s2 − t2 − 1) inside of the area in Table 1
is not overlapped.

Now we are on stage where we can determine the Frobenius number by
using Lemma 1 (1). It is clear that the candidates to take the largest value
in Ap0(A) are at (s− t− 1, s− 1) or (s− 1, s− t− 1). Since s2 + t2 > 2st,
we have rs−t−1,s−1 > rs−1,s−t−1. Hence,

g0(s
2 − t2, 2st, s2 + t2)

= (s− t− 1)(2st) + (s− 1)(s2 + t2)− (s2 − t2)

= s
(
(s+ t)(s+ t− 2)− 2t2

)
.

3.1.1 p = 1

All elements of Ap1(A) are arranged in the form of shifting elements of
Ap0(A) whose residues are equal. Table 2 is as follows. That is, the (s −
t)× (s− t) area at the lower left of Ap0(A) is shifted to the upper right of
Ap1(A), and the (s− t)× (s− t) area at the upper right of Ap0(A) is shifted
to the lower left of Ap1(A). Most of the other parts of Ap0(A) shift in the
lower right oblique direction as it is.

(s, 0) · · · (2s− t− 1, 0)
...

...
(s, s− t− 1) · · · (2s− t− 1, s− t− 1)

(s− t, s− t) · · · (2s− 2t− 1, s− t) · · · (s− 1, s− t)
...

...
(s− t, 2s− 2t− 1) · · · (s− 1, 2s− 2t− 1)

...
...

(s− t, s− 1) · · · (2s− 2t− 1, s− 1)
(0, s) · · · (s− t− 1, s)
...

...
(0, 2s− t− 1) · · · (s− t− 1, 2s− t− 1)

Table 2: Ap1(s
2 − t2, 2st, s2 + t2) when s < (

√
2 + 1)t

As checked in the case where p = 0, we have found that the set of all ele-
ments in these three areas is congruent to {0, 1, . . . , s2−t2−1} (mod s2−t2).
It is left to show that each element has at least two different representations.
For the (s − t) × (s − t) area at the bottom left of Table 2, we have for

7
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0 ≤ y ≤ s− t− 1 and 0 ≤ z ≤ s− t− 1

0(s2 − t2) + y(2st) + (s+ z)(s2 + t2)

= s(s2 − t2) + (y + t)(2st) + z(s2 + t2) .

For the (s − t) × (s − t) area at the top right of Table 2, we have for
0 ≤ y ≤ s− t− 1 and 0 ≤ z ≤ s− t− 1

0(s2 − t2) + (s+ y)(2st) + z(s2 + t2)

= t(s2 − t2) + y(2st) + (t+ z)(s2 + t2) .

For the middle area of Ap1(A), we have for 0 ≤ y ≤ s− 1 and 0 ≤ z ≤ s− 1

0(s2 − t2) + (s− t+ y)(2st) + (s− t+ z)(s2 + t2)

= (s+ t)(s2 − t2) + y(2st) + z(s2 + t2) .

In fact, for the elements in the area where y ≥ s− t and z ≥ s− t, there are
more than two representations belonging to App(A) (p ≥ 2).

There are four candidates to take the largest value in Ap1(A) and we
can easily find that

rs−t−1,2s−t−1 > rs−1,2s−2t−1 > r2s−2t−1,s−1 > r2s−t−1,s−t−1.

Hence, by Lemma 1 (1)

g1(s
2 − t2, 2st, s2 + t2)

= (s− t− 1)(2st) + (2s− t− 1)(s2 + t2)− (s2 − t2)

= s
(
(s+ t)(s+ t− 2)− 2t2

)
+ (s− t)(s2 + t2) .

