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EQUATIONS VIA KRASNOSEL’SKĬI-PRECUP FIXED POINT INDEX THEOREMS

IN CONES

NEMAT NYAMORADI AND BASHIR AHMAD
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1. Introduction

The approach of fixed point theory is found to be of great benefit in studying the existence of solutions
for initial and boundary value problems. In particular, Krasnosel’skĭi compression-expansion fixed point
index theorem [1, 2] is extensively used to establish the existence of positive solutions for different types of

boundary value problems. In [3], Leggett–Williams and Krasnosel’skĭi fixed point theorems were employed
to accomplish the existence of triple positive solutions to higher-order fractional differential equations with
integral conditions. A detailed description of the work on boundary value problems for fractional differential
equations and systems based on different kinds fixed point theorems can be found in the text [4]. In a
recent paper [5], the author studied the existence of positive solutions for a singular system of nonlinear

fractional differential equations. Krasnosel’skĭi-Precup fixed point theorem was successfully employed to
investigate the existence, localization and multiplicity of positive solutions for boundary value problems of
systems of differential equations in [6]-[10]. In a recent article [11], Rodŕıguez-López discussed a fixed point

index approach to Krasnosel’skĭi-Precup fixed point theorem and applied it to show the existence of positive
solutions for Hammerstein integral equations.

The objective of the present paper is to apply Krasnosel’skĭi-Precup fixed point index theorems in cones
presented in [11] to study the existence of multiple positive solutions to a boundary value problem for a
system of higher order fractional differential equations. Precisely, we investigate the following problem:

cDσ1

0+
u(t) = ψ1(t)f1(u(t), v(t)), t ∈ (0, 1),

cDσ2

0+
v(t) = ψ2(t)f2(u(t), v(t)), t ∈ (0, 1),

u(1) = u′(0) = . . . = un−2(0) = un−1(0) = 0,

v(1) = v′(0) = . . . = vn−2(0) = vn−1(0) = 0,

(1.1)

where cDα
0+ is the Caputo fractional derivative of order α ∈ (n− 1, n], n ≥ 2 (α = σ1, σ2) and it is assumed

that
(H1) fi ∈ C([0, 1], [0,∞)× [0,∞)) and ψi ∈ C([0, 1], [0,+∞)), i = 1, 2.

The rest of the manuscript is arranged as follows. Section 2 contains the preliminary material. Main
results are presented in Section 3, while an illustrative example is discussed in Section 4.

2. Preliminaries

In this section, we present some preliminary material that will be used in the proofs of the main results.

Definition 2.1. Let X be a real Banach space. A non-empty closed set P ⊂ X is called a cone of X if it
satisfies the following conditions:
(1) x ∈ P, µ ≥ 0 implies µx ∈ P ,
(2) x ∈ P,−x ∈ P implies x = 0.
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2 N. NYAMORADI AND B. AHMAD

Definition 2.2. ([12]) The fractional derivative of f ∈ Cn[a, b] in the Caputo sense is defined as

cDα
0+f(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1f (n)(s)ds, n− 1 < α ≤ n, n = [α] + 1.

In the following lemma, we present the solution of problem (1.1) in terms of Green’s function.

Lemma 2.1. Assume that the hypothesis (H1) holds. Then, the boundary value problem (1.1) has a unique
solution: {

u(t) =
∫ 1
0 G1(t, s)ψ1(s)f1(u(s), v(s))ds,

v(t) =
∫ 1
0 G2(t, s)ψ2(s)f2(u(s), v(s))ds,

(2.1)

where

Gi(t, s) =
1

Γ(σi)

{
(1− s)σi−1 − (t− s)σi−1, 0 ≤ s ≤ t ≤ 1,

(1− s)σi−1, 0 ≤ t ≤ s ≤ 1,
(i = 1, 2). (2.2)

Proof. The proof is similar to that of [13, Lemma 2.8] and is omitted. □

Proposition 2.1. For t, s ∈ [0, 1], we obtain

0 ≤ Gi(t, s) ≤ Gi(s, s) ≤
1

Γ(σ)
(i = 1, 2).

