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Abstract

In this paper, a new generalized American Options under ψ−Caputo Fractional-Order
Derivative Heston (AOψCFDH) model was investigated. Moreover, a new Numerical Implicit
Scheme Method NISM has been developed for solving the AOψCFDH model. Also, we have
analyzed the stability and convergence of the NISM. Finally, two numerical examples are
proposed in order to show the robustness and the efficiency of both the model AOψCFDH
and the NISM.
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1 Introduction

The recent period has seen a major revolution in the fields of scientific research concerned with

the study and analysis of partial differential equations. Particularly, the interest focused, not

so long ago, on the study of Partial Differential Equations with Fractional Derivative (PDEFD)

[12, 13, 19, 22, 24, 28, 30, 32, 33, 35, 38, 39]. The PDEFD has been studied and applied in various

scientific fields such as medicine [11, 17, 21, 23, 27], engineering, pure and applied mathematics,

physics [2, 3, 5, 6, 7, 8, 9, 10, 21, 25, 29, 36], Stochastic [4, 26] and other fields. In the literature

there are several types of fractional derivatives. We list the most frequently used, for example,

Riemann-Liouville derivative, Caputo derivative, Caputo-Hadamard derivative [1, 15, 20, 37],

Atangana-Baleanu fractional derivative [3, 9, 34] and Caputo-Fabrizio fractional derivative [10].

The application of PDEFD in the mathematical modeling of many natural and realistic

phenomena in the economic and financial fields is still very weak compared to other fields [2, 14,

25, 36, 40]. In [36, 2015], the authors investigated the time-fractional Black-Scholes equations.

The Black-Scholes option pricing equations have been studied with Caputo generalized fractional

derivative in [2, 2019]. In [25, 2022], by using a modified right Riemann-Liouville fractional

derivative and Caputo fractional derivative with ψ(t) = t, we studied the Mittag-Leffler stability

and the numerical resolution of a pricing European options under time-fractional Vasicek model.

For this reason, our interest was focused when we realized the importance of this proposition in

the development of fractal modeling in the economic and financial fields.
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In [31, 2020], the authors studied the American options under integer-order derivative Heston

Model. In this work, we investigated a new generalized American options under ψ−Caputo

Fractional-Order Derivative Heston Model AOψCFDH described by an evolution advection-

diffusion-reaction PDE posed in a fixed two dimensional domain. Moreover, we proposed a new

numerical implicit scheme method NISM for solving the AOψCFDH model. First, we analyzed

the stability and convergence of the NISM. Then, some examples are proposed with numerical

simulations in order to show the robustness and the efficiency of both the model AOψCFDH

and the NISM.

Let’s summarize the novelties of this work. In fact, we have developed several goals which

are as follows:

- Propose and validate a new generalized American options under ψ−Caputo Fractional-

Order Derivative Heston model, (Section 2).

- Adaptation of the splitting method to avoid the undesirable numerical effects of the cross-

derivative term in the PDE, (Section 3).

- Propose a new Numerical Implicit Scheme Method NISM for solving the generalized

AOψCFDH model, (Section 3).

- Analyze the stability and convergence of the NISM, (Sections 4, 5).

- Numerical implementation of the NISM, (Section 6).

The paper is structured as follows. In Section 2, we presented the new generalized American

options under ψ−Caputo Fractional-Order Derivative Heston model. The new numerical implicit

scheme method with the splitting method was given in Section 3. In Section 4, we studied the

stability of the NISM and the convergence of the NISM has been investigated in Section 5.

Finally, the numerical implementation of the NISM and the interpretation of the numerical

results have been given in Section 6.

2 The ψ−Caputo fractional derivative model

Consider the new generalized American options under modified right ψ−Riemann-Liouville

fractional-order derivative Heston model described by an evolution advection-diffusion-reaction

(PDE) posed in a fixed two dimensional domain:

mrDϱ,ψΥ(x, ξ) + 0.5zS2∂
2Υ(x, ξ)

∂S2
+ ρηzS

∂2Υ(x, ξ)

∂S∂z
+ 0.5η2z

∂2Υ(x, ξ)

∂z2
+

rS
∂Υ(x, ξ)

∂S
+ a(b− z)

∂Υ(x, ξ)

∂z
− rΥ(x, ξ) + f(K,S,Υ) = 0, (2.1)

where the variable x = (S, z) and (x, ξ) ∈ (0,∞) × (0,∞) × BT , BT = (0, T ). The parameters

η is the volatility, a = κ + ς and b = κ
κ+ς θ, κ is the mean reversion rate, θ is the long-run

variance, ς is a positive constant [18]. In fact, the term a(b − z) is the risk-neutral drift rate.

The correlation coefficient ρ ∈ (−1, 1), r is the interest rate, z is the volatility of the interest
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rate, S is the asset price, K is the strike price and f(K,S,Υ) = Σmax{K − S − Υ, 0} is a

penalty function, where Σ is a positive penalty parameter, Σ tends to ∞, (see [16]).

The initial condition at T is given by:

Υ(x, T ) = max(0,K − S). (2.2)

The boundary conditions are defined by:

lim
S 7−→0

Υ(S, z, ξ) = K, lim
S 7−→∞

Υ(S, z, ξ) = 0, (2.3)

lim
z 7−→0

Υ(S, z, ξ) = lim
z 7−→∞

Υ(S, z, ξ) = max(0,K − S). (2.4)

The term mrDϱ,ψΥ(x, ξ) is the Modified Right ψ−Riemann-Liouville Fractional Derivative

(MRψRLFD) defined as follows [30]:

mrDϱ,ψΥ(x, ξ) =
1

Γ(1− ϱ)

( 1

ψ′(ξ)

d

dξ

)∫ T

ξ
ψ′(τ)[ψ(τ)− ψ(ξ)]−ϱ[Υ(x, τ)−Υ(x, T )] dτ, (2.5)

where ψ ∈ C1(BT ) is a positive and strictly increasing function on the bounded interval BT .

Moreover, ψ satisfies ψ′(h) ̸= 0 for all h ∈ BT .

Let ζ = T − ξ. Then, (2.5) can be rewritten as:

mrDϱ,ψΥ(x, T − ζ) =

1

Γ(1− ϱ)

( 1

ψ′(T − ζ)

d

dζ

)∫ T

T−ζ
ψ′(τ)[ψ(τ)− ψ(T − ζ)]−ϱ[Υ(x, τ)−Υ(x, T )] dτ. (2.6)

Let q = T − τ . Then, the equation (2.6) becomes:

mrDϱ,ψΥ(x, T − ζ) =
1

Γ(1− ϱ)

( −1

ψ′(T − ζ)

d

dζ

)∫ ζ

0
ψ′(T − q)[ψ(T − q)− ψ(T − ζ)]−ϱ ×

[Υ(x, T − q)−Υ(x, T )] dq. (2.7)

Let υ(x, ζ) = Υ(x, T − ζ). Then, the equation (2.7) can be rewritten as follows:

mrDϱ,ψυ(x, ζ) =
1

Γ(1− ϱ)

( −1

ψ′(T − ζ)

d

dζ

)∫ ζ

0
ψ′(T − q)[ψ(T − q)− ψ(T − ζ)]−ϱ ×

[υ(x, q)− υ(x, 0)] dq. (2.8)

Lemma 2.1. Suppose that υ(·, ζ) is an absolutely continuous differentiable function with respect

to ζ on [0, T ]. Then, the MRψRLFD given in relation (2.8) satisfies:

mrDϱ,ψυ(x, ζ) = −CDϱ,ψυ(x, ζ),

where CDϱ,ψυ(x, ζ) is the ψCFD of order ϱ ∈ (0, 1) defined by:

CDϱ,ψυ(x, ζ) =
1

Γ(1− ϱ)

∫ ζ

0
[ψ(T − q)− ψ(T − ζ)]−ϱ

∂υ(x, q)

