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Abstract. This paper is originated from Colesanti and Fragalà study-
ing the surface area measure of a log-concave function. On the class
of log-concave functions, we study the first variation of the total mass
functional under the gauge transform J and gauge addition, which is
associated with the dual Minkowski theory of convex bodies in a natural
way.

1. Introduction and main results

The research object of this paper is log-concave function f on Rn, where
there exists a convex function φ such that f = e−φ.

In recent years, the target of log-concave functions is taking essentially
any result from convex geometric analysis and trying to adapt it to func-
tional settings, see [1],[3],[5],[10],[12],[13]. In 2013, Colesanti-Fragalà in [6]
gave the concept of the total mass of the log-concave function and solved
the first variational problem for the addition associated with the Legendre
transform L (see [3]). As well, the corresponding Minkowski problems are
studied later by Cordero-Erausquin and Klartag in [7] and Rotem in [14]. In
2020, based on Colesanti-Fragalà’s work, Fang-Xing-Ye [9] generalized the
Minkowski problem on log-concave functions to Lp case, which leads to the
corresponding first variational problem and the Lp-Minkowski problem.

In 2011, Artstein-Avidan and Milman [4] discovered a new order reversing
operator polarity transform A, which gave the functional form for duality
of noncompact convex set. In addition, they also composed the Legendre
transform and polarity transform, which resulted in a new order preserving
transform the gauge transform J .

When one considers the class Cvx0(Rn) of non-negative lower-semicontinuous
convex functions φ : Rn → [0,∞] which take the value 0 at 0, the gauge
transform could be written as

(Jφ)(x) = (ALφ)(x) = inf{r > 0 : φ(x/r) ≤ 1/r}. (1)
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In 2021, Florentin and Segal [8] discussed some inequalities of a new
addition derived from the gauge transform. For consistency, we still use
“�” as the gauge addition between convex functions as follows,

φ� ψ = J −1(Jφ+ Jψ), (2)
where φ,ψ ∈ Cvx0(Rn). Because of the reflexivity of J (see Proposition 3.3
for details), the above equation can also be expressed as

φ� ψ = J (Jφ+ Jψ).
In the same paper, when one gives the epi-graph of convex function φ

epi(φ) = {(x, z) ∈ Rn × R : φ(x) ≤ z, z ∈ R},
they also gave the geometric meanings of this new addition,

epi(φ� ψ) = (epi(φ)◦ + epi(ψ)◦)◦, (3)
where it could be interpreted geometrically as the duality of dual sum of
two noncompact convex sets.

Note that this gauge addition could be transferred to the log-concave
functions by

α.f � β.g = e−φ.α�ψ.β = e−J (αJφ+βJψ), (4)
where f = e−φ, g = e−ψ, α, β ≥ 0.

Before discussing the first variational problem of log-concave functions,
the most important thing is to identify a good notion of “area measure” for
log-concave functions. To that aim, reference [6], we set

J(f) =

∫
Rn

fdx,

where dx denotes integration with respect to the Lebesgue measure in Rn.
Inspired by the dual Minkowski theory of convex bodies [11] and the geo-

metric meanings of gauge addition, it is natural to study the first variation
of the total mass of log-concave functions with respect to gauge addition,
by

δ̃J(f, g) = lim
t→0+

∫
Rn

f � t.g − f

t
dx

= lim
t→0+

∫
Rn

e−J (Jφ+tJψ)(x) − e−φ(x)

t
dx. (5)

In general, it seems impossible to find a explicit expression for the first
variation δJ̃(f, g). Therefore, our integral representation formulae are set-
tled in the similar class by Colesanti-Fragalà in [6]. Here, we still use A′ of
log-concave functions f = e−φ such that φ belongs to

L′ := {φ ∈ Cvx0(Rn) : dom(φ) = Rn, φ ∈ C2
+(Rn\{o}), lim

||x||→+∞

φ(x)

||x||
= +∞},

therefore, A′ is defined as
A′ = {f = e−φ : φ ∈ L′}.
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Now, we introduce the concept of controlled perturbation and discuss the
case f = g,

δ̃J(f, f) = −[(n+ log J(f))J(f) + Ent(f)], (6)

where f ∈ A′, J(f) > 0, and

Ent(f) =

∫
Rn

f log fdx− J(f) log J(f)

introduced in [6]. Furthermore, if the first variation δ̃J(f, g) satisfies the
controlled perturbation and dominated convergence theorems, in Section 4
we obtain the explicit expression of the first variation by

δ̃J(f, g) =

∫
Rn

e−φ(x)[φ(x)− < x,∇φ(x) >]φ(x)Jψ( x

φ(x)
)dx, (7)

where f, g ∈ A′, f = e−φ, g = e−ψ.
Finally, we prove that the first variation δ̃J(f, g) satisfies the dominated

convergence theorem, i.e

δ̃J(f, g) = lim
t→0+

∫
Rn

e−φt(x) − e−φ(x)

t
dx =

∫
Rn

lim
t→0+

e−φt(x) − e−φ(x)

t
dx,

this also proves that the first variation of the total mass of log-concave
functions under gauge addition exists.

