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1. Introduction

1

|Bfefe]~]ofo]a]e]n

A convex and compact subset of the Euclidean plane is a constant width shape provided the distance
11 between two parallel supporting lines is the same in all directions. For convenience, we will always
12 assume this distance is equal to one. In addition, we will say that the boundary of a constant width shape
13 is a constant width curve and refer to constant width shapes and their boundary curves interchangeably.
4 A simple example of a constant width curve is a circle of radius 1/2. Indeed, any two parallel supporting
15 lines touch the circle at the ends of a diametric chord. As we shall see below, there are a plethora of

16 curves of constant width.
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— FIGURE 1. A constant width curve with three pairs of parallel supporting line segments.
34

35
36 In what follows, an important example of a curve of constant width is a Reuleaux triangle. This
37 shape is obtained as the intersection of three closed disks of radius one which are centered at the
sg vertices of an equilateral triangle of side length one. In order to check that this shape has constant
39 width, we only need to make the following observation. For any pair of parallel supporting lines, one
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touches a vertex of the associated equilateral triangle and the other touches a point on the circle of

1
> radius one centered at this vertex. As a result, the distance between these lines is necessarily equal to
'3 one. More generally, a Reuleaux polygon is a curve of constant width consisting of finitely many arcs
4 of circles of radius one. We note that the constant width condition necessitates that these shapes have
5 an odd number of sides.
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o (A) A Reuleaux triangle with inscribed (B) A Reuleaux triangle with a pair of parallel supporting
v equilateral triangle. lines.

23
24 A fundamental theorem in the study of constant width curves is due to independently Blaschke [3]
25 and Lebesgue [12].

26

2Z The Blaschke-Lebesgue theorem. Among all curves of constant width, Reuleaux triangles en-
28 close the least area.

29

30 The purpose of this note is to survey two proofs of the Blaschke-Lebesgue theorem. Our aim is
31 to be as self-contained as possible without going too far astray from our goal of understanding why
32 this theorem holds.

33 This note is organized as follows. In the subsequent section, we will review the support function of
34 a constant width shape; this is the principal tool employed throughout this paper. Then we will prove
35 the Blaschke-Lebesgue theorem using variational methods following the approach of Harrell [10].
36 And in the final section, we will verify the Blaschke-Lebesgue theorem using fact that constant width
37 curves can be closely approximated by Reuleaux polygons. This method was first used by Blaschke [3],
38 although our argument is based on an exercise in the classic textbook of Yaglom and Boltjanskii [15].
39 We also acknowledge that there are several other proofs of the Blaschke-Lebesgue theorem including
40 those givenin [7,9, 5, 8, 13, 4].

41 We realize that many of the considerations in this note can be extended to shapes of constant width
42 in the Buclidean space R>. Good references for this three-dimensional shapes of constant width is
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(A) A Reuleaux pentagon for which all circular  (B) A Reuleaux pentagon having boundary arcs
arcs are the same length. We call this curve a  of differing lengths. Such an example is an
regular Reuleaux pentagon. irregular Reuleaux pentagon.

e e
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19

0 the survey by Chakerian and Groemer [6] and the recent monograph by Martini, Montejano, and
1 Oliveros [14]. However, despite several notable efforts such as [4, 1, 2], an analog of the Blaschke-
2 Lebesgue theorem has not been established for constant width shapes in R3. As a result, we will
?®_ focus our attention on planar shapes. Our motivation is to give a clear and thorough account of the

?*_ two-dimensional theory which may have a chance of being extended to the three-dimensional problem.
25

26

= 2. The support function

28 1In this section, we will study a basic concept used to analyze convex shapes. Suppose K C R? is

29 compact and convex. For a given 0 € R, set
30

31 h(6) =maxx-u(0),

o xeK

32

33 where u(0) = (cos(0),sin(0)). This function 4 : R — R is known as the support function of K since
a4 the set of x € R? with x-u(0) < h(8) is the supporting half-space of K which has outward normal
35 u(0).

36 As K is equal to the intersection of all half-spaces which include K, it follows that

QD K= (] {xreR*:x-u(6) <h(6)}.

— 0eR
39

g That is, x € K if and only if x-u(0) < h(0) for all 6 € R. It particular, a convex shape can be recovered
41 from its support function. It is also not hard to verify that for any y € K, h(0) —y-u(0) is the distance
42 from y to the supporting line of K with outward normal u(0).
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1
s u}(\@) h(8) =z - u(f)
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19 FIGURE 4. This figure is the geometric interpretation of the value 4(0) as the distance
20 from the origin to the line which supports K and has outward normal u(6).

22 Note that & is continuous and 27-periodic. In the sequel, we’ll write 2 € C(S) for any function
23 with these properties. It will also be useful for us to characterize which functions in C(S) are support
24 functions. The inequality in part (ii) of the following proposition was first noted by Kallay [11].

25
s Proposition 2.1. Suppose h € C(S). The following are equivalent.

o7 (i) h is the support function of a convex and compact K C R2.
os (ii) Foreach @ € Rand ¢ € [—n/2,7/2],

2 H(O+9)+h(8 — 9) > 2h(6)cos(9).
Z:) (iii) For each smooth f : R — [0, 0) with compact support,

5 (2.2) / h(6 +£(6))d0 > 0.

2: Proof. (i) = (ii) Using the angle sum-to-product formulae for sine and cosine, we find
38 u(@+¢)+u(@—9¢)=2u(6)cos().

