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9
10 ABSTRACT. In this paper, we consider the boundedness properties of multilinear 6-type Calderén—
? Zygmund operators Ty recently introduced in the literature. First, we prove strong type and weak type
— estimates for multilinear 6-type Calderén—Zygmund operators on products of weighted Morrey spaces
2 with multiple weights. Then we discuss strong type estimates for both multilinear commutators and
13 iterated commutators of Ty on products of these spaces with multiple weights. Furthermore, the weak
14 end-point estimates for commutators of 7y and pointwise multiplication with functions in bounded mean
15 oscillation are established too.

16

17

18 1. Introduction

;% In this paper, the symbols R and N stand for the sets of all real numbers and natural numbers,

o respectively. Let R” be the n-dimensional Euclidean space with the Euclidean norm |- | and the
m

22 n\m /n_/ﬁ
~° Lebesgue measure dx. Let m € N and (R")” = R" x --- x R" be the m-fold product space. We denote

2% by . (R") the space of all Schwartz functions on R” and by .7 (R") its dual space, the set of all

l tempered distributions on R”. Calder6on—Zygmund singular integral operators and their generalizations

2 on the Euclidean space R" have been extensively studied (see [5, 6, 7, 26] for instance). In particular,
% Yabuta [31] introduced certain 0-type Calderon—Zygmund operators to facilitate his study of certain

7 classes of pseudo-differential operators. Following the terminology of Yabuta [31], we introduce the

8 So-called 0-type Calderén—Zygmund operators as follows.

29

30 Definition 1.1. Let 6 be a nonnegative, nondecreasing function on R* := (0, 4-e0) with 0 < (1) < 40
31 and 1

2 o(t

2 / 00 4 < +-o0.

33 0o t

34 A measurable function K(x,y) on R” x R”\ {(x,y) : x = y} is said to be a 8-type Calder6n-Zygmund
35 kernel, if there exists a constant A > 0 such that

BE (D ‘K(x,y)‘ < A for any x # y;

Pe—y">
37 _ _
T [Ky) ~ K@)+ KO0~ K02 < A0 (), for g < B2,
SE 1 fLi X
40 n memory o 1 Aue.
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1 Definition 1.2. Let Jy be a linear operator from . (R") into its dual ./ (R"). We say that 7 is a
2 O-type Calder6n—Zygmund operator with associated kernel K if

(1) Jp can be extended to be a bounded linear operator on L? (R™);
(2) forany f € Cy(R") and for all x ¢ supp f, there is a 6-type Calder6n—Zygmund kernel K (x, )
such that

Tof )= [ Kxe)f()dy,

where Cy’(R") is the space consisting of all infinitely differentiable functions on R” that have
compact support.

[e|e[~[ofo]s]e

—_ | =
|= |3

Note that the classical Calderén—Zygmund operator with standard kernel (see [5, 6]) is a special

"2 case of O-type operator Jy when 0(t) =1% with0 < § < 1.

' In 2009, Maldonado and Naibo [18] considered the bilinear 8-type Calderén—Zygmund operators

' which are natural generalizations of the linear case, and established weighted norm inequalities for
' bilinear 0-type Calderén—Zygmund operators on products of weighted Lebesgue spaces with Mucken-
v houpt weights. Moreover, they applied these operators to the study of certain paraproducts and bilinear
. pseudo-differential operators with mild regularity. Later, in 2014, Lu and Zhang [17] introduced the

il general m-linear 0-type Calderén—Zygmund operators and their commutators for m > 2, and estab-

' lished boundedness properties of these multilinear operators and multilinear commutators on products
20 of weighted Lebesgue spaces with multiple weights. In addition, they gave some applications to the
. paraproducts and bilinear pseudo-differential operators with mild regularity and their commutators too.

2 Following [17], we now give the definition of the multilinear 0-type Calderén—Zygmund operators.
23

—_

ZE Definition 1.3. Let 6 be a nonnegative, nondecreasing function on R* with 0 < 6(1) < 40 and

25

g Lot

% (1.D) /()dt<—|—oo.
27 o

?° A measurable function K (X,Y1,---,Ym), defined away from the diagonal x = y; = --- = y,, in (R")"*+1,

o is called an m-linear 8-type Calder6n—Zygmund kernel, if there exists a constant A > 0 such that

31 (D

32

— A

33 (1.2) K(xaylv"'7y ) <

85 for all (x,y1,...,ym) € (R")" ! with x # y; for some k € {1,2,...,m}, and
36 2)

37

:ﬁ ’K(xayh---a)’m)_K(x,Jh---Jm)’

9 (1.3) A x— x|

40 < —-0

— (x=yil+--+x=yml) = yi[ =+ 4 [x =yl
41

ﬁg whenever |x —x/| < %maxlgigm |x —yi|, and
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(3) for each fixed k with 1 < k < m,
’K(xvylr-'ayk?'--aym)_K<-x7y17'-'ay;¢7"'aym)‘

~
—
~
N

R
< A .6< vk =il )
(e =yi| -+ e = ym] ) e —=yi| =+ 4 |x =yl

whenever [y; —y,| < %maxlgigm lx = yil.

~fofola]e]|n]-

s Definition 1.4. Let m € N and Ty be an m-linear operator initially defined on the m-fold product of
" Schwartz spaces and taking values into the space of tempered distributions, i.e.,

10 m

A

1 To . #(R") x - x ' (R") — . (RY).

12
13 We say that Ty is an m-linear 0-type Calderon—Zygmund operator if

14 (1) Ty can be extended to be a bounded multilinear operator from L9 (R") x --- x L4 (R") into
15 L1(R") for some qi,...,qm € [1,+00) and g € [1/m,+oo) with 1 /g =Y" | 1 /qx;

16 (2) for any given m-tuples f =(f1,---,fm), there is an m-linear 6-type Calder6n—Zygmund kernel
17 K(x,y1,...,ym) such that

18 -

o To(P)0) = Toh - S0 = [ K531 3G Suom)dyt -

20

o whenever x ¢ (L, supp f and each f; € C5'(R") fork=1,2,...,m.

22 We note that, if we simply take 0(¢) = ¢¢ for some 0 < € < 1, then the multilinear 6-type operator
23 Ty is exactly the multilinear Calderén—Zygmund operator, which was systematically studied by many
24 authors. There is a vast literature of results of this nature, pioneered by the work of Grafakos and
25 Torres [9], we refer the reader to [8, 13, 20] and the references therein for more details. In 2014, the
26 following weighted strong-type and weak-type estimates of multilinear 6-type Calderén—Zygmund

27 operators on products of weighted Lebesgue spaces were proved by Lu and Zhang in [17].

28
o9 Theorem 1.5 ([17]). Let m € N and Ty be an m-linear 0-type Calderon—Zygmund operator with 6

30 satisfying the condition (1.1). If pi,...,pm € (1,400) and p € (1/m,+o0) with 1/p =Y7" | 1/pi, and

31 W= (W1,...,wy) satisfies the multilinear Ay condition, then there exists a constant C > 0 independent
22 of f=f1,- s fm) such that

33 m m

% 1o (Ao < CL T illore oy vﬁ}{l’l}W?”-

35

3E Theorem 1.6 ([17]). Let m € N and Ty be an m-linear 0-type Calderon—Zygmund operator with 0
37 satisfying the condition (1.1). If p1,...,pm € [1,+00), min{p1,...,pn} = 1 and p € [1/m, +o0) with
8 1/p=Y11/pr, and W = (w1,...,wp) satisfies the multilinear Ay condition, then there exists a

39 constant C > 0 independent of f = (f1,---,fm) such that
40

% HTG(]?)HWLP(VW) S Cklj] kaHka(wk)’ Vip = kIIlwi/pk'
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For any given p € (0,+o0) and w(weight function), the space L”(w) is defined as the set of all
integrable functions f on R" such that

1/p
1A llzeowy = (/R |f(X)\pw(x)dx> < oo,
and the weak space WL (w) is defined as the set of all measurable functions f on R” such that
n 1
£ lhwerg) 1= supA-w({x €R": [f(x)] > 2}) P < oo,
>

o where w(E) := [ w(x) dx for a Lebesgue measurable set E C R". When w = 1, we denote simply by
— LP(R") and WL (R").

E Remark 1.7. For the linear case m = 1, the weighted results above were given by Quek and Yang in
13 [22]. For the bilinear case m = 2, Theorems 1.5 and 1.6 were proved by Maldonado and Naibo in [18]
14 when some additional conditions imposed on 6. And when 6(¢) = t* for some 0 < € < 1, Theorems

15 1.5 and 1.6 were obtained by Lerner et al. [13].