2. Definition and preliminaries

This section provides preliminaries and notations required for log-concave
functions and convex bodies. More details can be found in [16].

We work in the n-dimensional Euclidean space Rn. In space Rn, < x, y >
represents the inner product between x and y, and ||x|| represents the Eu-
clidean norm, for every x, y ∈ Rn.

In addition, this paper use “o” denote the origin, with Bn = {x ∈ Rn :
||x|| ≤ 1} to be the unit ball and Sn = {x ∈ Rn : ||x|| = 1} to be the unit
sphere in Rn.

In this paper, dom(φ)={x ∈ Rn : φ(x) < +∞}, and R(φ) represents the
range of the function φ. Hm(x) is the m-dimensional Hausdorff measure, and
the abbreviation for the Lebesgue integral measure dHn(x) is represented
by dx.

A set K ∈ Rn is said to be a convex body if K is a compact convex set
with nonempty interior.

Definition 2.1. The set K is called a convex set on Rn if K satisfies the
following conditions

λx+ (1− λ)y ∈ K, ∀x, y ∈ K,

where for every λ ∈ [0, 1].
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The family of convex bodies is denoted by Kn, with Kn
o to be the collection

of convex bodies containing “o” in their interiors. And Vn(K) = Hn(K) said
to be n-dimensional volume of a convex body K, where K ∈ Kn.

In addition, the polar body of a convex body is introduced as follows.

Definition 2.2. For every K ∈ Kn, the polar body of K is defined as

Ko := {y ∈ Rn :< x, y >≤ 1,∀x ∈ K}. (8)

The polar body of a convex body K can be seen as a duality relationship
with a convex body K, which plays a crucial role in Minkowski’s duality
theory.

Definition 2.3. For every K ∈ Kn, hK represents the support function of
the convex body K, defined as

hK(x) := sup
y∈K

< x, y >, ∀x ∈ Rn. (9)

Support function is one of the most important tools to study convex sets,
it plays a role in connecting convex bodies and convex functions. Obviously,
the support function is a positively homogeneous function, i.e. for ∀α > 0,

hK(αx) = αhK(x).

Using the Legendre transform (see Definition 2.10), we can also get, for
∀K ∈ Kn,

LhK(x) =

{
0, x ∈ K

+∞, x /∈ K,

thus, K = dom(LhK). In addition, it can be seen from [16, Corollary 1.7.3]
that when y = ∇hK(x) ∈ ∂K, formula (9) can fetch the supremum, i.e

hK(x) =< ∇hK(x), x > . (10)

According to formula (9), ∂K and hK are one-to-one correspondents.

Definition 2.4. For every K ∈ Kn, the radial function of K is represented
by pK(·), defined by:

pK(x) := max{λ ≥ 0 : λx ∈ K}, (11)

for every x ∈ Rn.

In addition, the reciprocal of the radius function is the well-known Minkowski
function, which is represented by || · ||K .

For every K ∈ Kn
o , the following statement can be further obtained.

Proposition 2.5. If o ∈ int(K), then

pK(x) =
1

hKo(x)
. (12)
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Using the definition of support function and polar body, the proof of
proposition 2.5 is obvious.

In this paper, I∞K and XK are used to represent two different type of
characteristic functions as follows,

Definition 2.6.

I∞K :=

{
0, if x ∈ K

+∞, if x /∈ K,

XK :=

{
1, if x ∈ K

0, if x /∈ K.

Thus, we introduce the Minkowski addition.

Definition 2.7. For every K,L ∈ Kn, their Minkowski addition is defined
by:

K + L = {x+ y : x ∈ K, y ∈ L}.

The geometric significance of Minkowski addition is also obvious and can
be combined with support functions.

Lemma 2.8. For every K,L ∈ Kn, α, β ≥ 0, we have
hαK+βL = αhK + βhL.

The proof can be found in reference [16].
Now, we give more definitions on convex functions.

Definition 2.9. φ : Rn → R ∪ {∞} is convex function on Rn, if for every
x, y ∈ Rn, φ satisfies

φ(λx+ (1− λ)y) ≤ λφ(x) + (1− λ)φ(y),

where�λ ∈ [0, 1].

