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Abstract. In this paper, firstly, in a different way than in the literature, we define the concept
of a quasi-coincident using the bipolar fuzzy soft points proposed in [10] and investigate its
basic properties. Then, we introduce the notion of a bipolar fuzzy soft net (for short BFS-net)
and give convergence of the BFS-nets in a bipolar fuzzy soft topological space with useful
results. Also, we show how a BFS-net is derived from a BFS-filter and obtain a characterization
about bipolar fuzzy soft Hausdorff spaces. Moreover, based on the idea of quasi-coincident, we
give a new kind of bipolar fuzzy soft continuity and analyze its relationship with the BFS-nets.
Next, we put forward the idea of compactness in the setting of bipolar fuzzy soft sets and
characterize it through the contribution of the BFS-subnets. Finally, we present some examples
to better understand the defined concepts.
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1 Introduction
Classical methods are inadequate due to various uncertainties in solving complex problems

in the fields of economics, engineering and environment. In order to overcome with this un-
certainty, many theories have been presented. The most known theories are fuzzy set theory
introduced by Zadeh [33] in 1965 and rough set theory which was introduced in 1982 by Pawlak
[23]. Both of these theories are useful tools to deal with uncertainties. However, as pointed by
Molodtsov [21], these theories have their own difficulties and inadequacies because of param-
eterization tool not being enough. So, Molodtsov [21] invented a new notion named soft set,
which handles ambiguities and imprecisions in parametric manners. Then, a lot of researchers
have utilized this theory as a powerful tool to define uncertainties. For instance, Maji et al. [20]
investigated the terms such as subset, union, intersection and complement for soft sets. More-
over, Maji et al. [19] introduced a more general concept, which is a combination of fuzzy set
and soft set; the fuzzy soft set. Ali et al. [3] proposed new operations of the algebraic nature on
soft sets and studied their properties. Shabir and Naz [30] investigated soft topological spaces.
Later, Al-shami [4] applied soft compactness on ordered settings to expect the missing values
on the information systems. Kharal and Ahmad [16] introduced a mapping on classes of fuzzy
soft sets and also studied the properties of fuzzy soft images. Demir et al. [9] investigated
convergence of fuzzy soft filters in a fuzzy soft topological space. Afterwards, with the help
of the Q-neighborhoods, Gao and Wu [15] redefined convergence of the fuzzy soft filters. Re-
cently, many papers concerning soft set theory and fuzzy soft set theory have been published
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[2, 5, 6, 32].

Fuzzy sets are unable to represent the satisfaction degree to counter-property although they
are able to represent uncertainties in membership degree assignments. In order to get over this
problem, Lee [17] introduced bipolar valued fuzzy set which the membership degree range is
[-1,1], making the coexistence of negativity and positivity. In a bipolar valued fuzzy set, the
membership value 0 of an element shows that the element is irrelevant to the corresponding
property, the membership degree (0, 1] of an element means that the element somewhat satisfies
the property, and the membership degree [-1, 0) of an element shows that the element some-
what satisfies the implicit counter-property. Afterwards, Abdullah et al. [1] and Naz and Shabir
[22] defined independently bipolar fuzzy soft sets (henceforth, BFS-sets), combining both the
bipolar fuzzy sets and the soft sets. Riaz and Tehrim [27] initiated bipolar fuzzy soft topology
(BFS-topology) and discussed certain aspects of BFS-topology. Moreover, Riaz and Tehrim [26]
indicated the concept of mappings between BFS-sets and applied this concept to the problem of
medical diagnosis. Afterwards, Riaz and Tehrim [25], in bipolar fuzzy soft setting, presented
the concept of a quasi-coincident, and with the use of Q-neighborhoods, they discussed certain
properties of BFS-topology. In recent years, there has been a considerable literature on BFS-set
and its applications [7, 11, 12, 18, 29, 31, 34].

In topology, a subfield of mathematics, the nets are used to study the basic topological con-
cepts such as convergent, continuity, compactness, and more. Therefore, the problem of exten-
sions of nets have been tackled by many authors. With the requirement of fuzzy setting, Pu and
Liu [24] introduced the notions of fuzzy nets and Q-neighborhoods, and established the Moore
Smith convergence theory in fuzzy topology by the Q-neighborhood structure. Also, Sarma and
Ajmal [28] gave the notion of fuzzy nets of fuzzy sets based on Q-neighborhood structure. On
the basis of the concept of soft neighborhoods, Demir and Özbakır [8] established the conver-
gence theory of soft nets. Later, by using the Q-neighborhood theory, Gao and Wu [13] defined
the convergence of a fuzzy soft net and characterized the continuity of fuzzy soft mappings by
the fuzzy soft nets. Moreover, they [14] obtained some important results about the closure, sep-
aration and compactness by means of fuzzy soft nets.

Inspired by these works we introduce the concept of a quasi-coincident and give some of its
basic properties under bipolar fuzzy soft environment. Then, we obtain the notion of a BFS-net
and study its convergence properties in the light of the bipolar fuzzy soft quasi-neighborhoods
(BFS-q-neighborhoods) of bipolar fuzzy soft points (BFS-points) due to Demir and Saldamlı
[10]. Also, we prove that a BFS-net converges to unique BFS-point in a bipolar fuzzy soft Haus-
dorff space. Moreover, we show that there is a relation between the convergence of bipolar fuzzy
soft filters (BFS-filters) and the convergence of BFS-nets similar to the one which exists be-
tween the convergence of filters and the convergence of nets in topological spaces. Afterwards,
we study on the applications of BFS-nets to bipolar fuzzy soft quasi-continuity and bipolar fuzzy
soft quasi-compactness by means of the convergence theory. Finally, we provide suitable exam-
ples to illustrate the effectiveness of the proposed results.

2 Preliminaries
In this section, we review some basic notions of BFS-sets that we will use in the subsequent

sections.
Throughout this paper, U be a universe of alternatives (objects) and E be a set of specified

parameters (criteria or attributes) unless otherwise explicit.

Definition 2.1 ([17]). Consider a universal set U. A set having form

η = {(u, δ+
η (u), δ−η (u)) : u ∈ U}

denotes a bipolar fuzzy set on U, where δ+
η (u) denotes the positive memberships ranges over

[0, 1] and δ−η (u) denotes the negative memberships ranges over [−1, 0].
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Definition 2.2 ([17]). Let η1 and η2 be two bipolar fuzzy sets on U. Then, their intersection and
union are defined as follows:

(i) η1 ∧ η2 =
{(

u,min {δ+
η1

(u), δ+
η2

(u)},max {δ−η1
(u), δ−η2

(u)}
)

: u ∈ U
}
.

(ii) η1 ∨ η2 =
{(

u,max {δ+
η1

(u), δ+
η2

(u)},min {δ−η1
(u), δ−η2

(u)}
)

: u ∈ U
}
.

Definition 2.3 ([1, 22]). Consider a universal set U and a set of parameters E. Let A ⊆ E and
define a mapping Ω : E → BFU , where BFU represents the family of all bipolar fuzzy subsets of
U. Then, ΩA is called a BFS-set on U, where

ΩA = {〈e,Ω(e)〉 : e ∈ E}

such that δ+
Ω(e)(u) = δ−

Ω(e)(u) = 0 for all e < A and all u ∈ U.

Note that the set of all bipolar fuzzy soft sets on U with attributes from E is denoted by
(BFU )E .

Example 2.4. Suppose that Mrs.X wishes to purchase a mobile phone and let E = {e1 =

display resolution, e2 = CPU per f ormance, e3 = main camera resolution, e4 =

memory capacity} be the set of decision variables. Then, consider the set of three types of
model mobile phones U = {u1, u2, u3} by keeping in view the requirements of Mrs.X. After a
research, we see that a website has assigned the numerical values for each decision variable to
three model mobile phones, taking into account the positive and negative feedbacks based on
customers. The tabular representation of these numerical values is as follows:

Table 1
Tabular reprentation of positive feedbacks

e1 e2 e3 e4

u1 0.4 0.3 0.6 0.7

u2 0.2 0.7 0.8 0.2

u3 0.7 0.3 0.2 0.4

Table 2
Tabular reprentation of negative feedbacks

e1 e2 e3 e4

u1 −0.4 −0.6 −0.4 −0.4

u2 −0.4 −0.5 −0.4 −0.5

u3 −0.1 −0.3 −0.8 −0.5

Therefore, the following bipolar fuzzy soft set on U with the set E of decision variables reporting
the positive-negative informations is obtained:

ΩA =


〈e1,Ω(e1) = {(u1, 0.4,−0.4), (u2, 0.2,−0.4), (u3, 0.7,−0.1)}〉,
〈e2,Ω(e2) = {(u1, 0.3,−0.6), (u2, 0.7,−0.5), (u3, 0.3,−0.3)}〉,
〈e3,Ω(e3) = {(u1, 0.6,−0.4), (u2, 0.8,−0.4), (u3, 0.2,−0.8)}〉,
〈e4,Ω(e4) = {(u1, 0.7,−0.4), (u2, 0.2,−0.5), (u3, 0.4,−0.5)}〉

 .
Definition 2.5 ([34]). (i) The BFS-set ΩE ∈ (BFU )E is called an absolute BFS-set, denoted by
UE , if δ+

Ω(e)(u) = 1 and δ−
Ω(e)(u) = −1 for all u ∈ U and all e ∈ E.