3Z Therefore,

Z% (2.3) 2x-u(@)cos(¢) =x-u(0+¢)+x-u(0—¢) <h(06+¢)+h(6—9)

‘Eforxé[(. Since cos(¢) > 0 for ¢ € [—m/2, /2], we also have

o 20(0) cos(9) = max2x-u(0) cos(9) < h(0 +9) + (60— ¢).
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= (iii) Suppose f : R — [0,0) is smooth and has compact support. Then for ¢ € [—7/2,7/2]
0,

= =
<

2/\

h¢

\H\

(2.4) OS(])Z/f 7(0 + 9) + h(6 — §) — 2h(6) cos(9)) dO
2.5) s /]R h(0) (£(8 + )+ F(6 — ) — 2£(8) cos(¢)) O

~ Byour assumptlons on f, we can send ¢ — 0 in the integral above to get

0< [ 1(O)("(6)+£(6))d0

(iii) = (i) For € > 0, we consider the mollification of A: set

— [ n* (oo~ 0)dg
R

° for @ € R. Here n¢(r) = £ 'n(¢/e), and n : R — [0,0) is a smooth symmetric function which is
7 supported in [—1,1] and [ 1(t)dt = 1. As h € C(S), it is routine to show 4 converges to / uniformly.

1 .
8 Moreover, h¢ is smooth and
19

AAA_.
Mw\w\ﬂ\o ofe|~[ofo]a]o]n]-
~~
§
=)

N—"

-
| &

20 (27) (h*)"(8)+h(6) = /R [(n®)"(#)+n®(9)] h(6 — §)d¢
w 28) = [ ()6 =6)+n*(6— 9] n(0)dg
2(2.9) >0

-5 foreach 6 € R.

o5  Foru#0, we define )

27 HE(u) = ulh®(6), ueR

28 where 6 € R is chosen so that u/|u| = u(6); and when u = 0, we set H®(u) = 0. Note that H® is
29 positively homogeneous and satisfies

80 HE(u(6)) =h*(0)
- for each 6 € R. In particular, H¢ is smooth away from the origin and direct computation yields
s DH®(u)-u=H*®(u) and D?HE (u)u = 0 for u # 0. It follows that

2 D’H®(u(6))(cu(8) + Bu'(6)) - (ou(6) + Bu'(8)) = B*((h°)"(6) +h°(6)) > 0.

% We conclude H¢ is convex. Sending € — 0, we find that H converges locally uniformly to a positively

% homogeneous and convex H : R? — R which fulfills

37

% h(6) = H(u(6))

SE for all 6.

40 Define K as in (2.1) with the & we are currently studying, and let h be the support function of K. Fix
41 6 € R. First observe that

42 h(0) = max{x-u(6):x € K} <h(9),
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as h(0) > x-u(0) for all x € K. We leave it as an exercise to show that

H(u(8)) = p-u(6)

for any p belonging to the subdifferential of H at u(8). In particular, for any v € R?,

H(v) > H(u(8))+p-(v—u(8))=p-v.
Thus, h(6) = p-u(0) and h(¢) = H(u(¢)) > p-u(¢) for all ¢ € R. It follows that p € K and
) <

h(8) = p-u(8) < h(6).

9 As aresult, & is the support function of K. O
11

12 Corollary 2.2. The support function h is twice differentiable for almost every 60 € R and

% H'(68)+h(6) >0

15 at any such 6.

jele|~]ofa]s]ofm]-

16
I Proof. By the previous proposition,

12(2‘10) h(9+¢)—2l;(29)~|—h(9—¢) 22<COS($Z)_1)h(6)

2% for all 0 and each ¢ € [—m/2,7/2] with ¢ # 0. Since 1 > cos(¢) > 1— 7(1)2 we find
22 h(0+¢) —2h(6) +h(6 —

- ©+0) O THO0)

24
25 forall @ and 0 < |¢| < /2. It follows that there is a constant b for which h(0) + 267 is convex. By

o6 Alexandrov’s theorem, 4 is twice differentiable for almost every 0 € R. If & is twice differentiable at 0,
»7 we can send ¢ to 0 in (2.10) to get 2”(0) > —h(6). O

?®_ Remark 2.3. For a convex and compact K with a smooth boundary, 4”(0) + h(6) is the radius of
z% curvature of the boundary point with outward unit normal u(6).

81 2.1. Support function of a constant width curve. Let us now refine our consideration to constant
82 width curves. We will use the fact that constant width shapes are strictly convex (Theorem 3.1.1 of
33_[14]). In particular, if K C R? has constant width, then for each 8 € R there is a unique y(0) € dK

34 such that
35

3E (2.11) h(0)="7v(0)-u(0).

57Tt turns out that this implies / is actually continuously differentiable.
38

30 Lemma 2.4. The mapping y: R — 9K is continuous and
= H(0) =v(6) 1 (6).

41
ﬁgfor all 8 € R.
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i Proof. Suppose 6 — 6 as k — 0. As Y(6;) € JK, there is a subsequence y(6;) which converges to
2 some & € JK. Moreover,

h(8) = lim h(6y,) = lim y(6,,)-u(6k,) = & -u(6).

Jree

By uniqueness, & = (0). As this limit is independent of the subsequence, ¥(6;) — ¥(0). We conclude
that ¥ is continuous.
Fix 0 € R, and note that as ¥(0) € K,

h(6+17)>7v(0) -u(6+1)

jefe|~|ofo]s]e]

for each 7 > 0. Therefore,

—_
o

1 h(6+1)—h(0) u(0+1)—u()
E T = /}/(9) : T ‘
13 Likewise, we find

14 h(0+f)—h(6)<y(9+r).u(6+r)—u(9)
15 . = :

16 As a result,
17

h(6 +7) —h(0)

s I — ¥(0) - u(6).

o Jim MO0 70) u(6)

19 Virtually the same considerations for 7 < 0 lead to

20 . h(6+7)—h(6

. tim YOI RO _ ). u().

— 70~ T

22

55 We conclude that I (0)=7y(0) -u'(0) exists and that & is continuously differentiable. O

21 In the proposition below, we will say f € C"!(S) provided f : R — R is 27 periodic, f is continuous
25 differentiable, and f” is Lipschitz continuous.

