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THE REFLECTIVITY OF SOME CATEGORIES OF T0 SPACES IN DOMAIN THEORY

CHONG SHEN, XIAOYONG XI, AND DONGSHENG ZHAO

ABSTRACT. Keimel and Lawson proposed a set of conditions for proving the reflectivity of a category
of topological spaces in the category of all T0 spaces. Recently, these conditions were used to prove
the reflectivity of the category of all well-filtered spaces. In this paper, we prove that, in certain sense,
these conditions are not only sufficient but also necessary for a category of T0 spaces to be reflective. By
applying this general result, we can easily deduce that several categories proposed in domain theory are
not reflective, thereby answering a few open problems.

1. Introduction

Given a full subcategory D of a category C, one natural and frequently asked question is whether D is
reflective in C. The objects in D can be viewed as “special objects”, the reflectivity of D ensures that
every general object in C can be “completed” to be a special object, or “densely embedded into” a
special object.

Keimel and Lawson [12] proved that a full subcategory K of Top0 of all T0 spaces is reflective if it
satisfies the following four conditions:
(K1) K contains all sober spaces.
(K2) If X ∈ K and Y is homeomorphic to X , then Y ∈ K.
(K3) If {Xi : i ∈ I} ⊆ K is a family of subspaces of a sober space, then the subspace

⋂
i∈I Xi ∈ K.

(K4) If f : X −→ Y is a continuous mapping from a sober space X to a sober space Y , then for any
subspace Y1 of Y , Y1 ∈ K implies that f−1(Y1) ∈ K.

It has been proved that the categories of d-spaces, well-filtered spaces and sober spaces all satisfy
the aforementioned four conditions, as shown in [12, 22, 23]. Therefore, they are all reflective
subcategories of Top0.

For a full subcategory K of Top0, we say that K
(1) is productive, if the product ∏i∈I Xi ∈ K whenever {Xi : i ∈ I} ⊆ K, and
(2) is b-closed-hereditary, if Y ∈ K whenever Y is a b-closed subspace of some X ∈ K.

The four conditions (K1)–(K4) can, however, usually only be used to confirm the reflectivity of
subcategories of Top0. In this paper we shall prove that, in certain sense, they are also necessary
conditions, and can therefore be used to disprove the reflectivity of some subcategories of Top0. In
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particular, we shall use this result to solve several open problems that were posed in [24]. Our main
results are as follows.

Theorem A. For a full subcategory K of Top0 with K ⊈ Top1, if K satisfies (K2), then the following
four statements are equivalent:

(1) K is reflective in Top0;
(2) K satisfies conditions (K1)–(K4);
(3) K is productive and b-closed-hereditary;
(4) K is productive and has equalizers.

Theorem B. The categories of co-sober spaces, strongly k-bounded sober spaces, strongly d-spaces,
and consonant T0 spaces, are not reflective in Top0.

2. Preliminaries

Let P be a poset. For any A ⊆ P, let ↓A = {x ∈ P : x ≤ a for some a ∈ A} and ↑A = {x ∈ P : x ≥
a for some a ∈ A}. For x ∈ P, we write ↓x for ↓{x} and ↑x for ↑{x}, respectively. A subset A of P is
called a lower set (resp. upper set) if A = ↓A (resp. A = ↑A).

For a T0 space X , the specialization order ≤ on X is defined as x ≤ y iff x ∈ cl({y}), where cl is
the closure operator on X . In the following, when we consider a T0 space X as a poset, it is always
equipped with the specialization order.

For a T0 space X , we use O(X) to denote the topology of X . For any subset A of X , the saturation
of A, denoted by Sat(A), is defined to be

Sat(A) =
⋂
{U ∈ O(X) : A ⊆U}.

A subset A of a T0 space X is saturated if A = Sat(A).

Remark 2.1 ([6, 7]). Let X be a T0 space.

(1) For any subset A of X , Sat(A) = ↑A.
(2) For any x ∈ X , ↓x = cl({x}), and x ∈ Sat(A) if and only if ↓x∩A ̸= /0.
(3) For any open subset U of X , U = ↑U , and for any closed subset F of X , F = ↓F .