Proposition 2.2. Let θ ∈ (0, 12), then for all s ∈ [0, 1], we have

min
θ≤t≤1−θ

Gi(t, s) ≥
[
1− (1− θ)σ−1

]
Gi(s, s), i = 1, 2.

Proof. For θ ∈ (0, 12) and i = 1, 2, we get

min
θ≤t≤1−θ

Gi(t, s) =
1

Γ(σi)


(1− s)σi−1 − (1− θ − s)σi−1, s ∈ [0, θ],

min
{
(1− s)σi−1 − (1− θ − s)σi−1, (1− s)σi−1

}
= (1− s)σi−1 − (1− θ − s)σi−1, s ∈ [θ, 1− θ],

(1− s)σi−1, s ∈ [1− θ, 1].

=
1

Γ(σi)

{
(1− s)σi−1 − (1− θ − s)σi−1, s ∈ [0, 1− θ],

(1− s)σi−1, s ∈ [1− θ, 1].

Since θ ∈ (0, 12) and σi > 1 (i = 1, 2), we get(
1− s

1− θ

)σi−1

≤ (1− s)σi−1,

which consequently yields

(1− s)σi−1 − (1− θ − s)σi−1 ≥ (1− s)σi−1 − (1− θ)σi−1(1− s)σi−1

≥ [1− (1− θ)σi−1](1− s)σi−1, for s ∈ [0, 1− θ],

(1− s)σi−1 ≥ [1− (1− θ)σi−1](1− s)σi−1, for s ∈ [1− θ, 1].

Thus, for s ∈ [0, 1], we have

min
θ≤t≤1−θ

Gi(t, s) ≥ [1− (1− θ)σi−1]
(1− s)σi−1

Γ(σi)
= [1− (1− θ)σi−1]Gi(s, s), i = 1, 2.

□

Remark 2.1. Let θ = 1
4 and s ∈ [0, 1]. Then, by Proposition 2.2, we obtain

min
1
4
≤t≤ 3

4

Gi(t, s) ≥
[
1− (

3

4
)σi−1

]
Gi(s, s), i = 1, 2.

Lemma 2.2. If the assumption (H1) holds, then the unique solution u of the problem (1.1) satisfies the
inequalities:

(i): u(t) ≥ 0, for t ∈ [0, 1],
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(ii): min 1
4
≤t≤ 3

4
u(t) ≥

(
1− (34)

σ1−1
)
∥u∥ and min 1

4
≤t≤ 3

4
v(t) ≥

(
1− (34)

σ2−1
)
∥v∥.

Proof. (i) By Proposition 2.1, it is obvious that Gi(t, s) ≥ 0, i = 1, 2, so we get u(t) ≥ 0.

(ii) From Remark 2.1, for t ∈
[
1
4 ,

3
4

]
, we have

u(t) =

∫ 1

0
G1(t, s)ψ1(s)f1(u(s), v(s))ds

≥
(
1− (

3

4
)σ1−1

)∫ 1

0
G1(s, s)ψ1(s)f1(u(s), v(s))ds ≥

(
1− (

3

4
)σ1−1

)
∥u∥.

Therefore, we get min 1
4
≤t≤ 3

4
u(t) ≥

(
1− (34)

σ1−1
)
∥u∥. In a similar manner, it can be shown that

min
1
4
≤t≤ 3

4

v(t) ≥
(
1− (

3

4
)σ2−1

)
∥v∥.

□

Define

K1 = {u ∈ C([0, 1])|u(t) ≥ 0, min
1
4
≤t≤ 3

4

u(t) ≥
(
1− (

3

4
)σ1−1

)
∥u∥}, (2.3)

K2 = {u ∈ C([0, 1])|v(t) ≥ 0, min
1
4
≤t≤ 3

4

v(t) ≥
(
1− (

3

4
)σ2−1

)
∥v∥}. (2.4)

Observe that K1 and K2 are cones. Define an operator T : K → K as

T (u, v)(t) = (T1(u, v)(t), T2(u, v)(t)),

where

Ti(u, v)(t) =

∫ 1

0
Gi(t, s)ψi(s)fi(u(s), v(s))ds, i = 1, 2, (2.5)

and K = K1 ×K2 is a cone in C([0, 1])× C([0, 1]).
Notice that that the existence of a positive solution for the system (1.1) is equivalent to that of a nontrivial

fixed point of T in K.