3.1.2 p ≥ 2

When p ≥ 2, it continues until p ≤ ⌊t/(s− t)⌋, that the area of Ap1(A)
moves to the area of Ap2(A), which moves to the area of Ap3(A), and so on,
in the correspondence relation modulo (s2 − t2). Table 3 shows the areas
of the App(A) (p = 0, 1, 2, 3) for the case where 3 ≤ ⌊t/(s− t)⌋ < 4. In
Table 3, the area of Ap0(A) is marked as 0 (including 0a and 0b); that of
Ap1(A) is marked as 1 (including 1c and 1d) with 1a and 1b; that of Ap2(A)
is marked as 2 (including 2e and 2f ) with 2a, 2b, 2c and 2d; that of Ap3(A)
is marked as 3 with 3a, 3b, 3c, 3d, 3e and 3f . The areas having the same
residue modulo (s2 − t2) are determined as

0a ⇒ 1a ⇒2a ⇒ 3a ,

8
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0b ⇒ 1b ⇒2b ⇒ 3b ,

1c ⇒2c ⇒ 3c ,

1d ⇒2d ⇒ 3d ,

2e ⇒ 3e ,

2f ⇒ 3f ,

and the main parts are as

0 (excluding 0a and 0b) ⇒ 1 (including 1a and 1b) ,

1 (excluding 1c and 1d) ⇒ 2 (including 2e and 2f ) ,

2 (excluding 2e and 2f ) ⇒ 3 .

That is, the elements of the area of the lower left stair portions in App(A)
correspond to the elements of the area of the upper right stair portion in
App+1(A), and are aligned from the upper right row to the lower left. The
elements of the area of the upper right stair portion in App(A) correspond
to the elements of the area of the lower left stair portion in App+1(A),
respectively, and line up in the upper right direction from the lowest left
column. The elements of the area of App(A) in the center portion, except
for the (s− t)× (s− t) area in the lower left and the (s− t)× (s− t) area in
the upper right, correspond to the elements of the area of App+1(A) in the
lower right diagonal direction.

More generally and more precisely, for 1 ≤ l ≤ p, each element of the
l-th (s − t) × (s − t) block from the left in the area of the lower left stair
portions in App(A) is expressed by

((l − 1)s− (l − 1)t+ i, (p− l + 1)s− (p− l)t+ j)

(0 ≤ i ≤ s− t− 1, 0 ≤ j ≤ s− t− 1) , (4)

and for 1 ≤ l′ ≤ p, each element of the l′-th (s− t)× (s− t) block from the
right in the area of the upper right stair portions in App′(A) is expressed by

((p′ − l′ + 1)s− (p′ − l′)t+ i, (l′ − 1)s− (l′ − 1)t+ j)

(0 ≤ i ≤ s− t− 1, 0 ≤ j ≤ s− t− 1) . (5)

Then we have the congruent relation for p′ = p+1 and l′ = p′−l+1 = p−l+2(
(l − 1)s− (l − 1)t+ i

)
(2st) +

(
(p− l + 1)s− (p− l)t+ j

)
(s2 + t2)

9
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0 0b 1a 2c 3e

1 1d 2b 3a

2 2f 3d

0a 1c 2e 3

1b 2a 3c

2d 3b

3f

Table 3: App(s
2 − t2, 2st, s2 + t2) (p = 0, 1, 2, 3) when s < (

√
2 + 1)t

≡
(
(p′−l′+1)s−(p′−l′)t+i

)
(2st)+

(
(l′−1)s−(l′−1)t+j

)
(s2+t2) (mod s2−t2) ,

as well as for p = p′ + 1 and l = p− l′ + 1 = p′ − l′ + 2.
For simplicity, denote by (x, y, z) the value of x(s2− t2)+y(2st)+z(s2+

t2). Each element of the leftmost (s − t) × (s − t) area of App(A) (p ≥ 1)
has exactly (p+ 1) representations, because(

0, 0, ps− (p− 1)t
)

=
(
js+ (j − 1)t, jt− (j − 1)s, (p− j)s− (p− j)t

)
(j = 1, 2, . . . , p) .

Note that ps ≤ (p+ 1)t since p ≤ ⌊t/(s− t)⌋.
Each element of the second from the left (s− t)× (s− t) area of App(A)

(p ≥ 2) has exactly (p+ 1) representations, because(
0, s− t, (p− 1)s− (p− 2)t

)
=

(
s+ t, 0, (p− 2)s− (p− 3)t

)
=

(
js+ (j − 1)t, (j − 1)t− (j − 2)s, (p− j − 1)s− (p− j − 1)t

)
(j = 1, 2, . . . , p− 1) .