(ii) The BFS-set ΩA ∈ (BFU )E is called a null BFS-set, denoted by φA, if δ+
Ω(e)(u) = δ−

Ω(e)(u) = 0
for all u ∈ U and all e ∈ A.
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Definition 2.6 ([1, 22]). Let Ω1
A1
,Ω2

A2
∈ (BFU )E . Then,

(i) The union of Ω1
A1

and Ω2
A2

is a bipolar fuzzy soft set Ω3
A3

over U such that for all e ∈ E,
Ω3(e) = Ω1(e) ∨Ω2(e) and denoted by Ω3

A3
= Ω1

A1
∪̃ Ω2

A2
.

(ii) The intersection of Ω1
A1

and Ω2
A2

is a bipolar fuzzy soft set Ω3
A3

over U such that for all e ∈ E,
Ω3(e) = Ω1(e) ∧Ω2(e) and denoted by Ω3

A3
= Ω1

A1
∩̃ Ω2

A2
.

Definition 2.7 ([1, 22]). The complement of a BFS-set ΩA ∈ (BFU )E is shown by (ΩA)c = Ωc
A1

where Ωc : E → BFU is a mapping defined by δ+
Ωc(e)(u) = 1−δ+

Ω(e)(u) and δ−
Ωc(e)(u) = −1−δ−

Ω(e)(u)
for all e ∈ E and all u ∈ U.

Definition 2.8 ([34]). Let Ω1
A1

, Ω2
A2
∈ (BFU )E . Then, Ω1

A1
is a BFS-subset of Ω2

A2
if δ+

Ω1(e)
(u) ≤

δ+

Ω2(e)
(u) and δ−

Ω1(e)
(u) ≥ δ−

Ω2(e)
(u), which is shown by Ω1

A1
⊆̃ Ω2

A2
.

Theorem 2.9 ([22]). Let Ω1
A1

, Ω2
A2

be two BFS-sets over U.

(i) ((Ω1
A1

)c)c = Ω1
A1
.

(ii) If Ω1
A1
⊆̃Ω2

A2
, then (Ω2

A2
)c⊆̃ (Ω2

A2
)c.

(iii) (Ω1
A1
∩̃Ω2

A2
)c = (Ω1

A1
)c∪̃ (Ω2

A2
)c.

(iv) (Ω1
A1
∪̃Ω2

A2
)c = (Ω1

A1
)c∩̃ (Ω2

A2
)c.

Definition 2.10 ([27]). Let ΓB ∈ (BFU )E with B = {e} ⊆ E. If δ+
Γ(e)(u) , 0 and δ−

Γ(e)(u) , 0 for all
u ∈ U, then ΓB is called a BFS-point. It is denoted by β(ΓB).

Demir and Saldamlı [10] redefined the concept of BFS-point as follows.

Definition 2.11 ([10]). Let ΩA ∈ (BFU )E with A = {e}. If there is a u ∈ U such that δ+
Ω(e)(u) , 0

or δ−
Ω(e)(u) , 0 and δ+

Ω(e)(u
′) = δ−

Ω(e)(u
′) = 0 for all u′ ∈ U\{u}, then ΩA is called a BFS-point in

U. It is denoted by e(p,n)
u .

The following example reveals that there is no relationship between these two BFS-points.

Example 2.12. Let U = {u1, u2, u3} and E = {e1, e2}. Consider ΓB ∈ (BFU )E with

ΓB =

{
〈e1,Γ(e1) = {(u1, 0.35,−0.63), (u2, 0.45,−0.51), (u3, 0.64,−0.51)}〉,
〈e2,Γ(e2) = {(u1, 0, 0), (u2, 0, 0), (u3, 0, 0)}〉

}
,

where B = {e1}. Then, β(ΓB) is a BFS-point with respect to Definition 2.10 but not with respect
to Definition 2.11. On the other hand, let A = {e1}. Then, to the BFS-set ΩA given by

ΩA =

{
〈e1,Ω(e1) = {(u1, 0.4, 0), (u2, 0, 0), (u3, 0, 0)}〉,
〈e2,Ω(e2) = {(u1, 0, 0), (u2, 0, 0), (u3, 0, 0)}〉

}
,

(e1)(0,4,0)
u1 is a BFS-point with respect to Definition 2.11 but not with respect to Definition 2.10.

Throughout this paper, we adopt the BFS-point in the sense of Demir and Saldamlı [10] for
the convenience of obtaining the desired important results in bipolar fuzzy soft settings.

Let P(U, E) be the family of all BFS-points on U.

Definition 2.13 ([11]). Let (e1)(p1 ,n1)
u1 , (e2)(p2 ,n2)

u2 ∈ P(U, E). These two BFS-points are called
equal if e1 = e2, u1 = u2 and (p1, n1) = (p2, n2). Moreover, (e1)(p1 ,n1)

u1 , (e2)(p2 ,n2)
u2 ⇔ u1 , u2 or

e1 , e2 or (p1, n1) , (p2, n2).

Definition 2.14 ([10]). The BFS-point e(p,n)
u is said to belongs to a BFS-set ΩA, denoted by

e(p,n)
u ∈̃ΩA, if p ≤ δ+

Ω(e)(u) and n ≥ δ−
Ω(e)(u).
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Definition 2.15 ([26]). Let (BFU )E and (BFV )D be two the families of all bipolar fuzzy soft sets
on U and V with parameters from E and D, respectively. Assume that u : U → V and g : E → D
be two mappings. Then, the mapping f = (u, g) : (BFU )E → (BFV )D is called a BFS-mapping
from U to V, defined as the following :

(i) Let ΩA ∈ (BFU )E . Then, f(ΩA) = (f(Ω))A1 is the BFS-set over V with parameters from D
given by f(ΩA) = {〈d, f(Ω)(d)〉 : d ∈ D} such that f(Ω)(d) = {(v, δ+

f(Ω)(d)(v), δ−
f(Ω)(d)(v)) : v ∈ V},

where

δ+
f(Ω)(d)(v) =

 sup{δ+
Ω(e)(u) : u ∈ u−1(v), e ∈ g−1(d) ∩ A}, if u−1(v) , ∅, g−1(d) ∩ A , ∅,

0, if otherwise,

δ−f(Ω)(d)(v) =

 inf{δ−
Ω(e)(u) : u ∈ u−1(v), e ∈ g−1(d) ∩ A}, if u−1(v) , ∅, g−1(d) ∩ A , ∅,

0, if otherwise.

Then, f(ΩA) is called BFS-image of BFS-set ΩA under f.

(ii) Let Ω1
A1
∈ (BFV )D. Then, f−1(Ω1

A1
) = (f−1(Ω1))A is the BFS-set over U

with parameters from E given by f−1(Ω1
A1

) = {〈e, f−1(Ω1)(e)〉 : e ∈ E} such that
f−1(Ω1)(e) = {(u, δ+

f−1(Ω1)(e)
(u), δ−

f−1(Ω1)(e)
(u)) : u ∈ U}, where

δ+

f−1(Ω1)(e)(u) =

 δ+

Ω1(g(e))
(u(u)), if g(e) ∈ A1,

0, if otherwise,

δ−
f−1(Ω1)(e)(u) =

 δ−
Ω1(g(e))

(u(u)), if g(e) ∈ A1,

0, if otherwise.

Then, f−1(Ω1
A1

) is called BFS inverse image of BFS-set Ω1
A1

.

Theorem 2.16 ([26]). Let f = (u, g) : (BFU )E → (BFV )D be a BFS-mapping. Then, for Ω1
A1

,
Ω2

A2
∈ (BFU )E and Γ1

B1
, Γ2

B2
∈ (BFV )D, the following properties are satisfied.

(i) f(Ω1
A1
∪̃ Ω2

A2
) = f(Ω1

A1
) ∪̃ f(Ω2

A2
).

(ii) f−1(Γ1
B1
∪̃ Γ2

B2
) = f−1(Γ1

B1
) ∪̃ f−1(Γ2

B2
).

(iii) f(Ω1
A1
∩̃ Ω2

A2
) ⊆̃ f(Ω1

A1
) ∩̃ f(Ω2

A2
).

(iv) f−1(Γ1
B1
∩̃ Γ2

B2
) = f−1(Γ1

B1
) ∩̃ f−1(Γ2

B2
).

(v) Ω1
A1
⊆̃ f−1(f(Ω1

A1
)), f(f−1(Γ1

B1
) ⊆̃ Γ1

B1
.

(vi) If Ω1
A1
⊆̃ Ω2

A2
, then f(Ω1

A1
) ⊆̃ f(Ω2

A2
).

(vii) If Γ1
B1
⊆̃ Γ2

B2
, then f−1(Γ1

B1
) ⊆̃ f−1(Γ2

B2
).

Definition 2.17 ([27]). The family τ of BFS-sets over U is said to be a BFS-topology on U if it
satisfies the following properties:

(BFST1) UE and φA are members of τ.
(BFST2) If Ωi

Ai
∈ τ for all i ∈ J, an index set, then

⋃̃
i∈JΩ

i
Ai
∈ τ.

(BFTS3) If Ω1
A1

, Ω2
A2
∈ τ, then Ω1

A1
∩̃ Ω2

A2
∈ τ.

We say (U, τ, E) is a BFS-topological space. A member in τ is called a BFS-open set and its
complement is called a BFS-closed set.

Definition 2.18 ([10]). Let (U, τ, E) be a BFS-topological space. The BFS-set ΩA is called a
BFS-neighborhood of a BFS-point e(p,n)

u if there is a BFS-open set Ω1
A1

such that e(p,n)
u ∈̃ Ω1

A1
⊆̃ ΩA.

