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Abstract

In this article, our purpose is to establish the existence results of the solutions for frac-

tional Volterra-type integral equations of two variables. We use the method of measure

of non-compactness and Petryshyn’s fixed point theorem to obtain these results. Our

results contain many previously obtained existence results with more relaxed conditions.

Finally, we also give an example to validate our obtained results.
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1 Introduction

There are many physical and engineering phenomena that are suitably modeled into dif-

ferential and integral equations of fractional order [1, 3, 6, 7, 8, 17, 18, 23, 24, 26]. Due

to this fact, the problem related to finding the existence of a solution to these equations

has great importance. Recent area of research involves the study of integral equations

with fractional integrals. Fractional integrals are a generalization of ordinary integrals, and

they have been shown to have many applications in physics, engineering, and other fields

[23, 30]. Recent research has focused on the existence and uniqueness of solutions to integral

equations with fractional integrals, as well as the regularity and stability of these solutions

[14, 21, 22, 32]. For example, some researchers have studied the existence and unique-

ness of solutions to fractional integral equations with nonlocal boundary conditions, while
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others have investigated the existence and uniqueness of solutions to systems of fractional

integral equations. In recent studies, it has been observed that the method of measure of

non-compactness is a very powerful tool to handle these types of problems with fixed point

theorems [2, 4, 5, 11, 12, 13, 15, 16, 19, 31, 32].

In this study, we establish a existence theorem for the solution of 2D FIE, which is

expressed in terms of condensing operators in [0, a] × [0, b]. We consider the following

nonlinear 2D FIE:

z(h, τ) = q

(
h, τ, z(h, τ),

∫ h

0

∫ τ

0
f(h, τ, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h

0

∫ τ

0

g(h, τ, ζ, ρ, z(ζ, ρ))

(h− ζ)1−s1(τ − ρ)1−s2
dρdζ)

)
,

(1)

where (h, τ) ∈ I = [0, a]× [0, b], 0 < s1, s2 ≤ 1.

Das et al. [9] studied the existence of solutions for 2D equation

z(h, τ) = B(h, τ) + q

(
h, , z(h, τ),

∫ h

0

∫ τ

0
f(h, τ, ζ, ρ, z(ζ, ρ))dρdζ

)
(2)

for (h, τ) ∈ [0, 1]× [0, 1].

Further, famous 2D integral equations of Fredholm and Hammerstein type [28] have the

form

z(h, τ) = B(h, τ) +

∫ 1

0

∫ 1

0
f(h, τ, ζ, ρ, z(ζ, ρ))dρdζ, (3)

and

z(h, τ) = B(h, τ) +

∫ h

0

∫ τ

0
p1(h, τ, ζ, ρ)p2(ζ, ρ, z(ζ, ρ))dρdζ. (4)

The main purpose of this article is to obtain the results regarding the existence of solution of

Eq. (1). To serve this purpose, we use a generalization of Darbo’s fixed theorem [2] namely

Petryshyn’s fixed point theorem [29] with the method of measure of non-compactness. How-

ever, many authors studied various types of fractional integral equations with the help of

Darbo’s fixed point theorem, one can see [8, 9, 11, 14]. Instead of Darbo’s fixed point the-

orem, hear we use Petryshyn’s fixed point.

One advantage of Petrashyn’s fixed point theorem is its simplicity and ease of application.

It only requires the mapping to be a condensing with a constant less than 1, which is a

relatively easy condition to check in practice. This makes it a useful tool for proving the

existence and uniqueness of fixed points in a variety of settings, particularly in the context

of numerical analysis and optimization.

Petrashyn’s fixed point theorem is a special case of Darbo’s fixed point theorem, and applies

specifically to condensing mappings. Darbo’s fixed point theorem is a more general result

that applies to a wider class of mappings, but requires a slightly stronger condition on the

continuity of the mapping.
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By using Petryshyn’s fixed point theorem, it is not necessary to verify that the involved

operator maps a closed convex subset onto itself. This feature is also an advantage that

mentioned compared to other similar methods such as the use of Darbo’s and Schauder

fixed point theorems.