16
- Next, we give the definition of the commutator for the multilinear 6-type Calderén—Zygmund

17 7

1z operator. Given a collection of locally integrable functions b = (by,...,by), the m-linear commutator
19 of Ty with b is defined by

20 . . .

o (15) (26, To| (f)(x) = [Z,To] (fi,. ... fn) (x) :=

22

23

M=

[bkaTe]k(fh e 7fM)(x)7

k=1

where each term is the commutator of b; and Ty in the k-th entry of Ty; that is,

% [, To ] (fis - fin) (%) = br(x) - To (frsevvs fies oo s fin) (X) = To (frs s bifics - fon) (%)
EE Then, at a formal level

o (2. To] () (x) = [ZB.To] (fi.-. fu) (%)

20 =/ Y [Br(x) = b (i) | K (x, 915 m) Fr (1) <+ fin(m) dy1 -+~ dyim.

30 (RM™ =1

31 Obviously, when m = 1 in the above definition, this operator coincides with the linear commutator

382 [b, Jp](see [16, 33]), which is defined by
33

s (b, Z6](f) :=b- To(f) — T (bf).

SE Let us now recall the definition of the space of BMO(R")(see [5, 11]). A locally integrable function
36 b(x) is said to belong to BMO(R") if it satisfies
37

1
% 1B ::sup—/ 1b(x) — bg| dx < +oo,
B |Bl /B

39
40 Where the supremum is taken over all balls B in R", and bp stands for the average of b over B, i.e.,

41

I
- by = W/Bb(y)dy.
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i In the multilinear setting, we say that b = (by,...,b,) € BMO", if each b, € BMO(R") for k =
2 1,2,...,m. For convenience, we will use the following notation

:= max kuH*, for b =

12 gpgo - max. (b1,....bwm) € BMO™.

3

4

E In 2014, Lu and Zhang [17] also proved some weighted estimate and Llog L-type estimate for mul-
6 tilinear commutators [ZZ,TQ] defined in (1.5) under a stronger condition (1.6) assumed on 0, if
7
)
9
10

b € BMO™.

~ Theorem 1.8 ([17]). Let m € N and [Zb Tg] be the m-linear commutator generated by 0-type
-0 Calderén—Zygmund operator Ty and b = (b1,...,by) € BMO™; let 0 satisfy

" 16(r) - (1+[logr])

E (1.6) /O :

B Ifpi,....;pm € (1,4) and p € (1/m,+o0) with 1/p =Y\ 1/py, and w = (w1, ...,wn) € Ap, then

" there exists a constant C > 0 independent of b and f = (f1,---,[fm) such that
15

o 1057 Dl < € lon [T 1y o= [T

dt < oo,

17

1— Theorem 1.9 ([17]). Let m € N and [Zb Tg} be the m-linear commutator generated by 0-type

oo Calderon—Zygmund operator Ty and b= (bl, b)) € BMO™; let 0 satisfy the condition (1.6).
prk =1L k=12,....mand W= (wi,...,wn) €A 1), then for any given A > 0, there exists a

2? constant C > 0 independent of b, f = ( fl, .oy fm) and A such that

. v ({re R [T, 75) ()| > Am}) < C- 0|8l uver) " T1 (/p(%")‘)wk(x) dx> l/m,

25 k=1

1
26 where Vi = [[jL 1w/m

, ®(t):=t-(1+1log*t) and log" t := max{logt,0}.

L Remark 1.10. As is well known, (multilinear) commutator has a greater degree of singularity than the
oo underlying (multilinear) 8-type operator, so more regular condition imposed on 0(7) is reasonable. Ob-
0 viously, our condition (1.6) is slightly stronger than the condition (1.1). For such type of commutators,
— the condition that 6(¢) satisfying (1.6) is needed in the linear case (see [16, 33] for more details), so
- does in the multilinear case. Moreover, it is straightforward to check that when 0(z) = ¢* for some

— € >0,
33

il L. (1 + |logt 1 1
34 /()Wdt:/o t8_1-<1—|-10gt>dt<+°°.

3% Thus, the multilinear Calderén—Zygmund operator is also the multilinear 6-type operator Ty with 0 ()
p satisfying (1.6).

g Remark 1.11. When m = 1, the above weighted endpoint estimate for the linear commutator [b, Jp]
39 was given by Zhang and Xu in [33] (for the unweighted case, see [16]). Since Ty is bounded on LP (w)
40 for 1 < p < +eoand w € A), as mentioned earlier, then by the well-known boundedness criterion for
41 commutators of linear operators, which was obtained by Alvarez et al. in [1], we know that [b, 5] is
42 also bounded on LP(w) for all 1 < p < 4-ecand w € A,,, whenever b € BMO(R").
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1 Remark 1.12. Whenm >2, w; =--- =w,, = 1 and 0(z) = ¢* for some € > 0, Pérez and Torres [20]
2 proved thatif b = (b,...,b,) € BMO", then

2 [Zb,Tp] : LPY(R") x -+ x LPm(R") — LP(R")

5 forl < pp<+eandl < p<+oowithl/p=1/p;+---+1/py, where k =1,2,...,m. And when
m > 2 and 6(t) =% for some € > 0, Theorems 1.8 and 1.9 were obtained by Lerner et al. in [13].
Namely, Lerner et al.[13] proved that ifb= (b1,...,by) € BMO™ and w = (wy,...,wy) € Ap, then

» @

[£b,Tg] : LP (W) X - -+ X LP" (wy) — LP(Vig)

1o forl <pp<+4ecandl/m<p<-+eowithl/p=1/pi+---+1/py, wherek=1,2,...,m. Some new
11 results have been obtained more recently, see [2, 14, 30].

©fe|~]o]

2 Remark 1.13. In [10], the authors give alternative proof of Theorem 1.8, which shows that the
'8 conclusion of Theorem 1.8 still holds provided that 8(¢) only fulfills (1.1). The method used in [10] is
14 different from the one in [17]. The basic idea of the proof is taken from [1, 4] and [20, Proposition
15 3.1]. It is worth pointing out that the conclusion of Theorem 1.8 could also be deduced from the main

6 results in [2].
17
18 Motivated by [21] and [17], we will consider another type of commutators on R”. Assume that

E b= (b1,...,by) is a collection of locally integrable functions, we define the iterated commutator
20 [Hb Tg} as
21

gl (115, Tp] () (x) = (1B, Ty | (i, -, fin) (x)

2 = [blv [b27 .- [bm—b [bma Te]m]m—l . ']2]1(f17‘ - afm)(x)v
24 where
25

— i To ] (f1s- - fn) () = br(x) - To (f1,- - fiore s fin) () = To (f1, - bicSfies - fon) ().

26

2z Then [I’IE, Tg] could be expressed in the following way
28 - 5 -
S (1.7 (106, To | (f) (x) = [11b, To | (f1, -, fn) (%)

30
o —/ an b(x) = br(y) [ K (X, 15+ ym) (1) -+ fin o) dy1 -+ - dym.
2 Following the arguments used in [21] and [17] with some minor modifications, we can also establish
% the corresponding results (strong type and weak endpoint estimates) for iterated commutators of

Z% multilinear 0-type Calderén—Zygmund operators (see [10] for further details).

3E Theorem 1.14. Let m € N and [Hf), Tg] be the iterated commutator generated by 0-type Calderon—
37 Zygmund operator Ty and b = (b1,...,by) € BMO™,; let 0 satisfy the condition (1.1). If p1,...,pm €
8 (1,4e0) and p € (1/m,+o0) with 1/p =Y3" | 1/pr, and W = (w1, ...,wn) € Ap, then there exists a

% constant C > 0 independent of b and f = (fi,---, fm) such that
40

. 05,761y < € TT el TT v =TT

42
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1 Theorem 1.15. Let m € N and [HI;, Ty | be the iterated commutator generated by 0-type Calderon—
2 Zygmund operator Ty and b= (b1,...,by,) € BMO™; let O satisfy
16(r)- (14 logz|™)
[
Ifpr=1k=12,....mand w= (wi,...,wn) € A(1 1), then for any given A > 0, there exists a
constant C > 0 independent of f = (f1,. .., f) and A such that

vw({x eR": |15, Tp] (F) (x)| > ;v"}) < ckI:[1 (/R o) <‘fkix)!)wk(x)dx> l/m,

dt < +oo.

(1.8)

jefe|~|ofo]s]e]

—_
o

m

11
m e e
12 where vy =TI, w,lc/ , ®(t) =1-(1+log"t) and ") :=Po-..0®.

'3 Remark 1.16. It was proved in [21] that when 6(r) = € for some € > 0, the estimate in Theorem 1.15
14

- is sharp in the sense that @) cannot be replaced by ®*) for any k < m.

16 On the other hand, the classical Morrey spaces L”"*(R") were originally introduced by Morrey in
17 [19] to study the local regularity of solutions to second order elliptic partial differential equations.
18 Nowadays these spaces have been studied intensively in the literature, and found a wide range of
19 applications in harmonic analysis, potential theory and nonlinear dispersive equations. In 2009, Komori
20 and Shirai [12] defined and investigated the weighted Morrey spaces L”*(w) for 1 < p < +oo, which
o1 could be viewed as an extension of weighted Lebesgue spaces, and obtained the boundedness of some
2> classical integral operators on these weighted spaces. In order to deal with the multilinear case m > 2,
23 we consider the weighted Morrey spaces L”*(w) here for all 0 < p < -0, We will extend the results
24 obtained in [17] for m-linear 6-type Calderén—-Zygmund operators to the product of weighted Morrey
25 spaces with multiple weights. Moreover, the corresponding weighted estimates for both multilinear
26 commutators and iterated commutators are also considered. Let us first recall the definition of the

27 spaces L% (w) and WLPX(w).

