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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS AND COMMUTATORS
ON PRODUCTS OF WEIGHTED MORREY SPACES

XIA HAN AND HUA WANG

ABSTRACT. In this paper, we consider the boundedness properties of multilinear θ -type Calderón–
Zygmund operators Tθ recently introduced in the literature. First, we prove strong type and weak type
estimates for multilinear θ -type Calderón–Zygmund operators on products of weighted Morrey spaces
with multiple weights. Then we discuss strong type estimates for both multilinear commutators and
iterated commutators of Tθ on products of these spaces with multiple weights. Furthermore, the weak
end-point estimates for commutators of Tθ and pointwise multiplication with functions in bounded mean
oscillation are established too.

1. Introduction

In this paper, the symbols R and N stand for the sets of all real numbers and natural numbers,
respectively. Let Rn be the n-dimensional Euclidean space with the Euclidean norm | · | and the

Lebesgue measure dx. Let m ∈ N and (Rn)m =

m︷ ︸︸ ︷
Rn×·· ·×Rn be the m-fold product space. We denote

by S (Rn) the space of all Schwartz functions on Rn and by S ′(Rn) its dual space, the set of all
tempered distributions on Rn. Calderón–Zygmund singular integral operators and their generalizations
on the Euclidean space Rn have been extensively studied (see [5, 6, 7, 26] for instance). In particular,
Yabuta [31] introduced certain θ -type Calderón–Zygmund operators to facilitate his study of certain
classes of pseudo-differential operators. Following the terminology of Yabuta [31], we introduce the
so-called θ -type Calderón–Zygmund operators as follows.

Definition 1.1. Let θ be a nonnegative, nondecreasing function on R+ := (0,+∞) with 0< θ(1)<+∞

and ∫ 1

0

θ(t)
t

dt <+∞.

A measurable function K(x,y) on Rn×Rn \{(x,y) : x = y} is said to be a θ -type Calderón–Zygmund
kernel, if there exists a constant A > 0 such that

(1)
∣∣K(x,y)

∣∣≤ A
|x−y|n , for any x 6= y;

(2)
∣∣K(x,y)−K(z,y)

∣∣+ ∣∣K(y,x)−K(y,z)
∣∣≤ A

|x−y|n ·θ
(
|x−z|
|x−y|

)
, for |x− z|< |x−y|

2 .
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Definition 1.2. Let Tθ be a linear operator from S (Rn) into its dual S ′(Rn). We say that Tθ is a
θ -type Calderón–Zygmund operator with associated kernel K if

(1) Tθ can be extended to be a bounded linear operator on L2(Rn);
(2) for any f ∈C∞

0 (Rn) and for all x /∈ supp f , there is a θ -type Calderón–Zygmund kernel K(x,y)
such that

Tθ f (x) :=
∫
Rn

K(x,y) f (y)dy,

where C∞
0 (Rn) is the space consisting of all infinitely differentiable functions on Rn that have

compact support.

Note that the classical Calderón–Zygmund operator with standard kernel (see [5, 6]) is a special
case of θ -type operator Tθ when θ(t) = tδ with 0 < δ ≤ 1.

In 2009, Maldonado and Naibo [18] considered the bilinear θ -type Calderón–Zygmund operators
which are natural generalizations of the linear case, and established weighted norm inequalities for
bilinear θ -type Calderón–Zygmund operators on products of weighted Lebesgue spaces with Mucken-
houpt weights. Moreover, they applied these operators to the study of certain paraproducts and bilinear
pseudo-differential operators with mild regularity. Later, in 2014, Lu and Zhang [17] introduced the
general m-linear θ -type Calderón–Zygmund operators and their commutators for m≥ 2, and estab-
lished boundedness properties of these multilinear operators and multilinear commutators on products
of weighted Lebesgue spaces with multiple weights. In addition, they gave some applications to the
paraproducts and bilinear pseudo-differential operators with mild regularity and their commutators too.
Following [17], we now give the definition of the multilinear θ -type Calderón–Zygmund operators.

Definition 1.3. Let θ be a nonnegative, nondecreasing function on R+ with 0 < θ(1)<+∞ and

(1.1)
∫ 1

0

θ(t)
t

dt <+∞.

A measurable function K(x,y1, . . . ,ym), defined away from the diagonal x = y1 = · · ·= ym in (Rn)m+1,
is called an m-linear θ -type Calderón–Zygmund kernel, if there exists a constant A > 0 such that

(1)

(1.2)
∣∣K(x,y1, . . . ,ym)

∣∣≤ A
(|x− y1|+ · · ·+ |x− ym|)mn

for all (x,y1, . . . ,ym) ∈ (Rn)m+1 with x 6= yk for some k ∈ {1,2, . . . ,m}, and
(2) ∣∣K(x,y1, . . . ,ym)−K(x′,y1, . . . ,ym)

∣∣
≤ A
(|x− y1|+ · · ·+ |x− ym|)mn ·θ

(
|x− x′|

|x− y1|+ · · ·+ |x− ym|

)(1.3)

whenever |x− x′| ≤ 1
2 max1≤i≤m |x− yi|, and
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(3) for each fixed k with 1≤ k ≤ m,∣∣K(x,y1, . . . ,yk, . . . ,ym)−K(x,y1, . . . ,y′k, . . . ,ym)
∣∣

≤ A
(|x− y1|+ · · ·+ |x− ym|)mn ·θ

(
|yk− y′k|

|x− y1|+ · · ·+ |x− ym|

)(1.4)

whenever |yk− y′k| ≤
1
2 max1≤i≤m |x− yi|.

Definition 1.4. Let m ∈ N and Tθ be an m-linear operator initially defined on the m-fold product of
Schwartz spaces and taking values into the space of tempered distributions, i.e.,

Tθ :

m︷ ︸︸ ︷
S (Rn)×·· ·×S (Rn)→S ′(Rn).

We say that Tθ is an m-linear θ -type Calderón–Zygmund operator if

(1) Tθ can be extended to be a bounded multilinear operator from Lq1(Rn)×·· ·×Lqm(Rn) into
Lq(Rn) for some q1, . . . ,qm ∈ [1,+∞) and q ∈ [1/m,+∞) with 1/q = ∑

m
k=1 1/qk;

(2) for any given m-tuples ~f = ( f1, . . . , fm), there is an m-linear θ -type Calderón–Zygmund kernel
K(x,y1, . . . ,ym) such that

Tθ (~f )(x) = Tθ ( f1, . . . , fm)(x) :=
∫
(Rn)m

K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym

whenever x /∈
⋂m

k=1 supp fk and each fk ∈C∞
0 (Rn) for k = 1,2, . . . ,m.

We note that, if we simply take θ(t) = tε for some 0 < ε ≤ 1, then the multilinear θ -type operator
Tθ is exactly the multilinear Calderón–Zygmund operator, which was systematically studied by many
authors. There is a vast literature of results of this nature, pioneered by the work of Grafakos and
Torres [9], we refer the reader to [8, 13, 20] and the references therein for more details. In 2014, the
following weighted strong-type and weak-type estimates of multilinear θ -type Calderón–Zygmund
operators on products of weighted Lebesgue spaces were proved by Lu and Zhang in [17].

Theorem 1.5 ([17]). Let m ∈ N and Tθ be an m-linear θ -type Calderón–Zygmund operator with θ

satisfying the condition (1.1). If p1, . . . , pm ∈ (1,+∞) and p ∈ (1/m,+∞) with 1/p = ∑
m
k=1 1/pk, and

~w = (w1, . . . ,wm) satisfies the multilinear A~P condition, then there exists a constant C > 0 independent
of ~f = ( f1, . . . , fm) such that∥∥Tθ (~f )

∥∥
Lp(ν~w)

≤C
m

∏
k=1

∥∥ fk
∥∥

Lpk (wk)
, ν~w =

m

∏
k=1

wp/pk
k .

Theorem 1.6 ([17]). Let m ∈ N and Tθ be an m-linear θ -type Calderón–Zygmund operator with θ

satisfying the condition (1.1). If p1, . . . , pm ∈ [1,+∞), min{p1, . . . , pm}= 1 and p ∈ [1/m,+∞) with
1/p = ∑

m
k=1 1/pk, and ~w = (w1, . . . ,wm) satisfies the multilinear A~P condition, then there exists a

constant C > 0 independent of ~f = ( f1, . . . , fm) such that∥∥Tθ (~f )
∥∥

WLp(ν~w)
≤C

m

∏
k=1

∥∥ fk
∥∥

Lpk (wk)
, ν~w =

m

∏
k=1

wp/pk
k .
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For any given p ∈ (0,+∞) and w(weight function), the space Lp(w) is defined as the set of all
integrable functions f on Rn such that

‖ f‖Lp(w) :=
(∫

Rn
| f (x)|pw(x)dx

)1/p

<+∞,

and the weak space WLp(w) is defined as the set of all measurable functions f on Rn such that

‖ f‖WLp(w) := sup
λ>0

λ ·w
({

x ∈ Rn : | f (x)|> λ
})1/p

<+∞,

where w(E) :=
∫

E w(x)dx for a Lebesgue measurable set E ⊂ Rn. When w≡ 1, we denote simply by
Lp(Rn) and WLp(Rn).

Remark 1.7. For the linear case m = 1, the weighted results above were given by Quek and Yang in
[22]. For the bilinear case m = 2, Theorems 1.5 and 1.6 were proved by Maldonado and Naibo in [18]
when some additional conditions imposed on θ . And when θ(t) = tε for some 0 < ε ≤ 1, Theorems
1.5 and 1.6 were obtained by Lerner et al. [13].

Next, we give the definition of the commutator for the multilinear θ -type Calderón–Zygmund
operator. Given a collection of locally integrable functions~b = (b1, . . . ,bm), the m-linear commutator
of Tθ with~b is defined by[

Σ~b,Tθ

]
(~f )(x) =

[
Σ~b,Tθ

]
( f1, . . . , fm)(x) :=

m

∑
k=1

[
bk,Tθ

]
k( f1, . . . , fm)(x),(1.5)

where each term is the commutator of bk and Tθ in the k-th entry of Tθ ; that is,[
bk,Tθ

]
k( f1, . . . , fm)(x) = bk(x) ·Tθ ( f1, . . . , fk, . . . , fm)(x)−Tθ ( f1, . . . ,bk fk, . . . , fm)(x).

Then, at a formal level[
Σ~b,Tθ

]
(~f )(x) =

[
Σ~b,Tθ

]
( f1, . . . , fm)(x)

=
∫
(Rn)m

m

∑
k=1

[
bk(x)−bk(yk)

]
K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym.

Obviously, when m = 1 in the above definition, this operator coincides with the linear commutator
[b,Tθ ](see [16, 33]), which is defined by

[b,Tθ ]( f ) := b ·Tθ ( f )−Tθ (b f ).