A nonempty subset A of a T0 space is called irreducible if for any closed sets F1, F2, A ⊆ F1 ∪F2
implies A ⊆ F1 or A ⊆ F2. A T0 space X is called sober if for any irreducible closed set F of X there is
a (unique) point x ∈ X such that F = cl({x}).

A very effective tool for studying sober spaces is the b-topology introduced by L. Skula [17] (see
also [3]).

Definition 2.2 ([3, 17]). Let X be a T0 space. The b-topology (also called Skula topology [17] or strong
topology [6, Exercise V-5.31]) associated with X is the topology having

{U ∩↓x : x ∈U ∈ O(X)}

as a base. The resulting space will be denoted by bX . A subset B of X is b-dense in X , if it is dense in
X with respect to the b-topology.
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The following properties on b-topology will be used later. For further information, one can refer to
[10, 12] and Exercise V-5.31 in [6].

Remark 2.3. Let X be a T0 space.
(1) The b-topology on X is finer than the original topology on X . This follows trivially from the fact

that for any open set U in X , we have U =
⋃

x∈U U ∩↓x.
(2) Let X be a T0 space. For each x ∈ X , we have that ↓x = X ∩↓x, so ↓x is b-open, and it is also

b-closed since X \↓x is b-open. Thus, the b-topology of X is always Hausdorff.
(3) Every saturated set A in a T0 space X is b-closed. In fact, we have that

X \A = ↓(X \A) =
⋃

x∈X\A

↓x,

which is b-open by (2). Therefore, A = ↑A is b-closed.
(4) For each b-closed set E of X , E =

⋂
i∈I Ui∪(X \Vi), where Ui,Vi ∈O(X) for any i∈ I. In fact, since

X \E is b-open, for each x /∈ E, there exists an open neighborhood Vx of x such that Vx∩↓x ⊆ X \E,
which implies that X \E =

⋃
x/∈E Vx ∩↓x; thus E =

⋂
x/∈E(X \↓x)∩ (X \Vx), completing the proof.

Definition 2.4. (1) A space X is a retract of space Y , if there exist two continuous maps s : X −→ Y
(the section) and r : Y −→ X (the retraction) such that r ◦ s = idX , the identity mapping on X [7].

(2) We call X a b-retract of Y if X is a retraction of Y such that s(X) is b-dense in Y .

Remark 2.5 ([7]). Every section s : X −→ Y is an embedding and every retraction r : Y −→ X is a
quotient mapping.

Proposition 2.6 ([17, 2.6], [19, Proposition 2.11]). If X and Y are T0 spaces and X is a b-retract of Y ,
then X is homeomorphic to Y .

In what follows, we shall denote by Top0 (resp. Top1, Sob) the category of all T0 spaces (resp. T1
spaces, sober spaces) with continuous mappings as morphisms. All subcategories of Top0 are assumed
to be full and closed under the formation of homeomorphic objects (i.e., satisfy (K2)).

Definition 2.7 ([15]). A full subcategory K of Top0 is reflective if, for each X ∈ Top0, there exists
Xk ∈ K (the K-completion for X) and a continuous mapping µX : X −→ Xk (the K-reflection for X)
satisfying the universal property: for any continuous mapping f : X −→ Z to a space Z ∈ K, there
exists a unique continuous mapping g : Xk −→ Z such that g◦µX = f :

X

f
&&

µX // Xk

g
��

Z.

Equivalently, K is reflective if the inclusion functor I : K −→ Top0 has a left adjoint (see IV-3 in
[15]). The category Sob is a full reflective subcategory of Top0. The Sob-completion for X is usually
called the sobrification of X .

The following lemma can be easily verified by using the definition of K-reflection.

Lemma 2.8. Let µ1 : X −→ Y1 be a K-reflection for X. Then, the following conditions are equivalent:
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(1) µ2 : X −→ Y2 is a K-reflection;
(2) there exists a (unique) homeomorphism h : Y1 −→ Y2 such that h◦µ1 = µ2.

Definition 2.9. A mapping e : X −→ Y between topological spaces is called a b-dense embedding, if it
is a topological embedding such that e(X) is b-dense in Y .

Theorem 2.10 ([12, Proposition 3.4, Corollary 3.5]). Let X be a sober space and Y ⊆ X.
(1) The subspace Y is sober if and only if Y is b-closed.
(2) The inclusion mapping e : Y −→ Y s, x 7→ x, is a sober reflection for Y , where Y s is the b-closure of

Y in X.