The collection of all BFS-neighborhoods of e(p,n)
u is called the neighborhood system of e(p,n)

u

and denoted by N(e(p,n)
u ).
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Definition 2.19 ([27]). Let (U, τ, E) be a BFS-topological space and ΩA ∈ (BFU )E . The BFS-
interior of ΩA is the union of all BFS-open sets contained in ΩA, denoted by (ΩA)o. From (BFST2)
it is clear that (ΩA)o is a BFS-open set. This set is largest BFS-open set contained in ΩA.

Definition 2.20 ([27]). Let (U, τ, E) be a BFS-topological space and ΩA ∈ (BFU )E . The closure
of ΩA is the intersection of all BFS-closed sets containing ΩA; this set is denoted ΩA. It is easily
seen that ΩA is the smallest closed set containing ΩA.

Theorem 2.21 ([27]). Let (U, τ, E) be a BFS-topological space and Ω1
A1
,Ω2

A2
∈ (BFU )E . Then,

i) Ω1
A1

is BFS-open set if and only if (Ω1
A1

)o = Ω1
A1

.

ii) If Ω1
A1
⊆̃ Ω2

A2
, then (Ω1

A1
)o⊆̃ (Ω2

A2
)o.

iii) Ω1
A1

is BFS-closed set if and only if Ω1
A1

= Ω1
A1

.

iv) If Ω1
A1
⊆̃ Ω2

A2
, then Ω1

A1
⊆̃ Ω2

A2
.

Definition 2.22 ([11]). The BFS-filter F on U is a nonempty collection of subsets of (BFU )E if
it satisfies the following conditions:

(BFS F1) φA < F ,

(BFS F2) If Ω1
A1

, Ω2
A2
∈ F , then Ω1

A1
∩̃Ω2

A2
∈ F ,

(BFS F3) If Ω1
A1
∈ F and Ω1

A1
⊆̃Ω2

A2
then Ω2

A2
∈ F .

Definition 2.23 ([11]). Let (U, τ, E) be a BFS-topological space, F be a BFS-filter on U and
e(p,n)

u ∈ P(U, E). The BFS-filter F is said to converge to e(p,n)
u if N(e(p,n)

u ) ⊆ F and denoted by
F → e(p,n)

u .

3 Bipolar fuzzy soft quasi-coincident
In this section, we give a new notion of bipolar fuzzy soft quasi-coincident (BFS-q-

coincident) as different from the one given by Riaz and Tehrim in [25], and discuss its related
properties. Then, we compare the properties obtained for this notion with those of existing
model. Moreover, we establish the concept of a bipolar fuzzy soft quasi-neighborhood (BFS-q-
neighborhood) through the assistance of BFS-points. Note that these ideas seem to be extremely
suitable for the bipolar fuzzy soft situation.

Definition 3.1 ([25]). Let ΩA ∈ (BFU )E and β(ΓB) be a BFS-point in the sense of Riaz et al.,
where B = {e}. The BFS-point β(ΓB) is called a BFS-q-coincident with the BFS-set ΩA, denoted
by β(ΓB) q ΩA, if δ+

Γ(e)(u) + δ+
Ω(e)(u) > 1 and δ−

Γ(e)(u) + δ−
Ω(e)(u) < −1 for some u ∈ U.

In classical set theory, if an element is in the union of two sets, then it is in the first set, the
second set, or both. However, this basic property not valid in the setting of bipolar fuzzy soft
theory. So, we obtain a new model of being the BFS-q-coincident of a BFS-point with a BFS-set,
in a different way than in Definition 3.1. This new model make up for the lack of the original
model that does not satisfy the above basic property.

Definition 3.2. Let ΩA ∈ (BFU )E and e(p,n)
u ∈ P(U, E). The BFS-point e(p,n)

u is called a BFS-q-
coincident with the BFS-set ΩA, denoted by e(p,n)

u q ΩA, if p + δ+
Ω(e)(u) > 1 or n + δ−

Ω(e)(u) < −1. If
e(p,n)

u is not BFS-q-coincident with ΩA, then it is denoted by e(p,n)
u q ΩA.

Example 3.3. Let U = {u1, u2}, E = {e1, e2}. Let ΩE be a BFS-set in (BFU )E with

ΩE =

{
〈e1,Ω(e1) = {(u1, 0.5,−0.2), (u2, 0.3,−0.6)}〉,
〈e2,Ω(e2) = {(u1, 0.3,−0.8), (u2, 0.5,−0.1)}〉

}
.

We can easily see that (e1)(0,4,−0.9)
u1 q ΩE since −0, 9 + δ−

Ω(e1)(u1) < −1. However, we verify that
(e2)(0.1,−0.8)

u2 q ΩE because 0.1 + δ+
Ω(e2)(u2) ≤ 1 and −0.8 + δ−

Ω(e2)(u2) ≥ −1.

6

10 Mar 2023 04:50:47 PST
230210-Demir Version 2 - Submitted to Rocky Mountain J. Math.



Remark 3.4. By Example 3.3, observe that the above given concept of BFS-q-coincident is
different from the notion of BFS-q-coincident introduced in Definition 3.1. These new approach,
strictly related with the notion of BFS-point established by Demir and Saldamlı [10], enable us to
obtain a natural (similar to fuzzy-quasi-coincident) behavior of BFS-q-coincident. Furthermore,
this type of BFS-q-coincident will play an important role in obtaining the fundamental theorems
in the next sections.

Theorem 3.5. Let ΩA,Ω
1
A1
,Ω2

A2
∈ (BFU )E and {Ωi

Ai
: i ∈ J} be a family of BFS-sets over U

Then,

(i) If Ω1
A1
⊆̃ Ω2

A2
, then e(p,n)

u q Ω2
A2

for each e(p,n)
u q Ω1

A1
.

(ii) e(p,n)
u q ΩA if and only if e(p,n)

u <̃ (ΩA)c.

(iii) If e(p,n)
u q

⋂̃
i∈JΩ

i
Ai

, then e(p,n)
u q Ωi

Ai
for all i ∈ J.

(iv) e(p,n)
u q

⋃̃
i∈JΩ

i
Ai

if and only if there exists an i0 ∈ J such that e(p,n)
u q Ω

i0
Ai0

.

Proof. (i) Let e(p,n)
u q Ω1

A1
. Then, we have p+δ+

Ω1(e)
(u) > 1 or n+δ−

Ω1(e)
(u) < −1. Due to Ω1

A1
⊆̃Ω2

A2
,

we know that δ+

Ω1(e)
(u) ≤ δ+

Ω2(e)
(u) and δ−

Ω1(e)
(u) ≥ δ−

Ω2(e)
(u). Therefore, we get p + δ+

Ω2(e)
(u) > 1 or

n + δ−
Ω2(e)

(u) < −1, which implies that e(p,n)
u q Ω2

A2
.

(ii) Let e(p,n)
u q ΩA. Then, we have p + δ+

Ω(e)(u) > 1 or n + δ−
Ω(e)(u) < −1 and from here we

get p > 1 − δ+
Ω(e)(u) or n < −1 − δ−

Ω(e)(u). By Definition 2.7, it follows that p > δ+
Ωc(e)(u) or

n < δ−
Ωc(e)(u). This shows that e(p,n)

u <̃ Ωc
A. For sufficiency, let e(p,n)

u <̃ Ωc
A. From Definition 2.7, we

obtain p > 1 − δ+
Ω(e)(u) or n < −1 − δ−

Ω(e)(u) and so that e(p,n)
u q ΩA.

(iii) Consider e(p,n)
u q

⋂̃
i∈JΩ

i
Ai

. Then, p + δ+∧
i∈J Ωi(e)

(u) > 1 or n + δ−∨
i∈J Ωi(e)

(u) < −1. Since
δ+∧

i∈J Ωi(e)
(u) ≤ δ+

Ωi(e)
(u) and δ−∨

i∈I Ωi(e)
(u) ≥ δ−

Ωi(e)
(u) for all i ∈ J, we have p + δ+

Ωi(e)
(u) > 1 or

n + δ−
Ωi(e)

(u) < −1 for all i ∈ J. Thus, e(p,n)
u q Ωi

Ai
for all i ∈ J.

(iv) The sufficiency part is obvious and we only prove the necessary. Let e(p,n)
u q

⋃̃
i∈JΩ

i
Ai

. Suppose
that e(p,n)

u q Ωi
Ai

for all i ∈ J. Then, we get p + δ+

Ωi(e)
(u) ≤ 1 and n + δ−

Ωi(e)
(u) ≥ −1 for all i ∈ J.

Therefore, we obtain p + δ+∨
i∈J Ωi(e)

(u) ≤ 1 and n + δ−∧
i∈J Ωi(e)

(u) ≥ −1. So, it follows that

e(p,n)
u q

⋃̃
i∈JΩ

i
Ai

, which leads to a contradiction. �

To see that the the converse of the Theorem 3.5(iii) need not be true, we give the following
example.

Example 3.6. Let U = {u1, u2} and E = {e1, e2}. Let us take a BFS-point (e1)(0.6,−0.3)
u1 and consider

the BFS-sets Ωi
E such that

δ+

Ωi(e1)(u1) > 0.4, δ−
Ωi(e1)(u1) < −0.7, δ+

Ωi(e1)(u2) = 0.8, δ−
Ωi(e1)(u2) = −0.1,

δ+

Ωi(e2)(u1) = 0.7, δ−
Ωi(e2)(u1) = −0.4, δ+

Ωi(e2)(u2) = 0, δ−
Ωi(e2)(u2) = 0,

for all i ∈ J. Therefore, one easily observes that (e1)(0.6,−0.3)
u1 q Ωi

E for all i ∈ J. However, it follows
from 0, 6 + δ+∧

i∈J Ωi(e1)
(u1) ≤ 1 and −0.3 + δ−∨

i∈J Ωi(e1)
(u1) ≥ −1 that (e1)(0.6,−0.3)

u1 q
⋂̃

i∈JΩ
i
Ai

.