Let us now recall the definition of the space of BMO(Rn)(see [5, 11]). A locally integrable function
b(x) is said to belong to BMO(Rn) if it satisfies

‖b‖∗ := sup
B

1
|B|

∫
B
|b(x)−bB|dx <+∞,

where the supremum is taken over all balls B in Rn, and bB stands for the average of b over B, i.e.,

bB :=
1
|B|

∫
B

b(y)dy.
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In the multilinear setting, we say that ~b = (b1, . . . ,bm) ∈ BMOm, if each bk ∈ BMO(Rn) for k =
1,2, . . . ,m. For convenience, we will use the following notation∥∥~b∥∥BMOm := max

1≤k≤m

∥∥bk
∥∥
∗, for~b = (b1, . . . ,bm) ∈ BMOm.

In 2014, Lu and Zhang [17] also proved some weighted estimate and L logL-type estimate for mul-
tilinear commutators

[
Σ~b,Tθ

]
defined in (1.5) under a stronger condition (1.6) assumed on θ , if

~b ∈ BMOm.

Theorem 1.8 ([17]). Let m ∈ N and
[
Σ~b,Tθ

]
be the m-linear commutator generated by θ -type

Calderón–Zygmund operator Tθ and~b = (b1, . . . ,bm) ∈ BMOm; let θ satisfy

(1.6)
∫ 1

0

θ(t) · (1+ | log t|)
t

dt <+∞.

If p1, . . . , pm ∈ (1,+∞) and p ∈ (1/m,+∞) with 1/p = ∑
m
k=1 1/pk, and ~w = (w1, . . . ,wm) ∈ A~P, then

there exists a constant C > 0 independent of~b and ~f = ( f1, . . . , fm) such that∥∥[Σ~b,Tθ

]
(~f )
∥∥

Lp(ν~w)
≤C ·

∥∥~b∥∥BMOm

m

∏
k=1

∥∥ fk
∥∥

Lpk (wk)
, ν~w =

m

∏
k=1

wp/pk
k .

Theorem 1.9 ([17]). Let m ∈ N and
[
Σ~b,Tθ

]
be the m-linear commutator generated by θ -type

Calderón–Zygmund operator Tθ and ~b = (b1, . . . ,bm) ∈ BMOm; let θ satisfy the condition (1.6).
If pk = 1, k = 1,2, . . . ,m and ~w = (w1, . . . ,wm) ∈ A(1,...,1), then for any given λ > 0, there exists a
constant C > 0 independent of~b, ~f = ( f1, . . . , fm) and λ such that

ν~w

({
x ∈ Rn :

∣∣[Σ~b,Tθ

]
(~f )(x)

∣∣> λ
m
})
≤C ·Φ

(∥∥~b∥∥BMOm

)1/m
m

∏
k=1

(∫
Rn

Φ

(
| fk(x)|

λ

)
wk(x)dx

)1/m

,

where ν~w = ∏
m
k=1 w1/m

k , Φ(t) := t · (1+ log+ t) and log+ t := max{log t,0}.

Remark 1.10. As is well known, (multilinear) commutator has a greater degree of singularity than the
underlying (multilinear) θ -type operator, so more regular condition imposed on θ(t) is reasonable. Ob-
viously, our condition (1.6) is slightly stronger than the condition (1.1). For such type of commutators,
the condition that θ(t) satisfying (1.6) is needed in the linear case (see [16, 33] for more details), so
does in the multilinear case. Moreover, it is straightforward to check that when θ(t) = tε for some
ε > 0, ∫ 1

0

tε · (1+ | log t|)
t

dt =
∫ 1

0
tε−1 ·

(
1+ log

1
t

)
dt <+∞.

Thus, the multilinear Calderón–Zygmund operator is also the multilinear θ -type operator Tθ with θ(t)
satisfying (1.6).

Remark 1.11. When m = 1, the above weighted endpoint estimate for the linear commutator [b,Tθ ]
was given by Zhang and Xu in [33] (for the unweighted case, see [16]). Since Tθ is bounded on Lp(w)
for 1 < p <+∞ and w ∈ Ap as mentioned earlier, then by the well-known boundedness criterion for
commutators of linear operators, which was obtained by Alvarez et al. in [1], we know that [b,Tθ ] is
also bounded on Lp(w) for all 1 < p <+∞ and w ∈ Ap, whenever b ∈ BMO(Rn).
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Remark 1.12. When m≥ 2, w1 = · · ·= wm ≡ 1 and θ(t) = tε for some ε > 0, Pérez and Torres [20]
proved that if~b = (b1, . . . ,bm) ∈ BMOm, then[

Σ~b,Tθ

]
: Lp1(Rn)×·· ·×Lpm(Rn)→ Lp(Rn)

for 1 < pk <+∞ and 1 < p <+∞ with 1/p = 1/p1 + · · ·+1/pm, where k = 1,2, . . . ,m. And when
m ≥ 2 and θ(t) = tε for some ε > 0, Theorems 1.8 and 1.9 were obtained by Lerner et al. in [13].
Namely, Lerner et al.[13] proved that if~b = (b1, . . . ,bm) ∈ BMOm and ~w = (w1, . . . ,wm) ∈ A~P, then[

Σ~b,Tθ

]
: Lp1(w1)×·· ·×Lpm(wm)→ Lp(ν~w)

for 1 < pk <+∞ and 1/m < p <+∞ with 1/p = 1/p1+ · · ·+1/pm, where k = 1,2, . . . ,m. Some new
results have been obtained more recently, see [2, 14, 30].

Remark 1.13. In [10], the authors give alternative proof of Theorem 1.8, which shows that the
conclusion of Theorem 1.8 still holds provided that θ(t) only fulfills (1.1). The method used in [10] is
different from the one in [17]. The basic idea of the proof is taken from [1, 4] and [20, Proposition
3.1]. It is worth pointing out that the conclusion of Theorem 1.8 could also be deduced from the main
results in [2].

Motivated by [21] and [17], we will consider another type of commutators on Rn. Assume that
~b = (b1, . . . ,bm) is a collection of locally integrable functions, we define the iterated commutator[

Π~b,Tθ

]
as [

Π~b,Tθ

]
(~f )(x) =

[
Π~b,Tθ

]
( f1, . . . , fm)(x)

:= [b1, [b2, . . . [bm−1, [bm,Tθ ]m]m−1 . . . ]2]1( f1, . . . , fm)(x),

where [
bk,Tθ

]
k( f1, . . . , fm)(x) = bk(x) ·Tθ ( f1, . . . , fk, . . . , fm)(x)−Tθ ( f1, . . . ,bk fk, . . . , fm)(x).

Then
[
Π~b,Tθ

]
could be expressed in the following way[
Π~b,Tθ

]
(~f )(x) =

[
Π~b,Tθ

]
( f1, . . . , fm)(x)(1.7)

=
∫
(Rn)m

m

∏
k=1

[
bk(x)−bk(yk)

]
K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym.

Following the arguments used in [21] and [17] with some minor modifications, we can also establish
the corresponding results (strong type and weak endpoint estimates) for iterated commutators of
multilinear θ -type Calderón–Zygmund operators (see [10] for further details).

Theorem 1.14. Let m ∈ N and
[
Π~b,Tθ

]
be the iterated commutator generated by θ -type Calderón–

Zygmund operator Tθ and~b = (b1, . . . ,bm) ∈ BMOm; let θ satisfy the condition (1.1). If p1, . . . , pm ∈
(1,+∞) and p ∈ (1/m,+∞) with 1/p = ∑

m
k=1 1/pk, and ~w = (w1, . . . ,wm) ∈ A~P, then there exists a

constant C > 0 independent of~b and ~f = ( f1, . . . , fm) such that∥∥[Π~b,Tθ

]
(~f )
∥∥

Lp(ν~w)
≤C ·

m

∏
k=1

∥∥bk
∥∥
∗

m

∏
k=1

∥∥ fk
∥∥

Lpk (wk)
, ν~w =

m

∏
k=1

wp/pk
k .
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Theorem 1.15. Let m ∈ N and
[
Π~b,Tθ

]
be the iterated commutator generated by θ -type Calderón–

Zygmund operator Tθ and~b = (b1, . . . ,bm) ∈ BMOm; let θ satisfy

(1.8)
∫ 1

0

θ(t) · (1+ | log t|m)
t

dt <+∞.

If pk = 1, k = 1,2, . . . ,m and ~w = (w1, . . . ,wm) ∈ A(1,...,1), then for any given λ > 0, there exists a
constant C > 0 independent of ~f = ( f1, . . . , fm) and λ such that

ν~w

({
x ∈ Rn :

∣∣[Π~b,Tθ

]
(~f )(x)

∣∣> λ
m
})
≤C ·

m

∏
k=1

(∫
Rn

Φ
(m)

(
| fk(x)|

λ

)
wk(x)dx

)1/m

,

where ν~w = ∏
m
k=1 w1/m

k , Φ(t) = t · (1+ log+ t) and Φ(m) :=

m︷ ︸︸ ︷
Φ◦ · · · ◦Φ.

Remark 1.16. It was proved in [21] that when θ(t) = tε for some ε > 0, the estimate in Theorem 1.15
is sharp in the sense that Φ(m) cannot be replaced by Φ(k) for any k < m.

On the other hand, the classical Morrey spaces Lp,κ(Rn) were originally introduced by Morrey in
[19] to study the local regularity of solutions to second order elliptic partial differential equations.
Nowadays these spaces have been studied intensively in the literature, and found a wide range of
applications in harmonic analysis, potential theory and nonlinear dispersive equations. In 2009, Komori
and Shirai [12] defined and investigated the weighted Morrey spaces Lp,κ(w) for 1≤ p <+∞, which
could be viewed as an extension of weighted Lebesgue spaces, and obtained the boundedness of some
classical integral operators on these weighted spaces. In order to deal with the multilinear case m≥ 2,
we consider the weighted Morrey spaces Lp,κ(w) here for all 0 < p <+∞. We will extend the results
obtained in [17] for m-linear θ -type Calderón–Zygmund operators to the product of weighted Morrey
spaces with multiple weights. Moreover, the corresponding weighted estimates for both multilinear
commutators and iterated commutators are also considered. Let us first recall the definition of the
spaces Lp,κ(w) and WLp,κ(w).

Definition 1.17 ([12]). Let 0 < p <+∞, 0≤ κ < 1 and let w be a weight on Rn. The weighted Morrey
space Lp,κ(w) is defined to be the set of all locally integrable functions f on Rn satisfying

‖ f‖Lp,κ (w) := sup
B

(
1

w(B)κ

∫
B
| f (x)|pw(x)dx

)1/p

<+∞,

where the supremum is taken over all balls B in Rn.

Definition 1.18 ([12]). Let 0 < p <+∞, 0≤ κ < 1 and let w be a weight on Rn. The weighted weak
Morrey space WLp,κ(w) is defined to be the set of all measurable functions f on Rn satisfying

‖ f‖WLp,κ (w) :=sup
B

1
m(B)κ/p sup

λ>0
λ ·w

({
x ∈ B : | f (x)|> λ

})1/p
<+∞,

where the supremum is taken over all balls B in Rn and all λ > 0.