Lemma 2.3. Suppose that the condition (H1) holds. Then T (K) ⊆ K and T : K → K is completely
continuous.

Proof. For any (u, v) ∈ K, by (2.3) and (2.4), we obtain Ti(u, v)(t) ≥ 0 and, for t ∈ [0, 1] and i = 1, 2,

Ti(u, v)(t) =

∫ 1

0
Gi(t, s)ψi(s)fi(u(s), v(s))ds ≤

∫ 1

0
Gi(s, s)ψi(s)fi(u(s), v(s))ds.

Thus, ∥Ti(u, v)∥ ≤
∫ 1
0 Gi(s, s)ψi(s)fi(u(s), v(s))ds.

On the other hand, for t ∈
[
1
4 ,

3
4

]
and i = 1, 2, we have

Ti(u, v)(t) =

∫ 1

0
Gi(t, s)ψi(s)fi(u(s), v(s))ds

≥
(
1− (

3

4
)σi−1

)∫ 1

0
Gi(s, s)ψi(s)fi(u(s), v(s))ds

≥
(
1− (

3

4
)σi−1

)
∥Ti(u, v)∥.

So T (K) ⊆ K. By conventional arguments and Ascoli-Arzela theorem, one can show that T : K → K is
completely continuous. □

Our main results are based on the following new alternative versions of Krasnosel’skĭi-Precup fixed point
theorem, which were recently proved in the article [11] and are stated below for the convenience of the reader.
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For r = (r1, r2) ∈ R2
+ and R = (R1, R2) ∈ R2

+ with 0 < ri < Ri, i = 1, 2, set

(Ki)ri = {u ∈ Ki : ∥u∥ < ri}, (Ki)ri = {u ∈ Ki : ∥u∥ ≤ ri},
Kr,R = {(u, v) ∈ K : r1 < ∥u∥ < R1, r2 < ∥v∥ < R2}.

Theorem 2.1. ([11, Theorem 2.8]) Assume that T = (T1, T2) : Kr,R → K is a compact map and there

exists hi ∈ Ki \ {0} for each i ∈ {1, 2} such that one of the following conditions is satisfied in Kr,R:

(a): Ti(u) + µhi ̸= ui, if ∥ui∥ = ri and µ ≥ 0, and Ti(u) ̸= λui if ∥ui∥ = Ri and λ ≥ 1;
(b): Ti(u) ̸= λui, if ∥ui∥ = ri and λ ≥ 0, and Ti(u) + µhi ̸= ui if ∥ui∥ = Ri and µ ≥ 1.

Then, T has at least one fixed point u = (u1, u2) ∈ K with r1 < ∥u∥ < R1, r2 < ∥v∥ < R2.

Theorem 2.2. ([11, Theorem 2.11]) Let X and Y be normed linear spaces, K1 ⊂ X and K2 ⊂ Y be two

cones, K = K1 ×K2 and r(j) = (r
(j)
1 , r

(j)
2 ) ∈ R2

+ and R(j) = (R
(j)
1 , R

(j)
2 ) ∈ R2

+ with 0 < r
(j)
i < R

(j)
i (i = 1, 2,

j = 1, 2, 3). Assume the sets Kr(j),R(j) are such that

Kr(1),R(1)

⋃
Kr(2),R(2) ⊂ Kr(3),R(3) and Kr(1),R(1)

⋂
Kr(2),R(2) = ∅.

Moreover, assume that T = (T1, T2) : Kr(3),R(3) → K is a compact map and there exists hji ∈ Ki \ {0} for

each i ∈ {1, 2} and j ∈ {1, 2, 3} such that one of the following conditions is satisfied in Kr(j),R(j):

(a): Ti(u) + µhji ̸= ui, if ∥ui∥ = r
(j)
i and µ ≥ 0, and Ti(u) ̸= λui if ∥ui∥ = R

(j)
i and λ ≥ 1;

(b): Ti(u) ̸= λui, if ∥ui∥ = r
(j)
i and λ ≥ 0, and Ti(u) + µhji ̸= ui if ∥ui∥ = R

(j)
i and µ ≥ 1.

