LOCALIZATION OF ZEROS OF POLAR POLYNOMIALS ON THE UNIT DISK

R. S. COSTAS-SANTOS AND A. REHOUMA

Abstract

In the paper we derive useful result about the zeros of the k-polar polynomials on the unit circle, in particular we obtain a circular region containing all the zeros of these polynomials. Some examples are presented.

1. Introduction

Finding the roots of polynomials is a problem of interest in both mathematics and in areas of application such as physical systems, which can be reduced to solving certain equation. There are very interesting geometric relationships between the roots of a polynomial $f_{n}(z)$ and those of $f_{n}^{\prime}(z)$. The most important result is the following.

Theorem 1.1 (The Gauß-Lucas theorem [12]). Let $f_{n}(z) \in \mathbb{C}[z]$ be a polynomial of degree at least one. All zeros of $f_{n}^{\prime}(z)$ lie in the convex hull of the zeros of the zeros of $f_{n}(z)$.

The location of zeros, or critical points, of polynomials has many physical and geometrical interpretations. For example, F. Gauß in 1816 showed that the roots of $f_{n}^{\prime}(z)$ are the positions of equilibrium in the field of force due to equal particles situated at each root of $f_{n}(z)$, if each particle repels with a force equal to the inverse distance being the inverse distance law.

Many results exist concerning the location of the zeros of a polynomial of a complex variable as a function of the coefficients of the polynomial. One is the well-known Eneström-Kakeya theorem, [19]. Another one, useful to obtain more precise about the zeros of a polynomial, was obtained by J. H. Grace.

Theorem 1.2 (The Grace's theorem [9]). Let $a(z)$ and $b(z)$ the following polynomials:

$$
a(z)=\sum_{\ell=0}^{n} a_{\ell}\binom{n}{\ell} z^{\ell}, \quad b(z)=\sum_{\ell=0}^{n} b_{\ell}\binom{n}{\ell} z^{\ell}
$$

If the zeros of both polynomials lie in the unit disk, then the zeros of the "composition" of the two

$$
c(z)=\sum_{\ell=0}^{n} a_{\ell} b_{\ell}\binom{n}{\ell} z^{\ell}
$$

also lie in the unit disk.

2020 Mathematics Subject Classification. 42C05; 33C45.
Key words and phrases. orthogonal polynomials; polar polynomials; Laurent series; unit circle; Location of zeros.

$$
\begin{align*}
\int_{-\pi}^{\pi} L_{n}(z) z^{-j} d \mu(\theta) & =0, \quad j=0,1, \ldots, n-1 \tag{1}\\
\frac{1}{2 \pi} \int_{-\pi}^{\pi} L_{n}(z) \overline{L_{n}(z)} d \mu(\theta) & =\left\|L_{n}\right\|^{2} \neq 0, \quad n=0,1, \ldots
\end{align*}
$$

where $z=\exp (i \theta)$ and $d \mu(\theta)=\rho(\theta) d \theta$ with $\rho \in L^{1}([-\pi, \pi], d \theta)$, is a measure supported on the unit circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$.

Then, all the zeros of $L_{n}(z)$ are contained in the open unit disk $\mathbb{D}=\{z:|z|<1\}$
In this contribution we are going to introduce monic k-polar polynomials.
Definition 1.3. Let μ be a finite measure defined on the Borelian σ-algebra of \mathbb{C} such that it contains an infinite number of points and let $\left(L_{n}(z)\right)$ the system of monic orthogonal polynomials with respect to μ. Let ξ be a fixed complex number. Let k be a positive integer, the k-polar polynomial related to μ, which will be denoted by $Q_{n ; k}(z ; \xi)$, is the polynomial solution of degree n of the k-th order linear differential equation

$$
\frac{d^{k}}{d z^{k}}(z-\xi)^{k} P(z)=(n+1) \cdots(n+k) L_{n}(z)
$$

Remark 1.4. Notice that, by construction, $Q_{n ; 0}(z)=L_{n}(z)$ for all n.
In the last years some attention has been paid to the so called polar orthogonal polynomials. Fundora, Pijeira, and Urbina [6] have studied 1-polar orthogonal polynomial sequences associated with a measure supported on the segment. A similar study has been done by Pijeira, Bello, and Urbina [18], in the case of 1-polar Legendre polynomials.