The necessarity condition of Theorem 3.5 (iv) is not true in general, however, if we take the
definition of the BFS-q-coincident in the sense of Riaz et al. [25], as the next example elucidates.

Example 3.7. Let U = {u1, u2, u3} and E = {e1, e2}. Take Ω1
E , Ω2

E ∈ (BFU )E , where

Ω1
E =

{
〈e1,Ω

1(e1) = {(u1, 0.91,−0.13), (u2, 0.32,−0.61), (u3, 0.22,−0.31)}〉,
〈e2,Ω

1(e2) = {(u1, 0.32,−0.43), (u2, 0.51,−0.33), (u3, 0.23,−0.51)}〉

}
,

Ω2
E =

{
〈e1,Ω

2(e1) = {(u1, 0.11,−0.92), (u2, 0.21,−0.35), (u3, 0.33,−0.34)}〉,
〈e2,Ω

2(e2) = {(u1, 0.22,−0.20), (u2, 0.21,−0.23), (u3, 0.15,−0.36)}〉

}
.
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Therefore, we have

Ω1
E ∪̃ Ω2

E = Ω3
E =

{
〈e1,Ω

3(e1) = {(u1, 0.91,−0.92), (u2, 0.32,−0.61), (u3, 0.33,−0.34)}〉,
〈e2,Ω

3(e2) = {(u1, 0.32,−0.43), (u2, 0.51,−0.33), (u3, 0.23,−0.51)}〉

}
.

Now, choose a BFS-point as in Definition 2.10

β(ΓB) =

{
〈e1,Γ(e1) = {(u1, 0.35,−0.63), (u2, 0.45,−0.51), (u3, 0.64,−0.51)}〉,
〈e2,Γ(e2) = {(u1, 0, 0), (u2, 0, 0), (u3, 0, 0)}〉

}
,

where B = {e1}. It is clear that β(ΓB) q Ω1
E ∪̃ Ω2

E but β(ΓB) q Ω1
E and β(ΓB) q Ω2

E with respect to
Definition 3.1.

Definition 3.8. Let Ω1
A1
,Ω2

A2
∈ (BFU )E . Ω1

A1
is called BFS-q-coincident with Ω2

A2
, which is

denoted by Ω1
A1

q Ω2
A2

, if δ+

Ω1(e)
(u) + δ+

Ω2(e)
(u) > 1 or δ−

Ω1(e)
(u) + δ−

Ω2(e)
(u) < −1 for some u ∈ U and

an e ∈ E. If Ω1
A1

is not BFS-q-coincident with Ω2
A2

, then it is denoted by Ω1
A1

q Ω2
A2

.

Theorem 3.9. Let Ω1
A1
,Ω2

A2
∈ (BFU )E . If Ω1

A1
q Ω2

A2
, then Ω1

A1
∩̃ Ω2

A2
, φA.

Proof. Let Ω1
A1

q Ω2
A2

. Then, we get δ+

Ω1(e)
(u) + δ+

Ω2(e)
(u) > 1 or δ−

Ω1(e)
(u) + δ−

Ω2(e)
(u) < −1 for some

u ∈ U and an e ∈ E. This implies that δ+

Ω1(e)
(u), δ+

Ω2(e)
(u) , 0 or δ−

Ω1(e)
(u), δ−

Ω2(e)
(u) , 0. So, we

have δ+

Ω1(e)∧Ω2(e)
(u) , 0 or δ−

Ω1(e)∨Ω2(e)
(u) , 0. This show that Ω1

A1
∩̃ Ω2

A2
, φA. �

As explained in the following example, the converse of above theorem is not necessarily
true.

Example 3.10. Let U = {u1, u2} and E = {e1, e2}. Let Ω1
E ,Ω

2
E ∈ (BFU )E be defined by

Ω1
E =

{
〈e1,Ω(e1) = {(u1, 0.4,−0.1), (u2, 0.5,−0.2)}〉,
〈e2,Ω(e2) = {(u1, 0.3,−0.4), (u2, 0,−0.2)}〉

}
,

Ω2
E =

{
〈e1,Ω(e1) = {(u1, 0.5,−0.8), (u2, 0.5,−0.3)}〉,
〈e2,Ω(e2) = {(u1, 0.4,−0.6), (u2, 0.8,−0.3)}〉

}
.

Then, we observe that Ω1
E ∩̃ Ω2

E , φA but Ω1
E q Ω2

E .

Definition 3.11. Let (U, τ, E) be a BFS-topological space. The BFS-set Ω1
A1

is called a BFS-q-
neighborhood of a BFS-point e(p,n)

u if there exists an Ω2
A2
∈̃ τ such that e(p,n)

u q Ω2
A2
⊆̃ Ω1

A1
.

Theorem 3.12. Let Nq(e(p,n)
u ) be a collection of all BFS-q-neighborhoods of a BFS-point e(p,n)

u

in a BFS-topological space (U, τ, E). Then, the following properties hold:

(BFS N1) If ΩA ∈ Nq(e(p,n)
u ), then e(p,n)

u q ΩA.
(BFS N2) If Ω1

A1
∈ Nq(e(p,n)

u ) and Ω1
A1
⊆̃ Ω2

A2
, then Ω2

A2
∈ Nq(e(p,n)

u ).

(BFS N3) If ΩA ∈ Nq(e(p,n)
u ), then there exists a ΓB ∈ Nq(e(p,n)

u ) with ΓB ⊆̃ΩA and ΓB ∈ Nq(d(p′ ,n′)
v )

for all d(p′ ,n′)
v q ΓB.

Proof. Since the other properties are easily verified, it suffices to show that Nq(e(p,n)
u ) satisfies

(BFS N3). Let ΩA ∈ Nq(e(p,n)
u ). In this case, there exists a ΓB ∈ τ such that e(p,n)

u q ΓB ⊆̃ ΩA.
Therefore, we obtain ΓB ∈ Nq(e(p,n)

u ) with ΓB⊆̃ ΩA. Moreover, for all d(p′ ,n′)
v q ΓB, from ΓB ∈ τ it

follows that ΓB ∈ Nq(d(p′ ,n′)
v ) and thus the desired result is obtained. �

We point out by the next example that the following property fails.

I f Ω1
A1
,Ω2

A2
∈ Nq(e(p,n)

u ), then Ω1
A1
∩̃ Ω2

A2
∈ Nq(e(p,n)

u ). (∗)
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Example 3.13. Let U = {u1, u2, u3} and E = {e1, e2}. Let Ω1
E and Ω2

E be two BFS-sets in (BFU )E

with

Ω1
E =

{
〈e1,Ω

1(e1) = {(u1, 0.6,−0.2), (u2, 0.3,−0.2), {(u3, 0.2,−0.3)}〉,
〈e2,Ω

1(e2) = {(u1, 0.3,−0.4), (u2, 0.5,−0.3), {(u3, 0.2,−0.5)}〉

}
,

Ω2
E =

{
〈e1,Ω

2(e1) = {(u1, 0.1,−0.7), (u2, 0.2,−0.3), {(u3, 0.3,−0.3)}〉,
〈e2,Ω

2(e2) = {(u1, 0.5,−0.3), (u2, 0.3,−0.5), {(u3, 0.5,−0.3)}〉

}
.

Then, τ1 = {φA,UE ,Ω
1
E ,Ω

2
E ,Ω

1
E ∪̃ Ω2

E ,Ω
1
E ∩̃ Ω2

E} is a BFS-topology over U. Let us consider two
BFS-sets Ω3

E and Ω4
E in (BFU )E satisfying

Ω3
E =

{
〈e1,Ω

3(e1) = {(u1, 0.7,−0.3), (u2, 0.6,−0.3), {(u3, 0.5,−0.6)}〉,
〈e2,Ω

3(e2) = {(u1, 0.4,−0.5), (u2, 0.6,−0.9), {(u3, 0, 6,−0.6)}〉

}
,

Ω4
E =

{
〈e1,Ω

4(e1) = {(u1, 0.2,−0.8), (u2, 0.6,−0.7), {(u3, 0.5,−0.4)}〉,
〈e2,Ω

4(e2) = {(u1, 0.6,−0.4), (u2, 0.5,−0.6), {(u3, 0.7,−0.8)}〉

}
and choose a BFS-point (e1)(0,5,−0.4)

u1 . It can be seen that (e1)(0,5,−0.4)
u1 q Ω1

E and Ω1
E ⊆̃ Ω3

E . For this
reason, Ω3

E is a BFS-q-neighborhood of (e1)(0,5,−0.4)
u1 . In a similar way, we can see that Ω4

E is
also a BFS-q-neighborhood of (e1)(0,5,−0.4)

u1 . However, Ω3
E ∩̃ Ω4

E is not a BFS-q-neighborhood of
(e1)(0,5,−0.4)

u1 since (e1)(0,5,−0.4)
u1 is not BFS-q-coincident with Ω3

E ∩̃ Ω4
E .