Note that when w ∈ ∆2, then Lp,0(w) = Lp(w), WLp,0(w) =WLp(w) and Lp,1(w) = L∞(w) by the
Lebesgue differentiation theorem with respect to w.
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 8

In order to deal with the end-point case of the commutators, we have to consider the following
L logL-type space, which was introduced by the second author in [28, 29] (for the unweighted case,
see also [15] and [24]).

Definition 1.19. Let p = 1, 0≤ κ < 1 and let w be a weight on Rn. We denote by (L logL)1,κ(w) the
weighted Morrey space of L logL type, the space of all locally integrable functions f defined on Rn

with finite norm
∥∥ f
∥∥
(L logL)1,κ (w).

(L logL)1,κ(w) :=
{

f :
∥∥ f
∥∥
(L logL)1,κ (w) < ∞

}
,

where ∥∥ f
∥∥
(L logL)1,κ (w) :=sup

B
w(B)1−κ

∥∥ f
∥∥

L logL(w),B.

Here ‖ ·‖L logL(w),B denotes the weighted Luxemburg norm, whose definition will be given in Section
3 below. Note that t ≤ t · (1+ log+ t) for any t > 0. By definition, for any ball B in Rn and w ∈ A∞,
then we have ∥∥ f

∥∥
L(w),B ≤

∥∥ f
∥∥

L logL(w),B,

which means that the following inequality (it can be viewed as a generalized Jensen’s inequality)

(1.9)
∥∥ f
∥∥

L(w),B =
1

w(B)

∫
B
| f (x)|w(x)dx≤

∥∥ f
∥∥

L logL(w),B

holds for any ball B⊂ Rn. Hence, for all 0 < κ < 1 and w ∈ A∞, we can further obtain the following
inclusion from (1.9):

(L logL)1,κ(w) ↪→ L1,κ(w).

It is known that Lp,κ is an extension of Lp in the sense that Lp,0 = Lp. Motivated by the works in
[12, 17, 18], the main purpose of this paper is to establish boundedness properties of multilinear θ -type
Calderón–Zygmund operators and their commutators on products of weighted Morrey spaces with
multiple weights.

In what follows, the letter C always stands for a positive constant independent of the main parameters
and not necessarily the same at each occurrence. The symbol X.Y means that there is a constant C > 0
such that X≤CY. The symbol X≈Y means that there is a constant C > 0 such that C−1Y≤X≤CY.

2. Main results

Our first two results on the boundedness properties of multilinear θ -type Calderón–Zygmund operators
can be formulated as follows.

Theorem 2.1. Let m≥ 2 and Tθ be an m-linear θ -type Calderón–Zygmund operator with θ satisfying
the condition (1.1). If 1 < p1, . . . , pm < +∞ and 1/m < p < +∞ with 1/p = ∑

m
i=1 1/pi, and ~w =

(w1, . . . ,wm) ∈ A~P with w1, . . . ,wm ∈ A∞, then for any 0 < κ < 1, the multilinear operator Tθ is

bounded from Lp1,κ(w1)×Lp2,κ(w2)×·· ·×Lpm,κ(wm) into Lp,κ(ν~w) with ν~w = ∏
m
i=1 wp/pi

i .
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 9

Theorem 2.2. Let m≥ 2 and Tθ be an m-linear θ -type Calderón–Zygmund operator with θ satisfying
the condition (1.1). If 1 ≤ p1, . . . , pm < +∞, min{p1, . . . , pm} = 1 and 1/m ≤ p < +∞ with 1/p =

∑
m
i=1 1/pi, and ~w = (w1, . . . ,wm) ∈ A~P with w1, . . . ,wm ∈ A∞, then for any 0 < κ < 1, the multilinear

operator Tθ is bounded from Lp1,κ(w1)× Lp2,κ(w2)× ·· · × Lpm,κ(wm) into WLp,κ(ν~w) with ν~w =

∏
m
i=1 wp/pi

i .

Our next theorem concerns norm inequalities for the multilinear commutator
[
Σ~b,Tθ

]
with~b ∈

BMOm.

Theorem 2.3. Let m ≥ 2 and
[
Σ~b,Tθ

]
be the m-linear commutator of θ -type Calderón–Zygmund

operator Tθ with θ satisfying the condition (1.1) and~b ∈ BMOm. If 1 < p1, . . . , pm <+∞ and 1/m <
p < +∞ with 1/p = ∑

m
i=1 1/pi, and ~w = (w1, . . . ,wm) ∈ A~P with w1, . . . ,wm ∈ A∞, then for any 0 <

κ < 1, the multilinear commutator
[
Σ~b,Tθ

]
is bounded from Lp1,κ(w1)×Lp2,κ(w2)×·· ·×Lpm,κ(wm)

into Lp,κ(ν~w) with ν~w = ∏
m
i=1 wp/pi

i .

For the endpoint case p1 = p2 = · · ·= pm = 1, we will also prove the following weak-type L logL
estimate for the multilinear commutator

[
Σ~b,Tθ

]
in the weighted Morrey spaces with multiple weights.

Theorem 2.4. Let m ≥ 2 and
[
Σ~b,Tθ

]
be the m-linear commutator of θ -type Calderón–Zygmund

operator Tθ with θ satisfying the condition (1.6) and~b ∈ BMOm. Assume that ~w = (w1, . . . ,wm) ∈
A(1,...,1) with w1, . . . ,wm ∈ A∞. If pi = 1, i = 1,2, . . . ,m and p = 1/m, then for any given λ > 0 and
any ball B⊂ Rn, there exists a constant C > 0 such that

1
ν~w(B)mκ

·
[
ν~w

({
x ∈ B :

∣∣[Σ~b,Tθ

]
(~f )(x)

∣∣> λ
m
})]m

≤C ·Φ
(∥∥~b∥∥BMOm

) m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

,

where ν~w = ∏
m
i=1 w1/m

i and Φ(t) = t · (1+ log+ t).

Remark 2.5. From the above definitions and Theorem 2.4, we can roughly say that the multilinear
commutator

[
Σ~b,Tθ

]
is bounded from (L logL)1,κ(w1)× (L logL)1,κ(w2)×·· ·× (L logL)1,κ(wm) into

WL1/m,κ(ν~w) with ν~w = ∏
m
i=1 w1/m

i .

3. Notations and preliminaries

3.1. Multiple weights. For any r > 0 and x ∈ Rn, let B(x,r) =
{

y ∈ Rn : |x− y|< r
}

denote the open
ball centered at x with radius r, B(x,r){ = Rn\B(x,r) denote its complement and |B(x,r)| be the
Lebesgue measure of the ball B(x,r). We also use the notation χB(x,r) to denote the characteristic
function of B(x,r). For some t > 0, the notation tB stands for the ball with the same center as B whose
radius is t times that of B.

A weight w is said to belong to the Muckenhoupt class Ap for 1 < p <+∞, if there exists a constant
C > 0 such that (

1
|B|

∫
B

w(x)dx
)1/p( 1

|B|

∫
B

w(x)−p′/p dx
)1/p′

≤C
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 10

for every ball B in Rn, where p′ is the conjugate exponent of p such that 1/p+1/p′ = 1. The class A1
is defined replacing the above inequality by

1
|B|

∫
B

w(x)dx≤C · ess inf
x∈B

w(x)

for every ball B in Rn. Since the Ap classes are increasing with respect to p, the A∞ class of weights is
defined in a natural way by A∞ :=

⋃
1≤p<+∞ Ap. Moreover, the following characterization will often be

used in the sequel. There are positive constants C and δ such that for any ball B and any measurable
set E contained in B,

(3.1)
w(E)
w(B)

≤C
(
|E|
|B|

)δ

.

Given a Lebesgue measurable set E, we denote the characteristic function of E by χE . We say that a
weight w satisfies the doubling condition, simply denoted by w ∈ ∆2, if there is an absolute constant
C > 0 such that

(3.2) w(2B)≤C w(B)

holds for any ball B in Rn. If w ∈ Ap with 1≤ p <+∞ (or w ∈ A∞), then we have that w ∈ ∆2.
Recently, the theory of multiple weights adapted to multilinear Calderón–Zygmund operators was

developed by Lerner et al. in [13]. New more refined multilinear maximal function was defined and
used in [13] to characterize the class of multiple A~P weights, and to obtain some weighted estimates
for multilinear Calderón–Zygmund operators. Now let us recall the definition of multiple weights.
For m exponents p1, . . . , pm ∈ [1,+∞), we will often write ~P for the vector ~P = (p1, . . . , pm), and p
for the number given by 1/p = ∑

m
k=1 1/pk with p ∈ [1/m,+∞). Given ~w = (w1, . . . ,wm), let us set

ν~w = ∏
m
k=1 wp/pk

k . We say that ~w satisfies the multilinear A~P condition if it satisfies

(3.3) sup
B

(
1
|B|

∫
B

ν~w(x)dx
)1/p m

∏
k=1

(
1
|B|

∫
B

wk(x)−p′k/pk dx
)1/p′k

<+∞.

When pk = 1 for some k ∈ {1,2, . . . ,m}, the condition
( 1
|B|
∫

B wk(x)−p′k/pk dx
)1/p′k is understood as(

infx∈B wk(x)
)−1. In particular, when each pk = 1, k = 1,2, . . . ,m, we denote A~1 = A(1,...,1). One can

easily check that A(1,...,1) is contained in A~P for each ~P, however, the classes A~P are NOT increasing
with the natural partial order (see [13, Remark 7.3]). It was shown in [13] that these are the largest
classes of weights for which all multilinear Calderón–Zygmund operators are bounded on weighted
Lebesgue spaces. Moreover, in general, the condition ~w ∈ A~P does not imply wk ∈ L1

loc(Rn) for any
1≤ k ≤ m (see [13, Remark 7.2]), but instead

Lemma 3.1 ([13]). Let p1, . . . , pm ∈ [1,+∞) and 1/p = ∑
m
k=1 1/pk. Then ~w = (w1, . . . ,wm) ∈ A~P if

and only if

(3.4)

{
ν~w ∈ Amp,

w
1−p′k
k ∈ Amp′k

, k = 1, . . . ,m,

where ν~w = ∏
m
k=1 wp/pk

k and the condition w
1−p′k
k ∈ Amp′k

in the case pk = 1 is understood as w1/m
k ∈ A1.
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Observe that in the linear case m = 1 both conditions included in (3.4) represent the same Ap
condition. However, in the multilinear case m≥ 2 neither of the conditions in (3.4) implies the other.
We refer the reader to [13] for further details.