The main result in this paper is to study the zero location of k-polar orthogonal polynomials on the unit circle, in short OPUC, with respect to a generic measure μ.

The structure of this work is the following: in Section 2 we present some preliminaries and basic results we need to obtain the main result. In Section 3 we state the main result of this work about the location of the zeros of polar polynomials. In Section 4 we present three interesting examples of k-polar orthogonal polynomials on the unit circle. Since extensive calculations indicate that these polynomials often have complex zeros and there exists a ring-shaped region containing all the zeros of polar orthogonal we also present in this Section numerical calculations to see if Sendov's conjecture [14, p. 267] holds true or not for such examples.

2. Preliminaries

Given a complex number $z_{0} \in \mathbb{C}$ and a radius $r>0$, we define the open disk

$$
D\left(z_{0}, r\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}
$$

$$
\overline{D\left(z_{0}, r\right)}:=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\},
$$

and the circle

$$
\partial D\left(z_{0}, r\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\} .
$$

Let μ be a finite positive Borel measure that is absolutely continuous with respect to the Lebesgue measure $d \theta /(2 \pi)$ on $[-\pi, \pi]$. Let $\left(L_{n}(z)\right)$ be the system of monic polynomials orthogonal with respect to μ. It is known that the following mutually equivalent recursions relations hold for these polynomials:

$$
\begin{aligned}
& L_{n}(z)=z L_{n-1}(z)+L_{n}(0) L_{n-1}^{*}(z), \\
& L_{n}^{*}(z)=L_{n-1}^{*}(z)+z \overline{L_{n}(0)} L_{n-1}(z),
\end{aligned}
$$

where

$$
\begin{equation*}
L_{n}^{*}(z)=z^{n} \overline{L_{n}(1 / \bar{z})}=1+z \sum_{\ell=0}^{n-1} \overline{L_{\ell+1}(0)} L_{\ell}(z), \quad z \neq 0 \tag{2}
\end{equation*}
$$

Moreover, for $|z|=1$, we have

$$
\begin{equation*}
\left|\frac{L_{n+1}^{*}(z)}{L_{n}^{*}(z)}-1\right|=\left|\frac{L_{n+1}(z)}{L_{n}(z)}-z\right|=\left|L_{n+1}(0)\right|, \quad n=0,1, \ldots \tag{3}
\end{equation*}
$$

for more details about these former identities see [11, 17, 19, 20, 21].
Along this work we are going to deal with the zeros of polynomials with complex coefficients, therefore it is convenient to state the following results.

Theorem 2.1 (Szegő's theorem [20], [2]). Let $a(z), b(z)$ and $c(z)$ the polynomials defined in Theorem 1.2. If all the zeros of $a(z)$ lie in a closed disk \bar{D} and $\lambda_{1}, \ldots, \lambda_{n}$ are the zeros of $b(z)$, then every zero of $c(z)$ has the form $\lambda_{\ell} \gamma_{\ell}$, where $\gamma_{\ell} \in \bar{D}$.

Lemma 2.2 (Cauchy's. Theorem (27,2) in [13]). If $P(z)=a_{n} z^{n}+\cdots+a_{1} z+a_{0}$ is a complex polynomial of degree at least one, then all the zeros of P lie in a closed circle

$$
|z| \leq 1+A,
$$

where $A=\max \left\{\left|a_{0}\right|, \ldots,\left|a_{n-1}\right|\right\} /\left|a_{n}\right|$.
Lemma 2.3 (Datt and Govil [3]). If $P(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ is a complex polynomial of degree at least one, then all the zeros of P lie in a ring shaped region

$$
\frac{\left|a_{0}\right|}{2(1+B)^{n-1}(1+n B)} \leq|z| \leq 1+\lambda_{0} B,
$$

where $B=\max \left\{\left|a_{0}\right|, \ldots,\left|a_{n-1}\right|\right\}$, and λ_{0} is the unique root of the equation $(x-1)(1+B x)^{n}+1=0$ in the interval $[0,1]$.