In the remainder of this paper, if the family Nq(e(p,n)
u ) also satisfies the property (∗), then

this will be presented by N∗q (e(p,n)
u ). In general, unless otherwise specified, we will consider this

family as the BFS-q-neighborhoods of a BFS-point to move forward effectively.

4 BFS-nets
In this section, we introduce and study the notion of convergence for BFS-nets in the BFS-

topological spaces by means of the concept of a BFS-q-neighborhood of a BFS-point given by
Demir and Saldamlı [10]. This will enable us to give some results about bipolar fuzzy soft
Hausdorff spaces. Moreover, like in convergence theory in general topology, we can associate
with each BFS-filter on U a BFS-net over U.

Throughout this paper, Ξ is a directed set with the partial order � such that for each pair ξ1,
ξ2 of elements of Ξ, there exists an element ξ of Ξ having the property that ξ1 � ξ and ξ2 � ξ.
Also, for ξ1, ξ2 ∈ Ξ, we shall often write ξ2 � ξ1 instead of ξ1 � ξ2.

Definition 4.1. A mapping F : Ξ → P(U, E) is called a BFS-net over U and we denote this by{
F(ξ) : ξ ∈ Ξ

}
, or F for sake of simplicity.

Example 4.2. The set N∗q (e(p,n)
u ) with the relation � defined by

Ω1
A1
� Ω2

A2
i f and only i f Ω2

A2
⊆̃ Ω1

A1

forms a directed set. Therefore, F =
{
F(ΩA) : ΩA ∈ N

∗
q (e(p,n)

u )
}

is a BFS-net over U.

Definition 4.3. Let F =
{
F(ξ) : ξ ∈ Ξ

}
be a BFS-net over U and ΩA ∈ (BFU )E .

(i) The BFS-net F is called in ΩA if F(ξ) ∈̃ ΩA for all ξ ∈ Ξ.

(ii) The BFS-net F is called eventually BFS-q-coincident with ΩA if there exists a ξ0 ∈ Ξ such
that F(ξ) q ΩA for all ξ � ξ0 with ξ ∈ Ξ.

Definition 4.4. The BFS-net F =
{
F(ξ) : ξ ∈ Ξ

}
in a BFS-topological space (U, τ, E) is said to

converge to a BFS point e(p,n)
u , and we write limF(ξ) = e(p,n)

u or F→ e(p,n)
u , if it is eventually BFS-q

coincident with each BFS-set in N∗q (e(p,n)
u ). In this case, e(p,n)

u is called the limit of F.
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Example 4.5. Consider Example 4.2. For all ΩA ∈ N
∗
q (e(p,n)

u ), pick a BFS-point F(ΩA) q ΩA.
Then, we have F → e(p,n)

u . Indeed, for each ΓB ∈ N
∗
q (e(p,n)

u ), there exists a ΛC ∈ N
∗
q (e(p,n)

u )
satisfying ΛC ⊆̃ ΓB. From the fact that for all ΩA � ΛC , we have ΩA ⊆̃ ΛC it follows that
F(ΩA) q ΩA ⊆̃ ΓB. Thus, we get the desired result.

Theorem 4.6. Let (U, τ, E) be a BFS-topological space, ΩA ∈ (BFU )E and e(p,n)
u ∈ P(U, E).

e(p,n)
u q (ΩA)o if and only if there exists a ΓB ∈ N

∗
q (e(p,n)

u ) such that ΓB ⊆̃ ΩA.

Proof. To prove the necessary part, let e(p,n)
u q (ΩA)o. From Theorem 3.5(iv) it follows that there

exists a BFS-open set ΓB such that ΓB ⊆̃ ΩA and e(p,n)
u q ΓB. Thus, we have that ΓB ∈ N

∗
q (e(p,n)

u ).

To prove the sufficient part, let ΓB ∈ N
∗
q (e(p,n)

u ) with ΓB ⊆̃ ΩA. Then, we obtain a BFS-open set
Γ1

B1
satisfying e(p,n)

u q Γ1
B1
⊆̃ ΓB. So, Γ1

B1
⊆̃ (ΓB)o⊆̃ (ΩA)o, which means that e(p,n)

u q (ΩA)o. �

Theorem 4.7. Let (U, τ, E) be a BFS-topological space, ΩA ∈ (BFU )E and e(p,n)
u ∈ P(U, E).

e(p,n)
u ∈̃ ΩA if and only if each set in N∗q (e(p,n)

u ) is BFS-q-coincident with ΩA.

Proof. Let e(p,n)
u ∈̃ ΩA and Ω1

A1
∈ N∗q (e(p,n)

u ). Then, there exists an Ω2
A2
∈̃ τ such that

e(p,n)
u q Ω2

A2
⊆̃ Ω1

A1
. Suppose that ΩA q Ω2

A2
. Therefore, for all d ∈ E and all v ∈ U, we have

δ+
Ω(d)(v) + δ+

Ω2(d)
(v) ≤ 1 and δ−

Ω(d)(v) + δ−
Ω2(d)

(v) ≥ −1 and so that ΩA ⊆̃ (Ω2
A2

)c. Since (Ω2
A2

)c is

BFS-closed set, we get ΩA ⊆̃ (Ω2
A2

)c and by hypothesis, we get e(p,n)
u ∈̃ (Ω2

A2
)c. But this contradicts

(e(p,n)
u ) q Ω2

A2
by considering Teorem 3.5(ii). Thus, ΩA q Ω2

A2
, which proves that ΩA q Ω1

A1
.

For the converse, suppose that e(p,n)
u <̃ ΩA. By Theorem 3.5(ii), we have e(p,n)

u q
(
ΩA

)c. Be-
cause

(
ΩA

)c is a BFS-open set, we get
(
ΩA

)c
∈ N∗q (e(p,n)

u ). From the hypothesis it follows
that

(
ΩA

)c q ΩA. Put ΩA = Ω1
A1
. Therefore, there exist a v ∈ U and a d ∈ E such that

δ+
Ω(d)(v) + δ+

(Ω1)c(d)
(v) > 1 or δ−

Ω(d)(v) + δ−
(Ω1)c(d)

(v) < −1. Hence, δ+

Ω1(d)
(v) < δ+

Ω(d)(v) or
δ−

Ω1(d)
(v) > δ−

Ω(d)(v) and so we get a contradiction. �

Theorem 4.8. Let (U, τ, E) be a BFS-topological space, ΩA ∈ (BFU )E and e(p,n)
u ∈ P(U, E).

e(p,n)
u ∈̃ ΩA if and only if there is a BFS-net F =

{
F(ξ) : ξ ∈ Ξ

}
in ΩA such that lim F(ξ) = e(p,n)

u .

Proof. Let e(p,n)
u ∈̃ ΩA and choose the directed setN∗q (e(p,n)

u ) with the relation � defined as Ω1
A1
�

Ω2
A2

if and only if Ω2
A2
⊆̃ Ω1

A1
. By Theorem 4.7, for every ΓB ∈ N

∗
q (e(p,n)

u ), we obtain ΩA q ΓB.
Then, there exist an eΓB ∈ E and a uΓB ∈ U such that

δ+
Ω(eΓB )(uΓB ) + δ+

Γ(eΓB )(uΓB ) > 1 or δ−Ω(eΓB )(uΓB ) + δ−Γ(eΓB )(uΓB ) < −1. (1)

Put pΓB = δ+
Ω(eΓB )(uΓB ) and nΓB = δ−

Ω(eΓB )(uΓB ). Therefore, we have (eΓB )
(pΓB ,nΓB )
uΓB

∈̃ ΩA and

(eΓB )
(pΓB ,nΓB )
uΓB

q ΓB. So, F =
{
F(ΓB) = (eΓB )

(pΓB ,nΓB )
uΓB

: ΓB ∈ N
∗
q (e(p,n)

u )
}

is a BFS-net in ΩA. Now, we

will prove that this BFS-net converges to e(p,n)
u . Take any ΛC ∈ N

∗
q (e(p,n)

u ). Then, for all ∆D � ΛC

with ∆D ∈ N
∗
q (e(p,n)

u ), we know that ∆D ⊆̃ ΛC . Therefore, utilizing (1), we have at least one from
the following inequalities

p∆D + δ+
Λ(e∆D )(u∆D ) ≥ δ+

Ω(e∆D )(u∆D ) + δ+
∆(e∆D )(u∆D ) > 1,

n∆D + δ−Λ(e∆D )(u∆D ) ≤ δ−Ω(e∆D )(u∆D ) + δ−∆(e∆D )(u∆D ) < −1,

which give F(∆D) = (e∆D )
(p∆D ,n∆D )
u∆D

q ΛC . Thus, the BFS-net F converges to e(p,n)
u .

Conversely, let F be a BFS-net in ΩA satisfying F → e(p,n)
u . Then, for every ΓB ∈ N

∗
q (e(p,n)

u ),
we get a ξ0 ∈ Ξ such that F(ξ0) ∈̃ ΩA and F(ξ0) q ΓB. Define F(ξ0) = d(p′ ,n′)

v ∈ P(U, E), where
d ∈ E, v ∈ U and (p′ , 0 or n′ , 0). Therefore, we obtain

δ+
Ω(d)(v) + δ+

Γ(d)(v) ≥ p′ + δ+
Γ(d)(v) > 1 or δ−Ω(d)(v) + δ−Γ(d)(v) ≤ n′ + δ−Γ(d)(v) < −1,

which yield ΩA q ΓB. Thus, from Theorem 4.7 it follows that e(p,n)
u ∈̃ ΩA. �
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Now, we shall generate a BFS-net by defining any BFS-filter.