3.2. Orlicz spaces and Luxemburg norms. Next we recall some basic definitions and facts from the
theory of Orlicz spaces. For more information about these spaces the reader may consult the book [23].
Let A : [0,+∞)→ [0,+∞) be a Young function. That is, a continuous, convex and strictly increasing
function with A (0) = 0 and such that A (t)→+∞ as t→+∞. Given a Young function A and a ball
B in Rn, we consider the A -average of a function f over a ball B, which is given by the following
Luxemburg norm: ∥∥ f

∥∥
A ,B := inf

{
λ > 0 :

1
|B|

∫
B
A

(
| f (x)|

λ

)
dx≤ 1

}
.

When A (t) = t p with 1≤ p <+∞, it is easy to see that∥∥ f
∥∥

A ,B =

(
1
|B|

∫
B

∣∣ f (x)∣∣p dx
)1/p

;

that is, the Luxemburg norm coincides with the normalized Lp norm. Associated to each Young
function A , one can define its complementary function ¯A by

¯A (s) := sup
0≤t<+∞

[
st−A (t)

]
, 0≤ s <+∞.

It is not difficult to check that such ¯A is also a Young function. A standard computation shows that for
all t > 0,

t ≤A −1(t) ¯A −1(t)≤ 2t.

From this, it follows that the following generalized Hölder’s inequality in Orlicz spaces holds for any
given ball B in Rn.

1
|B|

∫
B

∣∣ f (x) ·g(x)∣∣dx≤ 2
∥∥ f
∥∥

A ,B

∥∥g
∥∥

¯A ,B.

A particular case of interest, and especially in this paper, is the Young function Φ(t) = t · (1+ log+ t),
and we know that its complementary Young function is given by Φ̄(t)≈ exp(t)−1. The corresponding
averages will be denoted by∥∥ f

∥∥
Φ,B =

∥∥ f
∥∥

L logL,B and
∥∥g
∥∥

Φ̄,B =
∥∥g
∥∥

expL,B.

Consequently, from the above generalized Hölder’s inequality in Orlicz spaces, we also get

(3.5)
1
|B|

∫
B

∣∣ f (x) ·g(x)∣∣dx≤ 2
∥∥ f
∥∥

L logL,B

∥∥g
∥∥

expL,B.

To obtain endpoint weak-type estimates for the multilinear and iterated commutators on the product of
weighted Morrey spaces, we need to define the A -average of a function f over a ball B by means of
the weighted Luxemburg norm; that is, given a Young function A and w ∈ A∞, we define (see [23, 32])∥∥ f

∥∥
A (w),B := inf

{
σ > 0 :

1
w(B)

∫
B
A

(
| f (x)|

σ

)
·w(x)dx≤ 1

}
.
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 12

When A (t) = t, this norm is denoted by ‖ · ‖L(w),B, when Φ(t) = t · (1+ log+ t), this norm is also
denoted by ‖ · ‖L logL(w),B. The complementary Young function of Φ(t) is Φ̄(t)≈ exp(t)−1 with the
corresponding Luxemburg norm denoted by ‖ · ‖expL(w),B. For w ∈ A∞ and for every ball B in Rn, we
can also show the weighted version of (3.5). Namely, the following generalized Hölder’s inequality in
the weighted context is true for f ,g (see [32] for instance).

(3.6)
1

w(B)

∫
B

∣∣ f (x) ·g(x)∣∣w(x)dx≤C
∥∥ f
∥∥

L logL(w),B

∥∥g
∥∥

expL(w),B.

This estimate will play an important role in the proof of Theorem 2.4.

4. Proofs of Theorems 2.1 and 2.2

This section is concerned with the proofs of Theorems 2.1 and 2.2. Before proving the main theorems
of this section, we first state the following important results without proof (see [5] and [7]).

Lemma 4.1 ([7]). Let
{

fk
}N

k=1 be a sequence of Lp(ν) functions with 0 < p <+∞ and ν ∈ A∞. Then
we have ∥∥∥ N

∑
k=1

fk

∥∥∥
Lp(ν)

≤ C (p,N)
N

∑
k=1

∥∥ fk
∥∥

Lp(ν)
,

where C (p,N) = max
{

1,N
1−p

p
}

. More specifically, C (p,N) = 1 for 1 ≤ p < +∞, and C (p,N) =

N
1−p

p for 0 < p < 1.

Lemma 4.2 ([7]). Let
{

fk
}N

k=1 be a sequence of WLp(ν) functions with 0 < p < +∞ and ν ∈ A∞.
Then we have ∥∥∥ N

∑
k=1

fk

∥∥∥
WLp(ν)

≤ C ′(p,N)
N

∑
k=1

∥∥ fk
∥∥

WLp(ν)
,

where C ′(p,N)=max
{

N,N
1
p
}

. More specifically, C ′(p,N)=N for 1≤ p<+∞, and C ′(p,N)=N
1
p

for 0 < p < 1.

Lemma 4.3 ([5]). Let w ∈ A∞. Then for any ball B in Rn, the following reverse Jensen’s inequality
holds. ∫

B
w(x)dx≤C|B| · exp

(
1
|B|

∫
B

logw(x)dx
)
.

We are now in a position to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Let 1< p1, . . . , pm <+∞ and ~f =( f1, . . . , fm) be in Lp1,κ(w1)×·· ·×Lpm,κ(wm)
with ~w = (w1, . . . ,wm) ∈ A~P and 0 < κ < 1. For any given ball B in Rn(denote by x0 the center of B,
and r > 0 the radius of B), it is enough for us to show that

(4.1)
1

ν~w(B)κ/p

(∫
B

∣∣Tθ ( f1, . . . , fm)(x)
∣∣pν~w(x)dx

)1/p

.
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.

To this end, for any 1≤ i≤ m, we represent fi as

fi = fi ·χ2B + fi ·χ(2B){ := f 0
i + f ∞

i ;
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and 2B = B(x0,2r). Then we write
m

∏
i=1

fi(yi) =
m

∏
i=1

(
f 0
i (yi)+ f ∞

i (yi)
)
= ∑

β1,...,βm∈{0,∞}
f β1
1 (y1) · · · f βm

m (ym)

=
m

∏
i=1

f 0
i (yi)+ ∑

(β1,...,βm)∈L
f β1
1 (y1) · · · f βm

m (ym),

where
L :=

{
(β1, . . . ,βm) : βk ∈ {0,∞}, there is at least one βk 6= 0,1≤ k ≤ m

}
;

that is, each term of ∑ contains at least one βk 6= 0. Since Tθ is an m-linear operator, then by Lemma
4.1 with N = 2m, we have

1
ν~w(B)κ/p

(∫
B

∣∣Tθ ( f1, . . . , fm)(x)
∣∣pν~w(x)dx

)1/p

≤ C
ν~w(B)κ/p

(∫
B

∣∣Tθ ( f 0
1 , . . . , f 0

m)(x)
∣∣pν~w(x)dx

)1/p

+ ∑
(β1,...,βm)∈L

C
ν~w(B)κ/p

(∫
B

∣∣Tθ ( f β1
1 , . . . , f βm

m )(x)
∣∣pν~w(x)dx

)1/p

:= I0,...,0 + ∑
(β1,...,βm)∈L

Iβ1,...,βm .(4.2)

By the weighted strong-type estimate of Tθ (see Theorem 1.5), we have

I0,...,0 ≤C · 1
ν~w(B)κ/p

m

∏
i=1

(∫
2B
| fi(x)|piwi(x)dx

)1/pi

≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
· 1

ν~w(B)κ/p

m

∏
i=1

wi(2B)κ/pi .(4.3)

Let p1, . . . , pm ∈ [1,+∞) and p ∈ [1/m,+∞) with 1/p = ∑
m
i=1 1/pi. We first claim that under the

assumptions of Theorem 2.1 (or Theorem 2.2), the following result holds for any ball B in Rn:

(4.4)
m

∏
i=1

(∫
B

wi(x)dx
)p/pi

.
∫

B
ν~w(x)dx,

provided that w1, . . . ,wm ∈ A∞ and ν~w = ∏
m
i=1 wp/pi

i . Indeed, since w1, . . . ,wm ∈ A∞, using Lemma 4.3,
then we have

m

∏
i=1

(∫
B

wi(x)dx
)p/pi

≤C
m

∏
i=1

[
|B| · exp

(
1
|B|

∫
B

logwi(x)dx
)]p/pi

=C
m

∏
i=1

[
|B|p/pi · exp

(
1
|B|

∫
B

logwi(x)p/pi dx
)]

=C ·
(
|B|
)

∑
m
i=1 p/pi · exp

( m

∑
i=1

1
|B|

∫
B

logwi(x)p/pi dx
)
.
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 14

Note that
m

∑
i=1

p/pi = 1 and ν~w(x) =
m

∏
i=1

wi(x)p/pi .

Thus, by Jensen’s inequality, we obtain

m

∏
i=1

(∫
B

wi(x)dx
)p/pi

≤C · |B| · exp
(

1
|B|

∫
B

logν~w(x)dx
)

≤C
∫

B
ν~w(x)dx.

This gives (4.4). Moreover, in view of Lemma 3.1, we have that ν~w ∈ Amp with 1/m < p <+∞. This
fact, together with (4.4) and (3.2), implies that

I0,...,0 ≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
· ν~w(2B)κ/p

ν~w(B)κ/p ≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.(4.5)

To estimate the remaining terms in (4.2), let us first consider the case when β1 = · · ·= βm = ∞. By a
simple geometric observation, we know that

m︷ ︸︸ ︷(
Rn\2B

)
×·· ·×

(
Rn\2B

)
⊂ (Rn)m\(2B)m,

and

(Rn)m\(2B)m =
∞⋃

j=1

(2 j+1B)m\(2 jB)m,

where we have used the notation Em =

m︷ ︸︸ ︷
E×·· ·×E for a measurable set E and a positive integer m. By

the size condition (1.2) of the θ -type Calderón–Zygmund kernel K, for any x ∈ B, we obtain∣∣Tθ ( f ∞
1 , . . . , f ∞

m )(x)
∣∣. ∫

(Rn)m\(2B)m

| f1(y1) · · · fm(ym)|
(|x− y1|+ · · ·+ |x− ym|)mn dy1 · · ·dym

=
∞

∑
j=1

∫
(2 j+1B)m\(2 jB)m

| f1(y1) · · · fm(ym)|
(|x− y1|+ · · ·+ |x− ym|)mn dy1 · · ·dym

.
∞

∑
j=1

(
1

|2 j+1B|m
∫
(2 j+1B)m\(2 jB)m

∣∣ f1(y1) · · · fm(ym)
∣∣dy1 · · ·dym

)
≤

∞

∑
j=1

(
1

|2 j+1B|m
m

∏
i=1

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
=

∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
,(4.6)

where we have used the fact that |x− y1|+ · · ·+ |x− ym| ≈ 2 j+1r ≈ |2 j+1B|1/n when x ∈ B and
(y1, . . . ,ym) ∈ (2 j+1B)m\(2 jB)m. Furthermore, by using Hölder’s inequality, the multiple A~P condition

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

13 Nov 2024 13:36:51 PST
230317-Wang-2 Version 3 - Submitted to Rocky Mountain J. Math.



MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 15

on ~w, we can deduce that∣∣Tθ ( f ∞
1 , . . . , f ∞

m )(x)
∣∣

.
∞

∑
j=1

{ m

∏
i=1

1
|2 j+1B|

(∫
2 j+1B

∣∣ fi(yi)
∣∣piwi(yi)dyi

)1/pi
(∫

2 j+1B
wi(yi)

−p′i/pi dyi

)1/p′i
}

.
∞

∑
j=1

{
1

|2 j+1B|m
· |2

j+1B|1/p+∑
m
i=1(1−1/pi)

ν~w(2 j+1B)1/p

m

∏
i=1

(∥∥ fi
∥∥

Lpi,κ (wi)
wi(2 j+1B)κ/pi

)}
=

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

{
1

ν~w(2 j+1B)1/p ·
m

∏
i=1

wi(2 j+1B)κ/pi

}
,

where in the last step we have used the fact that 1/p+∑
m
i=1(1−1/pi) = m. Hence, from the above

pointwise estimate and (4.4), we obtain

I∞,...,∞ .
ν~w(B)1/p

ν~w(B)κ/p ·
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

ν~w(2 j+1B)κ/p

ν~w(2 j+1B)1/p

=
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

ν~w(B)(1−κ)/p

ν~w(2 j+1B)(1−κ)/p
.