26
- Proposition 2.5. Suppose K has constant width. Then

28 h(6+m)+h(6)=1
?°_ for all 6 € R. Moreover, h € C11(S) and

30

31 0<H"(8)+h(0)<1

32 for almost all 6 € R.
33

52 Proof. Fix x € K. Recall that the distance from x to the supporting line with outward normal u(8) is
55 1(0) —x-u(0). Likewise, the distance from x to the supporting line with outward normal u(6 + ) is
26 (0 +m) —x-u(0+x). Since u(6 + 1) = —u(0), the distance between these supporting lines is equal
57 (O

v h(O+m)—x-u(0+m)+h(0)—x-u(@)=hn(0+m)+h(6).

39 As K has constant width, it must be that 2(6 + ) +h(6) = 1 for all 6.

40 Select a 6 for which 1"(8) exists. As h(¢ +m) = 1—h(¢) for all ¢, h is twice differentiable at
41 0+ m, as well. Moreover,

42 W (6+m)=—h"(0)
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o
=
o

B'(0)+h(0)=1—[n"(0+r)+h(0+7)] <.
We have also already concluded A" (0) +h(6) > 0 in the previous proposition. As
—h(8) <H'(8) < 1—h(6)

for almost every 6 € R, /" is an essentially bounded function. As a result, /' is Lipschitz continuous.
O

oo |~fofoafs]e]r]-

.o Remark 2.6. The inequality h"(8)+h(6) < 1 implies that the curvature of a smooth constant width
;; curve is always greater than or equal to one.

2 The subsequent assertion is a converse to some of the facts derived above. It is also a useful tool in

'3 generating shapes of constant width.
14

E Proposition 2.7. Suppose satisfies h : S — R satisfies
16

- hecti(s)
18 h(0+m)+h(@)=1forall @ cR
19 1"(0)+ h(0) > 0 for almost every 6 € R.

20
51 Then h is the support function of the constant width shape K defined in (2.1).

2 Proof. Since h € C1! (S), K is Lipschitz continuous. Thus, for smooth f : R — [0, ) with compact
Z% support we may integrate 1(6) f”'(0) by parts twice to find

2. [ 1O)(r"(8)+£(6))d6 = [ (1'(6)+(6))f(6)d6 > 0.
26 R R

27 As explained in our proof of Proposition 2.7, & is the support function the convex and compact K

28 defined in (2.1). Since h(0 + 1) +h(6) = 1 for all 8, K has constant width. O
29

:ﬁ Let us study a few examples.
31
5> Example 2.8 (Disks). The support function of the circle of radius 1/2 centered at a € R? is given by

s 1
3 h(6) = |x_r£1‘z;xl/2x- u(0) = ‘x_rzﬁzg/z(x—a) ‘u(0)+a-u(@)= 3 +a-u(0).
35

36 Example 2.9 (Reuleaux triangle). Suppose K is a Reuleaux triangle with vertices

37
- 1 1 1 1 1

o 12 (333) (335) ma (0-75).

o 212 223 223 V3

g If u(0) is an outward normal to dK at a vertex a, then h(6) = u(0) - a. Furthermore, if u(6) is an
41 outward normal to dK at a circular arc centered at b, then h(0) = 1 +u(6) - b. Combining these

ﬁg observations with some elementary case analysis leads to the following expression for the support
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function of K. For 6 € [0,27],

1

2 , 11 p
=~ 2°2 3
B V3

S5 |+ u(6) <O 1) 7r<9<27r
6 u . T , — < < —
B /3 3 3
8

— 1 1 27

B uw»(—,), % g<n
; 223 3

o (2.13) h(6) =

— 1 1 4
e 1+u9-<,>, r<o< ¥
14

= 1 41 5w
5 0) (0, —— — <0< —
o o) (0.-75). T o<
17

18 1 1 T

e Y “Z<e<2nm.
- \1+u(9) < 2,2\/§>, 3 <6<2&m

20 Example 2.10 (regular Reuleaux polygons). We can build on our example above to express the support
?!_ function of a regular Reuleaux polygon. This is a Reuleaux polygon in which the lengths of the circular
°2 arcs forming the boundary are all equal. Suppose N > 3 with N odd, and set

23
sin (%”) —sin (W) cos (%”) —COS (W)

24
2sin (%) T 2sin (Z)

25 Xk =

26

27 fork=1,2,...,2N. Next define
28

29

30 (2.14)
31

32

33 It is straightforward exercise to verify that / is a support function of the N-sided regular Reuleaux
34 polygon with vertices x1,x3,...,xy_1. The Reuleaux triangle described in the example above is the

35 case N = 3. We've also displayed the case N = 5 in Figure 3a.

Xy u(0), for 6 € [(kfl)”,%”] andk=1,3,...,2N— 1

N

h(0)
X (k*])ﬂ' km o
1 —x;-u(@), fore [7N ,—N] andk=2.4,...,2N.

z% Example 2.11 (Perturbation of a disk). Using Proposition 2.7, we can design a curve of constant width
.5~ Starting with any g € C1(S) which satisfies

39

“0 forall 8 € R. For § > 0, set
41

42

7 Mar 2023 14:48:06 PST
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for 8 € R. Note that # € C1!(S) and

h(0)+h(0+7m) =1
for all 8 € R. Also note for almost every 8 € R,

[ o] afe]o]~

W(6)+h(8) = 3 +5(5"(6) +(6)) > 0

7 provided 6 > 0 is chosen sufficiently small. By Proposition 2.7, / is the support function of a constant
8 width curve.

1o Remark 2.12. 'We used this method to create the curve in Figure 1. For that specific example, we chose
;7 6 =1/160 and g(6) = cos(30) +sin(70).