Each element of the third from the left (s− t)× (s− t) area of App(A)
(p ≥ 3) has exactly (p+ 1) representations, because(

0, 2s− 2t, (p− 2)s− (p− 3)t
)
=

(
s+ t, s− t, (p− 3)s− (p− 4)t

)
10
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=
(
2s+ 2t, 0, (p− 4)s− (p− 5)t

)
=

(
js+ (j − 1)t, (j − 2)t− (j − 3)s, (p− j − 2)s− (p− j − 2)t

)
(j = 1, 2, . . . , p− 2) .

In general, each element of the l-th (1 ≤ l ≤ ⌊t/(s− t)⌋) from the left
(s− t)× (s− t) area of App(A) (p ≥ l) has exactly (p+ 1) representations,
because(

0, (l − 1)s− (l − 1)t, (p− l + 1)s− (p− l)t
)

=
(
i(s+ t), (l − i− 1)(s− t), (p− l − i+ 1)s− (p− l − i)t

)
(i = 1, 2, . . . , l − 1)

=
(
js+ (j − 1)t, (j − l + 1)t− (j − l)s, (p− l − j + 1)(s− t)

)
(j = 1, 2, . . . , p− l + 1) .

Similarly, each element of the l′-th (1 ≤ l′ ≤ ⌊t/(s− t)⌋) from the top
right (s−t)×(s−t) area of App(A) (p ≥ l′) has exactly (p+1) representations,
because(

0, (p− l′ + 1)s− (p− l′)t, (l′ − 1)s− (l′ − 1)t
)

=
(
i(s+ t), (p− l′ − i+ 1)s− (p− l′ − i)t, (l′ − i− 1)(s− t)

)
(i = 1, 2, . . . , l′ − 1)

=
(
(j − 1)s+ jt, (p− l′ − j + 1)(s− t), (j − l′ + 1)t− (j − l′)s

)
(j = 1, 2, . . . , p− l′ + 1) .

Concerning the central portion of App(A), it is easy to see that each
element is expressed by(
0, p(s− t) + i, p(s− t) + j

)
(0 ≤ i ≤ s− t− 1, 0 ≤ j ≤ pt− (p− 1)s− 1;

s− t ≤ i ≤ pt− (p− 1)s− 1, 0 ≤ j ≤ s− t− 1) ,
(6)

and all elements have exactly (p+ 1) representations, because(
0, p(s− t), p(s− t)

)
=

(
j(s+ t), (p− j)(s− t), (p− j)(s− t)

)
(j = 1, 2, . . . , p) .

Finally, the candidates to take the largest value in App(A) are clearly
scattered in the lower right corners:(

0, l(s− t)− 1, (p+ 2− l)s− (p+ 1− l)t− 1
)

(l = 1, 2, . . . , p),
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(
0, (p+ 1)(s− t)− 1, s− 1

)
,

(
0, s− 1, (p+ 1)(s− t)− 1

)
,(

0, (p+ 2− l′)s− (p+ 1− l′)t− 1, l′(s− t)− 1
)

(l′ = 1, 2, . . . , p) .

By comparing these values, we can find that (0, s− t− 1, (p+ 1)s− pt− 1)
is the largest. Hence, by Lemma 1 (1)

gp(s
2 − t2, 2st, s2 + t2)

= (s− t− 1)(2st) +
(
(p+ 1)s− pt− 1

)
(s2 + t2)− (s2 − t2)

= s
(
(s+ t)(s+ t− 2)− 2t2

)
+ p(s− t)(s2 + t2) .

In addition, Theorem 1 does not hold for p > ⌊t/(s− t)⌋. As can be seen
from the example in Table 3, the elements of the central area of Ap4(A)
corresponding to the elements of the central area of Ap3(A) are not all left,
and there will be elements corresponding to another location. Due to the
deviation, the place where the maximum value is taken also changes from
(0, s−t−1, (p+1)s−pt−1) in App(A) for p > ⌊t/(s− t)⌋. In the case of the
example in Table 4, for p = 4, the elements in the area of the stair part on
both sides still regularly move to the opposite side, but in the main central
part, some surplus elements moves to the lower left (3i ⇒ 4i) and some to the
upper-right (3k ⇒ 4k). In this case, in general, (0, 2s−2t−1, (p+1)s−pt−1)
takes the largest value. It is as shown in Table 4. At p = 5, the place where
the largest value is taken becomes more complicated, since the corresponding
residue part is further displaced.