∂q
dq.
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Proof. Let us assume that υ(·, ζ) is an absolutely continuous differentiable function with respect

to ζ on the interval BT . Then, from the MRψRLFD defined in equation (2.8), we get:

mrDϱ,ψυ(x, ζ) =
1

Γ(1− ϱ)

( −1

ψ′(T − ζ)

d

dζ

)∫ ζ

0
ψ′(T − q)[ψ(T − q)− ψ(T − ζ)]−ϱυ(x, q) dq −

υ(x, 0)

Γ(1− ϱ)

( −1

ψ′(T − ζ)

d

dζ

)∫ ζ

0
ψ′(T − q)[ψ(T − q)− ψ(T − ζ)]−ϱ dq,

=
1

Γ(1− ϱ)

( −1

ψ′(T − ζ)

d

dζ

)∫ ζ

0
ψ′(T − q)[ψ(T − q)− ψ(T − ζ)]−ϱυ(x, q) dq −

υ(x, 0)

Γ(1− ϱ)

( −1

ψ′(T − ζ)

d

dζ

)[ 1

1− ϱ
[ψ(T )− ψ(T − ζ)]−ϱ+1

]
,

=
1

Γ(1− ϱ)

( −1

ψ′(T − ζ)

d

dζ

)∫ ζ

0
ψ′(T − q)[ψ(T − q)− ψ(T − ζ)]−ϱυ(x, q) dq +

υ(x, 0)

Γ(1− ϱ)
[ψ(T )− ψ(T − ζ)]−ϱ,

= − 1

Γ(1− ϱ)

∫ ζ

0
[ψ(T − q)− ψ(T − ζ)]−ϱ

∂υ(x, q)

∂q
dq,

= −CDϱ,ψυ(x, ζ),

where the operator CDϱ,ψυ(·, ·) is the ψ−Caputo Fractional Derivative (ψCFD) of order ϱ ∈
(0, 1).

Thus, from system (2.1)-(2.4) and Lemma 2.1, we get the new generalized AOψCFDH model

described by the following system:

CDϱ,ψυ(x, ζ) = 0.5zS2∂
2υ(x, ζ)

∂S2
+ ρηzS

∂2υ(x, ζ)

∂S∂z
+ 0.5η2z

∂2υ(x, ζ)

∂z2
+

rS
∂υ(x, ζ)

∂S
+ a(b− z)

∂υ(x, ζ)

∂z
− rυ(x, ζ) + f(K,S, υ). (2.9)

The initial condition at t = 0 is given by:

υ(x, 0) = max(0,K − S). (2.10)

The boundary conditions are defined by:

lim
S 7−→0

υ(S, z, ζ) = K, lim
S 7−→∞

υ(S, z, ζ) = 0, (2.11)

lim
z 7−→0

υ(S, z, ζ) = lim
z 7−→∞

υ(S, z, ζ) = max(0,K − S). (2.12)

As mentioned above, the new ψCFD model (2.9)-(2.12) has never been studied before. It

is for this reason that we have proposed a new numerical scheme for solving numerically this

problem. Moreover, we adapted the well-known splitting technique as a relaxation method in

solving this problem.
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3 Three-steps splitting method and discretization

Remark that the system (2.9)-(2.12) is posed on an infinite domain (0,∞) × (0,∞) × BT . So,

for the numerical study we need to consider a truncated bounded domain D as follows:

(x, t) = (S, z, t) ∈ D = (ℓS ,kS)× (ℓz,kz)×BT , where ℓS , ℓz,kS ,kz > 0,

where the values ℓS and ℓz are chosen very close to 0, and those of kS and kz are very large.

Thus, the considered system on the bounded domain D is given by:

CDϱ,ψυ(x, t) = 0.5zS2∂
2υ(x, t)

∂S2
+ γzS

∂2υ(x, t)

∂S∂z
+ εz

∂2υ(x, t)

∂z2
+

rS
∂υ(x, t)

∂S
+ a(b− z)

∂υ(x, t)

∂z
− rυ(x, t) + f(x, t), (3.13)

υ(x, 0) = ~(x), (3.14)

υ(ℓS , z, t) = χ0(z, t), υ(kS , z, t) = χ1(z, t), (3.15)

υ(S, ℓz, t) = z0(S, t), υ(S,kz, t) = z1(S, t), (3.16)

for all t ∈ [0, T ], where the parameters γ and ε are given by:

γ = ρη, ε = 0.5η2.

Recall that the ψCFD is defined by:

CDϱ,ψυ(x, t) =
1

Γ(1− ϱ)

∫ t

0
[ψ(T − q)− ψ(T − t)]−ϱυ′(x, q) dq, ∀t ∈ [0, T ], (3.17)

where υ′(x, q) = ∂υ(x,q)
∂q .

Let us divide the time domain BT into N equal subintervals as follows:

[0, T ] =

N−1∪
p=0

[tp, tp+1],

where the N + 1 equidistant points tp are given by:

tp = pν, p = 0, · · · ,N ,

where the time step ν is defined by:

ν = TN−1 = tp+1 − tp, ∀p = 0, · · · ,N . (3.18)

3.1 Three-steps splitting method

Remark that the equation (3.13) contains two different types of differential operators; an elliptic

operator and a hyperbolic operator. Moreover, the equation contains a mixed differential term

which is difficult to manipulate numerically. Thus, we proposed to apply the well-known splitting

method in the following way:
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• Step:1– On the time interval [tp, tp+1/3], we solve the hyperbolic system:

CDϱ,ψυ(x, t) = γzS
∂2υ(x, t)

∂S∂z
. (3.19)

• Step:2– On the time interval [tp+1/3, tp+2/3], we solve the elliptic system:

CDϱ,ψυ(x, t) = 0.5zS2∂
2υ(x, t)

∂S2
+ rS

∂υ(x, t)

∂S
− rυ(x, t). (3.20)

• Step:3– On the time interval [tp+2/3, tp+1], we solve the elliptic system:

CDϱ,ψυ(x, t) = εz
∂2υ(x, t)

∂z2
+ a(b− z)

∂υ(x, t)

∂z
+ f(x, t). (3.21)

We solve the problems (3.19), (3.20) and (3.21) simultaneously on each interval [tp, tp+1]: the

solution υ(x, tp+1/3) to (3.19) is used as the initial condition to (3.20), the solution υ(x, tp+2/3) to

(3.20) is used as the initial condition to (3.21) and on the interval [tp+1, tp+4/3] we solve again the

problem (3.19) using the solution υ(x, tp+1) to the problem (3.21) as an initial condition and so

on until the final stage T . In this way each operator deals with the appropriate numerical scheme.

The bibliographic research shows that this technique is very effective for this type of problem.

Here we started in the first step of the splitting method by solving the hyperbolic problem defined

by the mixed derivative ∂2υ(x,t)
∂S∂z because this term has known numerical drawbacks [31]. On the

other hand, the elliptic operator in (3.20) and (3.21) is numerically more stable. Therefore, the

fact of starting with the hyperbolic then the elliptic is a way of relaxation of the disturbances

preventing from the hyperbolic part.

3.2 Discretization

For the spacial discretization, we divide every interval [ℓS ,kS ] and [ℓz,kz] into M ≥ 3 and K ≥ 3

equal subintervals, respectively. So, we get:

[ℓS ,kS ] =
M−1∪
m=0

[Sm, Sm+1], [ℓz,kz] =
K−1∪
n=0

[zn, zn+1],

where the equidistant points Sm and zn are defined by:

Sm = ℓS +mδ, δ = (kS − ℓS)M−1, m = 0, · · · ,M,

zn = ℓz + nλ, λ = (kz − ℓz)K−1, n = 0, · · · ,K.