Let F be a BFS-filter in a BFS-topological space (U, τ, E) and let us denote by ΞF the set of
all pairs (e(p,n)

u ,ΩA) such that e(p,n)
u q ΩA and ΩA ∈ F . Then, the set ΞF forms a directed set with

the relation � defined as ((e1)(p1 ,n1)
u1 ,Ω1

A1
) � ((e2)(p2 ,n2)

u2 ,Ω2
A2

) if and only if Ω2
A2
⊆̃ Ω1

A1
. Therefore,

FF =
{
FF

(
(e(p,n)

u ,ΩA)
)

: (e(p,n)
u ,ΩA) ∈ ΞF

}
(2)

is a BFS-net over U, where FF
(
(e(p,n)

u ,ΩA)
)

= e(p,n)
u .

Definition 4.9. The BFS-net FF in (2) is called the BFS-net based on the BFS-filter F .

Theorem 4.10. Let (U, τ, E) be a BFS-topological space. If a BFS-filter F converges to a BFS-
point e(p,n)

u in U, then the BFS-net based on F converges to e(p,n)
u .

Proof. Consider the BFS-filter F converges to e(p,n)
u and let ΩA ∈ N

∗
q (e(p,n)

u ). Then, we have
ΩA ∈ F . Pick (e0)(p0 ,n0)

u0 q ΩA. Therefore,
(
(e0)(p0 ,n0)

u0 ,ΩA
)
∈ ΞF and so that for all (d(p′ ,n′)

v ,ΓB) �(
(e0)(p0 ,n0)

u0 ,ΩA
)

with (d(p′ ,n′)
v ,ΓB) ∈ ΞF , we get FF

(
(d(p′ ,n′)

v ,ΓB)
)

= d(p′ ,n′)
v q ΓB ⊆̃ ΩA. Thus, we

obtain FF → e(p,n)
u . �

Definition 4.11. The BFS-topological space (U, τ, E) is called a bipolar fuzzy soft Hausdorff
space (BFS-Hausdorff space) if for any two distinct BFS-soft points (e1)(p1 ,n1)

u1 , (e2)(p2 ,n2)
u2 ∈

P(U, E), there exist an Ω1
A1
∈ N∗q

(
(e1)(p1 ,n1)

u1

)
and an Ω2

A2
∈ N∗q

(
(e2)(p2 ,n2)

u2

)
such that e(p,n)

u q Ω1
A1

or
e(p,n)

u q Ω2
A2

for all e(p,n)
u ∈ P(U, E).

Theorem 4.12. The BFS-topological space (U, τ, E) is a BFS-Hausdorff space if and only if
every BFS-net over U converges to at most one BFS-point.

Proof. Necessity: Let (U, τ, E) be a BFS-Hausdorff space and let us suppose that a BFS-net
F =

{
F(ξ) : ξ ∈ Ξ

}
converges to two distinct (e1)(p1 ,n1)

u1 and (e2)(p2 ,n2)
u2 . By the BFS-Hausdorff

property, there exist an Ω1
A1
∈ N∗q

(
(e1)(p1 ,n1)

u1

)
and an Ω2

A2
∈ N∗q

(
(e2)(p2 ,n2)

u2

)
such that e(p,n)

u q Ω1
A1

or e(p,n)
u q Ω2

A2
for all e(p,n)

u ∈ P(U, E). As F converges to (e1)(p1 ,n1)
u1 and (e2)(p2 ,n2)

u2 , there exists an
index ξ ∈ Ξ such that F(ξ) q Ω1

A1
and F(ξ) q Ω2

A2
, a contradiction. This means that every BFS-net

over U converges to at most one BFS-point.
Sufficiency: Suppose that (U, τ, E) is not a BFS-Hausdorff space. This implies that there exist
two distinct BFS-points (e1)(p1 ,n1)

u1 , (e2)(p2 ,n2)
u2 ∈ P(U, E) such that for any BFS-q-neighborhood

Ω1
A1

of (e1)(p1 ,n1)
u1 and for any BFS-q-neighborhood Ω2

A2
of (e2)(p2 ,n2)

u2 , we have e(p,n)
u q Ω1

A1
and

e(p,n)
u q Ω2

A2
for some e(p,n)

u ∈ P(U, E). Then, the set

Ξ =
{
(Ω1

A1
,Ω2

A2
) : Ω1

A1
∈ N∗q

(
(e1)(p1 ,n1)

u1

)
,Ω2

A2
∈ N∗q

(
(e2)(p2 ,n2)

u2

)}
is a directed set with the relation � defined as (Ω1

A1
,Ω2

A2
) � (Γ1

B1
,Γ2

B2
) if and only if

Γ1
B1
⊆̃ Ω1

A1
, Γ2

B2
⊆̃ Ω2

A2
. On taking F((Ω1

A1
,Ω2

A2
)) ∈ P(U, E) satisfying F((Ω1

A1
,Ω2

A2
)) q Ω1

A1
and

F((Ω1
A1
,Ω2

A2
)) q Ω2

A2
, we obtain a BFS-net

F = {F((Ω1
A1
,Ω2

A2
)) : (Ω1

A1
,Ω2

A2
) ∈ Ξ}

over U. Now, we shall prove that this BFS-net converges to both (e1)(p1 ,n1)
u1 and (e2)(p2 ,n2)

u2 . Let
Ω1

A1
∈ N∗q

(
(e1)(p1 ,n1)

u1

)
and Ω2

A2
∈ N∗q

(
(e2)(p2 ,n2)

u2

)
. Therefore, for all (Γ1

B1
,Γ2

B2
) � (Ω1

A1
,Ω2

A2
) with

(Γ1
B1
,Γ2

B2
) ∈ Ξ, we get F((Γ1

B1
,Γ2

B2
)) q Γ1

B1
and F((Γ1

B1
,Γ2

B2
)) q Γ2

B2
. From the fact that Γ1

B1
⊆̃ Ω1

A1

and Γ2
B2
⊆̃ Ω2

A2
it follows that F((Γ1

B1
,Γ2

B2
)) q Ω1

A1
and F((Γ1

B1
,Γ2

B2
)) q Ω2

A2
. Thus, we conclude that

F→ (e1)(p1 ,n1)
u1 and F→ (e2)(p2 ,n2)

u2 , which leads to a contradiction. �
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5 BFS-q-continuity and BFS-q-compactness
In this section, we construct some applications of the BFS-nets in the bipolar fuzzy soft topo-

logical spaces. Our aim is to study the characterizations of bipolar fuzzy soft quasi-continuity
(BFS-q-continuity) and bipolar fuzzy soft quasi-compactness (BFS-q-compactness) with the aid
of the convergence of BFS-nets.

Firstly, we provide some important characterizations with regard to the BFS-mappings, as
shown below.

Proposition 5.1. Let f = (u, g) : (BFU )E → (BFV )D be a BFS-mapping, ΩA ∈ (BFU )E and
e(p,n)

u ∈ P(U, E). Then, the following results hold:

i) f(e(p,n)
u ) = g(e)(p,n)

u(u) .

ii) If e(p,n)
u q ΩA, then f(e(p,n)

u ) q f(ΩA).

iii) If e(p,n)
u ∈̃ ΩA, then f(e(p,n)

u ) ∈̃ f(ΩA).

Proof. It follows easily from the definition of BFS-mapping. �

Proposition 5.2. Let f = (u, g) : (BFU )E → (BFV )D be a BFS-mapping and Ω1
A1

, Ω2
A2
∈ (BFU )E .

If Ω1
A1

q Ω2
A2

, then f(Ω1
A1

) q f(Ω2
A2

).

Proof. Let Ω1
A1

q Ω2
A2

. Then, there exist a u ∈ U and an e ∈ E such that δ+

Ω1(e)
(u) + δ+

Ω2(e)
(u) > 1

or δ−
Ω1(e)

(u) + δ−
Ω2(e)

(u) < −1. Taking δ+

Ω1(e)
(u) = p1 and δ−

Ω1(e)
(u) = n1, we have e(p1 ,n1)

u ∈̃ Ω1
A1

and

e(p1 ,n1)
u q Ω2

A2
. According to Proposition 5.1, we find that f(e(p1 ,n1)

u ) ∈̃ f(Ω1
A1

) and f(e(p1 ,n1)
u ) q f(Ω2

A2
).

Therefore, we reach to the following inequalities, respectively:

δ+

f(Ω1)(g(e))u(u) ≥ p1 and δ−
f(Ω1)(g(e))u(u) ≤ n1,

p1 + δ+

f(Ω2)(g(e))u(u) > 1 or δ−
f(Ω2)(g(e))u(u) + n1 < −1.

Thus, δ+

f(Ω1)(g(e))
u(u) + δ+

f(Ω2)(g(e))
u(u) > 1 or δ−

f(Ω1)(g(e))
u(u) + δ−

f(Ω2)(g(e))
u(u) < −1, which confirms

that f(Ω1
A1

) q f(Ω2
A2

). �

Definition 5.3. Let Ω1
A1

,Ω2
A2
∈ (BFU )E . If e(p,n)

u q Ω2
A2

for each e(p,n)
u q Ω1

A1
, then Ω1

A1
is called a

bipolar fuzzy soft quasi-subset (BFS-q-subset) of Ω2
A2

and denoted as Ω1
A1
⊆̃q Ω2

A2
.

Definition 5.4. Let (U, τ1, E), (V, τ2,D) be two BFS-topological spaces and e(p,n)
u ∈ P(U, E).