In the table, nO denotes the position of the largest element in Apn(A).
Note that the area 3h (and so, 4h) does not exist if t/(s− t) is an integer.

3.2 The case where 2st is shortest

Let s > (
√
2 + 1)t, that is s2 − t2 > 2st. For simplicity, put

γx,z := x(s2 − t2) + z(s2 + t2)

or just (x, z). First, consider the case p = 0. All the 2st elements in Ap0(A)
are arranged as in Table 5.

Since rt+i,t+j ≡ ri,j (mod 2st) and rt+i,t+j > ri,j (i, j ≥ 0), any el-
ement of the form rt+i,t+j (i, j ≥ 0) is not in Ap0(A). Since ri,s+j ≡
rs+i,j (mod 2st) and ri,s+j > rs+i,j (i, j ≥ 0), any element of the form
ri,s+j (i, j ≥ 0) is not in Ap0(A). Since rs+t+i,j ≡ ri,s−t+j (mod 2st) and
rs+t+i,j > ri,s−t+j (i, j ≥ 0), any element of the form rs+t+i,j (i, j ≥ 0) is not
in Ap0(A). Therefore, only 2st elements in the area represented in Table 5
remain as candidates for the elements of Ap0(A).
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0 0b 1a 2c 3e 4k

1 1d 2b 3a 4c

2 2f 3d 4b

3h 3i
4f

0a 1c 2e 3k
0O 4h

1b 2a 3c 4e
1O

2d 3b 4a
2O

3f 4d
3O 4O

4i

Table 4: App(s
2 − t2, 2st, s2 + t2) (p = 4) when s < (

√
2 + 1)t

(0, 0) · · · (t− 1, 0) (t, 0) · · · · · · (s+ t− 1, 0)
...

...
...

...
(0, t− 1) · · · (t− 1, t− 1) (t, t− 1) · · · · · · (s+ t− 1, t− 1)
(0, t) · · · (t− 1, t)
...

...
...

...
(0, s− 1) · · · (t− 1, s− 1)

Table 5: Ap0(s
2 − t2, 2st, s2 + t2) when s > (

√
2 + 1)t

13
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It is similar to the case where s < (
√
2 + 1)t to find that any of two

elements in this area is not congruent modulo (2st).
Since s > t, we have γs+t−1,t−1 > γt−1,s−1. Hence,

g0(s
2 − t2, 2st, s2 + t2)

= (s+ t− 1)(s2 − t2) + (t− 1)(s2 + t2)− (2st)

= s
(
(s+ t)(s+ t− 2)− 2t2

)
.

When p ≥ 1, the situation is somewhat similar to that of the case where
s < (

√
2 + 1)t, but the role of 2st and s2 − t2 is interchanged. Therefore,

the calculation is not so similar.
Table 6 shows the case where 3 < ⌊(s− t)/t⌋ < 4. The numbers 0, 1, 2, 3

indicate the area of App(A) for p = 0, 1, 2, 3.

0 1 2 3
0O

1 2 3
1O

2 3
2O

3
3O

1 2 3

2 3

3

Table 6: App(s
2 − t2, 2st, s2 + t2) (p = 0, 1, 2, 3) when s < (

√
2 + 1)t

For simplicity, denote γx,z = x(s2 − t2) + z(s2 + t2) by (x, z). More
generally and more precisely, for 1 ≤ l ≤ p, each element of the l-th t × t
block from the left in the area of the lower left stair portions in App(A) is
expressed by

((l − 1)t+ i, s+ (p− l)t+ j)(0 ≤ i ≤ t− 1, 0 ≤ j ≤ t− 1) , (7)
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and for 1 ≤ l′ ≤ p, each element of the l′-th t× t block from the right in the
area of the upper right stair portions in App′(A) is expressed by

(s+ (p′ − l′ + 1)t+ i, (l′ − 1)t+ j)(0 ≤ i ≤ t− 1, 0 ≤ j ≤ t− 1) . (8)