First, we begin by the approximation of the ψ−Caputo operator. At the point (xmn, t
p) =

(Sm, zn, t
p), we have:

CDϱ,ψυ(xmn, t
p) =

1

Γ(1− ϱ)

∫ tp

0
[ψ(T − q)− ψ(T − tp)]−ϱυ′(xmn, q) dq,

=
1

Γ(1− ϱ)

p−1∑
j=0

∫ tj+1

tj
[ψ(T − q)− ψ(T − tp)]−ϱυ′(xmn, q) dq. (3.22)
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Recall that the left rectangular rule for approximating the integral of a function Q ∈ C1 on the

interval [ξ, ζ] is given by:∫ ζ

ξ
Q(r) dr = (ζ − ξ)Q(ξ) + E2(Q), where E2(Q) = (ζ − ξ)2 sup

s∈[ξ,ζ]
(
1

2
|Q′(s)|).

So, on the interval [tj , tj+1], we have:∫ tj+1

tj
Q(r) dr = νQ(tj) +O(ν2), (3.23)

where ν is defined by (3.18). Consequently, by using the rule (3.23) in the equation (3.22), we

get:

CDϱ,ψυ(xmn, t
p) =

1

Γ(1− ϱ)

p−1∑
j=0

ν[ψ(T − tj)− ψ(T − tp)]−ϱυ′(xmn, t
j) +O(ν2),

=
1

Γ(1− ϱ)

p−1∑
j=0

ν[ψ(tN−j)− ψ(tN−p)]−ϱυ′(xmn, t
j) +O(ν2).

Let us consider the following approximation:

υ′(xmn, t
j) =

1

ν

(
υ(xmn, t

j+1)− υ(xmn, t
j)
)
+O(ν).

Then, we get:

CDϱ,ψυ(xmn, t
p) =

1

Γ(1− ϱ)

p−1∑
j=0

[ψ(tN−j)− ψ(tN−p)]−ϱ
(
υ(xmn, t

j+1)− υ(xmn, t
j)
)
+O(ν).

By considering the following notations:

ψj = ψ(tj), ∀ j = 0, · · · ,N ,

υjm,n = υ(xmn, t
j) = υ(Sm, zn, t

j), ∀ j = 0, · · · ,N , m = 0, · · · ,M, n = 0, · · · ,K,

we obtain:

CDϱ,ψυ(xmn, t
p) =

1

Γ(1− ϱ)

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j +O(ν), (3.24)

where:

cp,j = [ψN−j − ψN−p]−ϱ, ∀ j = 0, · · · , p− 1.

Lemma 3.1. The coefficients cp,j = [ψN−j−ψN−p]−ϱ, ∀j = 0, · · · , p−1, p = 1, · · · ,N satisfy

the following identities:

1. There exists two constants a, b, (a, b > 0), such that: a−ϱ ≤ cp,j ≤ b−ϱ, for all j =

0, · · · , p− 1, p = 1, · · · ,N .

7

19 Apr 2023 09:12:45 PDT
230219-Arfaoui Version 2 - Submitted to Rocky Mountain J. Math.



2. 0 < cp,j < cp,j+1, for all j = 0, · · · , p− 2.

3.
∑p−1

j=1(cp,j − cp,j−1) + cp,0 = cp,p−1, for all p ≥ 2.

4. There exists a positive constant M0 ≥ 0 such that:

p−1∑
j=1

(cp,j − cp,j−1)c
−1
j,j−1 ≤M0. (3.25)

Proof. 1. Recall that cp,j , for every p, j, is defined by the function ψ that is strictly increasing

and belongs to C1 on the bounded interval BT . Since ψ is bounded on BT , then cp,j is

also bounded on BT , for every p, j. Moreover, since ψ is strictly increasing on BT , then

we have ψN−p < ψN−j for all j < p, and consequently cp,j > 0. Thus, there exists two

constants a, b > 0, such that: a−ϱ ≤ cp,j ≤ b−ϱ, for all j = 0, · · · , p− 1, p = 1, · · · ,N .

2. The sequence (cp,j)j is increasing. Indeed:

c
1
ϱ

p,j+1 − c
1
ϱ

p,j =
ψN−j − ψN−(j+1)

(ψN−(j+1) − ψN−p)(ψN−j − ψN−p)
> 0,

for all j = 0, · · · , p− 2. Then, we get: cp,j < cp,j+1.

3. With simple calculation, we can prove the result.

4. Since we have a finite sum and the function ψ ∈ C1(BT ), then there exists a positive

constant M0 such that the identity (3.25) holds.

Now, we give the approximation of each spacial differential term in the different steps in the

three-steps splitting method. At the point (xmn, t
p) = (Sm, zn, t

p), we have:

0.5znS
2
m

∂2υ(xmn, t
p)

∂S2
=

0.5znS
2
m

δ2
(υpm+1,n − 2υpm,n + υpm−1,n) +O(δ2), (3.26)

γznSm
∂2υ(xmn, t

p)

∂S∂z
=
γznSm
4δλ

(
υpm+1,n+1 − υpm+1,n−1 − υpm−1,n+1 + υpm−1,n−1

)
+O(δ2λ2),

εzn
∂2υ(xmn, t

p)

∂z2
=
εzn
λ2

(υpm,n+1 − 2υpm,n + υpm,n−1) +O(λ2), (3.27)

rSm
∂υ(xmn, t

p)

∂S
=

rSm
δ

(υpm+1,n − υpm,n) +O(δ), (3.28)

a(b− zn)
∂υ(xmn, t

p)

∂z
=
a(b− zn)

λ
(υpm,n+1 − υpm,n) +O(λ), (3.29)

f(K,Sm, υ(xmn, t
p)) = fpm,n, (3.30)

rυ(xmn, t
p) = rυpm,n. (3.31)

• Step:1– The total discretization of the equation (3.19) is obtained as follows:

1

Γ(1− ϱ)

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j =

γznSm
4δλ

(
υpm+1,n+1 − υpm+1,n−1

− υpm−1,n+1 + υpm−1,n−1

)
+O(δ2λ2 + ν). (3.32)
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The equation (3.32) can also be written in the form:

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j = ωmnυ

p
m+1,n+1 − ωmnυ

p
m+1,n−1

− ωmnυ
p
m−1,n+1 + ωmnυ

p
m−1,n−1 +O(δ2λ2 + ν), (3.33)

where the coefficient ωmn in the equation (3.33) is given by:

d = Γ(1− ϱ), ωmn =
dγznSm
4δλ

.

– For p = 1. Then, from equation (3.33), we get:(
υ1m,n − υ0m,n

)
c1,0 = ωmnυ

1
m+1,n+1 − ωmnυ

1
m+1,n−1

− ωmnυ
1
m−1,n+1 + ωmnυ

1
m−1,n−1 +O(δ2λ2 + ν),

or equivalently:

−c1,0υ0m,n = −c1,0υ1m,n + ωmnυ
1
m+1,n+1 − ωmnυ

1
m+1,n−1

− ωmnυ
1
m−1,n+1 + ωmnυ

1
m−1,n−1 +O(δ2λ2 + ν). (3.34)

– For p ≥ 2. Then, from equation (3.33), we get:

p−1∑
j=1

(
cp,j−1 − cp,j

)
υjm,n − cp,0υ

0
m,n = −cp,p−1υ

p
m,n + ωmnυ

p
m+1,n+1 − ωmnυ

p
m+1,n−1

− ωmnυ
p
m−1,n+1 + ωmnυ

p
m−1,n−1 +O(δ2λ2 + ν),

with boundary conditions:

υp0,n = χn,p0 , υpM,n = χn,p1 ,

υpm,0 = zm,p
0 , υpm,K = zm,p

1 .