In this paper, C denotes the set of all convex functions from Rn to
R
⋃
{+∞}. Through the convexity of φ, we can know that dom(φ) is a

convex set, φ is called proper, if dom(φ) 6= ∅. According to reference [9], we
say φ ∈ C2

+(E), if φ is second-order differentiable on E ⊆ int(dom(φ)) and
its Hessian matrix is positive definite.

Since this article is concerned with convex functions defined on Rn, same
as in reference [4], Cvx(Rn) denotes the set of lower semi-concontinuous
convex functions on Rn, i.e

Cvx(Rn) = {φ : φ ∈ C and lower semi-continuous},
with a special subclass

Cvx0(Rn) = {φ ∈ Cvx : φ(0) = 0 and φ is nonnegative}.
Now, we introduce the definitions and some properties of Legendre trans-

form and Polarity transform, and gauge transform.
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Definition 2.10. For every φ ∈ Cvx(Rn), we have

(Lφ)(x) = sup
y∈Rn

{< x, y > −φ(y)}. (13)

Legendre transform [3] is a classical mathematical tool, which transforms
the function on vector space into the function on dual space, and has good
properties such as homogeneity, order reversing and reflexivity. In addition,
Legendre transform has good geometric properties.

Proposition 2.11. If the convex function φ is differentiable at the point y,
then Lφ(x) takes sup at x = ∇φ(y), i.e

L(∇φ(y)) =< y,∇φ(y) > −φ(y).

From proposition 2.11, we can draw the following inference.

Corollary 2.12. Let φ be differentiable at the point y, then when x = ∇φ(y),
y = ∇Lφ(x).

If the Legendre transform is applied to the support function hK , we have

LhK = I∞K .

Similar to the Legendre transform, Polarity transform in [2] is also order
reversing, and also has good properties such as homogeneity, reflexivity,
defined as

Definition 2.13. For every φ ∈ Cvx0(Rn),

(Aφ)(x) :=

{
sup{y∈Rn:f(y)>0}

<x,y>−1
f(y) , if x ∈ {f−1(0)}o

+∞, if x /∈ {f−1(0)}o.

Combined with the definition of the characteristic function, we have

AI∞K = I∞Ko .

3. Gauge transform and gauge addition

3.1. The gauge transform and its properties. In 2011, Artstein-Avidan
and Milman gave the definition of gauge transform (J ) in [4, Corollary 6].

Definition 3.1. J : Cvx0(Rn) → Cvx0(Rn),

J = AL = LA.

Through the first definition and calculation of gauge transform, another
expression of J can be obtained.

Proposition 3.2. For every φ ∈ Cvx0(Rn), then

(Jφ)(x) = inf{r > 0 : φ(x/r) ≤ 1/r}.
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THE FIRST VARIATIONAL PROBLEMS UNDER THE GAUGE TRANSFORM 7

First of all, the J operate is closed in Cvx0(Rn), since A and L are closed
in Cvx0(Rn), namely:

Jφ ∈ Cvx0(Rn),
for every φ ∈ Cvx0(Rn).

Through the proof in [4], we can directly give some basic properties of J ,
such as order preserving, reflexivity, homogeneity, etc.

Proposition 3.3. For every φ,ψ ∈ Cvx0(Rn), α > 0, J has the following
properties.

�1�order preserving: if for every x ∈ R, φ(x) ≥ ψ(x), then
Jφ ≥ Jψ.

�2�reflexivity:
JJφ = φ.

�3�homogeneity:
J (αφ)(x) = (1/α)(Jφ)(αx). (14)

As can be seen from [4], if the definition of support function is introduced,
the following propositions are presented.

Proposition 3.4. For every K ∈ Kn, then
J hK = ALhK = AI∞K = I∞Ko . (15)

It can be seen from [2] that if the definition of the above atlas is in-
troduced, some meanings of J in geometry it can be understood as the
following Lemma.

Lemma 3.5. For every φ ∈ Cvx0(Rn), then
F (epi(φ)) = epi(Jφ), (16)

where F (x, z) = (xz ,
1
z ).

3.2. Gauge addition. It is now possible to define a new addition derived
from the J , called gauge addition in this paper, with the mathematical
notation “�” to be consistent with [8].

Definition 3.6. For every φ,ψ ∈ Cvx0(Rn) and f = e−φ, g = e−ψ,
f � g = e−φ�ψ = e−J (Jφ+Jψ). (17)

For every α, β ≥ 0,
α.f � β.g = e−φ.α�ψ.β = e−J (αJφ+βJψ). (18)

However, it is not enough to consider only functions in Cvx0(Rn). For
every φ ∈ Cvx0(Rn), the continuity and differentiability of φ on dom(φ)
cannot be guaranteed. Therefore,we can consider a subclass of Cvx0(Rn), be
denoted as L′.