The paper is classified as five sections including the introduction. In Section 2, we introduce

some preliminaries and describes the idea of MNC. Section 3 is devoted to state and prove

existence theorem for equations involving condensing operators by the Petryshyn’s fixed

point theorem. In Section 4, we present a example that verify the application of this kind

of nonlinear fractional integral equations. Finally Section 5, concludes the paper.

2 Preliminaries

In entire article, we use

• E : Real Banach space;

• B(z, r): Open ball having z as a center with radius r;

• coZ̄ : Closed convex hull of a set Z.

Definition 2.1. [25] Let Z ⊂ E and

γ(Z) = inf

{
σ > 0 : Z =

m⋃
i=1

Zi with diamZi ≤ σ, i = 1, 2, ..., n

}
.

Hence, γ(Z) is called the Kuratowski MNC.

Definition 2.2. [2] The Hausdorff MNC

ϕ(Z) = inf {σ > 0 : there exists a finite σ-net for Z in E } , (5)

here, a finite δ-net for Z in E means that a set {z1, z2, ..., zn} ⊂ E such thatBσ(E, z1), Bσ(E, z2),

..., Bσ(E, zn) over Z. These MNC are connected in the following way

ϕ(Z) ≤ γ(Z) ≤ 2ϕ(Z),

for any bounded set Z ⊂ E.

Theorem 2.1. [29] Let Z, Z̃ ⊂ E and λ ∈ R. Then

(i) ϕ(Z) = 0 if and only if Z is pre-compact;

(ii) Z ⊆ Z̃ =⇒ ϕ(Z) ≤ ϕ(Z̃);

(iii) ϕ(c̄oZ) = ϕ(Z);

(iv) ϕ(Z ∪ Z̃) = max{ϕ(Z), ϕ(Z̃)};
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(v) ϕ(θZ) = |λ|ϕ(Z);

(vi) ϕ(Z + Z̃) ≤ ϕ(Z) + ϕ(Z̃).

Here, we consider the Banach space C(I,R) with the usual norm

‖z‖ = sup{|z(h, τ)| : h ∈ [0, a], τ ∈ [0, b]}.

The modulus of continuity of z ∈ I is defined as

ω(z, σ) = sup{|z(h, τ)− z(ĥ, τ̂)| : h, ĥ ∈ [0, a], τ, τ̂ ∈ [0, b], |h− ĥ|, |τ − τ̂ | ≤ σ}.

Further,

ω(Z, σ) = sup{ω(z, σ) : z ∈ Z},

ω0(Z) = lim
σ→0

ω(Z, σ).

In [2] we found that ω0(Z) is a regular MNC in C(I).

Definition 2.3. [27] Let H : E → E be a continuous mapping of E which fulfill the

following condition if for all Z ⊂ E with Z bounded, H(Z) is bounded and γ(HZ) ≤
kγ(Z), k ∈ (0, 1). If

γ(HZ) < γ(Z), for all γ(Z) > 0,

then H is called condensing or densifying mapping.

Theorem 2.2. [29] Assume that H : Br → E is a condensing mapping which fulfill the

boundary condition

H(z) = kz, for some z ∈ ∂Br then k ≤ 1.

Then the set of fixed points of H in Br is nonempty.

3 Main results

In this part, we study the existence of the FIE (1) with the following assumptions

(1) F ∈ C(I × R× R,×R,R), f, g ∈ C(Î × R,R), where

Î = {(h, τ, ζ, ρ) ∈ I2 : 0 ≤ ζ ≤ h ≤ a, 0 ≤ ρ ≤ τ ≤ b}.

(2) There exist non-negative constants c1, c2, c3 and c1 < 1 such that

|q(h, τ, z, v, w)− q(h, τ, ẑ, v̂, ŵ)| ≤ c1|z − ẑ|+ c2|v − v̂|+ c3|w − ŵ|;
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(3) There exists a r > 0 such that F satisfies the following bounded condition

sup {|q(h, τ, z, v, w)| : (h, τ) ∈ I, z ∈ [−r, r], v ∈ [−abN, abN ], w ∈ [−as1bs2L, as1bs2L]} ≤ r,

where L = sup{|g(h, τ, ζ, ρ, z)| : for all (h, τ, ζ, ρ) ∈ Î and z ∈ [−r, r]},
N = sup{|f(h, τ, ζ, ρ, z)| : for all (h, τ, ζ, ρ) ∈ Î and z ∈ [−r, r]}.