The BFS-mapping f = (u, g) : (U, τ1, E) → (V, τ2,D) is called BFS-q-continuous at e(p,n)
u pro-

vided that for every BFS-open set ΓB which is BFS-q-coincident with f(e(p,n)
u ), there exists a

BFS-open set ΩA which is BFS-q-coincident with e(p,n)
u such that ΩA ⊆̃q f

−1(ΓB). We say f is
BFS-q-continuous on U if f is BFS-q-continuous at each e(p,n)

u .

Example 5.5. Let U = {u1, u2, u3} and E = {e1, e2}. Let us consider the following BFS-sets Ω1
E

and Ω2
E on U with the set E of parameters:

Ω1
E =

{
〈e1,Ω

1(e1) = {(u1, 0.5,−0.2), (u2, 0.3,−0.2), (u3, 0.2,−0.3)}〉,
〈e2,Ω

1(e2) = {(u1, 0.2,−0.3), (u2, 0.2,−0.3), (u3, 0.2,−0.5)}〉

}
,

Ω2
E =

{
〈e1,Ω

2(e1) = {(u1, 0.3,−0.5), (u2, 0.2,−0.3), (u3, 0.3,−0.3)}〉,
〈e2,Ω

2(e2) = {(u1, 0.5,−0.3), (u2, 0.5,−0.5), (u3, 0.5,−0.3)}〉

}
.

Then, τ1 = {φA,UE ,Ω
1
E ,Ω

2
E ,Ω

1
E ∪̃ Ω2

E ,Ω
1
E ∩̃ Ω2

E} is a BFS-topology over U. On the other hand,
let V = U and D = {d1, d2}. Choose the BFS-sets Ω3

D and Ω4
D on V with the set D of parameters

such that

Ω3
D =

{
〈d1,Ω

3(d1) = {(u1, 0.6,−0.4), (u2, 0.5,−0.7), (u3, 0.6,−0.6)}〉,
〈d2,Ω

3(d2) = {(u1, 0.3,−0.5), (u2, 0.4,−0.9), (u3, 0.7,−0.8)}〉

}
,

12

10 Mar 2023 04:50:47 PST
230210-Demir Version 2 - Submitted to Rocky Mountain J. Math.



Ω4
D =

{
〈d1,Ω

4(d1) = {(u1, 0.5,−0.3), (u2, 0.5,−0.3), (u3, 0.5,−0.4)}〉,
〈d2,Ω

4(d2) = {(u1, 0.3,−0.4), (u2, 0.3,−0.6), (u3, 0.4,−0.6)}〉

}
.

Therefore, τ2 = {φA,VD,Ω
3
D,Ω

4
D, } is a BFS-topology over V.

Now, we define a BFS-mapping f = (u, g) : (U, τ1, E)→ (V, τ2,D) by

u(u1) = u1, u(u2) = u2, u(u3) = u3,

g(e1) = d1, g(e2) = d2

and let us take a BFS-point (e1)(0,7,−0.3)
u1 . Then, we have f((e1)(0,7,−0.3)

u1 ) = (d1)(0,7,−0.3)
u1 . Thus, the

BFS-mapping f is BFS-q-continuous at (e1)(0,7,−0.3)
u1 because for the BFS-open sets Ω3

D and Ω4
D

which is BFS-q-coincident with (d1)(0,7,−0.3)
u1 , there exists a BFS-open set Ω1

E which is BFS-q-
coincident with (e1)(0,7,−0.3)

u1 such that Ω1
E ⊆̃q f

−1(Ω3
D) and Ω1

E ⊆̃q f
−1(Ω4

D), where

f
−1(Ω3

D) =

{
〈e1, f

−1(Ω3)(e1) = {(u1, 0.6,−0.4), (u2, 0.5,−0.7), (u3, 0.6,−0.6)}〉,
〈e2, f

−1(Ω3)(e2) = {(u1, 0.3,−0.5), (u2, 0.4,−0.9), (u3, 0.7,−0.8)}〉

}
,

f
−1(Ω4

D) =

{
〈e1, f

−1(Ω4)(e1) = {(u1, 0.5,−0.3), (u2, 0.5,−0.3), (u3, 0.5,−0.4)}〉,
〈e2, f

−1(Ω4)(e2) = {(u1, 0.3,−0.4), (u2, 0.3,−0.6), (u3, 0.4,−0.6)}〉

}
.

Theorem 5.6. Let (U, τ1, E), (V, τ2,D) be two BFS-topological spaces and f = (u, g) :
(U, τ1, E)→ (V, τ2,D) be a BFS-mapping. Then, the following statements are equivalent:

(i) (u, g) : (U, τ1, E)→ (V, τ2,D) is BFS-q-continuous.

ii) For every BFS-net F =
{
F(ξ) : ξ ∈ Ξ

}
over U which converges to e(p,n)

u ,

f(F) =
{
f(F)(ξ) : ξ ∈ Ξ

}
, where f(F)(ξ) = f(F(ξ)),

is a BFS-net over V converging to f(e(p,n)
u ).

Proof. We shall prove that (i) ⇒ (ii). Consider F =
{
F(ξ) : ξ ∈ Ξ

}
→ e(p,n)

u and let ΓB ∈

N∗q (f(e(p,n)
u )). Then, we have a Γ1

B1
∈ τ2 such that f(e(p,n)

u ) q Γ1
B1
⊆̃ ΓB. By (i), we get an ΩA ∈ τ1

such that e(p,n)
u q ΩA ⊆̃q f

−1(Γ1
B1

). As F → e(p,n)
u , there exists a ξ0 ∈ Ξ such that F(ξ) q ΩA for

all ξ � ξ0 with ξ ∈ Ξ. Therefore, Proposition 5.1 yields f(F(ξ)) q f(ΩA), which means that
f(F(ξ))→ f(e(p,n)

u ).
To prove that (ii) ⇒ (i) suppose that f is not BFS-q-continuous. Then, for some e(p,n)

u ∈

P(U, E), there exists a ΓB ∈ τ2 such that f(e(p,n)
u ) q ΓB and we have ΩA *̃q f

−1(ΓB) for every

ΩA ∈ τ1 with e(p,n)
u q ΩA. On account of Definition 5.3, we can choose an (eΩA )

(pΩA ,nΩA )
uΩA

∈ P(U, E)

satisfying (eΩA )
(pΩA ,nΩA )
uΩA

q ΩA but (eΩA )
(pΩA ,nΩA )
uΩA

q f−1(ΓB). We know that the family U∗q(e(p,n)
u ) =

{ΩA : e(p,n)
u q ΩA and ΩA ∈ τ1} forms a directed set by ⊇̃ and so, by taking F(ΩA) = (eΩA )

(pΩA ,nΩA )
uΩA

,

we obtain that F =
{
F(ΩA) : ΩA ∈ U

∗
q(e(p,n)

u )
}

is a BFS-net over U. It is easy to verify that
F → e(p,n)

u . Hence, from the hypothesis it follows that f(F) → f(e(p,n)
u ). Since ΓB ∈ τ2 and

f(e(p,n)
u ) q ΓB, f(F) is eventually BFS-q-coincident with ΓB. This brings a contradiction to the fact

that F(ΩA) q f−1(ΓB), that is, f(F(ΩA)) q ΓB for every ΩA ∈ U
∗
q(e(p,n)

u ). Thus, the BFS-mapping f
is BFS-q-continuous. �

Definition 5.7. The BFS-net E =
{
E(ρ) : ρ ∈ Θ

}
is called a BFS-subnet of a BFS-net F =

{
F(ξ) :

ξ ∈ Ξ
}

if there is a mapping ψ : Θ→ Ξ that satisfies the following properties:

i) For all ξ ∈ Ξ, there is a ρ ∈ Θ such that ξ � ψ(ρ),

ii) ψ(ρ1) � ψ(ρ2) whenever ρ1 � ρ2,

iii) E(ρ) = F(ψ(ρ)).
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Definition 5.8. Let (U, τ, E) be a BFS-topological space and ΩA ∈ (BFU )E .

(i) The family Ψ = {Ωi
Ai

: i ∈ J} of BFS-sets over U is called a BFS-q-cover of ΩA if

ΩA ⊆̃q
⋃̃

i∈J Ωi
Ai

. Moreover, it is called a BFS-q-open cover of ΩA if each member of Ψ is a
BFS-open set over U. The BFS-q-subcover of Ψ is a subfamily of Ψ which is also a BFS-q-cover.

(ii) The BFS-set ΩA is called a BFS-q-compact if each BFS-q-open cover of ΩA has a finite
BFS-q-subcover.

Example 5.9. Let U = {u1, u2, ..., un, ...} be the universal set and E = {e1, e2, ..., en, ...} be the set
of parameters. Define the BFS-sets Ωi

Ai
∈ (BFU )E , where i ∈ {1, 2, 3, ...}, as the following: for

all u ∈ U,

δ+

Ωi(e j)
(u) =

{ 1
j , if i ≥ j;

0, if i < j,
δ−

Ωi(e j)
(u) =

{
− 1

j , if i ≥ j;
0, if i < j.

Then, τ =
{
Ωi

Ai
: i ∈ {1, 2, 3, ...}

}
∪ {UE , φA} is a BFS-topology on U. Now, let us consider

ΓB ∈ (BFU )E such that

δ+
Γ(e)(u) =

{
0.7, if e = e1;
0, if e , e1,

δ−Γ(e)(u) =

{
−0.2, if e = e1;

0, if e , e1,

for all u ∈ U. Hence, one can easily verify that the BFS-set ΓB is a BFS-q-compact.