L′ := {φ ∈ Cvx0(Rn) : dom(φ) = Rn, φ ∈ C2
+(Rn\{o}), lim

||x||→+∞

φ(x)

||x||
= +∞}.
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Remark 3.7. By [4],[6],[9] we can know�A and L is closed in L′, therefore
J is closed in L′.
Remark 3.8. “.” of the above equation are defined as the product of the
function in L′ and the constant coefficient in R+.
Remark 3.9. If x = o, then, for every α, β ≥ 0, we have φ.α�ψ.β(o) = 0.

It can be calculated directly.
Remark 3.10. If α = 1, β = t > 0, then

f � t.g = e−φ�ψ.t = e−J (Jφ+tJψ) =: e−φt , (19)
where φ0(x) = φ(x).
Remark 3.11. If α = 1− λ, β = λ, λ ∈ [0, 1], then

(1− λ).f � λ.g = e−J ((1−λ)Jφ+λJψ) =: e−φ�λψ = f �λ g. (20)
We can see from [8] that there is a geometric expression for “�λ”.

Example 3.12. For every φ,ψ ∈ Cvx0(Rn), λ ∈ [0, 1], then
epi(φ�λ ψ) = ((1− λ)epi(φ)◦ + λepi(ψ)◦)◦. (21)

Since the function φt plays an important role in solving the first varia-
tional problem, we now explore some potential properties of the function
φt.

3.3. Monotonicity of φt. For the function t 7→ φt, the monotonicity of φt
on [0,+∞) can be obtained by using the isotonic property of J , that is, the
following lemma.
Lemma 3.13. For every φ,ψ ∈ L′, φt = φ� ψ.t, then, for every t ∈ [0, 1],
x ∈ Rn, we have

φ(x) ≤ φt(x) ≤ φ1(x). (22)
Proof. By the definition of ψ(x), we can know, for every x ∈ Rn, ψ(x) ≥ 0,
therefore, Jψ(x) ≥ 0, then

Jφ(x) + tJψ(x) ≥ Jφ(x),
Jφ(x) + Jψ(x) ≥ Jφ(x) + tJψ(x).

By applying the J on both sides of the above formula at the same time,
and combining with the order preservation of the J operator, we can get

φt(x) ≥ φ(x),

φ1(x) ≥ φt(x),

To sum up, we can get φ1(x) ≥ φt(x) ≥ φ(x). �
It is worth noting that the following inferences can be drawn directly from

the above lemma.
Corollary 3.14. For every f, g ∈ A′, t ∈ (0, 1), let ft = f � t.g, then

f ≥ ft ≥ f1.
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3.4. Continuity of φt. For every φ ∈ L′, φ is a continuous function on Rn.
Then, from the closure of “�” in L′, for every t ≥ 0, φt(x) is continuous on
Rn.

Of course, to find the first variation, the first thing to consider is the
continuity of the function φt(x) at t = 0. Therefore, for every x ∈ Rn, it
becomes particularly important to solve the existence problem of the limit
limt→0+ φt(x).

Before introducing the next theorem, in order to guarantee the existence
of the limit limt→0+ φt(x), it is necessary to place some restrictions on the
functions φ and ψ, which requires the introduction of the concept of con-
trolled perturbation.
Definition 3.15. Let φ,ψ ∈ L′. We say ψ is a controllable disturbance of
φ, if there exists C > 0 such that for every x ∈ Rn one has

Jψ(x) ≤ CJφ(x). (23)
The controllable perturbation is introduced mainly to avoid the maximum

growth order of the function Jψ being higher than the maximum growth
order of the function Jφ. As a result, the limit limt→0+ φt may not converge
to φ. Therefore, taking the function ψ here is a controllable disturbance of
the function φ, on this premise, it can be proved that the following theorem
is true.
Theorem 3.16. If ψ is a controllable disturbance of φ, then, for every
x ∈ Rn, the following limit exists, that is

lim
t→0+

φt(x) = φ(x). (24)

Remark 3.17. From [6, Definition 4.4], it can be seen that if the func-
tion φ,ψ satisfies the allowable disturbance, it must satisfy the controllable
disturbance.
Proof of Theorem 3.16. From the definition of the J , we can know

φt(x) = J (Jφ+ tJψ)(x) = inf {r > 0 : (Jφ+ tJψ)(x/r) ≤ 1/r}.
Since for every t ≥ 0, x ∈ dom(φ), we have (Jφ + tJψ)(x) ≥ Jφ(x),

therefore, it is known by the order preservation of J , φt(x) ≥ φ(x).Take
the limit off both sides and have limt→0+ φt(x) ≥ φ(x). So we just need to
prove limt→0+ φt(x) ≤ φ(x). From the definition of controlled disturbance,
we can know