Concerning the central portion of App(A), each element is expressed by(
pt+ i, pt+ j

)
(0 ≤ i ≤ t− 1, 0 ≤ j ≤ s− pt− 1;

t ≤ i ≤ s− (p− 1)t− 1, 0 ≤ j ≤ t− 1) . (9)

All the lower right elements of the (t × t) square areas and the central
area are candidates for the largest value of App(A). And by comparison,
we can see that the position at

(
s + t − 1, (p + 1)t − 1

)
takes the largest

value, which is at the right-bottom of the central area, and in Figure 6, the
position is shown by pO (p = 0, 1, 2, 3). Hence, by Lemma 1 (1)

gp(s
2 − t2, 2st, s2 + t2)

= (s+ t− 1)(s2 − t2) +
(
(p+ 1)t− 1

)
(s2 + t2)− 2st

= s
(
(s+ t)(s+ t− 2)− 2t2

)
+ pt(s2 + t2) .

4 p-genus

We can use Table 1 to obtain an explicit form of genus (Sylvester number).
First, let s < (

√
2+ 1)t. For a non-negative integer p, by the representation

of each element in (4), (5) and (6), we have∑
w∈App(A)

w

=

p∑
l=1

s−t−1∑
i=0

s−t−1∑
j=0

(
((l − 1)s− (l − 1)t+ i)(2st)

+ ((p− l + 1)s− (p− l)t+ j)(s2 + t2)
)

+

p∑
l=1

s−t−1∑
i=0

s−t−1∑
j=0

(
((p− l + 1)s− (p− l)t+ i)(2st)

+ ((l − 1)s− (l − 1)t+ j)(s2 + t2)
)

+
s−t−1∑
i=0

pt−(p−1)s−1∑
j=0

(
(p(s− t) + i)(2st) + (p(s− t) + j)(s2 + t2)

)
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+

pt−(p−1)s−1∑
i=s−t

s−t−1∑
j=0

(
(p(s− t) + i)(2st) + (p(s− t) + j)(s2 + t2)

)
=

(s+ t)2(s3 − s2 − 2st2 + t3 + t2)

2
− p2(s− t)3(s+ t)2

2

+
p(s+ 3t)(s2 − t2)2

2
.

by Lemma 1 (2) we have

np(s
2 − t2, 2st, s2 + t2)

=
1

s2 − t2

(
(s+ t)2(s3 − s2 − 2st2 + t3 + t2)

2

−p2(s− t)3(s+ t)2

2
+

p(s+ 3t)(s2 − t2)2

2
)

)
− s2 − t2 − 1

2

=
s3 + 2s2(t− 1)− 2st− t3 + 1

2
− p

2
(s2 − t2)

(
p(s− t)− (s+ 3t)

)
.

Next, let s > (
√
2 + 1)t. For a non-negative integer p, by the represen-

tation of each element in (7), (8) and (9), we have∑
w∈App(A)

w

=

p∑
l=1

t−1∑
i=0

t−1∑
j=0

(
((l − 1)t+ i)(s2 − t2)

+ (s+ (p− l)t+ j)(s2 + t2)
)

+

p∑
l=1

t−1∑
i=0

t−1∑
j=0

(
(s+ (p− l + 1)t+ i)(s2 − t2)

+ ((l − 1)t+ j)(s2 + t2)
)

+
t−1∑
i=0

s−pt−1∑
j=0

(
(pt+ i)(s2 − t2) + (pt+ j)(s2 + t2)

)
+

s−(p−1)t−1∑
i=t

t−1∑
j=0

(
(pt+ i)(s2 − t2) + (pt+ j)(s2 + t2)

)
= st

(
s3 + 2s2(t− 1)− t3

)
− p2s2t3 + ps2t2(4s− t) .

by Lemma 1 (2) we have

np(s
2 − t2, 2st, s2 + t2)
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=
1

2st

(
st
(
s3 + 2s2(t− 1)− t3

)
− p2s2t3 + ps2t2(4s− t))

)
− 2st− 1

2

=
s3 + 2s2(t− 1)− 2st− t3 + 1

2
+

pst

2

(
4s− (p+ 1)t

)
.