Since ν~w ∈ Amp ⊂ A∞ by Lemma 3.1, then it follows directly from the inequality (3.1) with exponent
δ > 0 that

(4.7)
ν~w(B)

ν~w(2 j+1B)
.

(
|B|
|2 j+1B|

)δ

,

which further implies

I∞,...,∞ .
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

(
|B|
|2 j+1B|

)δ (1−κ)/p

.
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
,(4.8)

where in the last estimate we have used the fact that 0 < κ < 1 and δ > 0. We now consider the case
where exactly ` of the βi are ∞ for some 1≤ ` < m. We only give the arguments for one of these cases.
The rest are similar and can be easily obtained from the arguments below by permuting the indices. In
this case, by the same reason as above, we also have

`︷ ︸︸ ︷(
Rn\2B

)
×·· ·×

(
Rn\2B

)
⊂ (Rn)`\(2B)`,

and

(Rn)`\(2B)` =
∞⋃

j=1

(2 j+1B)`\(2 jB)`, 1≤ ` < m.
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 16

Using the size condition (1.2) again, we deduce that for any x ∈ B,

∣∣Tθ ( f ∞
1 , . . . , f ∞

` , f 0
`+1, . . . , f 0

m)(x)
∣∣

.
∫
(Rn)`\(2B)`

∫
(2B)m−`

| f1(y1) · · · fm(ym)|
(|x− y1|+ · · ·+ |x− ym|)mn dy1 · · ·dym

.
m

∏
i=`+1

∫
2B

∣∣ fi(yi)
∣∣dyi×

∞

∑
j=1

1
|2 j+1B|m

∫
(2 j+1B)`\(2 jB)`

∣∣ f1(y1) · · · f`(y`)
∣∣dy1 · · ·dy`

≤
m

∏
i=`+1

∫
2B

∣∣ fi(yi)
∣∣dyi×

∞

∑
j=1

1
|2 j+1B|m

`

∏
i=1

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

≤
∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
,(4.9)

where in the last inequality we have used the inclusion relation 2B⊆ 2 j+1B with j ∈ N, and hence we
arrive at the same expression considered in the previous case. Hence, we can now argue exactly as we
did in the estimation of I∞,...,∞ to obtain that for all m-tuples (β1, . . . ,βm) ∈ L,

Iβ1,...,βm .
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

ν~w(B)(1−κ)/p

ν~w(2 j+1B)(1−κ)/p

.
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

(
|B|
|2 j+1B|

)δ (1−κ)/p

.
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.(4.10)

Combining these estimates (4.5), (4.8) and (4.10), then (4.1) holds and concludes the proof of the
theorem. �

Proof of Theorem 2.2. Let 1 ≤ p1, . . . , pm < +∞, min{p1, . . . , pm} = 1 and ~f = ( f1, . . . , fm) be in
Lp1,κ(w1)× ·· ·×Lpm,κ(wm) with ~w = (w1, . . . ,wm) ∈ A~P and 0 < κ < 1. For an arbitrary ball B =
B(x0,r)⊂ Rn with x0 ∈ Rn and r > 0, we need to show that the following estimate holds.

(4.11)
1

ν~w(B)κ/p λ ·ν~w
({

x ∈ B :
∣∣Tθ ( f1, . . . , fm)

∣∣> λ
})1/p

.
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.

To this end, we represent fi as

fi = fi ·χ2B + fi ·χ(2B){ := f 0
i + f ∞

i , for i = 1,2, . . . ,m.
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 17

By using Lemma 4.2 with N = 2m, one can write

1
ν~w(B)κ/p λ ·ν~w

({
x ∈ B :

∣∣Tθ ( f1, . . . , fm)
∣∣> λ

})1/p

≤ C
ν~w(B)κ/p λ ·ν~w

({
x ∈ B :

∣∣Tθ ( f 0
1 , . . . , f 0

m)
∣∣> λ/2m})1/p

+ ∑
(β1,...,βm)∈L

C
ν~w(B)κ/p λ ·ν~w

({
x ∈ B :

∣∣Tθ ( f β1
1 , . . . , f βm

m )
∣∣> λ/2m})1/p

:= I0,...,0
∗ + ∑

(β1,...,βm)∈L
Iβ1,...,βm
∗ ,(4.12)

where

L=
{
(β1, . . . ,βm) : βk ∈ {0,∞}, there is at least one βk 6= 0,1≤ k ≤ m

}
.

By the weighted weak-type estimate of Tθ (see Theorem 1.6), we can estimate the first term on the
right hand side of (4.12) as follows.

I0,...,0
∗ ≤C · 1

ν~w(B)κ/p

m

∏
i=1

(∫
2B
| fi(x)|piwi(x)dx

)1/pi

≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

1
ν~w(B)κ/p ·

m

∏
i=1

wi(2B)κ/pi .(4.13)

Moreover, in view of Lemma 3.1 again, we also have ν~w ∈ Amp with 1/m≤ p <+∞. Then we apply
the inequalities (3.2) and (4.4) to obtain that

I0,...,0
∗ ≤C

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

ν~w(2B)κ/p

ν~w(B)κ/p ≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.(4.14)

In the proof of Theorem 2.1, we have already showed the following pointwise estimate for all m-tuples
(β1, . . . ,βm) ∈ L (see (4.6) and (4.9)).

∣∣Tθ ( f β1
1 , . . . , f βm

m )(x)
∣∣. ∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
.(4.15)

Without loss of generality, we may assume that

p1 = · · ·= p` = min{p1, . . . , pm}= 1 and p`+1, . . . , pm > 1

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

13 Nov 2024 13:36:51 PST
230317-Wang-2 Version 3 - Submitted to Rocky Mountain J. Math.



MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 18

with 1 ≤ ` < m. The case that p1 = · · · = pm = 1 can be dealt with quite similarly and more easily.
Using Hölder’s inequality, the multiple A~P condition on ~w, we obtain that for any x ∈ B,∣∣Tθ ( f β1

1 , . . . , f βm
m )(x)

∣∣. ∞

∑
j=1

( `

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
×
( m

∏
i=`+1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)

.
∞

∑
j=1

`

∏
i=1

1
|2 j+1B|

(∫
2 j+1B

∣∣ fi(yi)
∣∣wi(yi)dyi

)(
inf

yi∈2 j+1B
wi(yi)

)−1

×
m

∏
i=`+1

1
|2 j+1B|

(∫
2 j+1B

∣∣ fi(yi)
∣∣piwi(yi)dyi

)1/pi
(∫

2 j+1B
wi(yi)

−p′i/pi dyi

)1/p′i

.
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

{
1

ν~w(2 j+1B)1/p ·
m

∏
i=1

wi(2 j+1B)κ/pi

}
.

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

1
ν~w(2 j+1B)(1−κ)/p

,

where in the last inequality we have invoked (4.4). Observe that ν~w ∈ Amp with 1≤ mp < ∞. Thus, it
follows directly from Chebyshev’s inequality and the pointwise estimate above that

Iβ1,...,βm
∗ ≤C · 1

ν~w(B)κ/p

(∫
B

∣∣Tθ ( f β1
1 , . . . , f βm

m )(x)
∣∣pν~w(x)dx

)1/p

≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

ν~w(B)(1−κ)/p

ν~w(2 j+1B)(1−κ)/p
.

Moreover, in view of (4.7), we obtain that for all m-tuples (β1, . . . ,βm) ∈ L,

Iβ1,...,βm
∗ .

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

(
|B|
|2 j+1B|

)δ (1−κ)/p

.
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
,(4.16)

where in the last step we have used the fact δ > 0 and 0 < κ < 1. Putting the estimates (4.14) and
(4.16) together produces the required inequality (4.11). Thus, by taking the supremum over all λ > 0,
we finish the proof of Theorem 2.2. �

Let 1 ≤ p1, . . . , pm ≤ +∞. We say that ~w = (w1, . . . ,wm) ∈ ∏
m
i=1 Api , if each wi is in Api , i =

1,2, . . . ,m. By using Hölder’s inequality, it is not difficult to check that
m

∏
i=1

Api ⊂ A~P.

Moreover, it was shown in [13, Remark 7.2] that this inclusion is strict. It is clear that ∏
m
i=1 Api ⊂

∏
m
i=1 A∞. So we have

(4.17)
m

∏
i=1

Api ⊂ A~P

⋂ m

∏
i=1

A∞.

A natural question appearing here is whether the above inclusion relation is also strict. Thus, as a direct
consequence of Theorems 2.1 and 2.2, we immediately obtain the following results.
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Corollary 4.4. Let m ≥ 2 and Tθ be an m-linear θ -type Calderón–Zygmund operator with θ sat-
isfying the condition (1.1). If 1 < p1, . . . , pm < +∞ and 1/m < p < +∞ with 1/p = ∑

m
i=1 1/pi, and

~w = (w1, . . . ,wm) ∈ ∏
m
i=1 Api , then for any 0 < κ < 1, the multilinear operator Tθ is bounded from

Lp1,κ(w1)×Lp2,κ(w2)×·· ·×Lpm,κ(wm) into Lp,κ(ν~w) with ν~w = ∏
m
i=1 wp/pi

i .

Corollary 4.5. Let m≥ 2 and Tθ be an m-linear θ -type Calderón–Zygmund operator with θ satisfying
the condition (1.1). If 1 ≤ p1, . . . , pm < +∞, min{p1, . . . , pm} = 1 and 1/m ≤ p < +∞ with 1/p =

∑
m
i=1 1/pi, and ~w = (w1, . . . ,wm) ∈∏

m
i=1 Api , then for any 0 < κ < 1, the multilinear operator Tθ is

bounded from Lp1,κ(w1)×Lp2,κ(w2)×·· ·×Lpm,κ(wm) into WLp,κ(ν~w) with ν~w = ∏
m
i=1 wp/pi

i .