J (Jφ+ tJψ) ≤ J (Jφ+ tCJφ) = J ((1 + tC)Jφ),
combining the homogeneity of J , we can know

φt(x) ≤ J ((1 + tC)Jφ)(x) = 1

1 + tC
φ((1 + tC)x),

so the upper limit on both sides is

lim
t→0+

φt(x) ≤ lim
t→0+

1

1 + tC
φ((1 + tC)x) = φ(x),
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to sum up, for every x ∈ dom(φ), lim
t→0+

φt(x) = φ(x). �

4. The first variational problem

With the concept of total mass on Rn, combined with the definition of
the new addition “�”, we can give the first variational problem of the total
mass.

Definition 4.1. Let f, g ∈ A′, f = e−φ, g = e−ψ, define δ̃J(f, g) by

δ̃J(f, g) = lim
t→0+

∫
Rn

f � t.g − f

t
dx

= lim
t→0+

∫
Rn

e−J (Jφ+tJψ)(x) − e−φ(x)

t
dx.

whenever the limit exists.

It is said to be the first variational formula of the log-concave function
derived from gauge addition. Next, we prove the existence of δ̃J(f, g) and
compute its explicit expression.

4.1. The existence and explicit expression for δ̃J(f , f). Before consid-
ering δ̃J(f, g), we consider the existence and explicit expression of δ̃J(f, f)
when f = g. By the definition of δ̃J(f, g), we know that for every f ∈ A′,
there is

δ̃J(f, f) = lim
t→0+

∫
Rn

e−J ((1+t)Jφ)(x) − e−φ(x)

t
dx.

The definition of ”Ent” in [6, Proposition 3.11] needs to be introduced
here for the convenience of proof.

Definition 4.2. For every f ∈ A′, f = e−φ, we have

Ent(f) =

∫
Rn

f log fdx− J(f) log J(f),

by [6], we can know Ent(f) ∈ (−∞,+∞).

Through simplification and calculation, the following theorem can be ob-
tained.

Theorem 4.3. For every f ∈ A′, J(f) > 0, then

δ̃J(f, f) = −
∫
Rn

f log fdx− n

∫
fdx

= −[(n+ log J(f))J(f) + Ent(f)].

Proof. We can know from the homogeneity of J ,

J ((1 + t)Jφ)(x) = 1

1 + t
φ((1 + t)x),
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THE FIRST VARIATIONAL PROBLEMS UNDER THE GAUGE TRANSFORM 11

therefore

δ̃J(f, f) = lim
t→0+

∫
Rn

e−
1

1+t
φ((1+t)x) − e−φ(x)

t
dx

= lim
t→0+

[

∫
Rn

e−
1

1+t
φ((1+t)x)

t
dx−

∫
Rn

e−φ(x)

t
dx]. (25)

Let y = (1 + t)x, then:

lim
t→0+

∫
Rn

e−
1

1+t
φ((1+t)x)

t
dx = lim

t→0+

∫
Rn

e−
1

1+t
φ(y)

t(1 + t)n
dy,

and

δ̃J(f, f) = lim
t→0+

∫
Rn

e−
1

1+t
φ(x) − (1 + t)ne−φ(x)

(1 + t)nt
dx.

We can simplify it further

δ̃J(f, f) =− lim
t→0+

[

∫
Rn

e−φ(x) − e−
1

1+t
φ(x)

t
dx

− [
(1 + t)n − 1

t
]

∫
Rn

e−φ(x)dx].

For ease of calculation, the following marks can be made

A1 =

∫
Rn

e−φ(x) − e−
1

1+t
φ(x)

t
dx, (26)

A2 = [
(1 + t)n − 1

t
]

∫
Rn

e−φ(x)dx, (27)

therefore
δ̃J(f, f) = lim

t→0+
(−A1 −A2).