Let υ̃pm,n be an approximation to υpm,n. Then, we get the following system:

−c1,0υ̃0m,n = −c1,0υ̃1m,n + ωmnυ̃
1
m+1,n+1 − ωmnυ̃

1
m+1,n−1

− ωmnυ̃
1
m−1,n+1 + ωmnυ̃

1
m−1,n−1, (3.35)

p−1∑
j=1

(
cp,j−1 − cp,j

)
υ̃jm,n − cp,0υ̃

0
m,n = −cp,p−1υ̃

p
m,n + ωmnυ̃

p
m+1,n+1 − ωmnυ̃

p
m+1,n−1

−ωmnυ̃pm−1,n+1 + ωmnυ̃
p
m−1,n−1, ∀p ≥ 2, (3.36)

with boundary conditions:

υ̃p0,n = χn,p0 , υ̃pM,n = χn,p1 , (3.37)

υ̃pm,0 = zm,p
0 , υ̃pm,K = zm,p

1 . (3.38)
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• Step:2– The total discretization of the equation (3.20) is obtained as follows:

1

Γ(1− ϱ)

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j =

0.5znS
2
m

δ2
(υpm+1,n − 2υpm,n + υpm−1,n)

+
rSm
δ

(υpm+1,n − υpm,n)− rυpm,n +O(δ + ν).

This equation can also be written in the form:

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j = αmnυ

p
m+1,n − βmnυ

p
m,n + γmnυ

p
m−1,n +O(δ + ν), (3.39)

where the coefficients in the equation (3.39) are given by:

αmn =
0.5zndS

2
m

δ2
+
drSm
δ

, γmn =
0.5zndS

2
m

δ2
, βmn =

zndS
2
m

δ2
+ dr+

drSm
δ

.

– For p = 1. Then, from equation (3.39), we get:(
υ1m,n − υ0m,n

)
c1,0 = αmnυ

1
m+1,n − βmnυ

1
m,n + γmnυ

1
m−1,n +O(δ + ν),

or equivalently:

−c1,0υ0m,n = αmnυ
1
m+1,n − (βmn + c1,0)υ

1
m,n + γmnυ

1
m−1,n +O(δ + ν).(3.40)

– For p ≥ 2. Then, from equation (3.39), we get:

p−1∑
j=1

(
cp,j−1 − cp,j

)
υjm,n − cp,0υ

0
m,n = αmnυ

p
m+1,n − (βmn + cp,p−1)υ

p
m,n

+ γmnυ
p
m−1,n +O(δ + ν).

Let υ̃pm,n be an approximation to υpm,n. Then, we get the following system:

−c1,0υ̃0m,n = αmnυ̃
1
m+1,n − (βmn + c1,0)υ̃

1
m,n + γmnυ̃

1
m−1,n, (3.41)

p−1∑
j=1

(
cp,j−1 − cp,j

)
υ̃jm,n − cp,0υ̃

0
m,n = αmnυ̃

p
m+1,n − (βmn + cp,p−1)υ̃

p
m,n

+ γmnυ̃
p
m−1,n, ∀p ≥ 2. (3.42)

• Step:3– The total discretization of the equation (3.21) is obtained as follows:

1

Γ(1− ϱ)

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j =

εzn
λ2

(υpm,n+1 − 2υpm,n + υpm,n−1)

+
da(b− zn)

λ
(υpm,n+1 − υpm,n) + dfpm,n +O(λ+ ν). (3.43)
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The equation (3.43) can also be rewritten in the form:

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j = rnυ

p
m,n+1 − qnυ

p
m,n + anυ

p
m,n−1 +

dfpm,n +O(λ+ ν), (3.44)

where the coefficients in the equation (3.44) are given by:

qn =
2dεzn
λ2

+
da

λ
(b− zn), rn =

dεzn
λ2

+
da

λ
(b− zn), an =

dεzn
λ2

.

– For p = 1. Then, from equation (3.44), we get:(
υ1m,n − υ0m,n

)
c1,0 = rnυ

1
m,n+1 − qnυ

1
m,n + anυ

1
m,n−1 + df1m,n +O(λ+ ν),

or equivalently:

−c1,0υ0m,n = rnυ
1
m,n+1 − (qn + c1,0)υ

1
m,n + anυ

1
m,n−1 + df1m,n +O(λ+ ν). (3.45)

– For p ≥ 2. Then, from equation (3.44), we get:

p−1∑
j=1

(
cp,j−1 − cp,j

)
υjm,n − cp,0υ

0
m,n = rnυ

p
m,n+1 − (qn + cp,p−1)υ

p
m,n

+ anυ
p
m,n−1 + dfpm,n +O(λ+ ν).

Let υ̃pm,n be an approximation to υpm,n. Then, we get the following system:

−c1,0υ̃0m,n = rnυ̃
1
m,n+1 − (qn + c1,0)υ̃

1
m,n + anυ̃

1
m,n−1, (3.46)

p−1∑
j=1

(
cp,j−1 − cp,j

)
υ̃jm,n − cp,0υ̃

0
m,n = rnυ̃

p
m,n+1 − (qn + cp,p−1)υ̃

p
m,n

+ anυ̃
p
m,n−1 + dfpm,n, ∀p ≥ 2. (3.47)

The stability of the NISM and the convergence of the NISM are studied in Section 4 and

Section 5, respectively.

4 Stability analysis of the NISM

Let us denote by υ̂pm,n the numerical approximation to the solution υ̃pm,n. It’s obvious that the

states υ̂pm,n and υ̃pm,n have the same boundary conditions, since they are the solutions of the

same system.

Let Æp
m,n be the state defined by:

Æp
m,n = υ̃pm,n − υ̂pm,n, m = 0, · · · ,M, n = 0, · · · ,K, p = 0, · · · ,N .
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Consequently, we can deduce that the state Æp
m,n has zero boundary conditions, since the states

υ̂pm,n and υ̃pm,n have the same boundary conditions. Therefore, we have:

Æp
0,n = Æp

M,n = 0, (4.48)

Æp
m,0 = Æp

m,K = 0. (4.49)

Consider the grid function Æp, for p = 0, · · · ,N , defined by:

Æp(S, z) ={
Æp
m,n, (S, z) ∈ (Sm− 1

2
, Sm+ 1

2
]× (zn− 1

2
, zn+ 1

2
], m = 1, · · · ,M, n = 1, · · · ,K,

0, (S, z) ∈
(
[ℓS ,kS ]× [ℓz,kz]

)
\
(
[ℓS + δ

2 ,kS − δ
2 ]× [ℓz +

λ
2 ,kz −

λ
2 ]
)
.
(4.50)

Taking into account conditions (4.48)-(4.49) and (4.50), we can make a periodic extension for

Æp
m,n on [0,LS ]× [0,Lz], where LS = kS − ℓS and Lz = kz − ℓz. Then, the function Æp can be

expanded into double Fourier series as follows:

Æp(S, z) =
∑
m,n∈Z

vpm,ne
i2π(mS

LS
+ nz

Lz
)
, (i2 = −1).

where:

vpm,n =
1

LSLz

∫ LS

0

∫ Lz

0
Æp(S, z)e

−i2π(mS
LS

+ nz
Lz

)
dzdS.

From Parseval identity, we deduce that:

∥Æp∥2L2 =

∫ LS

0

∫ Lz

0
|Æp(S, z)|2 dzdS = LSLz

∑
m,n∈Z

|vpm,n|2.

Define the following norm:

∥Æp∥2 =
M−1∑
m=1

K−1∑
n=1

δλ|Æp
m,n|2.