Theorem 3.1. Under the assumptions (1) − (3), with c1 < 1, for all z ∈ I. Then the Eq.

(1) has at least one solution in E.

Proof. Define H : Br → E in the following way

(Hz)(h, τ) = q

(
h, τ, z(h, τ),

∫ h

0

∫ τ

0
f(h, τ, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h

0

∫ τ

0

g(h, τ, ζ, ρ, z((ζ, ρ)))

(h− ζ)1−s1(τ − ρ)1−s2
dρdζ

)
.

Now, we show that H is continuous on the ball Bτ . For σ > 0 and z, x ∈ Bτ with ‖z−x‖ < σ

|(Hz)(h, τ)− (Hx)(h, τ)|

=

∣∣∣∣∣q
(
h, τ, z(h, τ),

∫ h

0

∫ τ

0
f(h, τ, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h

0

∫ τ

0

g(h, τ, ζ, ρ, z(ζ, ρ))

(h− ζ)1−s1(τ − ρ)1−s2
dρdζ

)

− q
(
h, τ, x(h, τ),

∫ h

0

∫ τ

0
f(h, τ, ζ, ρ, x(ζ, ρ))dρdζ,

∫ h

0

∫ τ

0

g(h, τ, ζ, ρ, x(ζ, ρ))

(h− ζ)1−s1(τ − ρ)1−s2
dρdζ

) ∣∣∣∣∣
≤ c1|z(h, τ)− x(h, τ)|+ c2

∫ h

0

∫ τ

0
|f(h, τ, ζ, ρ, z(ζ, ρ))− f(h, τ, ζ, ρ, x(ζ, ρ))|dρdζ

+ c3

∫ h

0

∫ τ

0

|g(h, τ, ζ, ρ, z(ζ, ρ))− g(h, τ, ζ, ρ, x(ζ, ρ))|
(h− ζ)1−s1(τ − ρ)1−s2

dρdζ

≤ c1‖z − x‖+ c2abω(f, σ) + c3a
s1bs2ω(g, σ),

where, for σ > 0, we denote

ω(f, σ) = sup{|f(h, τ, ζ, ρ, z)− f(h, τ, ζ, ρ, x)| : (h, τ, ζ, ρ) ∈ Î , z, x ∈ [−r, r], ‖z − x‖ ≤ σ}.

ω(g, σ) = sup{|g(h, τ, ζ, ρ, z)− g(h, τ, ζ, ρ, x)| : (h, τ, ζ, ρ) ∈ Î , z, x ∈ [−r, r], ‖z − x‖ ≤ σ}.

By uniform continuity of f(h, τ, ζ, ρ, z) and g(h, τ, ζ, ρ, z) on the set Î× [−r, r], respectively,

we infer that ω(f, σ) → 0 and ω(g, σ) → 0 as σ → 0. Hence, from above estimate H is

continuous on Br.

Now, we prove that H fulfills the condensing mapping. Select a fixed σ > 0 and z ∈ Z. For

(h1, τ1), (h2, τ2) ∈ I with h1 − h2 ≤ σ, τ1 − τ2 ≤ σ, we get

|(Hz)(h2, τ2)− (Hz)(h1, τ1)|

=

∣∣∣∣∣q
(
h2, τ2, z(h2, τ2),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h2

0

∫ τ2

0

g(h2, τ2, ζ, ρ, z(ζ, ρ))

(h2 − ζ)1−s1(τ2 − ρ)1−s2
dρdζ

)
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−q
(
h1, τ1, z(h1, τ1),

∫ h1

0

∫ τ1

0
f(h1, τ1, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

) ∣∣∣∣∣
≤

∣∣∣∣∣q
(
h2, τ2, z(h2, τ2),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h2

0

∫ τ2

0

g(h2, τ2, ζ, ρ, z(ζ, ρ))