12

13

14

15

16

17

18

19

20

21

22

23

24

o FIGURE 5. On the left is a regular Reuleaux septagon K, and on the right is a circle

oo K, of radius 1/2; the middle curve is the convex combination (4/5)K; + (1/5)K5.

27

28
oo Example 2.13 (convex combinations). Examples of constant width shapes can also be designed by
— forming convex combination of constant width shapes. In particular, it is routine to verify that if
o K1,K> C R? are constant width shapes and A € [0, 1], the support function of

32 (1 —;L)Kl +1K2 = {(1 —l)xl —|—7sz S Rz 1x1 €Kp,x € Kz}

B s (1 = A)hy + Ahy. As (1 —A)h; + Ah; satisfies the hypotheses of Proposition 2.7, (1 —A)K; + AK>

s also a constant width shape. See Figure 5 for an example.

35
SE 2.2. Parametrization of a constant width curve. 1t is possible to parametrize the boundary curve of a
37 constant width K using the support function of K. To do so, we will write an explicit formula for y(6)
38 discussed in (2.11) and identify a few properties of this path.

39

0 Proposition 2.14. Suppose K C R? has constant width and h is the support function of K and define

o ViR— dK via (2.11). (i) For 0 € R,

42 ¥(0) =h(0)u(6)+h(0)u'(0).
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230307-Hynd Version 1 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

THE BLASCHKE-LEBESGUE THEOREM REVISITED 11

1 (ii) For 6 € R,
2 Y(0+7) =vy(6)—u(6)
3 (iii) y is surjective.
* (iv) yis injective on any interval (8y,0,) C [0,27] for which

5

& (2.15) h'(0)+h(8) > 0 for almost every 6 € (6, 0;).

7 (v) For 6,6, € R,

— @.16) [7(61) = 7(62)] < |61 — 63].

E Proof. (i) As {u(0),u'(8)} is an orthonormal basis of R,

% 7(0) = [¥(6) - u(6)]u(0) + [y(6) -/ (6)]u'(6) = h(6)u(6) + H'(6)u'(6).

13 (i) This follows directly from the constant width condition ~(6 + ) +h(0) = 1. (iii) For each x € JK,
14 there is at least one supporting plane for K which includes x. It follows that there is 6 such that
15 h(0) =x-u(6). This in turn implies y(0) = x.

16 (iv) Suppose that y(¢y) = y(¢) =: x € IK for ¢y, € (60, 0;) with ¢y < ¢;. Then x € JK has
17 two distinct supporting lines i(¢o) = y-u(¢o) and h(¢;) =y - u(¢;). It follows that h(0) = x - u(0) for
180 € (¢1,¢1), which contradicts (2.15). As a result, ¥ is injective on (6, 6;).

19 (v) Direct computation gives

20 i /

2 @) 7(6) = (1'(6) + h(6))u (6)

22 for almost every 6 € R. Since 0 < h"(8)+h(6) < 1, |Y(6)| <1 for almost every 6. Therefore,
23 |7(61) —¥(62)| < |61 — 6| for all 6;,6, € R. O

24

s A nice consequence of the above proposition is following.

26 Theorem 2.15 (Barbier’s theorem). The perimeter of a constant width curve is equal to T.
27
g Proof. Let h be a support function of a constant width curve and y the corresponding parametrization

oo discussed in the previous proposition. In view of (2.17), the perimeter of the curve is

30 27 m 2m 1 2m

. /0 17(8)|d6 = /0 (H'(0) + h(6))d6 = /0 h(6)d6 — 2/0 (h(6 + 1) +1(6))d6 = 7.

2. 0
33

34 Corollary 2.16. Among all curves of constant width, circles of radius 1/2 enclose the most area.
35 Moreover, circles are the only curves of constant width attaining the maximum possible area.

* Proof. Suppose K C R? is constant width shape and that K encloses area A. Barbier’s theorem implies
e that the perimeter of K is equal to 7. According to the isoperimetric inequality, 47A < 7> and equality
o holds if and only if K is a circle. We conclude as any circle of radius 1/2 has area 7/4; and if A = /4,
o equality holds in the isoperimetric inequality. O

E It will also be useful to express the area of a constant width shape in terms of the support function.
42 We will use A(K) to denote the area of a convex and compact K C R2.
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Proposition 2.17. Suppose K C R? has constant width and h is the support function of K. Then

h" h
0=3 ) nrs

Proof. We will employ the parametrization y = (', y?) discussed above. As Since ¥ is Lipschitz
continuous and parametrizes dK counterclockwise, Green’s theorem gives

(2.18) A(K):;/OM (P (P -1 2/ h(1'+h)d

11 Remark 2.18. It is sometimes useful to integration by parts and express the area of K as
12

. / — W)

. 2

15 Example 2.19. Suppose N > 3 is odd and K is the N-sided regular Reuleaux triangle with support
16 function & given in example 2.10. The area of K is

jele~]o]a]s]e]m]-

—_
o

7 (2 19)
/ h”—l—h 1 %/kﬂ'/N h(h,/+h)d9
20 2 2k 1/ (k=1)z/N
= : o ( (6))
22 (2.20) _ / L reu(B\46
ZE 2kezven (k—=1)m/N k
. 2.21) 1 T (sin (4) —sin ((k‘;)”))2+ (cos (%) — cos ((k_N””))Z
5 | _2keven N ZSin(%)
27
- by fr 1)
Y o) _2kezven{N_m(]®
30 1 (ﬂ)
31 T —Ccos (%
22 =212
w 2( Zsin(7) )

% Tt is routine to check that this expression increases in N. Therefore, the Reuleaux triangle has the least

 area among all regular Reuleaux polygons.