When t→ 0+, apply L’Hospital’s rule to t, we get

lim
t→0+

A2 = n

∫
Rn

e−φ(x)dx = nJ(f), (28)

from the definition of the total mass function, A2 ∈ (0,+∞).
Let’s continue our discussion of the existence of A1 by simplifying A1 as

follows

A1 =

∫
Rn

e−
1

1+t
φ(x)(

e−
t

1+t
φ(x) − 1

t
)dx

≥
∫
Rn

e−
1

1+t
φ(x)(

e−tφ(x) − 1

t
)dx,

let ht = e−tφ, apply Lagrange’s mean value theorem, exists ξ ∈ (0, t),

dht
dt

|t=ξ =
e−tφ − 1

t
= −φe−ξφ,
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��

A1 ≥ −
∫
Rn

e−
1

1+t
φ(x)φ(x)e−ξφ(x)dx

= −
∫
Rn

e−( 1−t
2+2t

+ξ)φ(x)φ(x)e−φ(x)/2dx

≥ −
∫
Rn

e−( 1−t
2+2t

+ξ)φ(x)mdx, (29)

the last inequality is true because for every s ∈ R+, se−s/2 ≤ m := 2/e.
From the proof procedure of [6, Proposition 3.11], when t→ 0+, for every

x ∈ Rn, φ(x) ≥ 0, therefore, when t→ 0+,

−
∫
Rn

e−( 1−t
2+2t

+ξ)φ(x)mdx ≥ −
∫
Rn

e−
1
6
φ(x)mdx. (30)

From the definition of the total mass function, we can see that the right
formula in (30) converges, that is

−
∫
Rn

e−
1
6
φ(x)mdx ∈ (−∞, 0).

Therefore, by applying the dominated convergence theorem, we can get

δ̃J(f, f) = lim
t→0+

(−A1 −A2)

= lim
t→0+

[−
∫
Rn

e−φ(x) − e−
1

1+t
φ(x)

t
dx− nJ(f)]

= −
∫
Rn

lim
t→0+

e−φ(x) − e−
1

1+t
φ(x)

t
dx− nJ(f)

=

∫
Rn

e−φ(x)φ(x)dx− nJ(f)

= −
∫
Rn

f log fdx− nJ(f). (31)

By the definition of A1, we can know A1 ≤ 0, therefore, −A1 ≥ 0.
By [6, Proposition 3.11], we can know∫

Rn

φe−φdx =

∫
Rn

φe−φ/2e−φ/2dx ≤ m

∫
Rn

e−φ/2dx < +∞,

therefore, we have −
∫
Rn f log fdx ∈ (0,+∞).

To sum up, the explicit expression of δ̃J(f, f) can be obtained

δ̃J(f, f) = lim
t→0+

(−A1 −A2) = −
∫
Rn

f log fdx− n

∫
fdx.

�

In addition, this section proves the existence of the limit function δ̃J(f, f),
namely, δ̃J(f, f) ∈ (−∞, 0).
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Here, by the definition of ”Ent” in [6, Proposition 3.11], we can obtain
δ̃J(f, f) = −[(n+ log J(f))J(f) + Ent(f)],

where Ent(f) ∈ (−∞,+∞).

4.2. An explicit expression for δ̃J(f ,g). The existence of δ̃J(f, f) shows
that under certain conditions, the first variation of the total mass function of
the log-concave function exists. Next, the existence and explicit expression
of δ̃J(f, g) are further proved.

From the definition of δ̃J(f, g), if it satisfies the dominated convergence
theorem, then the limit and integral are commutative and we can obtain

δ̃J(f, g) = lim
t→0+

∫
Rn

e−φt(x) − e−φ(x)

t
dx

=

∫
Rn

lim
t→0+

e−φt(x) − e−φ(x)

t
dx

= −
∫
Rn

lim
t→0+

e−φt
dφt
dt

|t=0+dx, (32)

substitute φt = J (Jφ+ tJψ) into formula (32) to get

δ̃J(f, g) = −
∫
Rn

lim
t→0+

e−J (Jφ+tJψ)dJ (Jφ+ tJψ)
dt

|t=0+dx. (33)

Through simplification and calculation, the following theorem can be ob-
tained.
Theorem 4.4. For every f, g ∈ A′, f = e−φ, g = e−ψ, if ψ is controlled
disturbance of φ and the limit δ̃J(f, g) satisfies the dominated convergence
theorem, then the first variational problem can be expressed explicitly as
follows

δ̃J(f, g) =

∫
Rn

e−φ(x)[φ(x)− < x,∇φ(x) >]φ(x)Jψ( x

φ(x)
)dx. (34)

Next, on the premise that Theorem 4.6 and controlled disturbance are
true, we begin to prove that Theorem 4.4 is true. To simplify the calculation,
we can first consider the right formula in the integral (33) and express it
with I, denoted as

I =
dJ (Jφ+ tJψ)

dt
|t=0+ .

Definition 4.5. We say that a function φ defined in Rn is monotonically
increasing if

φ(λx) is monotonically increasing about λ,
where λ ≥ 0, x ∈ Rn.