Then, T has at least three fixed points ũj = (ũj1, ũ
j
2) ∈ K (j ∈ {1, 2, 3}) such that

ũ1 ∈ Kr(1),R(1) , ũ2 ∈ Kr(2),R(2) , ũ3 ∈ Kr(3),R(3) \
(
Kr(1),R(1)

⋃
Kr(2),R(2)

)
.

3. Main results

For ϖ = (ϖ1, ϖ2) and ϱ = (ϱ1, ϱ2) with ϖi, ϱi > 0, ϖi ̸= ϱi, i = 1, 2, we set the notation:

Mi =

∫ 3
4

1
4

Gi(s, s)ψi(s)ds, M̃i =

∫ 1

0
Gi(s, s)ψi(s)ds, i = 1, 2,

Θϖ,ϱ
1 = min

{
f1(u, v) :

(
1− (

3

4
)σ1−1

)
ϱ1 ≤ u ≤ ϱ1,

(
1− (

3

4
)σ2−1

)
r2 ≤ v ≤ R2

}
,

Θϖ,ϱ
1 = min

{
f2(u, v) :

(
1− (

3

4
)σ1−1

)
r1 ≤ u ≤ R1,

(
1− (

3

4
)σ2−1

)
ϱ2 ≤ v ≤ ϱ2

}
,

Λϖ,ϱ
1 = max {f1(u, v) : 0 ≤ u ≤ ϖ1, 0 ≤ v ≤ R2} ,

Λϖ,ϱ
1 = max {f2(u, v) : 0 ≤ u ≤ R1, 0 ≤ v ≤ ϖ2} ,

where ri = min{ϖi, ϱi} and Ri = max{ϖi, ϱi}.
Now, we present our main results.

Theorem 3.1. Suppose that (H1) holds and there exist positive constant ϖi, ϱi > 0, ϖi ̸= ϱi, i = 1, 2, such
that (

1− (
3

4
)σi−1

)
MiΘ

ϖ,ϱ
i > ϱi, M̃iΛ

ϖ,ϱ
i < ϖi (i = 1, 2). (3.1)

Then, the system (1.1) has at least one positive solution (u, v) ∈ K such that r1 < ∥u∥ < R1 and r2 < ∥v∥ <
R2.

Proof. Let hi := 1 ∈ Ki \ {0}, i = 1, 2. The proof will be completed in two steps.
(1) We verify the condition (a) of Theorem 2.1 as T1(u, v) + µ1 ̸= u and T2(u, v) + µ1 ̸= v, if ∥u∥ = ϱ1,
∥v∥ = ϱ2 and µ ≥ 0. To this end, assume that there exists (u, v) ∈ Kr,R with ∥u∥ = ϱ1, ∥v∥ = ϱ2 and µ ≥ 0
such that T1(u, v) + µ1 = u and T2(u, v) + µ1 = v for the sake of contradiction. Then we have{

u(t) =
∫ 1
0 G1(t, s)ψ1(s)f1(u(s), v(s))ds+ µ,

v(t) =
∫ 1
0 G2(t, s)ψ2(s)f2(u(s), v(s))ds+ µ.
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Since (u, v) ∈ Kr,R ⊆ K with ∥u∥ = ϱ1, ∥v∥ = ϱ2, therefore,
(
1− (34)

σ1−1
)
ϱ1 ≤ u(t) ≤ ϱ1,(

(34)
σ2−1

)
r2 ≤ v(t) ≤ R2,

for all t ∈
[
1

4
,
3

4

]
.