35

% 3. Variational methods
37
QE Let . denote the space of support functions of constant width curves. That is, & € .7 if and only if

39

o hech(S)
4 h(6+m)+h(6)=1forall 6 € R
2 1"(0)+h(8) > 0 for almost every 6 € R.
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Our goal is to characterize which 4 € . minimize the area integral

We will first argue that a minimizing 4 exists; so it will be important for us to identify a basic

2 compactness property of the space .. To this end, we will need a lemma.
6

7 Lemma 3.1. Suppose h € .. There is a € R? for which
8 0<h(6)—a-ul®)<1

~ forall § € R and
e |h(0) —a-u(6)— (h(¢) —a-u(9))| <1
12 forall 0,9 € R.

1
? 1 2w
o I(h) = / h(H" + h)d6.
2 2 Jo
A
5

'8 Proof. Suppose K is the constant width shape associated with 7 € . and a € K. As K C R? has

4 diameter 1, K is a subset of the closed disk of radius 1 centered at a. This means
15

= a-u(0) <h(0) < 1+a-u(6)

E for 6 € R.

18 Next, fix 0,¢ € R and choose x € K such that 2(0) = x-u(0). Since h(¢) > x-u(9),

— (D) h(0) —a-u(0) — (h(¢) —a-u(¢)) = (x—a) - u(6) — (h(9) —a-u(9))

2 3.2) < (x—a)-u(0) — (x—a)-u(¢)

22 (3.3) = (x—a) (u(0)—u(9))

% (34 < e —al[u(6) —u(9)|

—(3.5) <16 —9.

o6 Similarly, we find

27 h(0) —a-u(0)— (h(9) —a-u(¢)) = —[6 — ¢|.

28 0

29
5 Proposition 3.2. Suppose (K)iew C 7. There is a sequence (a*)en C R? for which

31 H*(6) —d* - u(0)

°2_ has a subsequence which converges in C'(R) to some h € ..

33

34 Proof. For each k € N, choose a* as in the previous lemma. Then #*(8) —a* - u(8) is a uniformly
35 bounded and equicontinuous family of 2w —periodic functions. By the Arzeld-Ascoli theorem, there
36 is a subsequence /*/(0) — a*i - u(6) which converges uniformly to some continuous / : R — R. Of
37 course, i is 2w—periodic and h(6 + ) + h(0) = 1 for all 6 € R. In view of Proposition 2.7, we also
3 have

2 h(O+0)+h(0— )= 2h(8)cos(9) = lim HH(0 +9) + (6 — 9) ~ 24 (8) cos(9) 2 0

41 for all @ € R and ¢ € [~x/2,7/2]. Corollary 2.2, Lemma 2.4, and Proposition 2.5 also give that
22 h € CH(S) and #"(0) + h(0) > 0 for almost every 6 € R. Thus, & € .. Finally, as the sequence

k
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1 of 27-periodic functions (h*)'(8) — a* - u'(8) is uniformly Lipschitz continuous (by Proposition 2.5),
2 (W) (8) —da*i -4/ (8) also converges uniformly to /(). O
° Weare ready establish the existence of an area minimizing constant width shape. A minor but useful
* observation we’ll need along the way is that the area of such a shape does not changed if it is translated
% by a fixed vector a € R?. In particular,

= 1(h) = 1(h)

s for hyh € .7 with h(8) = h(0) +a-u(0) for some a € R>.

°_ Corollary 3.3. There is h* € .5 for which I(h*) < I(h) for all h € .
10

11 Proof. Since any constant width shape K has diameter one and I(h) represents an area of such a shape,
12 0 <I(h) < m. Consequently, we may choose a minimizing sequence

s inf{I(h) : h€ .} = lim I(h").
i k—roo

'S By the previous proposition, there is a sequence (a*);eny C R? and subsequence
16

7 Rki(0) = nki(6) —dbi - u(6)

18 which converges in C!(R) to some h* € .. As a result,

19

- . . _ . k

21(3.6) 1nf{1(h).h65ﬂ}—j151301(h 7

L 37) = Tim I(R*))

22 ]

23 1 2 ~

(3.8 = lim 7/ ((R*)? — ((R*)Y)*)de
24 J—=2Jo

Qi 1 2m 2 *\/\2

% (39) =5 =y

27 .

. (3.10) =I(h").

2E O
30

o We now discuss an important necessary condition for minimizers of /, which was derived by Harrell
— [10]. A crucial element of the proof is that for a bounded, measurable, 27-periodic g : R — R which

— satisfies
33

— 2 2

% (3.11) / g(e)cos(e)de:/ 2(6)sin(0)d6 =0,
35 0 0

BE there is f € C!(S) which solves

37 1'(6)+f(6) =2(6)

% for almost every 0 € R. Indeed one way verify
39

w0 7(0)= [ sin(0—0)s(0)d9

41
g is a solution. See Theorem 4 of [11] for a proof of this assertion.
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1 Lemma 3.4 (Harrell’s Lemma). Suppose h € . minimizes I : . — R and

2 21 21

< (.12) /O h(8)cos(0)d6 :/0 h(6)sin(6)d6 = 0.
* Then

% {6 €R:h(0) <1/2and K" (6)+h(6) >0}
F and

. {6 €R:h(6)>1/2and h"(6)+h(0) < 1}
9 are null sets.

19 Remark 3.5. The condition (3.12) is equivalent to the Steiner point of the associated constant with

n shape being at the origin.
12

13 Proof. We will show

" E={6€R:h(0)<1/2and "(6)+h(6) >0}

16

17 E,= {0 cR:h(6) <1/2and h"(6)+h(6) > 1/n}

is a null set; the remaining assertion will follow from a similar proof. To this end, it suffices to prove

% is a null set for each n € N as
o E=JE.