5. Proofs of Theorems 2.3 and 2.4

To prove our main theorems for multilinear commutators in this section, we need the following lemmas
about BMO functions.

Lemma 5.1. Let b be a function in BMO(Rn). Then
(1) For every ball B in Rn and for all j ∈ N,∣∣b2 j+1B−bB

∣∣≤C · ( j+1)‖b‖∗.

(2) Let 1≤ p <+∞. For every ball B in Rn and for all ω ∈ A∞,(∫
B

∣∣b(x)−bB
∣∣pω(x)dx

)1/p

≤C‖b‖∗ ·ω(B)1/p.

Proof. For the proofs of the above results, we refer the reader to [27]. �

Based on Lemma 5.1, we now assert that for any j ∈ N and ω ∈ A∞, the estimate

(5.1)
(∫

2 j+1B

∣∣b(x)−bB
∣∣pω(x)dx

)1/p

≤C( j+1)‖b‖∗ ·ω(2 j+1B)1/p

holds whenever b ∈ BMO(Rn) and 1≤ p <+∞. Indeed, by using Lemma 5.1 (1) and (2), we could
easily obtain(∫

2 j+1B

∣∣b(x)−bB
∣∣pω(x)dx

)1/p

≤
(∫

2 j+1B

∣∣b(x)−b2 j+1B

∣∣pω(x)dx
)1/p

+

(∫
2 j+1B

∣∣b2 j+1B−bB
∣∣pω(x)dx

)1/p

≤C‖b‖∗ ·ω(2 j+1B)1/p +C( j+1)‖b‖∗ ·ω(2 j+1B)1/p

≤C( j+1)‖b‖∗ ·ω(2 j+1B)1/p,

as desired. Next, let us set up the following result.

Lemma 5.2. Let b be a function in BMO(Rn). Then for any ball B in Rn and any ω ∈ A∞, we have

(5.2)
∥∥b−bB

∥∥
expL(ω),B ≤C‖b‖∗.
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Proof. By the well-known John–Nirenberg’s inequality (see [11]), we know that there exist two positive
constants C1 and C2, depending only on the dimension n, such that for any λ > 0,

∣∣{x ∈ B : |b(x)−bB|> λ
}∣∣≤C1|B|exp

{
− C2λ

‖b‖∗

}
.

This result shows that in some sense logarithmic growth is the maximum possible for BMO functions
(more precisely, we can take C1 =

√
2, C2 = log2/2n+2, see [5, p.123–125]). Applying the comparison

property (3.1) of A∞ weights, there is a positive number δ > 0 such that

ω
({

x ∈ B : |b(x)−bB|> λ
})
≤C1ω(B)exp

{
−C2δλ

‖b‖∗

}
.

From this, it follows that (c0 and C are two constants)

1
ω(B)

∫
B

exp
(
|b(y)−bB|

c0‖b‖∗

)
ω(y)dy≤C,

which yields (5.2). �

Furthermore, by (5.2) and Lemma 5.1(1), it is easy to check that for each ω in A∞ and for any ball B
in Rn,

(5.3)
∥∥b−bB

∥∥
expL(ω),2 j+1B ≤C( j+1)‖b‖∗, j ∈ N.

We are now in a position to give the proofs of Theorems 2.3 and 2.4.

Proof of Theorem 2.3. Let 1< p1, . . . , pm <+∞ and ~f =( f1, . . . , fm) be in Lp1,κ(w1)×·· ·×Lpm,κ(wm)
with ~w = (w1, . . . ,wm) ∈ A~P and 0 < κ < 1. As was pointed out in [13], by linearity it is enough to
consider the multilinear commutator [Σb,Tθ ] with only one symbol. Without loss of generality, we fix
b ∈ BMO(Rn), and then consider the operator[

b,Tθ

]
1(
~f )(x) = b(x) ·Tθ ( f1, f2, . . . , fm)(x)−Tθ (b f1, f2, . . . , fm)(x).

For each fixed ball B = B(x0,r)⊂ Rn, it is enough to prove that

(5.4)
1

ν~w(B)κ/p

(∫
B

∣∣[b,Tθ

]
1( f1, . . . , fm)(x)

∣∣pν~w(x)dx
)1/p

. ‖b‖∗
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.

As before, we decompose fi as fi = f 0
i + f ∞

i , where f 0
i = fi · χ2B and f ∞

i = fi · χ(2B){ , i = 1,2, . . . ,m.
We set tB = B(x0, tr) for any t > 0. Let L be the same as before. By using Lemma 4.1 with N = 2m,
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we can write

1
ν~w(B)κ/p

(∫
B

∣∣[b,Tθ

]
1( f1, . . . , fm)(x)

∣∣pν~w(x)dx
)1/p

≤C · 1
ν~w(B)κ/p

(∫
B

∣∣[b,Tθ

]
1( f 0

1 , . . . , f 0
m)(x)

∣∣pν~w(x)dx
)1/p

+C ∑
(β1,...,βm)∈L

1
ν~w(B)κ/p

(∫
B

∣∣[b,Tθ

]
1( f β1

1 , . . . , f βm
m )(x)

∣∣pν~w(x)dx
)1/p

:= J0,...,0 + ∑
(β1,...,βm)∈L

Jβ1,...,βm .(5.5)

To estimate the first summand of (5.5), applying Theorem 1.8 along with (3.2) and (4.4), we get

J0,...,0 ≤C · 1
ν~w(B)κ/p

m

∏
i=1

(∫
2B
| fi(x)|piwi(x)dx

)1/pi

≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
· 1

ν~w(B)κ/p

m

∏
i=1

wi(2B)κ/pi

≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
· ν~w(2B)κ/p

ν~w(B)κ/p ≤C
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.(5.6)

To estimate the remaining terms in (5.5), let us first consider the case when β1 = · · ·= βm = ∞. It is
easy to see that for any x ∈ B,[

b,Tθ

]
1(
~f )(x) = [b(x)−bB] ·Tθ ( f1, f2, . . . , fm)(x)−Tθ ((b−bB) f1, f2, . . . , fm)(x).

Hence, we divide the term J∞,...,∞ into two parts below.

J∞,...,∞ ≤C · 1
ν~w(B)κ/p

(∫
B

∣∣[b(x)−bB] ·Tθ ( f ∞
1 , f ∞

2 , . . . , f ∞
m )(x)

∣∣pν~w(x)dx
)1/p

+C · 1
ν~w(B)κ/p

(∫
B

∣∣Tθ ((b−bB) f ∞
1 , f ∞

2 , . . . , f ∞
m )(x)

∣∣pν~w(x)dx
)1/p

:= J∞,...,∞
? + J∞,...,∞

?? .

Next, we estimate each term separately. In the proof of Theorem 2.1, we have already shown that (see
(4.6)) ∣∣Tθ ( f ∞

1 , f ∞
2 , . . . , f ∞

m )(x)
∣∣. ∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
.

Note that ν~w ∈ Amp ⊂ A∞. From Lemma 5.1(2), it follows that

J∞,...,∞
? .

1
ν~w(B)κ/p

∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
×
(∫

B

∣∣b(x)−bB
∣∣pν~w(x)dx

)1/p

. ‖b‖∗ ·ν~w(B)1/p−κ/p
∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
.
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 22

We then follow the same arguments as in the proof of Theorem 2.1 to get

J∞,...,∞
? . ‖b‖∗

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

ν~w(B)(1−κ)/p

ν~w(2 j+1B)(1−κ)/p

. ‖b‖∗
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.(5.7)

Using the same methods as in Theorem 2.1, we can also deduce that∣∣Tθ ((b−bB) f ∞
1 , f ∞

2 , . . . , f ∞
m )(x)

∣∣
.
∫
(Rn)m\(2B)m

|(b(y1)−bB) f1(y1)| · | f2(y2) · · · fm(ym)|
(|x− y1|+ · · ·+ |x− ym|)mn dy1 · · ·dym

=
∞

∑
j=1

∫
(2 j+1B)m\(2 jB)m

|(b(y1)−bB) f1(y1)| · | f2(y2) · · · fm(ym)|
(|x− y1|+ · · ·+ |x− ym|)mn dy1 · · ·dym

.
∞

∑
j=1

(
1

|2 j+1B|m
∫
(2 j+1B)m\(2 jB)m

|(b(y1)−bB) f1(y1)| ·
∣∣ f2(y2) · · · fm(ym)

∣∣dy1 · · ·dym

)
≤

∞

∑
j=1

(
1

|2 j+1B|m
∫

2 j+1B
|(b(y1)−bB) f1(y1)|dy1

m

∏
i=2

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
=

∞

∑
j=1

(
1

|2 j+1B|

∫
2 j+1B

|(b(y1)−bB) f1(y1)|dy1

)( m

∏
i=2

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
.

Then we have

J∞,...,∞
?? . ν~w(B)

(1−κ)/p

×
∞

∑
j=1

(
1

|2 j+1B|

∫
2 j+1B

|(b(y1)−bB) f1(y1)|dy1

)( m

∏
i=2

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
.

(5.8)

For each 2≤ i≤ m, by using Hölder’s inequality with exponent pi, we obtain that∫
2 j+1B

∣∣ fi(yi)
∣∣dyi ≤

(∫
2 j+1B

∣∣ fi(yi)
∣∣piwi(yi)dyi

)1/pi
(∫

2 j+1B
wi(yi)

−p′i/pi dyi

)1/p′i
.

According to Lemma 3.1, we have w1−p′i
i = w−p′i/pi

i ∈ Amp′i
⊂ A∞, i = 1,2, . . . ,m. By using Hölder’s

inequality again with exponent p1 and (5.1), we deduce that∫
2 j+1B

|(b(y1)−bB) f1(y1)|dy1

≤
(∫

2 j+1B

∣∣ f1(y1)
∣∣p1w1(y1)dy1

)1/p1
(∫

2 j+1B
|b(y1)−bB|p

′
1w1(y1)

−p′1/p1 dy1

)1/p′1

.