We conclude that:

∥Æp∥2 =
M−1∑
m=1

K−1∑
n=1

δλ|Æp
m,n|2 = LSLz

∑
m,n∈Z

|vpm,n|2, ∀p = 0, · · · ,N . (4.51)

Thus, let us assume that the solution Æp
m,n can be written as follows:

Æp
m,n = φpei(ΛSSm+Λzzn), ΛS =

2π

LS
, Λz =

2π

Lz
. (4.52)

With the above new expression of Æp
m,n given by (4.52), we get:

• Step:1– By substituting (4.52) in the system (3.35)-(3.36), we obtain:

−c1,0φ0 =
(
− c1,0 + ωmne

i(ΛSδ+Λzλ) − ωmne
i(ΛSδ−Λzλ)

− ωmne
−i(ΛSδ−Λzλ) + ωmne

−i(ΛSδ+Λzλ)
)
φ1,

p−1∑
j=1

(
cp,j−1 − cp,j

)
φj − cp,0φ

0 =
(
− cp,p−1 + ωmne

i(ΛSδ+Λzλ) − ωmne
i(ΛSδ−Λzλ)

−ωmne−i(ΛSδ−Λzλ) + ωmne
−i(ΛSδ+Λzλ)

)
φp, ∀p ≥ 2.
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Which is equivalent to:[
c1,0 + 4ωmn sin(2π/M) sin(2π/K)

]
φ1 = c1,0φ

0, (4.53)[
cp,p−1 + 4ωmn sin(2π/M) sin(2π/K)

]
φp =

p−1∑
j=1

(
cp,j − cp,j−1

)
φj + cp,0φ

0, ∀p ≥ 2.

(4.54)

Let us notice that we have:

sin(2π/M) sin(2π/K) > 0, ∀M ≥ 3, ∀K ≥ 3.

Lemma 4.1. We have |φp| < |φ0|, for all p ≥ 1.

Proof. For p = 1. From equation (4.53), we have:

|c1,0 + 4ωmn sin(2π/M) sin(2π/K)| > c1,0,

then:

|φ1| = c1,0
|c1,0 + 4ωmn sin(2π/M) sin(2π/K)|

|φ0| < |φ0|.

Suppose that we have |φp| < |φ0|, for 2 ≤ p ≤ k. From equation (4.54) and Lemma 3.1,

we have:∣∣∣cp+1,p + 4ωmn sin(2π/M) sin(2π/K)
∣∣∣|φp+1| ≤

p∑
j=1

(
cp+1,j − cp+1,j−1

)
|φj |+ cp+1,0|φ0|,

≤
[ p∑
j=1

(
cp+1,j − cp+1,j−1

)
+ cp+1,0

]
|φ0|,

≤ cp+1,p|φ0|.

We deduce that:

|φp+1| < cp+1,p|φ0|∣∣∣cp+1,p + 4ωmn sin(2π/M) sin(2π/K)
∣∣∣ < |φ0|.

Thus: |φp+1| < |φ0|.

Theorem 4.1. The numerical implicit scheme (3.35)-(3.36) is unconditional stable.

Proof. By using the relation (4.51) and the Lemma 4.1 we deduce that:

∥Æp∥ ≤ ∥Æ0∥, p = 1, · · · ,N .

Thus, the implicit scheme (3.35)-(3.36) is unconditional stable.
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• Step:2– By substituting (4.52) in the system (3.41)-(3.42), we obtain:

−c1,0φ0 =
(
αmne

iΛSδ − (βmn + c1,0) + γmne
−iΛSδ

)
φ1,

p−1∑
j=1

(
cp,j−1 − cp,j

)
φj − cp,0φ

0 =(
αmne

iΛSδ − (βmn + cp,p−1) + γmne
−iΛSδ

)
φp, ∀p ≥ 2.

Which is equivalent to:

c1,0φ
0 =

[
c1,0 + dr+ 2(2γmn +Dm) sin

2(ΛSδ/2)

− i2Dm cos(ΛSδ/2) sin(ΛSδ/2)
]
φ1, (4.55)

p−1∑
j=1

(
cp,j − cp,j−1

)
φj + cp,0φ

0 =
[
cp,p−1 + dr+ 2(2γmn +Dm) sin

2(ΛSδ/2)

− i2Dm cos(ΛSδ/2) sin(ΛSδ/2)
]
φp, ∀p ≥ 2, (4.56)

where Dm = drSm
δ .

Lemma 4.2. We have |φp| < |φ0|, for all p ≥ 1.

Proof. For p = 1. From equation (4.55), we have:∣∣∣c1,0 + dr+ 2(2γmn +Dm) sin
2(ΛSδ/2)− i2Dm cos(ΛSδ/2) sin(ΛSδ/2)

∣∣∣ > c1,0,

then:

|φ1| = c1,0|φ0|∣∣∣c1,0 + dr+ 2(2γmn +Dm) sin
2(ΛSδ/2)− i2Dm cos(ΛSδ/2) sin(ΛSδ/2)

∣∣∣ < |φ0|.

Suppose that we have |φp| < |φ0|, for 2 ≤ p ≤ k. From equation (4.56) and Lemma 3.1,

we have:∣∣∣cp+1,p + dr+ 2(2γmn +Dm) sin
2(ΛSδ/2) − i2Dm cos(ΛSδ/2) sin(ΛSδ/2)

∣∣∣|φp+1|

≤
p∑
j=1

(
cp+1,j − cp+1,j−1

)
|φj |+ cp+1,0|φ0|,

≤
[ p∑
j=1

(
cp+1,j − cp+1,j−1

)
+ cp+1,0

]
|φ0|,

≤ cp+1,p|φ0|.

Knowing that:∣∣∣cp+1,p + dr+ 2(2γmn +Dm) sin
2(ΛSδ/2)− i2Dm cos(ΛSδ/2) sin(ΛSδ/2)

∣∣∣ > cp+1,p,

we deduce that: |φp+1| < |φ0|.
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Theorem 4.2. The numerical implicit scheme (3.41)-(3.42) is unconditional stable.

Proof. By using the relation (4.51) and the Lemma 4.2 we deduce that:

∥Æp∥ ≤ ∥Æ0∥, p = 1, · · · ,N .

Thus, the implicit scheme (3.41)-(3.42) is unconditional stable.

• Step:3– By substituting (4.52) in the system (3.46)-(3.47), we obtain:

−c1,0φ0 =
(
rne

iΛzλ − (qn + c1,0) + ane
−iΛzλ

)
φ1,

p−1∑
j=1

(
cp,j−1 − cp,j

)
φj − cp,0φ

0 =
(
rne

iΛzλ − (qn + cp,p−1) + ane
−iΛzλ

)
φp, ∀p ≥ 2.

Which is equivalent to:

c1,0φ
0 =

(
c1,0 + 2(2an + Vn) sin

2(Λzλ/2)− i2Vn cos(Λzλ/2) sin(Λzλ/2
)
φ1,(4.57)

p−1∑
j=1

(
cp,j − cp,j−1

)
φj + cp,0φ

0 =
(
cp,p−1 + 2(2an + Vn) sin

2(Λzλ/2)

−i2Vn cos(Λzλ/2) sin(Λzλ/2)
)
φp, ∀p ≥ 2, (4.58)

where Vn = da
λ (b− zn).

Lemma 4.3. If the following identity holds:

λ ≤ η2

κ+ ς
, (4.59)

then |φp| < |φ0|, for all p ≥ 1.

Proof. We have:

2an + Vn = 2(
dεzn
λ2

) +
da

λ
(b− zn),

=
da

λ
b+

d

λ
zn(

2ε

λ
− a),

=
da

λ
b+

d

λ
zn(

η2

λ
− (κ+ ς)).

Consequently, under the condition (4.59), we get:

2an + Vn ≥ 0, ∀n = 0, · · · ,K.

For p = 1. From equation (4.57) and Lemma 3.1, we have:∣∣∣c1,0 + 2(2an + Vn) sin
2(Λzλ/2)− i2Vn cos(Λzλ/2) sin(Λzλ/2)

∣∣∣ > c1,0,
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then:

|φ1| = c1,0|φ0|∣∣∣c1,0 + 2(2an + Vn) sin
2(Λzλ/2)− i2Vn cos(Λzλ/2) sin(Λzλ/2)

∣∣∣ < |φ0|.