Hence, for t ∈
[
1
4 ,

3
4

]
, by (3.1) and Remark 2.1, we obtain

u(t) ≥
∫ 3

4

1
4

G1(t, s)ψ1(s)f1(u(s), v(s))ds ≥ Θϖ,ϱ
1

∫ 3
4

1
4

G1(t, s)ψ1(s)ds

≥ Θϖ,ϱ
1

(
1− (

3

4
)σ1−1

)∫ 3
4

1
4

G1(s, s)ψ1(s)ds ≥ Θϖ,ϱ
1

(
1− (

3

4
)σ1−1

)
M1 > ϱ1,

which is a contradiction.
(2) We verify the condition (b) of Theorem 2.1 as T1(u, v) ̸= λu and T2(u, v) ̸= λv, if ∥u∥ = ϖ1, ∥v∥ = ϖ2

and λ ≥ 0. Equivalently, it will be shown that ∥Ti(u, v)∥ < ϖi for all (u, v) ∈ Kr,R ⊆ K with ∥u∥ = ϖ1,
∥v∥ = ϖ2. So we have {

0 ≤ u(t) ≤ ϖ1,

0 ≤ v(t) ≤ R2,
for all t ∈ [0, 1] .

Hence, in view of (3.1) and Proposition 2.1, one can get

Ti(u, v)(t) =

∫ 1

0
Gi(t, s)ψi(s)fi(u(s), v(s))ds ≤ Λϖ,ϱ

i

∫ 1

0
Gi(s, s)ψi(s)ds ≤ Λϖ,ϱ

i M i < ϖi.

Consequently, ∥Ti(u, v)∥ < ϖi. Therefore, by Theorem 2.1 with ri = min{ϖi, ϱi} and Ri = max{ϖi, ϱi}, we
have the conclusion. □

Theorem 3.2. Suppose that (H1) and the following conditions hold:

(H2) there exist positive constant ϖj
i , ϱ

j
i > 0, ϖj

i ̸= ϱji , i = 1, 2, j = 1, 2, 3 such that ϖ1
i , ϖ

2
i , ϱ

1
i , ϱ

2
i ∈

[r3i , R
3
i ] for i ∈ {1, 2};

(H3) there exists i ∈ {1, 2} such that R1
i < r2i , where r

j
i = min{ϖj

i , ϱ
j
i}, R

j
i = max{ϖj

i , ϱ
j
i};

(H4)
(
1− (

3

4
)σi−1

)
MiΘ

ϖj ,ϱj

i > ϱji , M̃iΛ
ϖj ,ϱj

i < ϖj
i , i = 1, 2, j = 1, 2, 3.

Then, the system (1.1) has at least three positive solutions.

Proof. We shall apply Theorem 2.2 to the operator T = (T1, T2) : Kr3,R3 → K, where T1, T2 are de-

fined in (2.5). By (H2), we have Kr3,R1

⋃
Kr2,R2 ⊂ Kr3,R3 . On the other hand, it follows by (H3) that

Kr1,R1

⋂
Kr2,R2 = ∅.

Also, by the condition (H4) and the arguments used in the proof of Theorem 3.1, we can verify the
assumptions (a) and (b) of Theorem 2.2. Therefore, by Theorem 2.2, we get the conclusion. □

4. Application

Consider the following system of fractional differential equations with the boundary conditions:
cD

3
2

0+
u(t) = ψ1(t)f1(u(t), v(t)), t ∈ (0, 1),

cD
3
2

0+
v(t) = ψ2(t)f2(u(t), v(t)), t ∈ (0, 1),

u(1) = u′(0) = 0, v(1) = v′(0) = 0,

(4.1)

where n = 2, σi =
3
2 , f1(u, v) = u3(1 + sin(u) cos(v)), f2(u, v) = v2(1 + sin(u) cos(v)) and ψ1(t) = ψ2(t) = t.

Using the given values, we find that Mi = 0.18889, M̃i = 0.3009,
(
1 − (34)

σi−1
)

= 0.1339 for i = 1, 2.

Moreover, by the condition (H4), we have ϱ11 = ϱ31 = 0.00024, ϖ1
1 = 0.3, ϱ21 = 130, ϖ2

1 = ϖ3
1 = 1120, ϖj

2 = 3

and ϱj2 = 1100 for j = 1, 2, 3. So, by Theorem 3.2, the problem (1.1) has at least three positive solutions
(u1, v1), (u2, v2) and (u3, v3) satisfying 0.00024 < ∥u1∥ < 0.3, 3 < ∥v1∥ < 1100, 130 < ∥u2∥ < 1120, 3 <
∥v2∥ < 1100, 0.3 < ∥u3∥ < 130, 3 < ∥v3∥ < 1100.
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