?®_ Definition 1.17 ([12]). Let 0 < p < 40,0 < k < 1 and let w be a weight on R”. The weighted Morrey

:2% space LP*(w) is defined to be the set of all locally integrable functions f on R” satisfying
31 1 1/p

e U] <
% where the supremum is taken over all balls B in R”.

o | llupsy = sup (
B
34

32
35 Definition 1.18 ([12]). Let 0 < p < 4, 0 < k¥ < 1 and let w be a weight on R”. The weighted weak
35 Morrey space WLPX(w) is defined to be the set of all measurable functions f on R” satisfying

87 1 1/p

— K(yp) :=SUp —————Sup A - €B: > A < oo,

5 v = sup e supA-w({x € B: /()] > 2})

i% where the supremum is taken over all balls B in R” and all A > 0.

E Note that when w € Ay, then LPO(w) = LP(w), WLP?(w) = WLP(w) and LP"! (w) = L*(w) by the
42 Lebesgue differentiation theorem with respect to w.
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1 In order to deal with the end-point case of the commutators, we have to consider the following
2 LlogL-type space, which was introduced by the second author in [28, 29] (for the unweighted case,
3 see also [15] and [24]).

% Definition 1.19. Let p = 1,0 < k < 1 and let w be a weight on R”. We denote by (LlogL)'*(w) the
e weighted Morrey space of LlogL type, the space of all locally integrable functions f defined on R”
E with finite norm H f H(

LlogL)Lx (w)
8
E (LIOgL)LK(W) = {f HfH(LlogL)vi(w) < oo}’
1% where
11
E ”fH(LlogL)""(W) ::Sng(B)l_KHfHLlogL(W),B-

14 Here || || 109 1(),5 denotes the weighted Luxemburg norm, whose definition will be given in Section
15 3 below. Note thatt <7 (1+ log™ ¢t) for any ¢ > 0. By definition, for any ball B in R” and w € A..,
16 then we have

% HfHL(w),B < HfHLlogL(w),B’

19 Wwhich means that the following inequality (it can be viewed as a generalized Jensen’s inequality)

20 1
> (1.9) HfHL(wLB = W(]_L;)/B|f(x)|w<x)dx = HfHLlogL(WLB

22
v holds for any ball B C R". Hence, for all 0 < ¥ < 1 and w € A, we can further obtain the following
e inclusion from (1.9):

25 (Llog L)V (w) < LY (w).

%5 Tt is known that L”¥ is an extension of L” in the sense that L”* = L”. Motivated by the works in
27 [12, 17, 18], the main purpose of this paper is to establish boundedness properties of multilinear 8-type
8 Calderén—Zygmund operators and their commutators on products of weighted Morrey spaces with
29 multiple weights.

80 In what follows, the letter C always stands for a positive constant independent of the main parameters
31 and not necessarily the same at each occurrence. The symbol X <Y means that there is a constant C > 0
%2 such that X < CY. The symbol X ~ Y means that there is a constant C > 0 such that C~'Y < X < CY.
33

84 2. Main results

35
36 Our first two results on the boundedness properties of multilinear 6-type Calderén—Zygmund operators
37 can be formulated as follows.

38
2 Theorem 2.1. Let m > 2 and Ty be an m-linear 0-type Calderon—Zygmund operator with 0 satisfying

o the condition (1.1). If 1 < p1,...,pm < +ooand 1/m < p < +eo with 1/p =YY" ,1/p;, and w =
— (Wiy..,Wp) € Az With wy,...,Wy € Aw, then for any 0 < x < 1, the multilinear operator Ty is
41 P

4o bounded from LPVX(wy) X LP2X(wy) X -« x LPm ¥ (wy,) into LP*(vg) with vy = T 1wf/pi.

i=
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1 Theorem 2.2. Let m > 2 and Ty be an m-linear 0-type Calderon—Zygmund operator with 0 satisfying
2 the condition (1.1). If 1 < py,...,pm < +oo, min{py,...,pu} =1 and 1/m < p < 4oo with 1/p =
3 Yty U/ piand w = (wi,...,wy) € Ag withwy,..., Wy € A, then for any 0 < k < 1, the multilinear
4 operator Ty is bounded from LP1X(wy) X LP2X(wy) X -+ x LPm®(w,,) into WLP'¥(vy) with vy =
£ /i
5T

6
2 Our next theorem concerns norm inequalities for the multilinear commutator [Eb, Tg] with b €
s BMO™.

8

% Theorem 2.3. Let m > 2 and [ZB, Te] be the m-liniar commutator of 0-type Calderon—Zygmund
., operator To with 0 satisfying the condition (1.1) and b € BMO™. If 1 < py,...,pm <+ and 1/m <
o P <o with 1/p =Y 1/p;, and W = (w1,..., W) € Ap with wi,..., Wy, € Aw, then for any 0 <
15 K <1, the multilinear commutator [Zl;, Ty| is bounded from LPV¥ (wy) x LP2¥(wp) X «-+ x LPm¥ (wy,)

p/pi

14 into LP*(Vig) with v =TT wi' P

15
5 For the endpoint case p; = p» = -+ = p;, = 1, we will also prove the following weak-type LlogL

- estimate for the multilinear commutator [ZZ, Tg] in the weighted Morrey spaces with multiple weights.

'® Theorem 2.4. Let m > 2 and [ZZ,T(;] be the m-linear commutator of 0-type Calderén—Zygmund

;% operator Ty with 0 satisfying the condition (1.6) and b € BMO™. Assume that w = (Wiyeoywm) €
21—A(17_“71) With wi,..., Wy € Aw. If pi=1,i=1,2,...,m and p = 1/m, then for any given A > 0 and
S, @y ball B C R", there exists a constant C > 0 such that

23 1 [T L\ 1" > s il
e D ({re B ) () > 27))] " < 0(Blor) [T 4

25

i

(LlogL)"-* (w;)

EE where Vi =1, wil/m and ®(t) =1-(1+log"1).

27
-5 Remark 2.5. From the above definitions and Theorem 2.4, we can roughly say that the multilinear
29 commutator [£b,Tp] is bounded from (LlogL)"*(wy) x (LlogL)""*(w) x -+ x (LlogL)"¥ (w,,) into
(g WLl/m’K(Vw) with v = ;ﬂ:l Wll/m
31

32 3. Notations and preliminaries

Z% 3.1. Multiple weights. For any r > 0 and x € R", let B(x,r) = {y €R": |x—y| < r} denote the open
5 ball centered at x with radius r, B(x, r)t = R"\B(x,r) denote its complement and |B(x, )| be the
s Lebesgue measure of the ball B(x,r). We also use the notation XB(x,r) to denote the characteristic
4, function of B(x,r). For some ¢ > 0, the notation 7B stands for the ball with the same center as B whose
g radius is ¢ times that of B.

39 A weight wis said to belong to the Muckenhoupt class A, for 1 < p < +oo, if there exists a constant
20 C > 0 such that

a1 1 1/p 1 , 1/p
— </w(x)dx> (/w(x)p /pdx> <C
2 B /5 B /s
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1 for every ball B in R", where p’ is the conjugate exponent of p such that 1/p+1/p’ = 1. The class A,
2 is defined replacing the above inequality by
3
— / x)dx <C- essmfw( )
4 B|
° for every ball B in R”. Since the A, classes are increasing with respect to p, the Ao class of weights is
® defined in a natural way by A.. U1 <p<+oeAp. Moreover, the following characterization will often be
L used in the sequel. There are posmve constants C and 9 such that for any ball B and any measurable

_° set E contained in B,
9

0 G W<E)§C<|E|>6.
11 w(B) |B|

12 Given a Lebesgue measurable set E, we denote the characteristic function of E by xz. We say that a
13 weight w satisfies the doubling condition, simply denoted by w € A, if there is an absolute constant
12 C > 0 such that

(3.2 w(2B) < Cw(B)

% holds for any ball Bin R". If w € A, with 1 < p < 400 (or w € A), then we have that w € A,.

;s Recently, the theory of multiple weights adapted to multilinear Calderon-Zygmund operators was

19 developed by Lerner et al. in [13]. New more refined multilinear maximal function was defined and

2? used in [13] to characterize the class of multiple Az weights, and to obtain some weighted estimates
-, for multilinear Calderén—Zygmund operators. Now let us recall the definition of multiple weights.
,, For m exponents pi,...,p, € [1,+e), we will often write P for the vector P = (p1,...,pm), and p

- for the number given by 1/p =Y 1/pr with p € [1/m,+0). Given w = (w,...,w,), let us set

24 Vi = Hk | wk/ Pk We say that w satisfies the multilinear Ap condition if it satisfies
25

9 1 1/p m 1 , 1/Pk
26 (3.3) sup<|B’/ (x)dx) H (W/Bwk(x)—l’k/pkdx> < oo,
k=1

27

28 When p; = 1 for some k € {1,2,...,m}, the condition (ﬁ I3 wie(x) P/ Pk dx)l/pg‘ is understood as
29

0 (infxeg wk(x)) ! In particular, when each py = 1,k =1,2,...,m, we denote A; =A(;, ;). One can

.....