Suppose that we have |φp| < |φ0|, for 2 ≤ p ≤ k. From equation (4.58) and Lemma 3.1,

we have:∣∣∣cp+1,p + 2(2an + Vn) sin
2(Λzλ/2) − i2Vn cos(Λzλ/2) sin(Λzλ/2)

∣∣∣|φp+1|

≤
p∑
j=1

(
cp+1,j − cp+1,j−1

)
|φj |+ cp+1,0|φ0|,

≤
[ p∑
j=1

(
cp+1,j − cp+1,j−1

)
+ cp+1,0

]
|φ0|,

≤ cp+1,p|φ0|.

Knowing that:∣∣∣cp+1,p + 2(2an + Vn) sin
2(Λzλ/2)− i2Vn cos(Λzλ/2) sin(Λzλ/2)

∣∣∣ > cp+1,p,

we deduce that: |φp+1| < |φ0|.

Theorem 4.3. If the identity (4.59) holds, then the numerical implicit scheme (3.46)-

(3.47) is stable.

Proof. By using the relation (4.51) and the Lemma 4.3 we deduce that:

∥Æp∥ ≤ ∥Æ0∥, p = 1, · · · ,N .

Thus, the implicit scheme (3.46)-(3.47) is stable.

Theorem 4.4. If the identity (4.59) holds, then the global numerical implicit scheme used for

the problem (3.13)-(3.16) is stable.

Proof. By using Theorem 4.1, Theorem 4.2 and Theorem 4.3, we deduce that the global numer-

ical implicit scheme associated to problem (3.13)-(3.16) is conditionally stable about the initial

condition under the condition (4.59).
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5 Global convergence of the NISM

In this section, we consider the global scheme for the problem (3.13)-(3.16). Using the approxi-

mations given in (3.24) and in the system (3.26)-(3.31), we get:

1

Γ(1− ϱ)

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j =

0.5znS
2
m

δ2
(υpm+1,n − 2υpm,n + υpm−1,n)

+
γznSm
4δλ

(
υpm+1,n+1 − υpm+1,n−1 − υpm−1,n+1 + υpm−1,n−1

)
+

εzn
λ2

(υpm,n+1 − 2υpm,n + υpm,n−1) +
rSm
δ

(υpm+1,n − υpm,n)

+
a(b− zn)

λ
(υpm,n+1 − υpm,n)− rυpm,n + fpm,n +O(δ + λ+ ν).

p−1∑
j=0

(
υj+1
m,n − υjm,n

)
cp,j = αmnυ

p
m+1,n − (βmn + qn)υ

p
m,n + γmnυ

p
m−1,n + rnυ

p
m,n+1

+ anυ
p
m,n−1 + ωmnυ

p
m+1,n+1 − ωmnυ

p
m+1,n−1 − ωmnυ

p
m−1,n+1

+ ωmnυ
p
m−1,n−1 + dfpm,n +O(δ + λ+ ν).

• For p = 1. We have:

−υ0m,nc1,0 = αmnυ
1
m+1,n − (c1,0 + βmn + qn)υ

1
m,n + γmnυ

1
m−1,n + rnυ

1
m,n+1

+ anυ
1
m,n−1 + ωmnυ

1
m+1,n+1 − ωmnυ

1
m+1,n−1 − ωmnυ

1
m−1,n+1

+ ωmnυ
1
m−1,n−1 + df1m,n +O(δ + λ+ ν). (5.60)

• For p ≥ 2. We have:

p−1∑
j=1

(
cp,j−1 − cp,j

)
υjm,n − cp,0υ

0
m,n = αmnυ

p
m+1,n − (cp,p−1 + βmn + qn)υ

p
m,n

+ γmnυ
p
m−1,n + rnυ

p
m,n+1 + anυ

p
m,n−1

+ ωmnυ
p
m+1,n+1 − ωmnυ

p
m+1,n−1 − ωmnυ

p
m−1,n+1

+ ωmnυ
p
m−1,n−1 + dfpm,n +O(δ + λ+ ν). (5.61)

The boundary conditions:

υ0m,n = ~m,n,

υp0,n = χn,p0 , υpM,n = χn,p1 , (5.62)

υpm,0 = zm,p
0 , υpm,K = zm,p

1 .
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Let υ̃pm,n be the approximate solution to the solution υpm,n of the system (5.60)-(5.61)-(5.62).

Then, we have:

−υ̃0m,nc1,0 = αmnυ̃
1
m+1,n − (c1,0 + βmn + qn)υ̃

1
m,n + γmnυ̃

1
m−1,n + rnυ̃

1
m,n+1

+ anυ̃
1
m,n−1 + ωmnυ̃

1
m+1,n+1 − ωmnυ̃

1
m+1,n−1 − ωmnυ̃

1
m−1,n+1

+ ωmnυ̃
1
m−1,n−1 + df1m,n, (5.63)

p−1∑
j=1

(
cp,j−1 − cp,j

)
υ̃jm,n − cp,0υ̃

0
m,n = αmnυ̃

p
m+1,n − (cp,p−1 + βmn + qn)υ̃

p
m,n

+ γmnυ̃
p
m−1,n + rnυ̃

p
m,n+1 + anυ̃

p
m,n−1

+ ωmnυ̃
p
m+1,n+1 − ωmnυ̃

p
m+1,n−1 − ωmnυ̃

p
m−1,n+1

+ ωmnυ̃
p
m−1,n−1 + dfpm,n. (5.64)

The boundary conditions:

υ̃0m,n = ~m,n,

υ̃p0,n = χn,p0 , υ̃pM,n = χn,p1 , (5.65)

υ̃pm,0 = zm,p
0 , υ̃pm,K = zm,p

1 .

Let us denote by υp = (υpm,n)m,n and υ̃p = (υ̃pm,n)m,n. We introduce the error state Ep =

(Epm,n)m,n defined by:

Ep = υp − υ̃p, ∀p = 0, · · · ,N .

or equivalently:

Epm,n = υpm,n − υ̃pm,n, ∀m = 0, · · · ,M, ∀n = 0, · · · ,K, ∀p = 0, · · · ,N .

Then, we deduce that Epm,n is a solution to the following system:

−E0
m,nc1,0 = αmnE1

m+1,n − (c1,0 + βmn + qn)E1
m,n + γmnE1

m−1,n + rnE1
m,n+1

+ anE1
m,n−1 + ωmnE1

m+1,n+1 − ωmnE1
m+1,n−1 − ωmnE1

m−1,n+1

+ ωmnE1
m−1,n−1 +R1

m,n. (5.66)

p−1∑
j=1

(
cp,j−1 − cp,j

)
Ejm,n − cp,0E0

m,n = αmnEpm+1,n − (cp,p−1 + βmn + qn)Epm,n

+ γmnEpm−1,n + rnEpm,n+1 + anEpm,n−1

+ ωmnEpm+1,n+1 − ωmnEpm+1,n−1 − ωmnEpm−1,n+1

+ ωmnEpm−1,n−1 +Rp
m,n. (5.67)

where:

Rp
m,n = O(δ + λ+ ν), ∀m = 0, · · · ,M, ∀n = 0, · · · ,K, ∀p = 0, · · · ,N .
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The initial boundary are given by:

E0
m,n = 0,

Ep0,n = 0, EpM,n = 0, (5.68)

Epm,0 = Epm,K = 0,

Let Ep and Rp be two grid functions defined as follows:

Ep(S, z) =

{
Epm,n, (S, z) ∈ (Sm− 1

2
, Sm+ 1

2
]× (zn− 1

2
, zn+ 1

2
], m = 1, · · · ,M, n = 1, · · · ,K,

0, (S, z) ∈
(
[ℓS ,kS ]× [ℓz,kz]

)
\
(
[ℓS + δ

2 ,kS − δ
2 ]× [ℓz +

λ
2 ,kz −

λ
2 ]
)
.