- neN

' Fixn € N and set

22

s 8(8) = —x£,(0) + xg,+x(0) —a-u(0)
ot for 8 € R. Here a € R? is chosen so that g satisfies (3.11). It is also evident that that g is bounded,

o measurable, and 27 periodic. As mentioned above, there is f € C 1,1 (S) which solves

26 f(0)+£(0) =g(0)

?”_ for almost every 0 € R.
?®  Since g(6 4+ ) = —g(8) for all 6 € R, we have
29

30 f(0+m)+f(0+m)=¢g(6+m)=—g(0)=—(f"(0)+(6))
81 for almost every 6. Thus,
%2 f(O+m)+f(0)=b-u(0)

2% for some b € R?. And since f is 27 periodic,
35 fO)+f0+m)=f((0+m)+7n)+f(0+7)=b-u(6+7)=—b-u(0)=—(f(0+7m)+ f(0))
36 for all 8. As a result,

- 313) f(6+7)=—1(6)

3E for all 6, as well.
40 We claim that for all small enough & > 0, h+8f € .. Itis clear that 2+ 6 f € C1!(S), and in view
41 of (3.13),

42 (h+6f)(0+m)+(h+0f)(0) =1
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for all 8. Observe that if 4 and f are twice differentiable at 8, then

1
2

o H'(8)+h(0), 0 E,N(E,+T)
4 h'(0)+h(0), 0 cESN(E,+m)°
- (h+57)(6)+ (h-+ 61)(8) = " (O HAE) (Ent %)
5 W(0)+h6)—6, O6€E, 6¢(E,+m)
5 W(0)+h0)+6, O6&E, 6c(E,+m)
7

E is nonnegative provided 0 < 8 < 1/n. This proves the claim.

9 In addition, since & is minimizes / among all functions in .

10

I(h) <I(h+8f), &€ (0,1/n].

—_
—_

2 However, if E, N [0,27] has positive measure, we find a contradiction as

b I(h) —I(h+ &)

14 .

s o

ia 27t

2 (3.15) — / +£(6))d0

18 27r

o (.16 —/ x5 (8) + x5, +2(6))d6

20 27

2 (317) = [ ()= 1/2)(~25,(6) + 25,1x(68))d

21 27r

5 (18 = [ 0)-1/2)5,(0)a0 + [ (h(0)1/2)25, ()40
2i 21 21

25 (3.19) :—/0 (h(@)—l/Z)xEn(G)dG—/O (h(8+70) — 1/2) 1, (0 + 7)d6
26

27 (3.20) =2 (h(0)—1/2)d®

o8 E,N|[0,27]

o (321) 0.

Z% Here we used that & satisfies (3.12), 2(0 + ) +h(6) = 1 for all 6, and the measure of E, N [0,27]
o is the same as the measure of (E, + ) N [0,27x]. The latter fact follows as E, N [2wm,2x(m+1)] =
. 2xm+E,N[0,2n] for each m € Z. As aresult, E, N [0,27] is a null set, and therefore, E,, is also a null
— set. O
34

% We are just about ready to issue our first proof of the Blaschke-Lebesgue theorem. A final technical

% assertion needed in our proof is as follows.
37

38 Lemma 3.6. Suppose 0 <b—a <.
39 (i)The unique hy : [a,b] — R which solves

40
o {hg(e) +ho(8) =0, 0€la,b
1

42
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1 additionally satisfies
z hy(a+) = tan <_> and hy(b—) = —tan (_>
: (ii) The unique h; : [a,b] — R which solves
= {h’{(e) +hi(0)=1, 6¢€ab]
"y hi(a) =h(b)=1/2
9

also fulfills
, b—a , b—a
1 hi(a+) = —tan 5 and hy(b—) = tan 5 )

12
13 Remark 3.7. We could integrate the above equations explicitly. However, we will only need to know
14 their endpoint derivatives below.

—_
o

—_

% Proof of the Blaschke—Lebesgue theorem. Suppose h € . minimizes I : .¥ — R and that # satisfies
— (3.12). Recall that 2 # 1/2 or else & would maximize /. Assume there is ¢ € R for which h(¢) > 1/2.
o As h is continuous, there is some maximal interval [0, 6;] including ¢ such that h(6) > 1/2 for
o 0 € (6p,6,) and h(6y) = 1/2 = h(6;). By Harrell’s Lemma,

20 h'(8)+h(6) =0 for almost every 8 with h(0) > 1/2.

21
5, In particular, h"(0)+ h(0) = 0 for almost every 6 € [0y, 0;]; and since & is continuous, this equation
s actually holds at each 6 € (6, 6;). By Lemma 3.6,

24 / o 0, — 6
- h(91—)——tan( 7 )

= By an analogous argument, there is maximal interval [0y, 6;] for whichh < 1/2 and " (6)+h(6) =1

% forall € (6;,6,). Lemma 3.6 gives that

= h/(91+)=—tan<92;91>.

30

31 . . . . . .
- Since £ is continuously differentiable, it must be that

% tan (D 20) _an (22O
34 2 2 '

*_ Since tan is increasing on (0,7/2), 6; — 6y = 6, — 6. That is, both of the maximal intervals we
% discussed have the same length.

%" We can continue this argument to conclude that 4" + h is a function which alternates between 0 and
%® 1 on intervals of the same length. As a result, / is the support function of a regular Reuleaux polygon.
i% As we noted in Example 2.19, 4 must be the support function of a Reuleaux triangle. O

E Remark 3.8. This proof shows that an area minimizing shape of constant width must be a Reuleaux
42 triangle.
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1 4. Approximation by Reuleaux polygons

2 n pursuing another strategy to prove the Blaschke-Lebesgue theorem, we will argue that each shape of
3 i : L

e constant width can be closely approximated by a Reuleaux polygon. Our proof is inspired by Theorem

- 6 of Kallay’s paper [11]. The following assertion also implies that Reuleaux polygons are dense within

o the space of constant width shapes in the Hausdorff topology.