(h2 − ζ)1−s1(τ2 − ρ)1−s2
dρdζ

)

−q
(
h2, τ2, z(h2, τ2),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

) ∣∣∣∣∣
+

∣∣∣∣∣q
(
h2, τ2, z(h2, τ2),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

)

−q
(
h2, τ2, z(h2, τ2),

∫ h1

0

∫ τ1

0
f(h1, τ1, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

) ∣∣∣∣∣
+

∣∣∣∣∣q
(
h2, τ2, z(h2, τ2),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

)

−q
(
h2, τ2, z(h1, τ1),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

) ∣∣∣∣∣
+

∣∣∣∣∣q
(
h2, τ2, z(h2, τ2),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

)

−q
(
h1, τ1, z(h2, τ2),

∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

) ∣∣∣∣∣
≤ c3

∣∣∣∣∣
∫ h2

0

∫ τ2

0

g(h2, τ2, ζ, ρ, z(ζ, ρ)))

(h2 − ζ)1−s1(τ2 − ρ)1−s2
dρdζ −

∫ h1

0

∫ τ1

0

g(h1, τ1, ζ, ρ, z(ζ, ρ)))

(h1 − ζ)1−s1(τ1 − ρ)1−s2
dρdζ

∣∣∣∣∣
+c2

∣∣∣∣ ∫ h2

0

∫ τ2

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ −

∫ h1

0

∫ τ1

0
f(h1, τ1, ζ, ρ, z(ζ, ρ))dρdζ

∣∣∣∣
+c1|z(h2, τ2)− z(h1, τ1)|+ ω1(q, σ)

≤ c3

∣∣∣∣∣
∫ h1

0

∫ τ1

0

[
g(h2, τ2, ζ, ρ, z(ζ, ρ))

(h2 − ζ)1−s1(τ2 − ρ)1−s2
− g(h1, τ1, ζ, ρ, z(ζ, ρ))

(h1 − ζ)1−s1(τ1 − ρ)1−s2

]
dρdζ

+

∫ h2

h1

∫ τ2

τ1

g(h2, τ2, ζ, ρ, z(ζ, ρ))

(h2 − ζ)1−s1(τ2 − ρ)1−s2
dρdζ +

∫ h1

0

∫ τ2

τ1

g(h2, τ2, ζ, ρ, z(ζ, ρ))

(h2 − ζ)1−s1(τ2 − ρ)1−s2
dρdζ

+

∫ h2

h1

∫ τ1

0

g(h2, τ2, ζ, ρ, z(ζ, ρ)))

(h2 − ζ)1−s1(τ2 − ρ)1−s2
dρdζ

∣∣∣∣∣
+c2

∣∣∣∣ ∫ h1

0

∫ τ1

0
[f(h2, τ2, ζ, ρ, z(ζ, ρ))− f(h1, τ1, ζ, ρ, z(ζ, ρ))]dρdζ

+

∫ h2

h1

∫ τ1

0
f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ +

∫ h1

0

∫ τ2

τ1

f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ
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+

∫ h2

h1

∫ τ2

τ1

f(h2, τ2, ζ, ρ, z(ζ, ρ))dρdζ

∣∣∣∣+ c1|z(h2, τ2)− z(h1, τ1)|+ ω1(q, σ)