31 casily check that A(; 1) is contained in Ay for each P, however, the classes A are NOT increasing
5> Wwith the natural partial order (see [13, Remark 7.3]). It was shown in [13] that these are the largest
53 classes of weights for which all multilinear Calder6n—Zygmund operators are bounded on weighted
34 Lebesgue spaces. Moreover, in general, the condition w € A does not imply wy € LIIOC(R”) for any
35 1 <k <m(see[13, Remark 7.2]), but instead

% Lemma 3.1 ([13]). Let py,...,pm € [1,400) and 1/p =Y} 1/pr. Then w = (w1,...,wn) € Ap if

37 and only if
38

— Vi € Amp,
9 3.4) {
40

1-p;
w, ‘€A k=1,....m,

mp?

41
P/ P

42 where Vg = Hk Wy and the condition Wy Pi €A, inthe case p;y = 1 is understood as wk/ €A

mp,
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1 Observe that in the linear case m = 1 both conditions included in (3.4) represent the same A,
2 condition. However, in the multilinear case m > 2 neither of the conditions in (3.4) implies the other.
3 We refer the reader to [13] for further details.

— 3.2. Orlicz spaces and Luxemburg norms. Next we recall some basic definitions and facts from the
— theory of Orlicz spaces. For more information about these spaces the reader may consult the book [23].
— Let.o/ [0, 4c0) — [0,4c0) be a Young function. That is, a continuous, convex and strictly increasing
- function with </ (0) = 0 and such that o7 (1) — o0 as t — 0. Given a Young function <7 and a ball
o B in R”", we consider the .o/-average of a function f over a ball B, which is given by the following

o Luxemburg norm:

o , 1 f (X)|> }
1 f ::1nf{7L>0: ,Qf( dx<15.
" 1710 il (5
13 When &7 (t) = t? with 1 < p < +oo, it is easy to see that

14 | 1/p

= P

15 = = x)| dx ;

o 1110 = (g7 fp 700 ax)

17 that is, the Luxemburg norm coincides with the normalized L” norm. Associated to each Young

1s function .27, one can define its complementary function </ by

9 A (s):= sup [st—/(1)], 0<s< oo

20 0<r<+oo

" Tt is not difficult to check that such 7 is also a Young function. A standard computation shows that for

2 allt >0,
23 -1 71
— 1< () (1) <21.

24
o5 From this, it follows that the following generalized Holder’s inequality in Orlicz spaces holds for any

o6 given ball B in R".

pa— 1

o 18] o100l ax <207 sl

28 B

29 A particular case of interest, and especially in this paper, is the Young function ®(¢) =7 (1+1log™ 1),
30 and we know that its complementary Young function is given by ®(r) =~ exp(r) — 1. The corresponding
31 averages will be denoted by

32

3 Hquw = HfHLlogL,B and ”chﬁB = HgHexpLB'

?z Consequently, from the above generalized Holder’s inequality in Orlicz spaces, we also get

. 1

% 65) FI AR EEER 1 P 7 e

37
s To obtain endpoint weak-type estimates for the multilinear and iterated commutators on the product of

4o Wweighted Morrey spaces, we need to define the <7 -average of a function f over a ball B by means of
4o the weighted Luxemburg norm; that is, given a Young function <7 and w € A, we define (see [23, 32])

- [P inf{o >0 v‘}(lB)/lgd<|fg)|> w(x)dx < 1}.
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i When /() = 1, this norm is denoted by || - ||, When ®(r) =7- (1 +log"7), this norm is also
2 denoted by || - || 10g(w),5- The complementary Young function of ®(r) is ®(r) ~ exp(r) — 1 with the
3 corresponding Luxemburg norm denoted by || - ||expz(w),8- For w € Ac and for every ball B in R", we
4 can also show the weighted version of (3.5). Namely, the following generalized Holder’s inequality in
‘5 the weighted context is true for f, g (see [32] for instance).

6 1
— (3.6 w(B)/B | (x) - g(x)|wlx) dx < CHfHLlogL(w),BHgHexpL(w) B

® This estimate will play an important role in the proof of Theorem 2.4.
9

0 4. Proofs of Theorems 2.1 and 2.2
11

12 This section is concerned with the proofs of Theorems 2.1 and 2.2. Before proving the main theorems
? of this section, we first state the following important results without proof (see [5] and [7]).

1— Lemma 4.1 ([7]). Let {fk}k | be a sequence of LP(v) functions with 0 < p < +oo and vV € Aw. Then

— we have
N

16
3 (2

N
" SCK(PJV)Z ka”LP(v)
18 ! -

N 1—
19 where € (p,N) = max{l,NTp}. More specifically, € (p,N) =1 for 1 < p < +oo, and €(p,N) =

20 1-p
N7 forO<p<l.
2

22 Lemma 4.2 ([7]). Let {fk}k | be a sequence of WLP(v) functions with 0 < p < +e0 and v € Aw.
23 Then we have

24 y Al
= | X Al <€ 0 X Iilhiri
N)

Lr(v)

25

z% where ¢'(p,N) = max {N, N }. More specifically, €' (p,

2?for0<p<l

1
=Nforl < p<+oo,and¢'(p,N)=N7

2E Lemma 4.3 ([5]). Let w € Aw. Then for any ball B in R", the following reverse Jensen’s inequality
30 holds.

a1 1
s /w(x)deC\B]-exp (/logw(x)dx).
32 B 1B| /s

83 We are now in a position to prove Theorems 2.1 and 2.2.

4 -
o5 Proof of Theorem 2.1. Let1 <pi,...,pm <+ooand f = (fi,..., fin) bein LPUX (w1 ) X -+ - X LPmE (W)
% w1th W= (w1,...,wp) € Ap and 0 < k < 1. For any given ball B in R"(denote by xo the center of B,

5, and r>0the radlus of B), 1t is enough for us to show that

: 1 » 1/p m

39 4.1) ‘/W(B)K/I)(/B‘Te(fla---afm)(x)‘ VvT»(x)dx> SEHJCZ‘HUM(W)-
j% To this end, for any 1 < i < m, we represent f; as

" fi=Fi xon+fi Xagp = S
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and 2B = B(xp,2r). Then we write

Hf,yl —H( 00+0) = X A0 fom)
=1 BissBm€{0,00}
=110+ X A0 ffrom),
i=1 (Bise-sPm)€L

where
£:={(B1,--,Bn) : B € {0,00}, there is at least one fi # 0,1 < k <m};

1o thatis, each term of }_ contains at least one f; # 0. Since Ty is an m-linear operator, then by Lemma
11 4.1 with N =2", we have

ofe|~[ofo]s]o]n]-

; 1 » 1/p

i C 1/p

15 - 0 0 P,

o S TRAVAEACILEEr

" ¢ B P Y

= > (1m0 ol

n (Br. Bwyee Va (B \ s

20 (4.2) =00 Y fPeebe

21 (Bt,--.Bm)EL

22 By the weighted strong-type estimate of Ty (see Theorem 1.5), we have

23 0.0 1 m 1/pi
I <Cc ——- i pi i d

o« <l ( [, vwimmtas)

g m

- 4.3) < CU Hf,| PR (y) m Hw, (2B) K/pi_

% Let p1,...,pm € [1,+) and p € [1/m,+oo) with 1/p =¥ 1/p;. We first claim that under the

% assumptions of Theorem 2.1 (or Theorem 2.2), the following result holds for any ball % in R":

— m p/pi
2;(4.4) H( /@ wi(x)dx> < /ﬂ Vi (x) dx,

i=1
33 ,
5, provided that wy, ..., wy € A and v = " lwf/p’. Indeed, since wy,...,w, € A, using Lemma 4.3,

1=
35 then we have

zj ﬁ </%Wi(x) dx>p/pi < Cﬁ {L%’! -exp <|%| /gg)logwi(x)dx>]p/pi

i=1

38
i mn 1

39 =C B|PIPi . exp (/ logw; )C)‘D/p"d)C)]

w0 ,I——m | B ) (

" N I p/pi | / /pi

a —C.(18])%= . — | logw;(x)P/Pidx).
" (| |) eXP(,ZI 7] s ogw;(x) X
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Note that

Zp/p,—l and vy Hw, p/p’

i=1
Thus, by Jensen’s inequality, we obtain

" p/pi !
II:I (ngi(X)dx) < C-|%|-exp <|%‘ /%)long(x) dx)

§C/ Vi (x) dx

- This gives (4.4). Moreover, in view of Lemma 3.1, we have that v € A, with 1 /m < p < +oo. This
1, fact, together with (4.4) and (3.2), implies that