Lemma 5.10. Let F =
{
F(ξ) : ξ ∈ Ξ

}
be a BFS-net and e(p,n)

u ∈ P(U, E). If F has no BFS-subnet
converging to the BFS-point e(p,n)

u , then there exist an Ne(p,n)
u
∈ N∗q (e(p,n)

u ) and a ξe(p,n)
u
∈ Ξ such

that F(ξ) q Ne(p,n)
u

for all ξ � ξe(p,n)
u

with ξ ∈ Ξ.

Proof. Suppose that for all ξ ∈ Ξ and for all ΩA ∈ N
∗
q (e(p,n)

u ), we have a ξΩA � ξ with ξΩA ∈ Ξ

such that F(ξΩA ) q ΩA. Set

Ξ̂ =
{
ξΩA ∈ Ξ : ξ � ξΩA and F(ξΩA ) q ΩA, where ΩA ∈ N

∗
q (e(p,n)

u ), ξ ∈ Ξ
}
. (3)

Then, Ξ̂ is a directed set with the same relation � in Ξ. Now, we shall show that a subnet of F
converges to e(p,n)

u . Since the setsN∗q (e(p,n)
u ) and Ξ̂ are directed sets, the product setN∗q (e(p,n)

u )× Ξ̂

is also a directed set with the relation �p as follows:

(Ω1
A1
, ξΩ1

A1
) �p (Ω2

A2
, ξΩ2

A2
) i f and only i f Ω2

A2
⊆̃ Ω1

A1
and ξΩ1

A1
� ξΩ2

A2
.

Define a ψ : N∗q (e(p,n)
u ) × Ξ̂→ Ξ given by ψ(ΩA, ξΩA ) = ξΩA . Then, a BFS-net

E =
{
E((ΩA, ξΩA )) = F(ξA) : (ΩA, ξΩA ) ∈ N∗q (e(p,n)

u ) × Ξ̂
}

is a BFS-subnet of F . Indeed, taking into account (3), for all δ ∈ Ξ, we have a ((ΩA)δ, ξ(ΩA)δ ) ∈
N∗q (e(p,n)

u ) × Ξ̂ satisfying δ � ψ
(
((ΩA)δ, ξ(ΩA)δ )

)
= ξ(ΩA)δ and F(ξ(ΩA)δ ) q (ΩA)δ. Therefore,

N∗q (e(p,n)
u ) × Ξ̂ satisfy the condition (i) of Definition 5.7. To investigate the condition (ii), take

(Ω1
A1
, ξΩ1

A1
) �p (Ω2

A2
, ξΩ2

A2
). From ξΩ1

A1
� ξΩ2

A2
it follows that ψ

(
(Ω1

A1
, ξΩ1

A1
)
)
� ψ

(
(Ω2

A2
, ξΩ2

A2
)
)
. So,

E is a BFS-subnet of F. For any ΩA ∈ N
∗
q (e(p,n)

u ), let us choose a (ΩA, ξΩA ) ∈ N∗q (e(p,n)
u )×Ξ̂. Hence,

for all (ΓB, ξΓB ) �p (ΩA, ξΩA ) with (ΓB, ξΓB ) ∈ N∗q (e(p,n)
u ) × Ξ̂, we obtain ΓB ⊆̃ ΩA, ξΩA � ξΓB . Due

to E((ΓB, ξΓB )) = F(ξΓB ) q ΓB, we get E((ΓB, ξΓB )) q ΩA. This implies that E → e(p,n)
u , which

contradicts the hypothesis that any subnet of F does not take e(p,n)
u as its limit. �

Theorem 5.11. The BFS-set ΩA is a BFS-q-compact if and only if every BFS-net whose the
elements are BFS-q-coincident with ΩA has a BFS-subnet whose the limit is BFS-q-coincident
with ΩA.
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Proof. Let ΩA be a BFS-q-compact and consider a BFS-net F =
{
F(ξ) : ξ ∈ Ξ

}
such that

F(ξ) q ΩA for all ξ ∈ Ξ. Suppose that for all BFS-points e(p,n)
u being BFS-q-coincident with ΩA,

any subnet of F does not take e(p,n)
u as its limit. By utilizing Lemma 5.10, there is an Ne(p,n)

u
∈

N∗q (e(p,n)
u ) and a ξe(p,n)

u
∈ Ξ such that F(ξ) q Ne(p,n)

u
for all ξ � ξe(p,n)

u
with ξ ∈ Ξ. Then, we obtain

ΩA ⊆q

⋃̃
{Ne(p,n)

u
∈ (BFU )E : Ne(p,n)

u
∈ N∗q (e(p,n)

u ) and e(p,n)
u q ΩA}.

Since ΩA is BFS-q-compact, it has a finite BFS-q-subcover, say {N
(e1)

(p1 ,n1)
u1

, ...,N
(ek)

(pk ,nk )
uk
}. There-

fore, we have that for all i ∈ {1, 2, ..., k}, there exists a ξ
(ei)

(pi ,ni )
ui

∈ Ξ such that F(ξ) q N
(ei)

(pi ,ni )
ui

for

all ξ � ξ
(ei)

(pi ,ni )
ui

with ξ ∈ Ξ. As Ξ is a directed set, we get a ξ0 ∈ Ξ satisfying F(ξ0) q N
(ei)

(pi ,ni )
ui

and ξ0 � ξ
(ei)

(pi ,ni )
ui

for all i ∈ {1, 2, ..., k}. Thus, by Theorem 3.5(iv), from the fact that

ΩA ⊆̃q
⋃̃k

i=1N
(ei)

(pi ,ni )
ui

it follows that F(ξ0) q ΩA, which leads to a contradicition.

For the converse, let Ψ = {Ωi
Ai

: i ∈ J} be a BFS-q-open cover of ΩA and let us note that the
family I = {I : I is a f inite subset o f J} forms a directed set by inclusion ⊆. For the proof by
contradiction suppose that ΩA is not a BFS-q-compact. This means that ΩA *̃q

⋃̃
i∈IΩ

i
Ai

for all
I ∈ I. Then, from Definition 5.3, there exists a BFS-point (eI)

(pI ,nI )
uI q ΩA such that

(eI)(pI ,nI )
uI

q
⋃̃

i∈I
Ωi

Ai
f or all I ∈ I. (4)

Choosing F(I) = (eI)
(pI ,nI )
uI , we obtain a BFS-net F = {F(I) : I ∈ I}. Since F(I) q ΩA for all I ∈ I,

by hypothesis, there exists a BFS-subnet E = {E(ρ) : ρ ∈ Θ} of F such that limE(ρ) = e(p,n)
u

with e(p,n)
u q ΩA. Due to ΩA ⊆̃q

⋃̃
i∈JΩ

i
Ai

, from Theorem 3.5(iv), there exists an i0 ∈ J such that
e(p,n)

u q Ω
i0
Ai0

. Because Ω
i0
Ai0

is BFS-open set and E→ e(p,n)
u , we get a ρ0 ∈ Θ such that

E(ρ) q Ω
i0
Ai0

f or all ρ � ρ0 with ρ ∈ Θ. (5)

Now, by the BFS-subnet property, let us take a mapping ψ : Θ→ I. For {i0} ∈ I, there is a ρ1 ∈ Θ

such that {i0} ⊆ ψ(ρ1). Therefore, we observe that for all ρ � ρ1 with ρ ∈ Θ, we have {i0} ⊆ ψ(ρ)
and so that i0 ∈ ψ(ρ). From (4) it follows that

F(ψ(ρ)) = E(ρ) q Ω
i0
Ai0
. (6)

Hence, for a ρ3 ∈ Θ satisfying ρ0 � ρ3 and ρ1 � ρ3, by utilizing (5) and (6), we obtain
E(ρ3) q Ω

i0
Ai0

and E(ρ3) q Ω
i0
Ai0

, respectively. Thus, we arrive at a contradiction and so the BFS-set
ΩA is BFS-q-compact. �

6 Conclusion
The convergence theory not only is a basic theory of topology but also has wide applications

in other fields including information technology, economics and computer science. Besides, the
convergence of nets is one of the most important tools used in topology to characterize cer-
tain concepts such as the closure of a set, the continuous mappings, Hausdorff spaces, compact
spaces and so on. In this research article, firstly, we introduce and study the concept of a BFS-
q-coincidence and also show some of its properties. Then, we discuss the notion of a net in the
bipolar fuzzy soft inference, and obtain some results on convergence by making use of the con-
cept of a BFS-q-neighborhood of a BFS-point in a BFS-topological space. This enable us to give
some applications about the closure of a BFS-set, BFS-Hausdorff spaces, BFS-q-continuity and
BFS-q-compactness. Moreover, we present the concept of a BFS-net generated by a BFS-filter,
and in the following we investigate the connection between BFS-net convergence and BFS-filter
convergence.
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Therefore, it is hoped that these theoretical works will play a guiding role in further investi-
gation of new approaches for BFS-net and BFS-topology as well as in many areas of application.
As a piece of future work, one can analyze further topological concepts via the BFS-nets such
as product spaces, uniform spaces, ultranets and cluster points. Also, one can investigate the
possibility of applying some of the notions explored here to real-life problems. Next, one can
reformulate our studies to some frames such as bipolar fuzzy N-soft sets, bipolar fuzzy soft ex-
pert sets, bipolar complex fuzzy soft sets and rough fuzzy bipolar soft sets to study the net and
its applications on these models.
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