Theorem 3. When s < (
√
2 + 1)t, for a non-negative integer p with p ≤

⌊t/(s− t)⌋, we have

np(s
2 − t2, 2st, s2 + t2)

=
s3 + 2s2(t− 1)− 2st− t3 + 1

2
− p

2
(s2 − t2)

(
p(s− t)− (s+ 3t)

)
.

When s > (
√
2 + 1)t, for a non-negative integer p with p ≤ ⌊(s− t)/t⌋, we

have

np(s
2 − t2, 2st, s2 + t2)

=
s3 + 2s2(t− 1)− 2st− t3 + 1

2
+

pst

2

(
4s− (p+ 1)t

)
.

5 Sylvester power sum and weighted sum

Our method, having an advantage in terms of visually grasping the elements
of the Apéry set, is also useful to get Sylvester µ-th power sum

s(µ)p (A) :=
∑

n∈Gp(A)

nµ

and weighted power sum with weight λ

s
(µ)
λ,p(A) :=

∑
n∈Gp(A)

λnnµ (λ ̸= 1) ,

where A = {a1, . . . , ak} with gcd(A) = 1 and a1 := min(A).
In [13, Theorem 1, Theorem 2], both values are given explicitly by using

Bernoulli numbers Bn, defined by the generating function

x

ex − 1
=

∞∑
n=0

Bn
xn

n!
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and Eulerian numbers
⟨
n
m

⟩
, appearing in the generating function

∞∑
k=0

knxk =
1

(1− x)n+1

n−1∑
m=0

⟨ n

m

⟩
xm+1 (n ≥ 1) ,

respectively.

Lemma 2. For integers k, p and µ with k ≥ 2, p ≥ 0 and µ ≥ 1, we have

spµ(A)

=
1

µ+ 1

µ∑
κ=0

(
µ+ 1

κ

)
Bκa

κ−1
1

a1−1∑
i=0

(
m

(p)
i

)µ+1−κ
+

Bµ+1

µ+ 1
(aµ+1

1 − 1) ,

Lemma 3. For λa1 ̸= 1 and a positive integer µ, we have

s
(µ)
λ,p(A)

=

µ∑
n=0

(−a1)
n

(λa1 − 1)n+1

(
µ

n

) n∑
j=0

⟨
n

n− j

⟩
λja1

a1−1∑
i=0

(
m

(p)
i

)µ−n
λm

(p)
i

+
(−1)µ+1

(λ− 1)µ+1

µ∑
j=0

⟨
µ

µ− j

⟩
λj .

What we need is for an non-negative integer ν to obtain∑
w∈App(A)

wν or
∑

w∈App(A)

wνλw .

When s < (
√
2 + 1)t, by

(
y(2st) + z(s2 + t2)

)ν
=

ν∑
κ=0

(
ν

κ

)(
y(2st)

)ν−κ(
z(s2 + t2)

)κ
,

we have∑
w∈App(A)

wν

=

p∑
l=1

s−t−1∑
i=0

s−t−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
((l − 1)s− (l − 1)t+ i)(2st)

)ν−κ
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×
(
((p− l + 1)s− (p− l)t+ j)(s2 + t2)

)κ
+

p∑
l=1

s−t−1∑
i=0

s−t−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
((p− l + 1)s− (p− l)t+ i)(2st)

)ν−κ

×
(
((l − 1)s− (l − 1)t+ j)(s2 + t2)

)κ
+

s−t−1∑
i=0

pt−(p−1)s−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
(p(s− t) + i)(2st)

)ν−κ

×
(
(2st) + (p(s− t) + j)(s2 + t2)

)κ
+

pt−(p−1)s−1∑
i=s−t

s−t−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
(p(s− t) + i)(2st)

)ν−κ

×
(
(p(s− t) + j)(s2 + t2)

)κ
.