13 m
14 (43) 190 < CIT il iy
g i=1

16 To estimate the remaining terms in (4.2), let us first consider the case when §; =--- = f3,, = . By a
17 simple geometric observation, we know that

[efe|~]ofo]s]e]n]-

_._.
—‘O

val28 K/,, S | (P

vis(B

;z (R"\2B) x X (R"\2B) C (R")"\(2B)",

21 and

2? oo
o (R™)™ = J@ ' By™\(2/B)",
24 =

2? m

26

,_M o, . .
-~ Where we have used the notation E™ = E X --- x E for a measurable set E and a positive integer m. By
,, the size condition (1.2) of the 8-type Calderon—Zygmund kernel K, for any x € B, we obtain
28

il o o0 A1) fn(ym)|
29 ‘Te(fl 7-..,fm)(x)}m/( Rnym (2B (’X y1‘+ _{_,x Vi Dmn

/ |f1(}’l) fm(ym)| mndyl"'dym
@i+tgym\ @By (|x—=yi|+- -+ [x = ym|)

dyr---dym

30

31

32

I
s 3

.
Il
—_

33

34

35

36

37

A
s

]2J+1B|m (271 gym\ (27 B)m ()’1) fm()’m)|dyl---dym>

> (s
(|2f+119|mH/2+1 | fi(yi \dyz>
£

H’21+IB| S, 100 \dyz>

i=1

.
Il
—_

IN
s

.
Il
_

I
gk

38
4 (4.0)

.
Il
—_

40
41 where we have used the fact that |x —yi| +--- + [x — | = 2/*'r ~ |2/*1B|'/" when x € B and
42 (y1,...,ym) € (2771B)™\(2/B)™. Furthermore, by using H6lder’s inequality, the multiple A3 condition
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on w, we can deduce that

To(f7 - f) ()]
- pi 1/pi % l/p;
(i) | wi(vi) dyi (v P Pi gy
;{H’2J+IB| (/2.i+lB‘fl(yl)| wl(yl)dyl> </2j+lBWl(yl) dy:) }
- 1 |2+ B|V/p+EL (1=1/p) m 1
{izf“Bv" e (R Ok

. 1 K
§ (LA Z{W [T s) /p,}

J:

Z/\

AN

i’:lS I

_.
S[=]e]e|e|~]o]a|a|e]|r]-

—_ | = ‘

o where in the last step we have used the fact that 1/p+ Y (1 — 1/p;) = m. Hence, from the above
e pointwise estimate and (4.4), we obtain

5 . o Vi(B)! > B)¥/p

E J Al 5 V“ B K/p HHﬁHLpl JZ 21+IB 1/P

17 -

© " = vy(B)(

E _lZIHf’HLpz ; 2j+1 (1-x)/p"

20

21 Since Vi3 € Ajyp C Ao by Lemma 3.1, then it follows directly from the inequality (3.1) with exponent
22§ >0 that

2 5

ZH ve(27418) ~ \[271B] )

z% which further implies

2E m =) ’B‘ 5(171{)/[) m

2 (48) 1 STl sy X S Tl
30 i1 =\ 2718 ol

31

. where in the last estimate we have used the fact that 0 < k¥ < 1 and 6 > 0. We now consider the case

. where exactly ¢ of the f3; are o for some 1 < ¢ < m. We only give the arguments for one of these cases.
> The rest are similar and can be easily obtained from the arguments below by permuting the indices. In
- this case, by the same reason as above, we also have

36

. (R"\2B) x - x (R"\28)  (R")\(28)’,

4

39
= and
40

4 (R =J@"BA\@B), 1<t<m.

42 j=1
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Using the size condition (1.2) again, we deduce that for any x € B,

To(f7, oo S5 f1s s fa) ()]
,S/ / A1) ()| mndyr'-dym
< m\@2B)¢ J 2Byt (|x —y1| 4+ [x = ym])

/ | fivi) | dyi % Z ‘2]+1B’m/ﬁ13 iy }fl (1) fe(ve) | dyr -+~ dye
1 e+1/ | fi(vi) | dyi x Z |2]+IB’,"]—[/Hl | fi(vi) | dyi
o 49 Z (H121+IB|/2+1 | fivi) \dyl>

14

15 j
o where in the last inequality we have used the inclusion relation 2B C 2/*!B with j € N, and hence we

- arrive at the same expression considered in the previous case. Hence, we can now argue exactly as we
;5 did in the estimation of /% to obtain that for all m-tuples (Bi,-.-,Bm) € L,

19

i= €+1

_.
S[=]e]e|e|~]o]a|a|e]|r]-~

—_ | = ‘

20 = (1-x)/p

21 [[31, 7ﬁm<ll:IHleU, J;V 2J+1B (1—x)/p

2 o0 5(1-x)/
- STl I ( )
2i i DK (w;) = |2]+ B‘

25 m

2 (4.10) STl

1

I
—_

27

Z% Combining these estimates (4.5), (4.8) and (4.10), then (4.1) holds and concludes the proof of the
o theorem. O

31
gProofofTheorem 2.2. Let 1 < pi1,....pm < 4o, min{p1,...,pmt =1 and f = (fi,...,fn) be in
38 LPUR(wp) X - X LPmX(wy,) with W = (w1,...,wy) € Ag and 0 < k < 1. For an arbitrary ball B =
34 B(xg,r) C R" with xo € R" and r > 0, we need to show that the following estimate holds.

35

36 1

o @1 el (re B o )l > A STl

38

39

0 To this end, we represent f; as

41

P fi=fidos ¥ fi- Xpe = F + 7, fori=12,...m
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By using Lemma 4.2 with N = 2™, one can write

o

2

2 o Ava({x € B [T )] > A1)

“ V@V HTo (s fn

= < vl €B: [To(fs )] > /2P

L = vg(B)K/P w SR AVARERREN 7

7

8 ¢ m1\1/p
8 + ——A-ve({xeB: T (P, 1B > A/27))
9 (ﬁly--%m)eﬁ vis(B)x/P Tl |

E (412) = IS,~-.,0+ Z IEI»---vﬁm)

a (B Bm) S

2

'S where

i

o L= {(ﬁlavﬁm) : Br € {0,00}, there is at least one fB; # 0,1 <k < m}

16

7By the weighted weak-type estimate of Ty (see Theorem 1.6), we can estimate the first term on the
'8 right hand side of (4.12) as follows.

19

20

< o 0 1/pi
il e | (IR

23 1 .
S (413) < Cg”ﬁ”L”i”‘(m)W'gwi(zB)K/pl'

25

2— Moreover, in view of Lemma 3.1 again, we also have vy € A, with 1/m < p < 4-co. Then we apply
2— the inequalities (3.2) and (4.4) to obtain that

29

= Vi (2B

© @14 -0 < Tl e < T
32

33 In the proof of Theorem 2.1, we have already showed the following pointwise estimate for all m-tuples
34 (Bi,...,Bm) € £ (see (4.6) and (4.9)).
35

36

7 (4.15) | To(F0, . £ (x ISZ (H|2J+IB|

38

39
40 Without loss of generality, we may assume that

41

42 pr=-—=pr=min{py,....,pm} =1 and ppiq,...,pm>1

13 Nov 2024 13:36:51 PST
230317-Wang-2 Version 3 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

MULTILINEAR 6-TYPE CALDERON-ZYGMUND OPERATORS 18

1 with 1 < /¢ < m. The case that p; = --- = p,, = 1 can be dealt with quite similarly and more easily.
‘2 Using Holder’s inequality, the multiple Az condition on #, we obtain that for any x € B,

oo

1 & 1
’Te(flﬁa me | Z (H|21+IB|/2+IB’f’ Yi ‘d)’z> <i—l;lr1’2j+lB|/ZJ+IB }fi()’i)’dyi>

J=1

o 1 1
SN 2+1B] </2j+13 |fi(yi)\wi(yi)dyi> <y elzrg]sz(yz)>

m 1 . 1/pi y 1/p,
(i) | wi(yi i (v.\"PilPi ]y
X AL |2j+lB| </21+IB ‘fl()’t)’ Wz(yt)dY1) (/2j+le,(y,) dy,>

NHHf’}LP K (w;) ;{ZJ‘HBI/P le 21+IB)K/P1}

1
'Sl zI:—! HfiHLPi*K(wi) ]ZI vw(zj—i-lB)(lfK')/p’

— where in the last inequality we have invoked (4.4). Observe that v € Ay, with 1 < mp < oo, Thus, it
17 . . . . . .
= follows directly from Chebyshev’s inequality and the pointwise estimate above that

[efe|~|ofo]s]e]

—_ | =
|= |3

—_
N

—_
w

—
»

-
(é)]

19 B 1 1/p
o Ifl’ P gc.‘W(/B]Te(flﬁ',..,,fném)(x)|pvw(x)dx>

2T m oo N 171(')/[7

al vio(B)'