Z Proposition 4.1. Suppose K is a constant width shape with support function h and € > 0. There is a
8 Reuleaux polygon K¢ with support function he such that

o |h(0) —he(0)| <& and |W(0)—h.(0)<e

10

E for each 6 € R.

2 Proof. 1. By replacing h with

13 _ h+o

14 ST 1428

15 for & > 0 and small, we may suppose that the corresponding parametrization ¥ is injective. Indeed, it
16 is routine to check that h5 € . and

7 h'(0)+h(6)+28 25
"
>
e h5(6) +hs(6) = 1425 ~ 1425
" for almost every 0. Part (iv) of Proposition 2.14 gives that the parametrization associated with hg is

20 . . .
— injective. Moreover,
21

>0

3 1(6) ~h5(0)] < 155120(0) 1]
23 and
% 1 (8) — Hs(6)| < 1i‘sz(slh’( )|

2E for all 8. Since & and /' are bounded functions, hg is a C! approximation of 4 with the desired
27 properties mentioned above. Consequently, we will suppose that y is injective.
28 2. Suppose n € N with

29 Zl <e

30 n

51 and set .

o in

32 0=

% fori=0,...,n. Foreachi=1,...,n, we consider the 4-tuple of points

34

% {7(6:),7(6i-1),7(6; + ), ¥(6;-1 + 7)} C IK.

36 By our assumption that ¥ is injective, these are four distinct points.
37 There are two solutions z € R? for which

Z% 2= 7(6)] =z —y(6i-1)| = 1.
.o Let z; be the solution z which additionally satisfies [z —y(6; 4 )| < 1 and |[z—¥(6;—1 + )| < 1. See

4, Figure 6. Also observe that
2 (4.1) Y(6:) —zi=u(y;) and Y(6i1)—z =u(¢)
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. 7(6:)
2
= ‘
4
5
6
7
5
9
H
"
o
I ::
16 :
v “ (6 + )
18
19 FIGURE 6. This diagram illustrates how we can construct a Reuleaux polygon which
00 approximates K. We simply partition the interval 0 = 6y < --- < 8, = 7 and replace
o1 the part of JK between y(6;_1) and y(6;) with an arc of a circle as shown in this
0o diagram. Then we choose vertices on the other side of K to ensure the resulting curve
o3 has constant width.
o4
25 for angles ¢; and y; with
dl 01 < ¢ <y <6
% 3. Define
e Y(6i-1)-u(6), 6 €61,
20 he(0) = 1+2zi-u(0), 0 € [¢i, vi]
31 v(6:)-u(6), 6 € [y;,6]

32 for 6 € [0, ] and extend ¢ to [m,27] by setting

33

SE It is straightforward to employ (4.1) and show /¢ extends to a 2w —periodic function which is continu-
36 ously differentiable on R. As Ay + he alternatives between 0 and 1 on successive intervals, /¢ is the
37 support function of a Reuleaux triangle.

38 Suppose 0 € [0,7] and choose i = 1,...,n such that 6 € [6,_1,6,]. If 6 € [6;_1, ¢;], then

o (42) 1(8) — e (8)] = [Y(6) - u(8) ~ ¥(6i-1) - u(6)]
b 43) = 1(7(8) ~7(68:-1)) -u(6)]
42 (4.4) < |7(6) = v(6i-1)|
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1 (4.5) <6-6,_,
2 T
= (4.6) <Z
3 n
4 (4.7) <e.

° Here we used the Lipschitz estimate (2.16). By virtually the same argument, |(8) — ¢ (8)| < € when
° 6 €[y, 6;). Moreover, if 6 € [¢;, v,
7

o (48) 1(8) — he(8)] = 7(8) -u(8) = (14 u(0))|

9 (4.9) =17(6)-u(6) — (u(6) +2) u(6))]
9 (4.10) < |7(8) — (u(6) +2)|

pICRIY < [7(8) = 1(8)] +[¥(8:) — (u() +2)]
o @12) = [7(6) = ¥(8)| + |u(ys) — u(6)|

14 (4.13) <6;—0+y,—06

o @1 <

e .

17 (4.15)
1

8
1o We conclude

20 |1(6) —he(6)] < €

21 for 6 € [0,7]. Since (0 +7) =1—h(0) and he(0 + 1) = 1 — he(0) for 6 € [0, 7], the estimate above
22 also holds for all 6 € [0,27]. Finally, the bound

= K (6) —he(6)| <&
24
o forall @ € [0,27] follows very similarly. We leave the details to the reader. 0

26 Employing the proposition above, we will argue that for any (possibly irregular) Reuleaux polygon
27 the Reuleaux triangle has least area. This assertion is verified in the solution to problem 7.20 in
28 [15] and we shall follow this solution closely below. To this end, we will first need to establish a
29 technical lemma. Let us denote C(x) and D(x) for the circle and open disk of radius one centered at x,
30 respectively. If y,z € C(x), we will write yz for the shorter segment within C(x) which joins y and z;
®1 by abuse of notation, we will also write yz for the length of this arc. In addition, A(abc) will denote a
%2 curvilinear triangle bounded by line segments or arcs of circles of radius one with vertices given by

33 > a,bandc.
34

35 Lemma 4.2. Assume p,q,r,s € R> with |p — q| < 2, and that s and r are on the line segment between
36 p and g with

a7 [s—pl=lr—ql =1

38 Suppose a € C(p)ND(q) and c € C(q) N D(p) with

X la—c|=1.