For every φ ∈ L′, since φ is convex function and φ(0) = 0, it is obvious
that φ is monotonically increasing. Using the order preserving of J , we also
know Jφ is monotonically increasing.
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14 RUBIN ZHANG AND NING ZHANG

Proof. From the second definition of the J , for any fixed x ∈ Rn, every
t > 0, we have

J (Jφ+ tJψ)(x) = inf{r > 0 : (Jφ+ tJψ)(x
r
) ≤ 1

r
}, (35)

The monotonicity and convexity of the function (Jφ+ tJψ) imply that
there exists r1(t) > 0 for which the infimum is attained in equation (35):

r1(t) = φt(x) = J (Jφ+ tJψ)(x) = 1

(Jφ+ tJψ)( x
r1(t)

)
. (36)

The derivative of both sides of equation (36) with respect to t gets

I =
dr1(t)

dt
|t=0+ =

dφt(x)

dt
|t=0+ =

dJ (Jφ+ tJψ)(x)
dt

|t=0+ = r′1(t)|t=0+ ,

further simplification has

I =
< ∇Jφ( xr1 ) + t∇Jψ( xr1 ), x > ·r′1(t)− Jψ( xr1 ) · r

2
1(t)

[Jφ( xr1 ) + tJψ( xr1 )]
2r21(t)

|t=0+

=
Jψ( xr1 ) · r

2
1(t)

< ∇Jφ( xr1 ) + t∇Jψ( xr1 ), x > −[Jφ( xr1 ) + tJψ( xr1 )]
2r21(t)

|t=0+ .

By Theorem 3.16, the existence of the limit of the function φt(x) at t→ 0+,
we have

lim
t→0+

r1(t) = lim
t→0+

φt(x) = φ(x),

thus, when t = 0+, r1(t) = φ(x) is obtained by substituting into I,

I =
Jψ( x

φ(x)) · φ
2(x)

< ∇Jφ( x
φ(x)), x > −1

. (37)

Considering function Jφ( x
φ(x)), from the definition of the J , we can know

Jφ( x

φ(x)
) = inf{s > 0 : φ(

x

φ(x)s
) ≤ 1

s
}.

For any fixed x ∈ Rn, by the monotonicity and convexity of the function
φ, it exists unique s1 > 0

s1 =
1

φ( x
φ(x)s1

)
,

it can be solved by the above formula

s1 =
1

φ(x)
,

therefore
Jφ( x

φ(x)
) = s1 =

1

φ(x)
, (38)
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THE FIRST VARIATIONAL PROBLEMS UNDER THE GAUGE TRANSFORM 15

Using yj , xi to represent the j coordinate function of x
φ(x) and the i

coordinate function of x, and partial differentiation of xi is performed on
both sides of the above formula, we have

∂Jφ( x
φ(x))

∂xi
=

∑
j

∂Jφ
∂yj

(
x

φ(x)
) ·
∂yj( x

φ(x))

∂xi

= − 1

φ2(x)
· ∂φ(x)
∂xi

, (39)

from the definition of the coordinate function

yj(
x

φ(x)
) =

xj

φ(x)
.

Thereupon
∂yj( x

φ(x))

∂xi
=

∂xj

∂xi
· φ(x)− xj · ∂φ(x)

∂xi

φ2(x)
.

Putting the above formula into (39) has∑
j

∂Jφ
∂yj

(
x

φ(x)
) ·

∂xj

∂xi
· φ(x)− xj · ∂φ(x)

∂xi

φ2(x)
= − 1

φ2(x)
· ∂φ(x)
∂xi

,

this is what we get when we simplify it

[< ∇Jφ( x

φ(x)
), x > −1] · ∂φ(x)

∂xi
· 1

φ(x)
=
∂Jφ
∂yi

(
x

φ(x)
).

For ease of calculation, let A0 =< ∇Jφ( x
φ(x)), x > −1, since∑

i

∂Jφ
∂yi

(
x

φ(x)
) · xi =< ∇Jφ( x

φ(x)
), x >,

therefore
A0

φ(x)
· < ∇φ(x), x >= A0 + 1,

so we can figure out

A0 =
φ(x)

< ∇φ(x), x > −φ(x)
. (40)

Substituting (40) into (37), we have

I = Jψ( x

φ(x)
) · φ(x) · [< ∇φ(x), x > −φ(x)].

To sum up, an explicit expression of δ̃J(f, g) can be found

δ̃J(f, g) =

∫
Rn

e−φ(x)Jψ( x

φ(x)
) · φ(x) · [φ(x)− < ∇φ(x), x >]dx.