22 SCUHfl‘ Llfi*’((wi)j_X‘f1 vﬂ(zj-HB)(l—K)/p'

23

24 Moreover, in view of (4.7), we obtain that for all m-tuples (Bi,...,Bx) € £,

25 By..B < e |B| 6(1-x)/p m

R 5 ) (L of (™ RS s (L P
27 i= j= i=

2E where in the last step we have used the fact 6 > 0 and 0 < x < 1. Putting the estimates (4.14) and
29 (4.16) together produces the required inequality (4.11). Thus, by taking the supremum over all A > 0,

30 we finish the proof of Theorem 2.2. 0J

31 . . .
- Let I < pi,...,pm < +oo. We say that w = (wy,...,wy) € [I"L, A, if each w; isin A, i =

5 1,2,...,m. By using Holder’s inequality, it is not difficult to check that

m
o HAPi CAp.
85 i=1

%6 Moreover, it was shown in [13, Remark 7.2] that this inclusion is strict. It is clear that I, Ap C

¥ 1", A. So we have
38

I m m
38 (4.17) [14, c Az ]A~
40 i=1 i=1
41 A natural question appearing here is whether the above inclusion relation is also strict. Thus, as a direct
42 consequence of Theorems 2.1 and 2.2, we immediately obtain the following results.
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1 Corollary 4.4. Let m > 2 and Ty be an m-linear 0-type Calderén—Zygmund operator with 0 sat-
2 isfying the condition (1.1). If 1 < p1,...,pm < +eoand 1/m < p < 4eo with 1/p =YY" ,1/p;, and
3 W= (Wi,...,wn) €L Ap, then for any 0 < k < 1, the multilinear operator Ty is bounded from
A4 LPUR(wp) X LP2X(wy) X - -+ X LPmX (wy,) into LP* (Vi) with vy = [T, wf/pi.

5

. Corollary 4.5. Let m > 2 and Ty be an m-linear 0-type Calderon—Zygmund operator with 0 satisfying
— the condition (1.1). If 1 < pi,...,pm < oo, min{pi,....,pm} =1land 1/m < p < +eo with 1 /p =
Y Y 1/ pi, and W= (wi,...,wn) € [T, Ap,, then for any 0 < k < 1, the multilinear operator Ty is

9 bounded from LPVX(wy) x LP2X(wp) X - -+ X LPmX(wy,) into WLP* (vig) with vz = [T, wf]/pi.

10
1 5. Proofs of Theorems 2.3 and 2.4

12 . oy . . . .
£ To prove our main theorems for multilinear commutators in this section, we need the following lemmas

'3 about BMO functions.
14

15 Lemma 5.1. Let b be a function in BMO(R"). Then

16 (1) For every ball B in R" and for all j € N,

17 ,
s [bayerp—bs] < C- (j+ D]
E (2) Let 1 < p < 4o, For every ball B in R" and for all o € A,

20

. (/ [b(x) —bB!”w<x>dX)l/p < Cllb]l. - o(B)"/".

22
23 Proof. For the proofs of the above results, we refer the reader to [27]. 0

24 . .
—  Based on Lemma 5.1, we now assert that for any j € N and o € A., the estimate
25

v 1/p ,
— (5.1 (/ |b(x)_b3\”a)(x)dx) <C(j+1)|b|ls - w(27T'B)'/P
2r 2/+1B

? holds whenever b € BMO(RR") and 1 < p < +-oo. Indeed, by using Lemma 5.1 (1) and (2), we could

29 . .
—~_ easily obtain
30

3 b bgl? dlm
32 (/zmg‘ (x) — b| o (x) X)

33 1/p 1/p

34 < </ |b(x)—b2j+13‘pa)(x)dx> + </ ‘b2j+lB—bB’pw(X)dx>
2/+1B 2/+1B

36 < Cl|b|l. - (277 B)' P+ C(j+1)|b] - 0(2/*'B)'/?

7 <C(j+ 1)l 0(27'B)"7,

49 A8 desired. Next, let us set up the following result.

‘E Lemma 5.2. Let b be a function in BMO(R"). Then for any ball B in R" and any ® € A, we have
41
w 52 |b— bal| 5 < Clb]|..
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1 Proof. By the well-known John—Nirenberg’s inequality (see [11]), we know that there exist two positive
constants C; and C, depending only on the dimension 7, such that for any A > 0,

[{xeB: |b(x)—bs| > 1}| §C1|B!exp{—HC;‘/’1}.

This result shows that in some sense logarithmic growth is the maximum possible for BMO functions
(more precisely, we can take C; = v/2, C; = log 2/22 see [5, p.123-125]). Applying the comparison
property (3.1) of A weights, there is a positive number 6 > 0 such that

.
\O\@\m\*\m\m\k\w\w\

—_

" a)({xEB:]b(x)—bB]>7L})§C1a)(B)exp{—

13
14 From this, it follows that (¢ and C are two constants)

15

. LI b(y) — b
v o hoo (U oo <

18
o which yields (5.2). Il

czm}
20

20
o1 Furthermore, by (5.2) and Lemma 5.1(1), it is easy to check that for each @ in A and for any ball B
oo in R”,

23

 53) o]
25

expL(w),2it1B = <C@G+Dbl, jeN.

26 We are now in a position to give the proofs of Theorems 2.3 and 2.4.

27

%8 Proof of Theorem 2.3. Let1 < py,..., pm < +ooand f = (fis---y fn) bein LPUE (wy) X - o X LPm K (W)
29 with w = (Wi,...,wn) €Apand 0 < k¥ < 1. As was pointed out in [13], by linearity it is enough to
%9 consider the multlhnear commutator [£b, Ty] with only one symbol. Without loss of generality, we fix
2 b € BMO(R"), and then consider the operator

2

v [6,75],(F)(x) = b(x) - To(fi, for- o fur) () = To (b1, fos- o f) ().

z% For each fixed ball B = B(xp,r) C R”, it is enough to prove that

?i 1/p m

N LA WA IR ATEIUTE IR R 0 (e

40

;As before, we decompose f; as f; = f + 7 wheref =fi-xopand f7° = fi- X X(2p) i=1,2,.

42 We set tB = B(xo,tr) for any r > 0. Let £ be the same as before. By using Lemma 4 1 with N = 2’",
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we can write

1
E 1 » 1/p

2 ‘/W}<B>I</p(/B‘[b7T9]1(f17"-7fm)(x)‘ VW(X)dx>

4

5 1 0 0 1/p

. SC'W( /B‘[baTe]l(ﬁ>---,fm)(x)‘pvw(x)dX>

’ 1/p
? +C Z K/p </| Te 7 7me)( )l (x)dx>
9 By Bm)ee v

E (55) = JO""7 + Z Jﬁ]?"'vﬁm

1 (By.-wrBm)EL

E To estimate the first summand of (5.5), applying Theorem 1.8 along with (3.2) and (4.4), we get
13

= 1/pi
“ P LC K/p ( / i) Piwi(x) )

16
; <CHH'](IHL‘DI Wl ( K/ HW[ 2B K/pl

e ve(28

10 (5.6) <CHHlem o) v K/,, —CHHlem

20 VW

2Z To estimate the remaining terms in (5.5), let us first consider the case when f; = --- = 3, = oo. It is
22 easy to see that for any x € B,

Z% [vaG] 1(f><X) = [b()C) _bB] 'Te(flafZa"' ,fm)(X) _TG((b_bB)fl,fZ,--- ,fm)(X).

-5 Hence, we divide the term J°~* into two parts below.

26 » 1/p

5 e < 0t ([ 1009 = bal TalT 5 )0 ¥ )

Z% 1 p 1/p

=~ +C——+— / To((b—bB) 1, fo s fon vi(x)d

- w)w( 11006 )7 5 )0 i)

31 =0T I

%2 Next, we estimate each term separately. In the proof of Theorem 2.1, we have already shown that (see

¥ (4.6))
4

3 o
= ToUT 7 0] S B (Mg ., 00 )

36 =

- Note that vz € A, C Aeo. From Lemma 5.1(2), it follows that

BE 1 1/p
39 Jo < m Z <H 2B /2]+1B|ﬁ Vi ‘dy,) X (/B’b( b3| Vi (x dx)

40

i < [ vie(B)! /7 ’“”Z(H‘Z,HB‘ [ |dy,>

42
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1 We then follow the same arguments as in the proof of Theorem 2.1 to get
2 o (1-x)/p
% <HbH*HHf‘HLPz (w;) ; 21+IB (1-x)/p
5
L6 ST g (.
L i=1
7
g Using the same methods as in Theorem 2.1, we can also deduce that
% ‘Tg b—bB)ffO7f§O,’f;)(X)|
0 < [(b(y1) = bB) fily)| - [f2(v2) - fin(Ym)| dyi - dy
N ~ m
2 (R")™\(2B)" (b =yl -+ e =ym[)™"
3 o b —b . o n(Ym
13 :Z/ [(b(y1) —bB) fr(yn)] -1 f2(r2) n{; (v >’dy1-~dym
“ =1/ 2isym (e =yl 44 |x = ym|)
15
i o 1
6 < _ / b —b ) dvi---d
e Nj;<| 2T igp (2j+13)m\(213)m|( 1) = be) i) | 2(2) -+ fin(ym) | dV1 ym>
. < i 1/ |(b (Y1)—b3)f1()’1)\dy1ﬁ/ | fi(yi)| dyi
9 3 [2/F1B|™ Joj+1p 5 Jarg T
23 /o
21 = b b d i(vi) | dyi
2l L (g L0 sl ) (T gy . b0 )