(∫
2 j+1B

∣∣ f1(y1)
∣∣p1w1(y1)dy1

)1/p1

( j+1)‖b‖∗ ·
(∫

2 j+1B
w1(y1)

−p′1/p1 dy1

)1/p′1
,
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MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 23

where the last inequality is valid by the fact that w−p′1/p1
1 ∈ A∞. Substituting the above two estimates

into the formula (5.8), we have

J∞,...,∞
?? . ‖b‖∗ ·ν~w(B)(1−κ)/p

∞

∑
j=1

( j+1)
{ m

∏
i=1

1
|2 j+1B|

(∫
2 j+1B

∣∣ fi(yi)
∣∣piwi(yi)dyi

)1/pi
(∫

2 j+1B
wi(yi)

−p′i/pi dyi

)1/p′i
}

. ‖b‖∗ ·ν~w(B)(1−κ)/p
∞

∑
j=1

( j+1)
{

1
ν~w(2 j+1B)1/p

m

∏
i=1

(∥∥ fi
∥∥

Lpi,κ (wi)
wi(2 j+1B)κ/pi

)}

. ‖b‖∗
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

( j+1) · ν~w(B)(1−κ)/p

ν~w(2 j+1B)(1−κ)/p
,

where in the last two inequalities we have used the A~P condition and (4.4). Moreover, in view of
(4.7)(since ν~w ∈ Amp with 1 < mp <+∞), the last expression is bounded by

‖b‖∗
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

( j+1) ·
(
|B|
|2 j+1B|

)δ (1−κ)/p

. ‖b‖∗
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
,(5.9)

where the last series is convergent since the exponent δ (1−κ)/p is positive. Consequently, combining
the inequality (5.9) with (5.7), we get

J∞,...,∞ . ‖b‖∗
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.

We now consider the case where exactly ` of the βi are ∞ for some 1 ≤ ` < m. We only give the
arguments for one of these cases. The rest are similar and can be easily obtained from the arguments
below by permuting the indices. Meanwhile, we consider only the case β1 = ∞ here since the other
case can be proved in the same way. We now estimate the term

∣∣[b,Tθ

]
1( f β1

1 , . . . , f βm
m )(x)

∣∣ when

β1 = · · ·= β` = ∞ & β`+1 = · · ·= βm = 0.

In our present situation, we first divide the term Jβ1,...,βm into two parts as follows.

Jβ1,...,βm ≤C · 1
ν~w(B)κ/p

(∫
B

∣∣[b(x)−bB] ·Tθ ( f ∞
1 , . . . , f ∞

` , f 0
`+1, . . . , f 0

m)(x)
∣∣pν~w(x)dx

)1/p

+C · 1
ν~w(B)κ/p

(∫
B

∣∣Tθ ((b−bB) f ∞
1 , . . . , f ∞

` , f 0
`+1, . . . , f 0

m)(x)
∣∣pν~w(x)dx

)1/p

:= Jβ1,...,βm
? + Jβ1,...,βm

?? .

Next, we estimate each term respectively. Recall that the following result has been proved in Theorem
2.1(see (4.9)). ∣∣Tθ ( f ∞

1 , . . . , f ∞
` , f 0

`+1, . . . , f 0
m)(x)

∣∣. ∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
.
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From Lemma 5.1(2), it then follows that

Jβ1,...,βm
? .

1
ν~w(B)κ/p

∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
×
(∫

B

∣∣b(x)−bB
∣∣pν~w(x)dx

)1/p

. ‖b‖∗ ·ν~w(B)1/p−κ/p
∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
.

We now proceed exactly as we did in the proof of Theorem 2.1 to obtain that

Jβ1,...,βm
? . ‖b‖∗

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

ν~w(B)(1−κ)/p

ν~w(2 j+1B)(1−κ)/p
. ‖b‖∗

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.(5.10)

On the other hand, by adopting the same method given in Theorem 2.1, we can see that

∣∣Tθ ((b−bB) f ∞
1 , . . . , f ∞

` , f 0
`+1, . . . , f 0

m)(x)
∣∣

(5.11)

.
∫
(Rn)`\(2B)`

∫
(2B)m−`

|(b(y1)−bB) f1(y1)| · | f2(y2) · · · fm(ym)|
(|x− y1|+ · · ·+ |x− ym|)mn dy1 · · ·dym

.
m

∏
i=`+1

∫
2B

∣∣ fi(yi)
∣∣dyi×

∞

∑
j=1

1
|2 j+1B|m

∫
(2 j+1B)`\(2 jB)`

|(b(y1)−bB) f1(y1)| ·
∣∣ f2(y2) · · · f`(y`)

∣∣dy1 · · ·dy`

≤
m

∏
i=`+1

∫
2B

∣∣ fi(yi)
∣∣dyi×

∞

∑
j=1

1
|2 j+1B|m

∫
2 j+1B

|(b(y1)−bB) f1(y1)|dy1

`

∏
i=2

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

≤
∞

∑
j=1

(
1

|2 j+1B|m
∫

2 j+1B
|(b(y1)−bB) f1(y1)|dy1

m

∏
i=2

∫
2 j+1B

∣∣ fi(yi)
∣∣dyi

)
,

where in the last inequality we have used the inclusion relation 2B⊆ 2 j+1B with j ∈ N. For the same
reason as above, we get the desired estimate.

Jβ1,...,βm
?? . ‖b‖∗

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)

∞

∑
j=1

( j+1) · ν~w(B)(1−κ)/p

ν~w(2 j+1B)(1−κ)/p
. ‖b‖∗

m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.(5.12)

Combining (5.10) and (5.12), we conclude that

Jβ1,...,βm . ‖b‖∗
m

∏
i=1

∥∥ fi
∥∥

Lpi,κ (wi)
.

Summarizing the estimates derived above, then (5.4) holds and hence the proof of Theorem 2.3 is
complete. �

Proof of Theorem 2.4. Given ~f = ( f1, f2, . . . , fm), for any fixed ball B = B(x0,r) in Rn, as before, we
decompose each fi as

fi = f 0
i + f ∞

i , i = 1,2, . . . ,m,
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where f 0
i = fi ·χ2B, f ∞

i = fi ·χ(2B){ and 2B=B(x,2r)⊂Rn. Again, we only consider here the multilinear
commutator with only one symbol by linearity; that is, fix b ∈ BMO(Rn) and consider the operator[

b,Tθ

]
1(
~f )(x) = b(x) ·Tθ ( f1, f2, . . . , fm)(x)−Tθ (b f1, f2, . . . , fm)(x).

Let L be the same as before. Then for any given λ > 0, by using Lemma 4.2 with N = 2m, one can
write

1
ν~w(B)mκ

·
[
ν~w
({

x ∈ B :
∣∣[b,Tθ

]
1(
~f )(x)

∣∣> λ
m})]m

≤ C
ν~w(B)mκ

·
[
ν~w
({

x ∈ B :
∣∣[b,Tθ

]
1( f 0

1 , . . . , f 0
m)(x)

∣∣> λ
m/2m})]m

+ ∑
(β1,...,βm)∈L

C
ν~w(B)mκ

·
[
ν~w
({

x ∈ B :
∣∣[b,Tθ

]
1( f β1

1 , . . . , f βm
m )(x)

∣∣> λ
m/2m})]m

:= J0,...,0
∗ + ∑

(β1,...,βm)∈L
Jβ1,...,βm
∗ .

Observe that the Young function Φ(t) = t · (1+ log+ t) satisfies the doubling condition, that is, there is
a constant CΦ > 0 such that for every t > 0,

Φ(2t)≤CΦ Φ(t).

This fact together with Theorem 1.9 yields

J0,...,0
∗ ≤ C

ν~w(B)mκ

m

∏
i=1

(∫
Rn

Φ

(
2| f 0

i (x)|
λ

)
·wi(x)dx

)
≤ C

ν~w(B)mκ

m

∏
i=1

(∫
2B

Φ

(
| fi(x)|

λ

)
·wi(x)dx

)
=

C
ν~w(B)mκ

m

∏
i=1

wi(2B)
(

1
wi(2B)

∫
2B

Φ

(
| fi(x)|

λ

)
·wi(x)dx

)
≤ C

ν~w(B)mκ

m

∏
i=1

wi(2B) ·
∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
L logL(wi),2B

,

where in the last inequality we have used the estimate (1.9). Since ~w = (w1, . . . ,wm) ∈ A(1,...,1), by
definition, we know that

(5.13)
(

1
|B|

∫
B

ν~w(x)dx
)m

≤C
m

∏
i=1

inf
x∈B

wi(x)

holds for any ball B in Rn, where ν~w = ∏
m
i=1 w1/m

i . We can rewrite this inequality as(
1
|B|

∫
B

ν~w(x)dx
)
≤C

( m

∏
i=1

inf
x∈B

wi(x)
)1/m

=C
( m

∏
i=1

inf
x∈B

wi(x)1/m
)

≤C
(

inf
x∈B

m

∏
i=1

wi(x)1/m
)
=C · inf

x∈B
ν~w(x),
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which means that ν~w ∈ A1. Moreover, for each wi, i = 1,2, . . . ,m, it is easy to see that(
∏
j 6=i

inf
x∈B

w j(x)1/m
)m( 1

|B|

∫
B

wi(x)1/m dx
)m

≤
(

1
|B|

∫
B

wi(x)1/m ·∏
j 6=i

w j(x)1/m dx
)m

≤C
m

∏
j=1

inf
x∈B

w j(x).

Also observe that (
∏
j 6=i

inf
x∈B

w j(x)1/m
)m

= ∏
j 6=i

inf
x∈B

w j(x).

From this, it follows that (
1
|B|

∫
B

wi(x)1/m dx
)m

≤C · inf
x∈B

wi(x),

which implies that w1/m
i ∈ A1 (i = 1,2, . . . ,m). Thus, by the inequality (3.2) and (4.4)(taking p1 =

· · ·= pm = 1 and p = 1/m), we have

J0,...,0
∗ .

m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

1
ν~w(B)mκ

·
m

∏
i=1

wi(2B)κ

.
m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

· ν~w(2B)mκ

ν~w(B)mκ

.
m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

.

It remains to estimate the term Jβ1,...,βm
∗ for (β1, . . . ,βm) ∈ L. Recall that for any x ∈ B,[

b,Tθ

]
1(
~f )(x) = [b(x)−bB] ·Tθ ( f1, f2, . . . , fm)(x)−Tθ ((b−bB) f1, f2, . . . , fm)(x).

So we can further decompose Jβ1,...,βm
∗ as

Jβ1,...,βm
∗ ≤ C

ν~w(B)mκ

[
ν~w

({
x ∈ B :

∣∣[b(x)−bB] ·Tθ ( f β1
1 , f β2

2 , . . . , f βm
m )(x)

∣∣> λ
m/2m+1

})]m

+
C

ν~w(B)mκ

[
ν~w

({
x ∈ B :

∣∣Tθ ((b−bB) f β1
1 , f β2

2 , . . . , f βm
m )(x)

∣∣> λ
m/2m+1

})]m

:=J̃β1,...,βm
? + J̃β1,...,βm

?? .

By using the previous pointwise estimates (4.6) and (4.9) together with Chebyshev’s inequality, we
can deduce that

J̃β1,...,βm
? ≤ C

ν~w(B)mκ
× 2m+1

λ m

(∫
B

∣∣[b(x)−bB] ·Tθ ( f β1
1 , f β2

2 , . . . , f βm
m )(x)

∣∣ 1
m ν~w(x)dx

)m

≤ C
ν~w(B)mκ

∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

| fi(yi)|
λ

dyi

)
×
(∫

B

∣∣b(x)−bB
∣∣ 1

m ν~w(x)dx
)m

.
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We claim that for 2≤ m ∈ N and ν~w ∈ A1,

(5.14)
(∫

B

∣∣b(x)−bB
∣∣ 1

m ν~w(x)dx
)m

. ‖b‖∗ ·ν~w(B)m.