When s > (
√
2 + 1)t, we have∑

w∈App(A)

wν

=

p∑
l=1

t−1∑
i=0

t−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
((l − 1)t+ i)(s2 − t2)

)ν−κ

×
(
(s+ (p− l)t+ j)(s2 + t2)

)κ
+

p∑
l=1

t−1∑
i=0

t−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
(s+ (p− l + 1)t+ i)(s2 − t2)

)ν−κ

×
(
((l − 1)t+ j)(s2 + t2)

)κ
+

t−1∑
i=0

s−pt−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
(pt+ i)(s2 − t2)

)ν−κ(
(pt+ j)(s2 + t2)

)κ
+

s−(p−1)t−1∑
i=t

t−1∑
j=0

ν∑
κ=0

(
ν

κ

)(
(pt+ i)(s2 − t2)

)ν−κ(
(pt+ j)(s2 + t2)

)κ
.

By substituting each of the above identities into the formula in Lemma 2
we obtain a general explicit formula. It is similar about the weighted sums.

Though the above general expression cannot be further simplified, for a
specific ν, we can get a more explicit form. For example, when s > (

√
2+1)t,
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for ν = 2, we have∑
w∈App(A)

w2

=
st

3

(
2s6 + 6s5(t− 1) + s4(8t2 − 12t+ 5)− 6s3t3 − 2s2(2t− 3)t3

+t4(2t2 − 1)
)
− 8p3s4t4

3
+ 2pst3

(
3s4 − s3(2t− 1) + t4

)
+

2pst2

3

(
6s5 + 3s4(3t− 4)− s3(2t− 3)t− 6s2t3 + 3t5

)
.

Together with the form where ν = 1:∑
w∈App(A)

w = st
(
s3 + 2s2(t− 1)− t3

)
+ ps2t2(4s− (p+ 1)t) ,

by using Lemma 2 we obtain an explicit form of the Sylvester sum sp(A) =

s
(1)
p (A). It is similar when s < (

√
2 + 1)t.

Proposition 1. When s < (
√
2 + 1)t, for a non-negative integer p with

p ≤ ⌊t/(s− t)⌋, we have

sp(s
2 − t2, 2st, s2 + t2)

=
1

12

(
2s6 + 6s5(t− 1) + s4(8t2 − 18t+ 5)− 6s3t(t2 + 2t− 2)

− 2s2t2(2t2 − 3t− 2) + 6st4 + 2t6 − t4 − 1
)

− p3

3
(s2 − t2)3 +

p2

2

(
s5 + 6s4t2 − 2s3t2(4t+ 1) + st4 + 2t6

)
+

p

6

(
2s6 + 3s5(t− 1) + 6s4t(3t− 2)− 6s3t2(4t+ 1) + 12s2t3 − 3st4(t− 3) + 4t6

)
.

When s > (
√
2 + 1)t, for a non-negative integer p with p ≤ ⌊(s− t)/t⌋, we

have

sp(s
2 − t2, 2st, s2 + t2)

=
1

12

(
2s6 + 6s5(t− 1) + s4(8t2 − 18t+ 5)− 6s3t(t2 + 2t− 2)

− 2s2t2(2t2 − 3t− 2) + 6st4 + 2t6 − t4 − 1
)

− 2

3
p3s3t3 +

p2t2

2

(
3s4 − s3(2t− 1) + s2t+ t4

)
+

pt

6

(
6s5 + 3s4(3t− 4)− s3t(2t+ 9)− 3s2t2(2t− 1) + 3t5

)
.
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6 Application to triples associated to integer-sided
triangles with a 60 degree angle

In the above sections, we considered triples (x, y, z) satisfying the Diophan-
tine equation x2 + y2 = z2. This method is applicable to triples satisfying
another Diophantine equation. Instead of a right triangle, consider three
sides of a triangle that has an angle of 60 degrees. Namely, consider the
triples (x, y, z) = (s2 − 3t2 + 2st, 4st, s2 + 3t2), satisfying x2 + y2 − xy = z2.
For primitivity, we need the additional condition, 3 ∤ s; then gcd(s2 − 3t2 +
2st, 4st, s2 + 3t2) = 1.

Note that if s = 3t, then x = y = z. Thus, there are two cases to
consider.

1. If s < 3t, then x = s2 − 3t2 + 2st is the shortest side.

2. If s > 3t, then y = 4st is the shortest side.

In the case of [1], we have and x < z < y. Then all the elements of the
0-Apéry set are given as in Table 7.