2
~ Then we have
24

e (B)(1=%)/p

25 ST S v

% (5.8) >
27 ; (|2/+1B| iy lB01) = bB)fl(Y1)|dy1> (H‘21+IB| A/+13‘ﬁ Vi \dyl>

28
2E For each 2 <i < m, by using Holder’s inequality with exponent p;, we obtain that
30

— 1/p , 1/p;
el ([ dseoloaan) ([t riray)
32 2/+1B 2/+1B 2/+1B

33
34 According to Lemma 3.1, we have w1 - =w; P/ €A, . C Aw,i=1,2,...,m. By using Holder’s

35 a5 inequality again with exponent p and (5.1), we deduce that

36

o [ 1600 = ba)fi)dys

il 1/pi ) ) 1/p
. s(/ }ﬂ(yl)\”‘wl(yl)dyl) (/ |b<y1>—b3|ﬂlwl<y1>Pl/mdyl)
40 2/+1B 2/+1B

; Pl 1/py , l/p/l
S 5L ool aenan ) Genisk (o rian)
ae 2/+1B 2/+1B
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-p\/p1

! where the last inequality is valid by the fact that w, € A. Substituting the above two estimates

2J+IB)(1 K)/p’

E into the formula (5.8), we have

3

o I Sl ve(B) TR

- ; (v o v . (v.) " Pi/Pi .
6 j;(]‘f‘l {H 2718 </2j+lB"fl(yl)‘ w,(y,)dy,) (/2j+lBWl(yl) d)’t> }
7

L - |

8 i+1 p\K/pi
: <10l va(8) 7 £+ {ZJHB)I/,,H(HﬁHLp, )}
10

v o v (B)U—%)/p

" S bl HHszLp, ) LUt

12 Jj=1

S where in the last two inequalities we have used the A p condition and (4.4). Moreover, in view of

14 (4.7)(since v € A,pp With 1 < mp < +o0), the last expression is bounded by
15

oo

o n . B\
7 (5.9 HbH*ng’HLPt"(W,) Z(]+ 1) ’ <|2j+1B‘> ~ ||b||*HHf’HLP:

18
1o Where the last series is convergent since the exponent 8(1 — x)/p is positive. Consequently, combining

oo the inequality (5.9) with (5.7), we get

21

m
2 VAR HbH*HHfiHM»K(W)
i=

23
24 We now consider the case where exactly ¢ of the f§; are o for some 1 < ¢ < m. We only give the
2? arguments for one of these cases. The rest are similar and can be easily obtained from the arguments

26 below by permuting the indices. Meanwhile, we consider only the case [31 = oo here since the other

27 case can be proved in the same way. We now estimate the term ‘ [b Tg] ( L fB " { when
28

30 In our present situation, we first divide the term JP1~Pn into two parts as follows.
31

2 JPrBn < . </| 8- To(fis s [ s fo)(x)\”w(x)dx)l/p
P >~ K'/p 1o 5J0 »J0+1> sJm w

34 1/p

g +C'v’</l’(/ ’Te b—bp)f7"s - f7 7f£+17 ) (X )‘ (x)dx)

36

37 ::Jfl""7ﬁm _'_in77ﬁm.

% Next, we estimate each term respectively. Recall that the following result has been proved in Theorem
39 2. 1(see (4.9)).
40

:1? }Te(ffo,-..,fgoafepﬂa 7fm ‘ ; <H‘21+IB‘/+1 ‘f’ Vi }dy,)
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From Lemma 5.1(2), it then follows that

1
: Brp ! p v
= S Vi (B)"I? & Z <H 2418 /2/+1B‘fl Vi |dy’) 8 </B|b(x>_b3‘ vﬁ(x)dx)
5

T s (fgi [, o)

7

E We now proceed exactly as we did in the proof of Theorem 2.1 to obtain that

9 m - _

" (5.10) CERES1 L0 § (7 Phv Z,HB = Hbll*H 1ill e

' On the other hand, by adopting the same method given in Theorem 2.1, we can see that
13

& (51D

S To((b—bB) f e S SO SO )]

17 |(b(1) = bB) fi )] - |2 (32) - fnym)]
< /(Rn)f\(zB) /(23) dyi---dym

E ~ (’x_y1’+"'+’x_y1n‘)mn

0 S H / | fi(vi)| dyi % Z ]2J+1B|m /2/+13 o2/ (b)) = ba) i) - [ 2(2) -+ fe(ye) | dyi -+ dye

o1 i=(+1
z . "»
2 ()| dyi | / b(yi) —b d / (i) | dys
o —1111/23|f(y1)\ yz><j§|2,+13|m iy (001 =08) A1) ylg g 0Dy
24
_ >° 1 m
< - _ (v .
5<% (7 foy GO0 =t TT [ Vi),

where in the last inequality we have used the inclusion relation 2B C 2/*! B with j € N. For the same
21 reason as above, we get the desired estimate.

29
30 m oo B)(1-%)/p

TG ET TN § (TS IR i o N o (e

32

33 Combining (5.10) and (5.12), we conclude that

34 m

3 7880 < 0 TT il

. i=1

37 Summarizing the estimates derived above, then (5.4) holds and hence the proof of Theorem 2.3 is
38 complete. m
39

40 Proof of Theorem 2.4. Given f = (fi,f2,---, fn), for any fixed ball B = B(xo,r) in R", as before, we
41 decompose each f; as

12 =4 i=1,2,...,m,
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1 where f0 = fi- xop.f° = fi' X Bt and 2B = B(x,2r) C R". Again, we only consider here the multilinear
‘2 commutator with only one symbol by linearity; that is, fix » € BMO(R") and consider the operator

[5,To], (F)(x) = b(x) - To(f1, f2r -+ fon) (¥) = To (b1, far - fon) (X).

Let £ be the same as before. Then for any given A > 0, by using Lemma 4.2 with N = 2", one can
write

vw(;)m Va({xeB: |[6.76], ()| > 27})]"

w(g)m Val{xe B:|[0.16], (... £ )] > 27 /2 )]
C

+ T Va(ix€B:||b, Ty ( ’ ,fﬁm)(x) >7Lm/2m mn
(ﬁl,..;ﬁmez vio(B)"™ [ " 10.75] | })}
:Jg770_|_ Z JElv"'vﬁm'

(ﬁla-“vﬁm)eg

17 Observe that the Young function ®(¢) = ¢ - (1 + log™ ¢) satisfies the doubling condition, that is, there is
e constant Cg > 0 such that for every ¢ > 0,

<

I
slafz]a|s|=[o]e|e|~|o|o|s]e]

19 D(2t) < Copd(1).
?_ This fact together with Theorem 1.9 yields
21
2 C 21 (X)|> >
22 0,...,0 i
il Jo < e / o) -wi(x)dx
23 VW,(B)mK IIJ ( n ( ;L l( )
= C 1 /i)
< — P -wi(x)d
26
- N I /i)
27 = (2B P -wi(x)d
2? vﬂ B mk le( )(W(ZB> AB < A W,(X) X
2 £l
> <t 10 [ #(2)
o LlogL(w;),2B
31
5> Where in the last inequality we have used the estimate (1.9). Since w = (w1,...,wy,) € Aq,..1), by
43 definition, we know that
34 1
36 |
37 holds for any ball Z in R", where v = [TiL, w; /™ We can rewrite this inequality as
38 1/m
D (e el (g
40
41 l/m
pl f ; C-infv
e <c(ing [Tt =c-ing oo,
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1 which means that v;; € A;. Moreover, for each w;, i = 1,2,...,m, it is easy to see that
? m 1 m
s <H inaf wj(x)l/m> (%)/ wi(x)l/mdx) < ( 7 / wi(x l/m '(x)l/'"dx>
" j;éixe'jg | | B | | J;él

5

— <C inf w;

i erﬁ i

7

o Also observe that

9 1nf wi 1/’" inf w

. (ILing 0" =TT i o

1 From this, it follows that
12

e 1 moa )" :
13 (w /%wi(x)l/ dx) §C-x1£;wi(x),

14
15 15 which implies that w; 1/m €A (I=1,2,...

TIRE _pm—landp—l/m) we have

,m). Thus, by the inequality (3.2) and (4.4)(taking p; =

17 m mn

— 0,....0 |fi|) 1 K
18 J*7 ’ 5 q)< 7’” Wl(zB)
o (% (LtogL) () Vir(B)™ 1

— m ) = mK

© <11 e('4) e

2 i=1 A ) iprogrytxpwy  Vio(B)™

2 u |fil

23 SH > T .

— i=1 (Llog L)X (w;)

24

25 1t remains to estimate the term JP'P" for (B1,-..,Bm) € £. Recall that for any x € B,

26
27 [6,T], (F)(x) = [b(x) — bs) - To (i, for - fur) () = To (b —bB) fi for s fin) ().