It is worth noting that the definition of the L is known by introducing it

δ̃J(f, g) = −
∫
Rn

e−φ(x)Jψ( x

φ(x)
) · φ(x) · [(Lφ)(∇φ(x))]dx.
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16 RUBIN ZHANG AND NING ZHANG

�

4.3. Existence proof of δ̃J(f ,g).

Theorem 4.6. For every f, g ∈ A′, f = e−φ, g = e−ψ, if ψ is controlled
disturbance of φ, then we always get δ̃J(f, g) to satisfy the dominated con-
vergence theorem, i.e

δ̃J(f, g) = lim
t→0+

∫
Rn

e−φt(x) − e−φ(x)

t
dx

=

∫
Rn

lim
t→0+

e−φt(x) − e−φ(x)

t
dx.

Proof. From Definition 3.15, if ψ is a controllable disturbance of φ, then
there exists C > 0 such that for every x ∈ Rn we have

(Jψ)(x) ≤ C(Jφ)(x),

under these conditions,∫
Rn

e−φ(x) − e−J (Jφ+tJψ)(x)

t
dx ≤

∫
Rn

e−φ(x) − e−J (Jφ+tCJφ)(x)

t
dx

=

∫
Rn

e−φ(x) − e−J ((1+tC)Jφ)(x)

t
dx,

using the homogeneity of the J again, we can get∫
Rn

e−φ(x) − e−J ((1+tC)Jφ)(x)

t
dx =

∫
Rn

e−φ(x) − e−
1

1+tC
φ((1+tC)x)

t
dx. (41)

Let y = (1 + tC)x and plug in the second term to the right of (41)∫
Rn

e−
1

1+tC
φ((1+tC)x)

t
dx =

∫
Rn

1

(1 + tC)n
e−

1
1+tC

φ(y)

t
dy, (42)

then let y = x substitute (42) and combine (41) to have∫
Rn

(1 + tC)ne−φ(x) − e−
1

1+tC
φ(x)

t
dx

=[
(1 + tC)n − 1

t
]

∫
Rn

e−φ(x)dx+

∫
Rn

e−φ(x) − e−
1

1+tC
φ(x)

t
dx. (43)

Similar to the calculation of δ̃J(f, f), (43) is represented by C1 + C2,
where

C1 = [
(1 + tC)n − 1

t
]

∫
Rn

e−φ(x)dx,

when t→ 0+, apply L ’Hospital’s rule

C1 = nC

∫
Rn

e−φ(x)dx ∈ (0,+∞).
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While

C2 =

∫
Rn

e−φ(x) − e−
1

1+tC
φ(x)

t
dx

=

∫
Rn

e−
1

1+tC
φ(x) · e

− tC
1+tC

φ(x) − 1

t
dx

≥
∫
Rn

e−
1

1+tC
φ(x) · e

−tCφ(x) − 1

t
dx. (44)

Let lt = e−tCφ, apply Lagrange mean value theorem, exists ξ ∈ (0, t)

dlt
dt

|t=ξ =
e−tCφ − 1

t
= −Cφ · e−Cξφ,

substitute into (44) to obtain

C2 ≥ −
∫
Rn

Cφ · e−
1

1+tC
φ(x) · e−Cξφdx

= −
∫
Rn

Ce−
1+Cξ+2C2tξ−Ct

2+2Ct
φ(x)φ(x)e−φ(x)/2dx

≥ −
∫
Rn

Ce−
1+Cξ+2C2tξ−Ct

2+2Ct
φ(x)mdx, (45)

where m is the constant value defined earlier.
Therefore, when t is small enough, for example, let t ≤ 1

C makes

0 <
1 + Cξ + 2C2tξ − Ct

2 + 2Ct
φ(x) < 1,

we can see that (45) is convergent, i.e

−
∫
Rn

Ce−
1+Cξ+2C2tξ−Ct

2+2Ct
φ(x)mdx ∈ (−∞, 0).

So, applying the dominated convergence theorem gives us

δ̃J(f, g) = lim
t→0+

(1 + tC)−n(C1 + C2)

=

∫
Rn

lim
t→0+

[nCe−φ(x) +
e−φ(x) − e−

1
1+tC

φ(x)

t
]dx

= C

∫
Rn

[ne−φ(x) − φ(x)e−φ(x)]dx,

because
−
∫
Rn

Cφ(x)e−φ(x)dx ∈ (−∞, 0),

therefore
δ̃J(f, g) ∈ (−∞,+∞).

In summary, δ̃J(f, g) satisfies the dominated convergence theorem. �
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18 RUBIN ZHANG AND NING ZHANG

Thus, under the condition that ψ is a controllable disturbance of φ, we
prove the existence and explicit expression of the solution to the first vari-
ational problem of log-concave function derived from the J . This provides
a foundation for further study of Brunn-Minkowski theory on unbounded
convex sets.
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