For more information about inequalities that satisfy the zeros of complex polynomials, read the survey [16] and the references therein.

Recall that the convex hull of a set G is the smallest convex set containing G, that is, the intersection of all closed containing G.

$$
\begin{equation*}
(n+1) \int_{\xi}^{z} L_{n}(t) d t=(z-\xi) Q_{n ; 1}(z ; \xi) \tag{4}
\end{equation*}
$$

therefore it is logical to call $Q_{n ; 1}(z ; \xi)$ the n-th first order polar polynomial of $L_{n}(z)$ (see $\left.[6,18]\right)$. As a consequence of (4) we obtain

$$
\begin{equation*}
(n+1) L_{n}(z)=Q_{n ; 1}(z ; \xi)+(z-\xi) Q_{n ; 1}^{\prime}(z ; \xi) \tag{5}
\end{equation*}
$$

Remark 2.4. Observe that, by construction, $Q_{n ; 1}(z ; \xi)$ is a monic polynomial of degree n and the pole of this polynomial is not irregular. In fact,

$$
\lim _{z \rightarrow \xi} Q_{n ; 1}(z ; \xi)=\lim _{z \rightarrow \xi} \frac{(n+1) \int_{\xi}^{z} L_{n}(t) d t}{z-\xi}=(n+1) L_{n}(\xi)
$$

Analogous calculations can be done in order to see that the k-polar monic polynomial $Q_{n ; k}(z ; \xi)$ has degree n and the pole of this polynomial is not irregular.

3. Localization of zeros of polar polynomials

Our next propose is to prove that all the zeros of the k-polar monic polynomial $Q_{n ; k}(z ; \xi)$ are contained in a disk which radius is independent of n. First, let us express the polynomials $L_{n}(z)$ and $Q_{n ; k}(z ; \xi)$ in terms of power of $z-\xi$, that is

$$
\begin{equation*}
L_{n}(z)=\sum_{\ell=0}^{n} a_{n, \ell}(z-\xi)^{\ell}, \quad Q_{n ; k}(z)=\sum_{\ell=0}^{n} b_{n, \ell ; k}(z-\xi)^{\ell}, \quad k=1,2, \ldots \tag{6}
\end{equation*}
$$

where $a_{n, n}=b_{n, n ; k}=1$ for all $k=1,2, \ldots$
Lemma 3.1. Let k be a positive integer. Let $\xi \in \mathbb{C}$. The coefficients of $L_{n}(z)$ and $Q_{n ; k}(z ; \xi)$ are fulfill the following relation:

$$
\begin{equation*}
b_{n, \ell ; k}=\frac{(n+k) \cdots(n+1)}{(\ell+k) \cdots(\ell+1)} a_{n, \ell}, \quad \ell=0,1, \ldots, n-1 . \tag{7}
\end{equation*}
$$

Proof. By Definition 1.3 we have

$$
\begin{equation*}
\frac{d^{k}}{d z^{k}}(z-\xi)^{k} Q_{n ; k}(z ; \xi)=(n+k) \cdots(n+1) L_{n}(z) \tag{8}
\end{equation*}
$$

Start with (8), use the power expansion (6) and taking into account the linearity of the derivative. If we compare the power coefficients in these expressions the result holds.

By using this result we obtain the first main result.
Theorem 3.2. Let μ be a finite measure defined on the Borelian σ-algebra of \mathbb{C} such that it contains an infinite number of points and let $\left(L_{n}(z)\right)$ the system of monic orthogonal polynomials with respect to μ. Let ξ be a fixed complex number. Let k be a positive integer.

All the zeros of $Q_{n ; k}(z ; \xi)$ are contained in the closed disk $\overline{D(0,|\xi|+(k+1)(1+|\xi|)}$.