- >o_ So we can further decompose JI3 BB ag

= c )
Z? Jfl,...,ﬁ,nSW([vaxeB:|[b() bs]- To(£P £ 1) )] > A7/2m 1))
32 C . y
“ g e ({r e B T (=o' 2 i) )] = Am /2 )

37 can deduce that

2m+1 5 1 m
0 _ [ 116G =bal - To (P 182 1) )| v
40 Vio (B

38
4 ¢ ¥ |fi( yz / bx) b e d m
a2 - VW(B)MKJ.Z’1<H|21+1B‘ 218 > ( L 5| " vir(x)dx ) .

3E By using the previous pointwise estimates (4.6) and (4.9) together with Chebyshev’s inequality, we
:g .ffl ,...,ﬁm
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We claim that for 2 <m &€ Nand vy € Ay,

5.14) ( /B\b<x>—bB|fl"vw<x>dx) < 1Bl - v (B)".

Assuming the claim (5.14) holds for the moment, then we have

7B 1= o (171 i)l
P S 16l - vis(B) K)Z,I(H|2j+13| g A i)
Jj=1 \i=

°_ Furthermore, note that t < ®(r) =t - (1 +log™ ) for any 7 > 0. This fact along with the multiple

10 A(1,...1) condition (5.13) implies that
11

2 fﬁl,---,ﬁm < HbH 'V*(B)m(l_K)X iﬁ # ‘fl()’l)| ( -)d . inf W( ) -
13 * ~ * Vg Pt |2]+1B| hitilg A wilyi)ayi i\Yi

ofe|~[ofo]s]o]n]-

yi€2/t1B

14

m(1— fi(yi
s Sl L g, (P2 s

16
- £
VWQHIBWEMQ’“B)H@(z)

23 where the last inequality follows from the previous estimate (1.9). In view of (4.4) and (4.7), the last
w; (2 j+1 B) K

17
e S [l vis(BY" )
21 expression is bounded by
22
)
(LlogL)L¥(w;) i=1

'[\Xﬂg 1§

Y
LlogL(w;),2/t1B

19 =1
I 5 m

2 - v (8" x B 3 Z,HB !

24 j=1

e
(4

o Let us return to the proof of (5.14). Since v; € A1, we know that v;; belongs to the reverse Holder class
- RH; for some 1 < s < +oo(see [5] and [8]). Here the reverse Holder class is defined in the following
g way: ® € RHy, if there is a constant C > 0 such that

m

25

2 S Hbl\*H

o7 i=1

m
all < ||b
= S H*,-Ul

X
(LlogL)' ¥ (w;)  j=1 Vw 2J+1B —K)

(LlogL)%(w;)

. <’;/Bw(x)sdx>l/s§C<|;/Ba)(x)dx>.

36
37 A further application of Holder’s inequality leads to that

38 1 1 ' im 1/s' 1 1/s
:ﬁ / |b(x) _ bB m VV—{)(X) dx S |B| (/ |b(x) — bB‘S dx> </ Vw(_x)sdx>

40 B B /s |B| JB

s 1 s'/m s

@ < Cvy(B) <‘B| /B |b(x) — bg| dx> :
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1 Thus, there are two cases to be considered. If s /m < 1, then (5.14) holds by using Holder’s inequality
2 again. If s'/m > 1, then (5.14) holds by using Lemma 5.1(2). On the other hand, applying the pointwise
3 estimates (5.8),(5.11) and Chebyshev’s inequality, we have

Z 3 B 2m+1 1 m
S ([ 17— bu) g0 P
o VW,(B

e |fz( z)|

7 <C-v d i

B =Cl®) Z <H!2J“B! 27418 g

9 1 AGI y1

10 * <\2j+131 2/‘+13‘b(y1) b

11 o

. =l Z(“uﬁw|ww o))

14 1 |f1( Y1 -
s X<DHUﬂ2Hmw( bl Xl w0
16

5 i ; 21“3 <H 21“3 Lo >

5 . / ‘b(yl)—bB\‘ /i 1)‘Wl(m)dyl

20 2/+1B A ’

21
. where in the last inequality we have used the A ;) condition (5.13). In addition, using the fact that

o ! < ®(r) and (1.9), we get

24 i) |fi(vi)]
25 /2./+IB 2 wi(yi)dyi < /ZHIB(I) 2 wi(yi) dyi
26 ) .
S -
o LlogL(w;),2/t1B
29 Using the fact that r < ®(t) and the previous estimate (3.6), we thus obtain
30
o / ‘b( ‘ ‘fl y1)| 1(y1)dy1
- 2/+1B
3 < / |b(y1) — bs]| -qD(M)Wl(M)dyl
2j+1p A

= £

1 1
® <C Wl( 27* B)Hb bBHexpL (wy),2/+1B d)(l) o
36 LlogL(wy),2/ 1B

37 Furthermore, by the inequality (5.3),

38

39 b(vi)— bl - /10yl d

- /21’“3‘ (1) —bs| - =" w1 () dyy

“ <ol w (28) o 1]) -
42 A LlogL(w),2/ 1B
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Consequently, from the two estimates above, it follows that

1

2 ot < ] - vip (B0

3

: F et T s(4)

5 V(27 By A ) ogriw)2i+ 18
- < Il vy

o = . f> . +1
8 Xy (j+1) ( w;(2/T1B)¥
i _]—Zl V 2]+IB H A/ (LlOgL)l"K(W,’)II;!

10 oo 1-xk)
2 |fil Vi (B)™

I <. (

12 H A )l iogryon) ; vis (2741 By
13 =~ |fi!>

5 (5.15 <6l TT @ L1 .

5 s15) <l 1T (% o

' where the last two inequalities follow from (4.4) and (3.1). This completes the proof of Theorem

% 24, O
17

18 For the iterated commutator [Hz;, Tg] , we can also establish the following results in the same manner
19 as in Theorems 2.3 and 2.4. The proof then needs appropriate but minor modifications and we leave
oo the details to the reader.

" Theorem 5.3. Let m > 2 and [HZ,TQ] be the iterated commutator of 0-type Calderon—Zygmund
22 5
5, Operator Ty with 0 satisfying the condition (1.1) and b € BMO™. If 1 < p1,...,pm < 4o and

2— I/m < p<Aoowithl/p=Y",1/piand W= (wi,...,wy) € Ap with w1, ..., Wy, € A, then for any

o= 0 < K <1, the iterated commutator [Hb To| is bounded from LP1-¥ (wy) x LP2 X (w3) x -+ X LPm¥ ()

2 mtoLpK( @) With vig = 1wp/p’

— Theorem 54. Let m > 2 and [Hb Tg] be the iterated commutator of 0-type Calderon—Zygmund
2 operator Ty with 0 satisfying the condition (1.8) and b € BMO™. Assume that w = (Wiyeoywm) €
2 o Aq..ywithwi,...owy €A, If pi=1,i=1,2,. mand p=1/m, thenforanyglvenl>0and
5 any ball B C R", there exists a constant C > 0 such that
-(4)
A

m

: vw(}%mx-[v;v({xeB:HHE,TG](f)(x)|>7Lm}ﬂ <cIJ|e

)

(LlogL)'-*(w;)

34

——
% where vy = [T lwl/m, ®(r) =1-(14logtt) and ") =Po--- 0.
36

37 Finally, in view of the relation (4.17), we have the following results.

—Corollary 55. Let m>2 and b € BMO™. If 1 < pi,...,pm < +oo and 1/m < p < +oo with

E I/p=Y"1/pi, and w = (wy,...,wn) € [T/, A, then for any 0 < x < 1, both the multilinear

4 commutator [Eb To| and the iterated commutator [Hb To| are bounded from LPVX (wy) x LP>* (w,) x

4o o X LPmX(wy,) into LPX(vg) with v = 1wp/‘u’, provided that 0 satisfies the condition (1.1).
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Corollary 5.6. Let m > 2 and b € BMO™. Assume that w = (wy,...,wy) € [I".1A1. If pi = 1,
i=1,2,...,mand p=1/m, then for any given A > 0 and any ball B C R", there exists a constant

1/m
| fil
q’(a)

C > 0 such that (v =TT/, w;")
om (il
(5

VW(;)M : [vw({xe B: |[25,To] (F)(x)| > Am})}m < cﬁ

provided that 0 satisfies the condition (1.6), and

1 m

Vi (B)m~ MGXGB: | [T15, 7] (f) (x)] >Am}>}m§c.n

i=1

)

(LlogL)"-*(w;)

bl

(Llog L)% (w;)

44
=[e]ele|~]ofa]a|e]|r]-~

o provided that 0 satisfies the condition (1.8).
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