≤ c3

∫ h1

0

∫ τ1

0

|g(h2, τ2, ζ, ρ, z(ζ, ρ))− g(h1, τ1, ζ, ρ, z(ζ, ρ))|
(h2 − ζ)1−s1(τ2 − ρ)1−s2

dρdζ

+c3

∫ h1

0

∫ τ1

0
|g(h1, τ1, ζ, ρ, z(ζ, ρ))|

∣∣∣∣∣ 1

(h2 − ζ)1−s1(τ2 − ρ)1−s2

− 1

(h1 − ζ)1−s1(τ1 − ρ)1−s2

∣∣∣∣∣dρdζ + c3

∫ h2

h1

∫ τ2

τ1

|g(h2, τ2, ζ, ρ, z(ζ, ρ))|
(h2 − ζ)1−s1(τ2 − ρ)1−s2

dρdζ

+c3

∫ h1

0

∫ τ2

τ1

|g(h2, τ2, ζ, ρ, z(ζ, ρ))|
(h2 − ζ)1−s1(τ2 − ρ)1−s2

dρdζ + c3

∫ h2

h1

∫ τ1

0

|g(h2, τ2, ζ, ρ, z(ζ, ρ))|
(h2 − ζ)1−s1(τ2 − ρ)1−s2

dρdζ

+c2

∫ h1

0

∫ τ1

0
|f(h2, τ2, ζ, ρ, z(ζ, ρ))− f(h1, τ1, ζ, ρ, z(ζ, ρ))|dρdζ

+c2

∫ h2

h1

∫ τ1

0
|f(h2, τ2, ζ, ρ, z(ζ, ρ))|dρdζ + c2

∫ h1

0

∫ τ2

τ1

|f(h2, τ2, ζ, ρ, z(ζ, ρ))|dρdζ

+c2

∫ h2

h1

∫ τ2

τ1

|f(h2, τ2, ζ, ρ, z(ζ, ρ))|dρdζ + c1|z(h2, τ2)− z(h1, τ1)|+ ω1(q, σ)

≤ c3Lω1(g, σ)
[(h2 − h1)s1

s1
− hs12

s1

][(τ2 − τ1)s2
s2

− τ s22
s2

]
+ c3L

[hs11 τ s21
s1s2

−
((h2 − h1)s1 − hs12

s1

)
×
((τ2 − τ1)s2 − τ s22

s2

)]
+ c3L

[(h2 − h1)s1(τ2 − τ1)s2
s1s2

+
(τ2 − τ1)s2 [hs12 − (h2 − h1)s1 ]

s1s2
+

(h2 − h1)s1 [τ s22 − (τ2 − τ1)s2 ]

s1s2

]
+c1‖z(h2, τ2)− z(h1, τ1)‖+ +c2abω1(f, σ) + σc2bN + σc3aN + σ2c2N + ω1(q, σ)

≤ c3Lω1(g, σ)hs11 τ
s2
1 + c3L[hs11 τ

s2
1 + (h2 − h1)s1(τ s22 − (τ2 − τ1)s2) + hs12 ((τ2 − τ1)s2)− hs12 τ2s2)]

+c3L[hs12 (s2 − s1)s2 + (h2 − h1)s1(τ s22 − (τ2 − τ1)s2)]

+c1‖z(h2, τ2)− z(h1, τ1)‖+ +c2abω1(f, σ) + σc2bN + σc3aN + σ2c2N + ω1(q, σ)

≤ c3Lω1(g, σ)hs11 τ
s2
1 + c3L[(h1 − h2)s1τ s22 + τ s21 (h2 − h1)s1 + hs12 (τ2 − τ1)s2 ]

+c3L[hs12 (τ2 − τ1)s2 + τ s21 (h2 − h1)s1 ]

+c1‖z(h2, τ2)− z(h1, τ1)‖+ +c2abω1(f, σ) + σc2bN + σc3aN + σ2c2N + ω1(q, σ)

≤ c3Lω1(g, σ)as1bs2 + c3L[σs1ds2 + bs2σs1 + as1σs2 ] + c3L[as1σs2 + bs2σs1 ]

+c1‖z(h2, τ2)− z(h1, τ1)‖+ +c2abω1(f, σ) + σc2bN + σc3aN + σ2c2N + ω1(q, σ).

To simplify,

ω1(g, σ) = sup{|g(h, τ, ζ, ρ, z)− g(ĥ, τ̂ , ζ, ρ, z)| : |h− ĥ| ≤ σ, |τ − τ̂ | ≤ σ, (h, τ, ζ, ρ) ∈ Î , z ∈ [−r, r]},

ω1(f, σ) = sup{|f(h, τ, ζ, ρ, z)− f(ĥ, τ̂ , ζ, ρ, z)| : |h− ĥ| ≤ σ, |τ − τ̂ | ≤ σ, (h, τ, ζ, ρ) ∈ Î , z ∈ [−r, r]},
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ω1(q, σ) = sup

{
|q(h, τ, z, v, w)− q(ĥ, τ̂ , z, v, w)| : |h− ĥ| ≤ σ, |τ − τ̂ | ≤ σ, z ∈ [−r, r],

v ∈ [−abN, abN ], w ∈ [−as1bs2L, as1bs2L]

}
.