Proof. Since L_{n} is OPUC, then by [19] we know the zeros of $L_{n}(z)$ lie in \mathbb{D}. let us define $\omega:=z-\xi$ and, taking into account Lemma 3.1, let us consider the following polynomials:

$$
\begin{aligned}
& \qquad f_{n}(\omega)=L_{n}(z)=\sum_{\ell=0}^{n} \frac{a_{n \ell}}{\binom{n}{\ell}}\binom{n}{\ell} \omega^{\ell}, \\
& \text { and } \\
& g_{n ; k}(\omega)=\sum_{\ell=0}^{n} \frac{(n+k) \cdots(n+1)}{(\ell+k) \cdots(\ell+1)}\binom{n}{\ell} \omega^{\ell}=\sum_{\ell=0}^{n}\binom{n+k}{\ell+k} \omega^{\ell}=\frac{(n+k) \cdots(k+1)}{n!} F(-n, 1 ; k+1 ;-\omega),
\end{aligned}
$$

and

$$
\text { - where } F(a, b ; c ; z) \text { is the Gauß function }[4,15.2 .2] \text {. }
$$

The "composition" of f_{n} and g_{n} leads to

$$
h_{n ; k}(\omega)=\sum_{\ell=0}^{n} \frac{b_{n, \ell ; k}}{\binom{n}{\ell}}\binom{n}{\ell} \omega^{\ell}=Q_{n ; k}(z ; \xi) .
$$

Due to Theorem 3.2 in [5] we know that $g_{n ; k}(z)$ has non-real zeros for n even and $n-1$ non-real zeros for n odd. Moreover, it is known this function is defined for $|\omega|<1$.

Remark 3.3. Observe that by using [1, Corollary 2] we obtain

$$
\begin{equation*}
(1-z)^{n+k} F(n+k+1, k ; k+1 ; z)=F(-n, 1 ; k+1 ; z)=\frac{n!}{(k+1) \cdots(k+n)} P_{n}^{(k,-k-n)}(1-2 z), \tag{9}
\end{equation*}
$$

where $P_{n}^{(\alpha, \beta)}(z)$ is the Jacobi polynomial of degree n and parameters α and β (see $c . f .[4,18.5 .7]$ we can express the polynomial $g_{n ; k}(z)$ in terms of the Jacobi polynomials.

Remark 3.4. Notice that if we take the k-th derivative of $\omega^{k} g_{n ; k}(\omega)$ we obtain

$$
\begin{equation*}
\frac{d^{k}}{d \omega^{k}} \omega^{k} g_{n ; k}(\omega)=\sum_{\ell=0}^{n}(n+k) \cdots(n+1)\binom{n}{\ell} \omega^{\ell}=(n+k) \cdots(n+1)(1+\omega)^{n} \tag{10}
\end{equation*}
$$

Therefore for one side we know that if $z_{n, 0}$ is a zero of $L_{n}(z)$ then $\left|z_{n, 0}\right| \leq 1$, so $\left|w_{n, 0}\right| \leq 1+|\xi|$. On the other hand, since we know that if $w_{n, 1}$ is a root of $g_{n ; k}(z)$ then $\left|w_{n, 1}\right| \leq R_{n, k}$. With these two inequalities we can claim that, using Szegő's Theorem, for any root of $h_{n ; k}(z)$, namely $\left|z_{n, 3}\right|$, and since $\left|\omega_{n, 3}\right|=\left|z_{n, 3}+\xi\right|$, the following inequality holds:

$$
\begin{equation*}
\left|z_{n, 3}\right| \leq(1+|\xi|) R_{n, k}+|\xi| . \tag{11}
\end{equation*}
$$

Since $P_{1}^{(k,-k-n)}(1+\omega)=\omega+k+1$ and the zeros of the Jacobi polynomials $P_{n}^{(k,-k-n)}(1+\omega)$ tend to the circle $\overline{D(-1,1)}$ when $n \rightarrow \infty$ (see [10]), we can assume $R_{n, k} \leq k+1$. Hence the result follows.