40

a1 (i) If as > cr, then A(A(asq)) > A(A(cpr)).
42 (ii) The area difference A(A(asq)) —A(A

—~

(cpr)) is nondecreasing in the length difference as — cr.
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1

2

3

4

5

6

7

8

9

10

1"

12

13

14

15

16

17

18

19 FIGURE 7. This is a reference diagram to keep in mind when reading Lemma 4.2.
20 Lemma 4.2 asserts that the area of the curvilinear triangle with vertices a, s, and ¢ is
o1 at least as much as the curvilinear triangle with vertices ¢, p, and r provided that the
0o length of arc joining a and s is no less than the length of the arc joining ¢ and r.

23
24 Proof. (i) Since |s—p|=|r—q|=1and g,s,r, p are collinear, |p —g| = |¢g—s|+1 =1+ |r— p|. Thus,
25 |g—s| = |r—p|. As as > cr, we can place a curvilinear triangle which is congruent to A(cpr) within

%5 A(asq). Consequently, A(A(asq)) > A(A(cpr)). See Figure 8.

2L (ii) Now suppose we have two other pomts aand ¢ witha € C(p)ND(q), ¢ € C(q) ND(p), and

— |a —¢| = 1. Also assume @s — ¢r > as — cr > 0. This is the case provided that

30

31
5> See Figure 9. As we saw in part (i), A(A(asq)) > A(A(asq)) and A(A(cpr)) < A(A(cpr)). Therefore,

o A(A(asg)) — A(A(epr) = A(Alasq)) — A(Alepr)) = 0.

aEEs and ¢€cr.

34

35 O
368 Proof of the Blaschke-Lebesgue theorem. It suffices to show that a Reuleaux triangle 7 has least area
87 _among all Reuleaux polygons. Indeed, suppose K is a constant width curve and K, is a Reuleaux
38 polygon with

89 A(Ke) <A(K)+¢€

40
4, Such a Reuleaux polygon exists by Proposition 4.1. If A(T) <A(Kg), then

42 A(T) <A(K)+e.
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. ¢, p
2
K :
p S, T
5
6
i .
8
9
10
1"
12
13 C
. ;
15
16
17 WP
18
19 FIGURE 8. Here we take a curvilinear triangle A(c’p’r’ ) which is congruent to A(cpr)
20 and place it within A(asq). Note in particular, that ¢’ is on the circle of radius one
o1 centered at p and that ¢’ is between a and s. Also note ¥ = s, and p’ = ¢. This implies
22 A(A(asq)) > A(A(c'p'r)) = A(A(cpr)).

24

25 As this would hold for any € > 0, A(T) < A(K) and we would then conclude the Blaschke-Lebesgue
26 theorem.

27 1In order to prove the claim, we will argue that that for any N-sided Reuleaux polygon P, with N odd
28 and N > 3, there is another Reuleaux polygon P’ with N — 2 sides and having smaller area than P. In
29 finitely many steps, we could then deduce that the Reuleaux triangle has area less than P. To this end,
30 choose a pair ¢,d € P of neighboring vertices for which the distance between ¢ and d is as small as any

::% other pair of neighboring vertices. Let g the vertex opposite cd. There are a pair of arcs bg C C(d) and
5 ga C C(c) in the boundary of P. There are also two solutions z of the equations

84 b—z|=|a—z]=1.
35

36 —~
- We define p = z to be the solution closer to the arc cd.

38 We will construct a new Reuleaux polygon P’ from P by replacing the arc cd with the union of two

39 arcs cp and pd and by replacing the two arcs bq and qa with the arc ba C C(p). See Figure 10. It is
40 routine to check that P’ has constant width. Moreover, p is a vertex of P’ while c,d and ¢ are no longer
41 vertices. In particular, P’ has N — 2 vertices. Furthermore, we claim that the curvilinear triangle A(abq)
42 has more area than A(cdp). Establishing this claim would complete our proof.
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RS q
2
s
A
5
6
7
8
9
10
1"
12
13
14
15
16
17
18
19 FIGURE 9. This diagram helps explain why the area difference A(A(asq)) —A(A(cpr))
20 increases with the length difference as — cr. The key observation is that any pair
21 a@,c with @s —¢r > as — cr > 0 must be arranged as in this diagram. In particu-
22 lar, A(A(asq)) > A(A(asq)) and A(A(cpr)) < A(A(cpr)), which implies the asserted
23 monotonicity.
24
v It follows from our choice in neighboring vertices of P that cﬁ) > c?l That is,
27 (4.16) as+sb > cr+rd
28
oo for points s and r which lie on the line segment between p and g with |s — p| = |[r —g| = 1. If
0 @17 as>cr and sb>rd,
31
5> then Lemma 4.2 (i) implies
8 A(A(sqa)) = A(A(cpr)) and  A(A(sqb)) = A(A(dpr)).
34
— As aresult,
35
36 (4.18) A(A(agb)) = A(A(sqa)) +A(A(sqb))
87 (4.19) > A(A(cpr)) +A(A(dpr))
Z% (4.20) = A(A(cpd)).

40  Alternatively, let us suppose that one of the inequalities (4.17) goes the other way. For example,
41 let’s assume

42 s>cr and sb<rd.

—~ o~
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2 FIGURE 10. A Reuleaux polygon P as described in our proof of the Blaschke-
22 Lebesgue theorem. We obtain an auxﬂlary Reuleaux polygon P’ from P by replacmg
;i the arc cd with the two arcs cp and pd and by replacing the two arcs bq and qa with
25 ba. The key here is that A(P) > A(P’) and P’ has two fewer vertices than P’

27 In view of (4.16), we have

28 as—cr>rd—sb > 0.
29
5o By part (ii) of Lemma 4.2,

o1 A(A(sqa)) — A(A(cpr)) > A(A(dpr) — A(A(sqh)).

% Consequently,

o A(A(agh)) = A(A(sqa)) +A(A(sqb)) > A(A(cpr)) +A(A(dpr) = A(A(cpd)).

% We conclude that A(P) —A(P") = A(A(agb)) — A(A(cpd)) > 0, as claimed. O

36
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