Rp(S, z) =

{
Rp
m,n, (S, z) ∈ (Sm− 1

2
, Sm+ 1

2
]× (zn− 1

2
, zn+ 1

2
], m = 1, · · · ,M, n = 1, · · · ,K,

0, (S, z) ∈
(
[ℓS ,kS ]× [ℓz,kz]

)
\
(
[ℓS + δ

2 ,kS − δ
2 ]× [ℓz +

λ
2 ,kz −

λ
2 ]
)
.

The functions Ep(S, z) and Rp(S, z) have the following double Fourier series:

Ep(S, z) =
∑
m,n∈Z

Epm,ne
i2π(mS

LS
+ nz

Lz
)
,

Rp(S, z) =
∑
m,n∈Z

Rp
m,ne

i2π(mS
LS

+ nz
Lz

)
,

where (i2 = −1) and Epm,n, Rp
m,n are defined as follows:

Epm,n =
1

LSLz

∫ LS

0

∫ Lz

0
Ep(S, z)e−i2π(

mS
LS

+ nz
Lz

)
dzdS,

Rp
m,n =

1

LSLz

∫ LS

0

∫ Lz

0
Rp(S, z)e

−i2π(mS
LS

+ nz
Lz

)
dzdS.

From Parseval identity, we deduce that:

∥Ep∥2L2 =

∫ LS

0

∫ Lz

0
|Ep(S, z)|2 dzdS = LSLz

∑
m,n∈Z

|Epm,n|2,

∥Rp∥2L2 =

∫ LS

0

∫ Lz

0
|Rp(S, z)|2 dzdS = LSLz

∑
m,n∈Z

|Rp
m,n|2.

We define the following two norms by:

∥Ep∥2 =
M−1∑
m=1

K−1∑
n=1

δλ|Epm,n|2, ∥Rp∥2 =
M−1∑
m=1

K−1∑
n=1

δλ|Rp
m,n|2. (5.69)

We conclude, as in the previous section, that: ∀p = 0, · · · ,N

∥Ep∥2 =
M−1∑
m=1

K−1∑
n=1

δλ|Epm,n|2 = LSLz
∑
m,n∈Z

|Epm,n|2, (5.70)

∥Rp∥2 =
M−1∑
m=1

K−1∑
n=1

δλ|Rp
m,n|2 = LSLz

∑
m,n∈Z

|Rp
m,n|2. (5.71)
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Thus, let us assume that Epm,n and Rp
m,n can be written as follows:

Epm,n = θpei(ΛSSm+Λzzn), (5.72)

Rp
m,n = φpei(ΛSSm+Λzzn), (5.73)

where ΛS = 2π
LS
, Λz = 2π

Lz
. By substituting (5.72) and (5.73) in (5.66)-(5.67) and under the

conditions (5.68), we get:

−φ1 =
[
αmne

iΛSδ − (c1,0 + βmn + qn) + γmne
−iΛSδ + rne

iΛzλ

+ ane
−iΛzλ + ωmne

i(ΛSδ+Λzλ) − ωmne
i(ΛSδ−Λzλ) − ωmne

−i(ΛSδ−Λzλ)

+ ωmne
−i(ΛSδ+Λzλ)

]
θ1, (5.74)

p−1∑
j=1

(
cp,j−1 − cp,j

)
θj =

[
αmne

iΛSδ − (cp,p−1 + βmn + qn)

+ γmne
−iΛSδ + rne

iΛzλ + ane
−iΛzλ

+ ωmne
i(ΛSδ+Λzλ) − ωmne

i(ΛSδ−Λzλ) − ωmne
−i(ΛSδ−Λzλ)

+ ωmne
−i(ΛSδ+Λzλ)

]
θp + φp. (5.75)

Using the fact that:

eic − 2 + e−ic = −4 sin2(c/2),

the system (5.74)-(5.75) can be rewritten as follows:[
c1,0 +Wm,n − iPm,n

]
θ1 = φ1, (5.76)[

cp,p−1 +Wm,n − iPm,n

]
θp =

p−1∑
j=1

(
cp,j − cp,j−1

)
θj + φp, (5.77)

where:

Wm,n = 2(2γmn +Dm) sin
2(ΛSδ/2) + 2(2an + Vn) sin

2(Λzλ/2) + dr.

Pm,n = 2Vn cos
2(Λzλ/2) sin

2(Λzλ/2) + 2Dm cos2(ΛSδ/2) sin
2(ΛSδ/2).

Notice that if the identity (4.59) holds, then Wm,n ≥ 0.

Proposition 5.1. Assume that θp verifies the system (5.74)-(5.75). Then, under the condition

(4.59), there exists a positive constant k0:

|θp| ≤ k0c
−1
p,p−1|φ

1|, ∀p = 1, · · · ,N .

Proof. Knowing that:

Rp
m,n = O(δ + λ+ ν), ∀m = 0, · · · ,M, ∀n = 0, · · · ,K, ∀p = 0, · · · ,N ,
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then there exists a positive constant k1:

|Rp
m,n| ≤ k1(δ + λ+ ν), ∀m = 0, · · · ,M, ∀n = 0, · · · ,K, ∀p = 0, · · · ,N .

By using the relation (5.71), we deduce that:

∥Rp∥ ≤ k1
√

LSLz(δ + λ+ ν). (5.78)

Also, from relation (5.71), the series in the right converges. Thus, the term |Rp
m,n| tends to zero

when m,n tens to ∞. Consequently: there exists a positive constant k3 such that:

|φp| = |Rp
m,n| ≤ k3|R1

m,n| = k3|φ1|, ∀p = 2, · · · ,N .

From equation (5.76), we have:

|θ1| = |φ1|∣∣∣c1,0 +Wm,n − iPm,n

∣∣∣ ≤ |φ1|
c1,0

= c−1
1,0|φ

1|.

Assume that |θp| ≤ k4c
−1
p,p−1|φ1|. Then, from equation (5.77), we have:

|θp+1| ≤

∑p
j=1

(
cp+1,j − cp+1,j−1

)
|θj |∣∣∣cp+1,p +Wm,n − iPm,n

∣∣∣ +
|φp|∣∣∣cp+1,p +Wm,n − iPm,n

∣∣∣ ,
≤

∑p
j=1

(
cp+1,j − cp+1,j−1

)
k4c

−1
j,j−1|φ1|

cp+1,p
+
k3|φ1|
cp+1,p

,

≤
(
k5c

−1
p+1,p|φ

1|
)( p∑

j=1

(
cp+1,j − cp+1,j−1

)
c−1
j,j−1 + 1

)
.

Using Lemma 3.1, we obtain:

|θp+1| ≤ (k5c
−1
p+1,p|φ

1|)(M0 + 1) = k0c
−1
p+1,p|φ

1|.

Theorem 5.1. Under the condition (4.59), the implicit scheme (5.63)-(5.65) converges. More-

over, we have the following identity:

∥υp − υ̃p∥ ≤ qaϱ(δ + λ+ ν), ∀p = 1, · · · ,N ,

where q is a positive constant and a is given Lemma 3.1.

Proof. From Proposition 5.1, we have:

|θp| ≤ k0c
−1
p,p−1|φ

1|, ∀p = 1, · · · ,N .

Using Lemma 3.1, we get:

|θp| ≤ k0a
ϱ|φ1|, ∀p = 1, · · · ,N .

Now, by using the relations (5.70)-(5.71), (5.72)-(5.73) and (5.78), we obtain:

∥Ep∥ ≤ k0a
ϱ∥Rp∥ ≤ (k0k1

√
LSLz)aϱ(δ + λ+ ν) = qaϱ(δ + λ+ ν),

where q = k0k1
√
LSLz.
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6 Numerical simulation

In Example 6.1, we validate both our AOψCFDH model and NISM proposed in this work. We

consider an exact solution and thanks to a very detailed study of the relative and absolute errors,

we show the efficiency of our proposed numerical scheme.