From above relation,

ω1(HZ, σ) ≤ c3Lω1(g, σ)as1bs2 + c3L[σs1bs2 + bs2σs1 + as1σs2 ] + c3L[as1σs2 + bs2σs1 ]

+ c1‖z(h2, τ2)− z(h1, τ1)‖+ +c2abω1(f, σ) + σc2bN + σc3aN + σ2c2N + ω1(q, σ).

Putting limit as σ → 0,

ω1(HZ, σ) ≤ c1ω1(Z).

i.e.,

ϕ(HZ) ≤ c1ϕ(Z),

which explains that H is a densifying mapping. Now, let z ∈ ∂Br and if Hz = kz then, we

get ‖Hz‖ = k‖z‖ = kr and by assumption (3),

|Hz(h, τ)| =
∣∣∣q(h, τ, z(h, τ),

∫ h

0

∫ τ

0
f(h, τ, ζ, ρ, z(ζ, ρ))dρdζ,

∫ h

0

∫ τ

0

g(h, τ, ζ, ρ, z(ζ, ρ))

(h− ζ)1−s1(τ − ρ)1−s2
dρdζ

) ∣∣∣
≤ r

for all (h, τ) ∈ I, hence ‖Hz‖ ≤ r i.e., k ≤ 1.

Corollary 3.2. Let

(T1) q ∈ C(I × R× R,R), f ∈ C(Î × R,R), where

Î = {(h, τ, ζ, ρ) ∈ I2 : 0 ≤ ζ ≤ h ≤ a, 0 ≤ ρ ≤ τ ≤ b}; φ, β : I → I.

(T2) The exist non-negative constants c1, c2, c1 < 1 such that

|q(h, τ, z, w)− q(h, τ, ẑ, ŵ)| ≤ c1|z − ẑ|+ c2|w − ŵ|.

(T3) There exists a r > 0 such that q satisfies the following bounded condition

sup{|q(h, τ, z, w)| : (h, τ) ∈ I, z ∈ [−r, r], w ∈ [−as1bs2L, as1bs2L]} ≤ r,

where

L = sup{|f(h, τ, ζ, ρ, z)| : ∀(h, τ, ζ, ρ) ∈ Î and z ∈ [−r, r]}.

If F (h, τ, z, w) = F̂ (h, τ, z, w), then the following integral equation under (T1)− (T3) has at

least one solution in C(I).

z(h, τ) = q

(
h, τ, z(h, τ),

∫ h

0

∫ τ

0

f(h, τ, ζ, ρ, z(ζ, ρ))

(h− ζ)1−s1(τ − ρ)1−s2
dρdζ

)
. (6)
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Proof. The proof is similar to the Theorem 3.1, so we omit the proof.

Corollary 3.3. Let

(D1) q ∈ C(I × R,R), f ∈ C(Î × R,R), where

Î = {(h, τ, ζ, ρ) ∈ I2 : 0 ≤ ζ ≤ h ≤ a, 0 ≤ ρ ≤ τ ≤ b}; φ, β : I → I.

(D2) There exist non-negative constants c1, c2, c1 < 1 such that

|q(h, τ, z)− q(h, τ, ẑ)| ≤ c1|z − ẑ|;

|p(h, τ, z)− p(h, τ, ẑ)| ≤ c2|z − ẑ|.

(D3) There exists a r > 0 such that q satisfies the following bounded condition

sup {|p(h, τ, z) + q(h, τ, z)| : (h, τ) ∈ I, z ∈ [−as1bs2L, as1bs2L]} ≤ r,

where L = sup{|f(h, τ, ζ, ρ, z)| : for all (h, τ, ζ, ρ) ∈ Î and z ∈ [−r, r]}.