4. The examples

Along this section we will consider different examples which let us to explain why sometimes we can consider a ring shape region (strictly speaking) where the zeros are located in, and some other situations we can not. Of course the region depends on different parameters such as the value ξ, as well as the integers k and n, among others. The examples we are going to consider can be consider as canonical.

$$
\begin{equation*}
d \mu(z)=\frac{1}{|z+\beta|^{2}} \frac{d \theta}{2 \pi} \tag{12}
\end{equation*}
$$

Notice that if $\beta=r \exp (-i \phi)$, then (12) becomes [19, (1.6.2)]

$$
d \mu(z)=P_{r}(\theta, \phi) \frac{d \theta}{2 \pi}
$$

where P_{r} is the Poisson kernel of

$$
\int \Re(g(z)) z^{-n} \frac{d \theta}{2 \pi} .
$$

Let $\left(L_{n}(z)\right)$ be the monic orthogonal polynomials with respect to μ. These polynomials can be expressed as follows [7, 8]:

$$
\begin{equation*}
L_{n}(z)=z^{n}+\beta z^{n-1}, \quad n=1,2, \ldots \tag{13}
\end{equation*}
$$

From this expression their first order monic polar polynomials are defined as:

$$
\begin{equation*}
Q_{n ; 1}(z ; \xi)=(n+1) \frac{\int_{\xi}^{z} L_{n}(t) d t}{z-\xi}=\frac{z^{n}(n z+(n+1) \beta)-\xi^{n}(n \xi+(n+1) \beta)}{n(z-\xi)} \tag{14}
\end{equation*}
$$

Moreover, the second order monic polar polynomial of degree n is

$$
\begin{equation*}
Q_{n ; 2}(z ; \xi)=\frac{z^{n+1}(n z+\beta n+2 \beta)+\xi^{n}\left(n(n+1) \xi^{2}+n(n+2) \xi(\beta-z)-\beta(n+1)(n+2) z\right)}{n(n+1)(n+2)(z-\xi)^{2}} . \tag{15}
\end{equation*}
$$

In the figures 1 and 2 we show the zeros of these polynomials under different settings (in the first case $\left|\xi_{1}\right|+2\left(1+\left|\xi_{1}\right|\right)=3$, and $\left|\xi_{2}\right|+3\left(1+\left|\xi_{2}\right|\right)=13 / 3$ in the second one $)$.

Figure 1. Zeros of $Q_{10 n ; 1}(z ; 1 / 3 \exp (i \pi / 3))$ for $n=1,2,3,4$ in the window $[-0.5,0.7] \times[-0.5,0.7]$, with $\beta=1 / 2 \exp (i \pi / 3)$.

Figure 2. Zeros of $Q_{10 n ; 2}(z ; 1 / 3 \exp (i \pi / 3))$ for $n=1,2,3,4$ in the window $[-0.5,0.7] \times[-0.5,0.7]$, with $\beta=1 / 2 \exp (i \pi / 3)$.

n	zero	distance
2	$-0.04549-0.59920 i$	0.2602
3	$0.25331-0.28868 i$	0.41997
4	$0.32559-0.13863 i$	0.65268
5	$0.34111-0.04380 i$	0.68222
6	$0.33895+0.01995 i$	0.74277
7	$0.33098+0.06499 i$	0.75514
8	$0.32137+0.09813 i$	0.77831
9	$-0.04905+0.33164 i$	0.78565
10	$-0.02743+0.33361 i$	0.79638
11	$-0.00958+0.33426 i$	0.80117
12	$0.00536+0.33412 i$	0.80687
13	$0.01804+0.33350 i$	0.81013
14	$0.02892+0.33261 i$	0.81350
15	$0.03835+0.33155 i$	0.81577
16	$0.04660+0.33042 i$	0.81795
17	$0.05388+0.32925 i$	0.81957
18	$0.06033+0.32808 i$	0.82106
19	$0.06610+0.32693 i$	0.82225
20	$0.07129+0.32581 i$	0.82332