(0, 0) · · · (s− t− 1, 0) (s− t, 0) · · · · · · (s+ t− 1, 0)
...

...
...

...
(0, s− t− 1) · · · (s− t− 1, s− t− 1) (s− t, s− t− 1) · · · · · · (s+ t− 1, s− t− 1)
(0, s− t) · · · (s− t− 1, s− t)

...
...

...
...

(0, s+ t− 1) · · · (s− t− 1, s+ t− 1)

Table 7: Ap0(s
2 − 3t2 + 2st, 4st, s2 + 3t2) when s < 3t

Since s < 3t, the largest value is at (s − t − 1, s + t − 1). Hence, by
x < z < y, we have

g0(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (s− t− 1)(s2 + 3t2) + (s+ t− 1)(4st)− (s2 − 3t2 + 2st) .

By applying a similar method, as long as p ≤ ⌊(2t)/(s− t)⌋, the largest
value of App(A) is at

(
s− t− 1, s+ t− 1 + p(s− t)

)
. Thus,

gp(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (s− t− 1)(s2 + 3t2) +
(
(p+ 1)s− (p− 1)t− 1

)
(4st)− (s2 − 3t2 + 2st) .
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In the case of [2], we have y < z < x. Then all the elements of the
0-Apéry set are given as in Table 8.

(0, 0) · · · (2t− 1, 0) (2t, 0) · · · · · · (s+ t− 1, 0)
...

...
...

...
(0, 2t− 1) · · · (s− t− 1, s− t− 1) (s− t, s− t− 1) · · · · · · (s+ t− 1, 2t− 1)
(0, 2t) · · · (2t− 1, 2t)

...
...

...
...

(0, s+ t− 1) · · · (2t− 1, s+ t− 1)

Table 8: Ap0(s
2 − 3t2 + 2st, 4st, s2 + 3t2) when s > 3t

Since s > 3t, the largest value is at (2t−1, s+t−1). Hence, by y < z < x,
we have

g0(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (2t− 1)(s2 + 3t2) + (s+ t− 1)(s2 − 3t2 + 2st)− 4st .

By applying a similar method, as long as p ≤ ⌊(s− t)/(2t)⌋, the largest
value of App(A) is at

(
2t− 1, s+ t− 1 + p(2t)

)
. Thus,

gp(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (2t− 1)(s2 + 3t2) +
(
s+ (2p+ 1)t− 1

)
(s2 − 3t2 + 2st)− 4st .

Theorem 4. Let s and t be positive integers having different parity with
s > t, gcd(s, t) = 1 and 3 ∤ s. When s < 3t, for a nonnegative integer p with
p ≤ ⌊(2t)/(s− t)⌋, we have

gp(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (s− t− 1)(s2 + 3t2) +
(
(p+ 1)s− (p− 1)t− 1

)
(4st)− (s2 − 3t2 + 2st) .

When s > 3t, for a nonnegative integer p with p ≤ ⌊(s− t)/(2t)⌋, we have

gp(s
2 − 3t2 + 2st, 4st, s2 + 3t2)

= (2t− 1)(s2 + 3t2) +
(
s+ (2p+ 1)t− 1

)
(s2 − 3t2 + 2st)− 4st .

More generally, when we consider Diophantine equations in three vari-
ables which have infinitely many triples of solutions given by two-dimensional
parameters as above, it would be interesting to analyse whether the same
method as above can be applied. They will be discussed in subsequent
works.
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7 Some remarks

It is very difficult to completely determine the p-Frobenius and the p-Sylvester
numbers for all non-negative integers p, as seen in [11, 12, 15, 14, 16, 17] too.
The reason is that if p is greater than a certain value, the regularity of the
p-Apéry set is broken. This is the principal reason why we only proved in
Theorem 1 partial results for the p-Frobenius and the p-Sylvester numbers
of primitive Pythagorean triples for p bounded by a certain constant. For
example, for

⟨
s2 − t2, 2st, s2 + t2

⟩
if s = 4m + 1, t = 2m (with m ≥ 2),

then the results are given only for p = 0; and if s = 10m+ 1, t = 4m (with
m ≥ 2), then the results are given only for p = 0, 1.
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