Assuming the claim (5.14) holds for the moment, then we have

J̃β1,...,βm
? . ‖b‖∗ ·ν~w(B)m(1−κ)

∞

∑
j=1

( m

∏
i=1

1
|2 j+1B|

∫
2 j+1B

| fi(yi)|
λ

dyi

)
.

Furthermore, note that t ≤ Φ(t) = t · (1+ log+ t) for any t > 0. This fact along with the multiple
A(1,...,1) condition (5.13) implies that

J̃β1,...,βm
? . ‖b‖∗ ·ν~w(B)m(1−κ)×

∞

∑
j=1

m

∏
i=1

(
1

|2 j+1B|

∫
2 j+1B

| fi(yi)|
λ
·wi(yi)dyi

)(
inf

yi∈2 j+1B
wi(yi)

)−1

. ‖b‖∗ ·ν~w(B)m(1−κ)×
∞

∑
j=1

1
ν~w(2 j+1B)m

m

∏
i=1

∫
2 j+1B

Φ

(
| fi(yi)|

λ

)
·wi(yi)dyi

. ‖b‖∗ ·ν~w(B)m(1−κ)×
∞

∑
j=1

1
ν~w(2 j+1B)m

m

∏
i=1

wi
(
2 j+1B

)∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
L logL(wi),2 j+1B

,

where the last inequality follows from the previous estimate (1.9). In view of (4.4) and (4.7), the last
expression is bounded by

‖b‖∗ ·ν~w(B)m(1−κ)×
∞

∑
j=1

1
ν~w(2 j+1B)m

m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

m

∏
i=1

wi(2 j+1B)κ

. ‖b‖∗
m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

×
∞

∑
j=1

ν~w(B)m(1−κ)

ν~w(2 j+1B)m(1−κ)

. ‖b‖∗
m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

.

Let us return to the proof of (5.14). Since ν~w ∈ A1, we know that ν~w belongs to the reverse Hölder class
RHs for some 1 < s <+∞(see [5] and [8]). Here the reverse Hölder class is defined in the following
way: ω ∈ RHs, if there is a constant C > 0 such that(

1
|B|

∫
B

ω(x)s dx
)1/s

≤C
(

1
|B|

∫
B

ω(x)dx
)
.

A further application of Hölder’s inequality leads to that∫
B

∣∣b(x)−bB
∣∣ 1

m ν~w(x)dx≤ |B|
(

1
|B|

∫
B

∣∣b(x)−bB
∣∣s′/m dx

)1/s′( 1
|B|

∫
B

ν~w(x)
s dx
)1/s

≤Cν~w(B)
(

1
|B|

∫
B

∣∣b(x)−bB
∣∣s′/m dx

)1/s′

.
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Thus, there are two cases to be considered. If s′/m < 1, then (5.14) holds by using Hölder’s inequality
again. If s′/m≥ 1, then (5.14) holds by using Lemma 5.1(2). On the other hand, applying the pointwise
estimates (5.8),(5.11) and Chebyshev’s inequality, we have

J̃β1,...,βm
?? ≤ C

ν~w(B)mκ
× 2m+1

λ m

(∫
B

∣∣Tθ ((b−bB) f β1
1 , f β2

2 , . . . , f βm
m )(x)

∣∣ 1
m ν~w(x)dx

)m

≤C ·ν~w(B)m(1−κ)
∞

∑
j=1

( m

∏
i=2

1
|2 j+1B|

∫
2 j+1B

| fi(yi)|
λ

dyi

)
×
(

1
|2 j+1B|

∫
2 j+1B

∣∣b(y1)−bB
∣∣ · | f1(y1)|

λ
dy1

)
≤C ·ν~w(B)m(1−κ)

∞

∑
j=1

( m

∏
i=2

1
|2 j+1B|

∫
2 j+1B

| fi(yi)|
λ

wi(yi)dyi

)

×
(

1
|2 j+1B|

∫
2 j+1B

∣∣b(y1)−bB
∣∣ · | f1(y1)|

λ
w1(y1)dy1

)
×

m

∏
i=1

(
inf

yi∈2 j+1B
wi(yi)

)−1

≤C ·ν~w(B)m(1−κ)×
∞

∑
j=1

1
ν~w(2 j+1B)m

( m

∏
i=2

∫
2 j+1B

| fi(yi)|
λ

wi(yi)dyi

)
×
(∫

2 j+1B

∣∣b(y1)−bB
∣∣ · | f1(y1)|

λ
w1(y1)dy1

)
,

where in the last inequality we have used the A(1,...,1) condition (5.13). In addition, using the fact that
t ≤Φ(t) and (1.9), we get∫

2 j+1B

| fi(yi)|
λ

wi(yi)dyi ≤
∫

2 j+1B
Φ

(
| fi(yi)|

λ

)
·wi(yi)dyi

≤ wi
(
2 j+1B

)∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
L logL(wi),2 j+1B

.

Using the fact that t ≤Φ(t) and the previous estimate (3.6), we thus obtain∫
2 j+1B

∣∣b(y1)−bB
∣∣ · | f1(y1)|

λ
w1(y1)dy1

≤
∫

2 j+1B

∣∣b(y1)−bB
∣∣ ·Φ( | f1(y1)|

λ

)
w1(y1)dy1

≤C ·w1
(
2 j+1B

)∥∥b−bB
∥∥

expL(w1),2 j+1B

∥∥∥∥Φ

(
| f1|
λ

)∥∥∥∥
L logL(w1),2 j+1B

.

Furthermore, by the inequality (5.3),∫
2 j+1B

∣∣b(y1)−bB
∣∣ · | f1(y1)|

λ
w1(y1)dy1

≤C( j+1)‖b‖∗ ·w1
(
2 j+1B

)∥∥∥∥Φ

(
| f1|
λ

)∥∥∥∥
L logL(w1),2 j+1B

.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

13 Nov 2024 13:36:51 PST
230317-Wang-2 Version 3 - Submitted to Rocky Mountain J. Math.



MULTILINEAR θ -TYPE CALDERÓN–ZYGMUND OPERATORS 29

Consequently, from the two estimates above, it follows that

J̃β1,...,βm
?? . ‖b‖∗ ·ν~w(B)m(1−κ)

×
∞

∑
j=1

( j+1)
1

ν~w(2 j+1B)m

m

∏
i=1

wi
(
2 j+1B

)∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
L logL(wi),2 j+1B

. ‖b‖∗ ·ν~w(B)m(1−κ)

×
∞

∑
j=1

( j+1)
1

ν~w(2 j+1B)m

m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

m

∏
i=1

wi(2 j+1B)κ

. ‖b‖∗
m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

×
∞

∑
j=1

( j+1)
ν~w(B)m(1−κ)

ν~w(2 j+1B)m(1−κ)

. ‖b‖∗
m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

.(5.15)

where the last two inequalities follow from (4.4) and (3.1). This completes the proof of Theorem
2.4. �

For the iterated commutator
[
Π~b,Tθ

]
, we can also establish the following results in the same manner

as in Theorems 2.3 and 2.4. The proof then needs appropriate but minor modifications and we leave
the details to the reader.

Theorem 5.3. Let m ≥ 2 and
[
Π~b,Tθ

]
be the iterated commutator of θ -type Calderón–Zygmund

operator Tθ with θ satisfying the condition (1.1) and ~b ∈ BMOm. If 1 < p1, . . . , pm < +∞ and
1/m < p <+∞ with 1/p = ∑

m
i=1 1/pi, and ~w = (w1, . . . ,wm) ∈ A~P with w1, . . . ,wm ∈ A∞, then for any

0 < κ < 1, the iterated commutator
[
Π~b,Tθ

]
is bounded from Lp1,κ(w1)×Lp2,κ(w2)×·· ·×Lpm,κ(wm)

into Lp,κ(ν~w) with ν~w = ∏
m
i=1 wp/pi

i .

Theorem 5.4. Let m ≥ 2 and
[
Π~b,Tθ

]
be the iterated commutator of θ -type Calderón–Zygmund

operator Tθ with θ satisfying the condition (1.8) and~b ∈ BMOm. Assume that ~w = (w1, . . . ,wm) ∈
A(1,...,1) with w1, . . . ,wm ∈ A∞. If pi = 1, i = 1,2, . . . ,m and p = 1/m, then for any given λ > 0 and
any ball B⊂ Rn, there exists a constant C > 0 such that

1
ν~w(B)mκ

·
[
ν~w

({
x ∈ B :

∣∣[Π~b,Tθ

]
(~f )(x)

∣∣> λ
m
})]m

≤C ·
m

∏
i=1

∥∥∥∥Φ
(m)

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

,

where ν~w = ∏
m
i=1 w1/m

i , Φ(t) = t · (1+ log+ t) and Φ(m) =

m︷ ︸︸ ︷
Φ◦ · · · ◦Φ.

Finally, in view of the relation (4.17), we have the following results.

Corollary 5.5. Let m ≥ 2 and ~b ∈ BMOm. If 1 < p1, . . . , pm < +∞ and 1/m < p < +∞ with
1/p = ∑

m
i=1 1/pi, and ~w = (w1, . . . ,wm) ∈ ∏

m
i=1 Api , then for any 0 < κ < 1, both the multilinear

commutator
[
Σ~b,Tθ

]
and the iterated commutator

[
Π~b,Tθ

]
are bounded from Lp1,κ(w1)×Lp2,κ(w2)×

·· ·×Lpm,κ(wm) into Lp,κ(ν~w) with ν~w = ∏
m
i=1 wp/pi

i , provided that θ satisfies the condition (1.1).
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Corollary 5.6. Let m ≥ 2 and ~b ∈ BMOm. Assume that ~w = (w1, . . . ,wm) ∈ ∏
m
i=1 A1. If pi = 1,

i = 1,2, . . . ,m and p = 1/m, then for any given λ > 0 and any ball B ⊂ Rn, there exists a constant
C > 0 such that (ν~w = ∏

m
i=1 w1/m

i )

1
ν~w(B)mκ

·
[
ν~w

({
x ∈ B :

∣∣[Σ~b,Tθ

]
(~f )(x)

∣∣> λ
m
})]m

≤C ·
m

∏
i=1

∥∥∥∥Φ

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

,

provided that θ satisfies the condition (1.6), and

1
ν~w(B)mκ

·
[
ν~w

({
x ∈ B :

∣∣[Π~b,Tθ

]
(~f )(x)

∣∣> λ
m
})]m

≤C ·
m

∏
i=1

∥∥∥∥Φ
(m)

(
| fi|
λ

)∥∥∥∥
(L logL)1,κ (wi)

,

provided that θ satisfies the condition (1.8).
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