Table 1. For every $2 \leq n \leq 20, \beta=1 / 2 \exp (i \pi / 3)$, we obtain the zero of $Q_{n ; 1}(z ; 1 / 3 \exp (i \pi / 3))$ (left) and $Q_{n ; 2}(z ; 1 / 3 \exp (i \pi / 3))$ (right) which produces the maximum distance with respect to the zeros of their corresponding derivatives.
4.2. Second example. Fix $m \geq 0$. Let

$$
d \mu_{1}(\theta)=\frac{d \theta}{2 \pi}+m \delta(z-1)
$$

where $z=\exp (i \theta)$ and

$$
\int f(z) \delta(z-1) d \theta=f(1), \quad f \in \mathbb{P}[z] .
$$

The monic associated orthogonal polynomials with respect to μ_{1} on \mathbb{T} are [2, 7]:

$$
\begin{equation*}
L_{n}(z)=z^{n}-\frac{m}{1+n m} \sum_{k=0}^{n-1} z^{k}=z^{n}-\frac{m}{1+n m} \frac{z^{n}-1}{z-1}, \quad n=1,2, \ldots \tag{16}
\end{equation*}
$$

From this expression their first order monic polar polynomials are defined as:

$$
\begin{equation*}
Q_{n ; 1}(z ; \xi)=\frac{z^{n+1}-\xi^{n+1}}{z-\xi}-\frac{m(n+1)}{1+n m} \sum_{k=0}^{n-1} \frac{z^{k+1}-\xi^{k+1}}{(k+1)(z-\xi)} \tag{17}
\end{equation*}
$$

Remark 4.1. Notice that the zeros of these polynomials tend to accumulate around the unit circle \mathbb{T} whenever $|\xi| \leq 1$, and around the closed circle $\overline{D(0,|\xi|)}$ whenever $|\xi|>1$. Moreover, since we added a mass point at $z=1$ then it is expected that some of zeros the polar polynomials close to $z=1$ move outside of such boundary.

Moreover, due to Theorem 3.2 we know all the zeros of these polynomials lie inside of $\overline{D(0,2+3|\xi|)}$.
In the figures 3 and 4 we show the zeros of these polynomials under different settings (in the first case $\left|\xi_{1}\right|+2\left(1+\left|\xi_{1}\right|\right)=3$ and $\left|\xi_{2}\right|+2\left(1+\left|\xi_{2}\right|\right)=6$ in the second one $)$.

Figure 3. Zeros of $Q_{10 n ; 1}(z ; 1 / 3)$ for $n=1,2,3,4$ in the window $[-1,1.2] \times$ $[-1,1]$, with $m=2 / 3$.

Figure $4 . \quad$ Zeros of $\quad Q_{10 n ; 1}(z ; 4 / 3) \quad$ for $n=1,2,3,4$ in the window $[-1.5,1.5] \times[-1.5,1.5]$, with $m=2 / 3$.

In order to show the Sendov's conjecture remains valid in the table 2 we present the maximum distance between each zero of $Q_{n, 1}(z, \xi)$ and the closet zero of $Q_{n, 1}^{\prime}(z, \xi)$ for different values of n.
4.3. Third Example. Let

$$
d \mu_{2}(\theta)=|z-1|^{2} \frac{d \theta}{2 \pi} .
$$

The monic associated orthogonal polynomials with respect to μ_{2} on \mathbb{T} are [2, 7]:

$$
\begin{equation*}
L_{n}(z)=\sum_{k=0}^{n} \frac{k+1}{n+1} z^{k}=\frac{(n+1) z^{n+2}-(n+2) z^{n+1}+1}{(n+1)(z-1)^{2}}, \quad n=1,2, \ldots \tag{18}
\end{equation*}
$$