If q(h, τ, z, w) = p(h, τ, z)+ q̃(h, τ, z) then the following integral equation under (D1)− (D3)

has at least one solution in C(I).

z(h, τ) = p(h, τ, z(h, τ))) + F

(
h, τ,

∫ h

0

∫ τ

0

f(h, τ, ζ, ρ, z(ζ, ρ))

(h− ζ)1−s1(τ − ρ)1−s2
dρdζ

)
. (7)

Proof. The proof is similar to the Theorem 3.1, so we leave it to the readers.

4 Examples

Example 4.1. Consider the following equation

z(h, τ) =
1

5
e−

h+2τ
3 +

1

2 + τ2 + h

(
|z(h, τ)|

1 + |z(h, τ)|

)
+

sin(z(h, τ))

5(
√
τ + h+ 1)

∫ h

0

∫ τ

0
e−

hτ+ρζ
2 |z(ζ, ρ)|dρdζ

+
1

τ2 + h2 + 6

∫ h

0

∫ τ

0

ρζ sin(ζ + z(ζ, ρ)) + 3hτ ln (1 + z(ζ, ρ))

(h− ζ)
1
2 (τ − ρ)

1
3

dρdζ. (8)
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Here, we study the solution in C([0, 1]× [0, 1]). We have s1 = 1
2 , s2 = 2

3 and

q(h, τ, z, v, w) =
1

5
e−

h+2τ
3 +

1

2 + τ2 + h

(
|z|

1 + |z|

)
+

sin(z(h, τ))

5(
√
τ + h+ 1)

v +
1

τ2 + h2 + 6
w,

v =

∫ h

0

∫ τ

0
f(h, τ, ζ, ρ, z(ζ, ρ))dρdζ,

f(h, τ, ζ, ρ, z(ζ, ρ)) = e−
hτ+ρζ

2 |z(ζ, ρ)|,

|f(h, τ, ζ, ρ, z)| ≤ |z|

w =

∫ h

0

∫ τ

0

g(h, τ, ζ, ρ, z(ζ, ρ))

(h− ζ)
1
2 (τ − ρ)

1
3

dρdζ,

g(h, τ, ζ, ρ, z(ζ, ρ)) = ρζ sin(ζ + z(ζ, ρ)) + 3hτ ln (1 + z(ζ, ρ)) ,

|g(h, τ, ζ, ρ, z)| ≤ 1 + 3|z|

for all (h, τ) ∈ [0, 1]× [0, 1].

It is easy to see that (1) and (2) holds. We show that (3) also hold. Suppose that ‖z‖ ≤
r, r > 0, then we have

|z(h, τ)| =

∣∣∣∣∣15e−h+2τ
3 +

1

2 + τ2 + h

(
|z(h, τ)|

1 + |z(h, τ)|

)
+

sin(z(h, τ))

5(
√
τ + h+ 1)

∫ h

0

∫ τ

0
e−

hτ+ρζ
2 |z(ζ, ρ)|dρdζ

+
1

τ2 + h2 + 6

∫ h

0

∫ τ

0

ρζ sin(ζ + z(ζ, ρ)) + 3hτ ln (1 + z(ζ, ρ))

(h− ζ)
1
2 (τ − ρ)

1
3

dρdζ|

≤ 7

10
+

1

5
δ +

1

36
(1 + 3δ).

Hence (3) holds, if 7
10 + 1

5r+ 1
36(1+3r) ≤ r. We can easily verify that r = 1.0155 satisfies this

inequality. Hence all the assumptions from (1) - (3) are satisfied. Thus, from the Theorem

3.1, we get Eq. (8) has at least one solution in C([0, 1]× [0, 1]).

5 Conclusion

In this work, we studied the existence of solutions for Volterra fractional integral equa-

tions with the help of Petryshyn’s fixed point theorem and the method of measure of

non-compactness with relaxed conditions. We gave an examples to prove the validity of

our results. The interested authors may consider the result of Eq. (1) in different Banach

function spaces, e.g., Sobolev space, Orlicz space, Hölder space, etc. The importance of

defending the existence result in the research of this is one of the advantages of researchers.

So far, several approaches have been devised for this idea. This research is based on a more

general form of the FIE, which involves some other relevant works as well.
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