In Example 6.2, we apply our numerical scheme for an American Options problem under

ψ−Caputo Fractional-Order Derivative Heston Model. By comparison with the results obtained

in [31], we note that our results obtained in this work are very satisfactory and in excellent

agreement with those of [31].

Example 6.1. The considered system is given by:

CDϱ,ψυ(x, t) = 0.5zS2∂
2υ(x, t)

∂S2
+ γzS

∂2υ(x, t)

∂S∂z
+ εz

∂2υ(x, t)

∂z2
+

rS
∂υ(x, t)

∂S
+ a(b− z)

∂υ(x, t)

∂z
− rυ(x, t) + f(x, t), (6.79)

υ(x, 0) = (S − S2)(z − z2) + 0.8, (6.80)

υ(ℓS , z, t) = 0.8(1 + t)2, υ(kS , z, t) = 0.8(1 + t)2, (6.81)

υ(S, ℓz, t) = 0.8(1 + t)2, υ(S, kz, t) = 0.8(1 + t)2, (6.82)

where x = (S, z) and the parameters γ = ρη, ε = 0.5η2, a = κ+ ς and b = κθ
a . In this experience

the exact solution of the problem (6.79)-(6.82) is given by υ(x, t) = [(S−S2)(z−z2)+0.8](1+t)2

and the function ψ(t) = t. Consequently, the source term is as the following form:

f(x, t) =
2[(S − S2)(z − z2) + 0.8]

Γ(2− ϱ)

[
t1−ϱ +

t2−ϱ

2− ϱ

]
+ (1 + t)2

[
z(z − z2)S2 −

γzS(1− 2z)(1− 2S) + 2εz(S − S2)− rS(1− 2S)(z − z2)−

a(b− z)(1− 2z)(S − S2) + r((S − S2)(z − z2) + 0.8)
]
.

The data of the simulation are as follows:

T = 1, M = K = 20, [ℓS ,kS ] = [ℓz,kz] = [0, 1], ϱ = 0.9,

ρ = 0.01, η = 11, r = 0.1, κ = 5.1, θ = 0.1, ς = 0.3.

The initial condition, (the solution at t = 0), was plotted in Figure 1. In Figure 2, we

have plotted the exact solution and the numerical solution. In Table 1, the relative error, the

absolute error and the order of convergence are calculated. Recall that the relative error Er and

the absolute error Ea are given by:

Er = max
( |υe − υa|

|υe|

)
, Ea = max

(
|υe − υa|

)
,

where υe is the exact solution and υa is an approximation of υe. In general, the order of

convergence is determined by:

Order = log∆1
∆2

(Error(∆1)

Error(∆2)

)
,
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Figure 1: The initial condition, (the solution at t = 0).
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Figure 2: (a) Exact solution, (b) numerical solution.

where ∆i, i = 1, 2, are the temporal steps size. Table 1 clearly shows that the order of

convergence in time of the scheme is equal 1. In fact, this result was predicted from Theorem

5.1. From Figure 2, Figure 3 and Table 1, it is clear that the numerical solution obtained by the

numerical implicit scheme is in excellent consistency with the analytical solution.

Example 6.2. The considered system is an American Options problem under ψ−Caputo Fractional-

∆t Er Order Ea Order

1/80 11.80× 10−3 3.77× 10−2

1/100 9.30× 10−3 1.066 2.98× 10−2 1.053
1/130 7.00× 10−3 1.082 2.25× 10−2 1.071
1/140 6.47× 10−3 1.062 2.08× 10−2 1.060
1/160 5.60× 10−3 1.116 1.79× 10−2 1.124

Table 1: Relative error, absolute error and order of convergence in time.
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Figure 3: The errors plotted against ∆t on a log-log scale.

Order Derivative Heston Model given by:

CDϱ,ψυ(x, t) = 0.5zS2∂
2υ(x, t)

∂S2
+ γzS

∂2υ(x, t)

∂S∂z
+ εz

∂2υ(x, t)

∂z2
+

rS
∂υ(x, t)

∂S
+ a(b− z)

∂υ(x, t)

∂z
− rυ(x, t) + Σf(K,S, υ), (6.83)

υ(x, 0) = max(0,K − S), (6.84)

υ(ℓS , z, t) = K, υ(kS , z, t) = 0, (6.85)

υ(S, ℓz, t) = υ(S, kz, t) = max(0,K − S), (6.86)

where x = (S, z) and the parameters γ = ρη, ε = 0.5η2, a = κ+ς and b = κθ
a . In this experience,

the source term is as the following form:

f(K,S, υ) = max(K − S − υ, 0).

The data of the simulation are as follows:

T = 0.25, N = 150, M = K = 24, [ℓS ,kS ] = [0.25, 40], [ℓz,kz] = [0.002, 1.2], ϱ = 0.9,

ρ = 0.9, η = 0.9, r = 0.9, κ = 5, θ = 3.5, ς = 0.3, Σ = 100.

Let us notice that in Figure 4 the numerical solution is unstable because the stability condition

(4.59) is violated. Indeed, for η = 0.1 and κ = 0.2, we have λ = 0.0499 � η2

κ+ς = 0.02.

In all Figures 5-10, the stability condition (4.59) is satisfied. Indeed, we have λ = 0.0499 ≤
η2

κ+ς = 0.1528, (for η = 0.9 and κ = 5).

We can study and interpret the numerical solution from the first order partial derivatives given

by the terms ∆ = ∂υ
∂S and ∇ = ∂υ

∂z whose curves are plotted in Figures 6, 8 and 10. For S << K,

∆ is very close to (−1). When S ≥ K, ∆ grows rapidly towards 0 and stays there. Moreover,

∇ tends to zero for S ≥ K. It appears clearly that when the price of the asset is high, the price

of the put option turns to zero, in fact, this behavior was expected.
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Figure 4: Unstable numerical solution for ψ(t) = t, η = 0.1 and κ = 0.2. The stability condition (4.59)

is not satisfied: λ = 0.0499 � η2

κ+ς = 0.02.
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Figure 5: Numerical solution for ψ(t) = t and correlation: (a) ρ = 0.9, (b) ρ = 0.1.

7 Conclusion

The American options under ψ−Caputo time-fractional derivative Heston model is a general-

ization of the classical American options under Heston model. The study of AOψCFDH model

represents major difficulties compared to the classical model. Indeed, the study of the stability,

the convergence and the numerical implementation of the associated numerical method NISM

is more difficult than the integer-order model. In this paper, first we transformed the modified

right ψ−Riemann-Liouville time-fractional derivative to the ψ−Caputo time-fractional deriva-

tive, (see Lemma 2.1). Then, a new numerical implicit scheme method has been developed for

solving the AOψCFDH model. Also, we have analyzed the stability (Theorem 4.4) and conver-

gence (Theorem 5.1) of the NISM. Thanks to the proposed numerical methods, we were able

to reach a correlation coefficient ρ = 0.9, knowing that in the literature the widely considered

values of this coefficient are ρ = 0.1, 0.7, (see [31]). Finally, two numerical examples are proposed

in order to show the robustness and the efficiency of both the model AOψCFDH and the NISM.

In a future work, we will extend the application of the new numerical methods proposed in this

paper to solve models with generalized time-fractional derivatives such as Vasiceik model and
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Figure 6: (a) Delta ∆ = ∂υ
∂S of the option and (b) Nabla ∇ = ∂υ

∂z of the option for ψ(t) = t and correlation
ρ = 0.9.
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Figure 7: Numerical solution for ψ(t) = log(t+ 1) and correlation ρ = 0.9.

Black-scholes model.
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