$|n|-$

n	zero	distance
2	0.99163	0.9440
3	1.1388	1.5309
4	-0.97769	1.5490
5	1.1848	1.7297
6	-0.99320	1.7641
7	1.1711	1.7968
8	-0.99834	1.8563
9	$-0.94557-0.32389 i$	1.8579
10	-1.0005	1.9036
11	$-0.96404-0.26952 i$	1.9012
12	-1.0015	1.9310
13	$-0.97483-0.23056 i$	1.9275
14	-1.0020	1.9483
15	$-0.98163-0.20134 i$	1.9446
16	-1.0022	1.9598
17	$-0.98617-0.17864 i$	1.9563
18	-1.0023	1.9679
19	$-0.98934-0.16051 i$	1.9647
20	-1.0023	1.9738

n	zero	distance
2	$-0.45238+0.38021 i$	0.38021
3	$-0.24822+0.77992 i$	1.2234
4	$0.13378+0.95290 i$	1.6349
5	$0.44282+0.96439 i$	1.7519
6	$-0.28585-1.04862 i$	1.9307
7	$-0.81931-0.79845 i$	2.0409
8	$-0.60642-1.03052 i$	2.1514
9	$-0.99493-0.71892 i$	2.2245
10	$-0.82147-0.94486 i$	2.2841
11	$-1.09907-0.63389 i$	2.3315
12	$-0.95942-0.84975 i$	2.3671
13	$-1.16310-0.56021 i$	2.3993
14	$-1.05017-0.76336 i$	2.4222
15	$-1.20452-0.49917 i$	2.4452
16	$-1.11214-0.68904 i$	2.4609
17	$-1.23260-0.44888 i$	2.4779
18	$-1.15604-0.62599 i$	2.4892
19	$-1.25243-0.40715 i$	2.5022
20	$-1.18814-0.57248 i$	2.5107

TABLE 2. For every $2 \leq n \leq 20, m=2 / 3$, we obtain the zero of $Q_{n ; 1}(z ; 1 / 3)$ (left) and $Q_{n ; 1}(z ; 4 / 3)$ (right) which produces the maximum distance with respect to the zeros of their corresponding derivatives.

From this expression their first order monic polar polynomials are defined as:

$$
\begin{equation*}
Q_{n ; 1}(z ; \xi)=\frac{z\left(z^{n+1}-1\right)(\xi-1)-\xi\left(\xi^{n+1}-1\right)(z-1)}{(\xi-1)(z-\xi)(z-1)}, \quad z \neq 1, z \neq \xi \tag{19}
\end{equation*}
$$

In the figures 5 and 6 we show the zeros for the $k=1$ and $k=4$ polar polynomials. In the figures 5 and 6 we show the zeros of these polynomials under different settings (in the first case $\left|\xi_{1}\right|+2\left(1+|\xi|_{1}\right)=3$ and $\left|\xi_{2}\right|+5\left(1+\left|\xi_{2}\right|\right)=13$ in the second one $)$.

In the $k=4$ case, and due of the length and difficulty of these expressions for the polynomials, are not presented in the manuscript.

References

[1] K. Boggs and P. Duren. Zeros of hypergeometric functions. Comput. Methods Funct. Theory, 1(1, [On table of contents: 2002]):275-287, 2001.
[2] P. Borwein and T. Erdélyi. Polynomials and polynomial inequalities, volume 161 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
[3] B. Datt and N. K. Govil. On the location of the zeros of a polynomial. J. Approx. Theory, 24:78-82, 1978.


```
[17] P. Nevai and V. Totik. Orthogonal polynomials and their zeros. Acta Sci. Math. (Szeged), 53(1-2):99-104, 1989.
[18] H. Pijeira Cabrera, J. Y. Bello Cruz, and W. Urbina Romero. On polar Legendre polynomials. Rocky Mountain J. Math., 40(6):2025-2036, 2010.
[19] B. Simon. Orthogonal polynomials on the unit circle. Part 1, volume 54 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2005. Classical theory.
[20] G. Szegő. Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen. Math. Z., 13(1):28-55, 1922.
[21] G. Szegő. Orthogonal Polynomials. Amer. Math. Soc. Coll. Pub. 23 AMS, Providence, Rhode Island, 4 edition, 1975.
Dpto. Métodos Cuantitativos, Universidad Loyola Andalucía, Dos Hermanas, Seville, Spain
Email address: rscosa@gmail.com
Department of Mathematics, Faculty of exact sciences, University of Hama Lakhdar of Eloued, Algeria.
Email address: rehouma-abdelhamid@univ-eloued.dz
```