Theorem 2.11 ([12, Proposition 3.2]). Let X be a T0 space, Y a sober space and f : X −→ Y a
continuous mapping. Then, f is a sober reflection for X if and only if it is a b-dense embedding.

Theorem 2.12 ([19, Theorem 3.2]). Let K be a reflective subcategory of Top0 such that K ⊈ Top1.
Then, each K-reflection is a b-dense embedding.

3. Main results

In this section, we present the main results, starting with a simple yet useful topological space in
domain theory.

Definition 3.1 ([6, 7]). The Sierpiński space is the Scott space Σ2, where the underlying set 2 is the
two-element chain 2 = {0,1} with the order defined by 0 ≤ 1. Note that the open sets in this space are
/0, {0,1}, and {1}.

Remark 3.2 ([6, 7]). (1) For any set M, (Σ2)M = Σ(2M,⊆).
(2) Let X be a T0 space and M = O(X). Then, the mapping e : X −→ (Σ2)M, x 7→ (χU(x))U∈M, is an

embedding. Hence, by Theorem 2.10, X is a sober space iff e(X) is a b-closed subset of (Σ2)M.

Lemma 3.3. Let X be a T0 space. Then, the following statements are equivalent:
(1) X is non-T1;
(2) Σ2 is a retract of X;
(3) Σ2 is homeomorphic to a b-closed subspace of X;
(4) Σ2 is homeomorphic to a subspace of X.

Proof. (1) ⇒ (2): Suppose X is non-T1. Then, there exist x0,x1 ∈ X such that x0 < x1. We define two
mappings s : Σ2 −→ X by s(0) = x0 and s(1) = x1, and r : X −→ Σ2 by

r(x) =
{

0, x ≤ x0;
1, else,

for any x ∈ X . It is trivial to verify that both r and s are continuous mappings such that r ◦ s = idΣ2,
where idΣ2 is the identity mapping on Σ2. Therefore, Σ2 is a retract of X .

(2) ⇒ (3): If Σ2 is a retract of X , then by Remark 2.5, Σ2 is homeomorphic to a subspace {x1,x2}
of X . In addition, by Remark 2.3(2), we know that bX is Hausdorff; thus {x1,x2} is b-closed.

(3) ⇒ (4): It is clear.
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(4) ⇒ (1): Note that the T1-separation property is hereditary. Then, since Σ2 is a non-T1 subspace of
X up to homeomorphism, it follows that X is also a non-T1 space. □

As an immediate result of Lemma 3.3, the following corollary is clear.

Corollary 3.4. Let K be a full subcategory of Top0. Then, the following statements are equivalent:

(1) K ⊈ Top1;
(2) The space Σ2 can be topologically embedded into some space Y that belongs to K.

The following lemma extends Result 2.5 in [17].

Lemma 3.5. Let X ,Y,Z ∈ Top0, k : X −→ Y be a continuous mapping such that k(X) is b-dense in Y ,
and f : X −→ Z a continuous mapping.

(1) There exists at most one continuous mapping g : Y −→ Z such that f = g◦ k.
(2) If g : Y −→ Z is a continuous mapping such that f = g◦k, then g(Y )⊆ clb( f (X)), where clb( f (X))

is the b-closure of f (X) in Z.

Proof. (1) Suppose that there exist two continuous mappings g1,g2 : Y −→ Z such that g1 ◦k = g2 ◦k =
f :

X

f
&&

k // Y

g1, g2

��
Z.

Let y ∈ Y . Suppose V ∈ O(Z) such that g1(y) ∈V . Then y ∈ g−1
1 (V ) ∈ O(Y ). Since k(X) is b-dense

in Y and g−1
1 (V )∩↓y is b-open, k(X)∩ g−1

1 (V )∩↓y ̸= /0. In addition, since g1 ◦ k = g2 ◦ k = f , we
deduce that k(X)∩g−1

1 (V ) = k(X)∩g−1
2 (V )⊆ g−1

2 (V ). It follows that g−1
2 (V )∩↓y ̸= /0, which implies

that y ∈ g−1
2 (V ), i.e., g2(y) ∈ V . These show that each open neighborhood of g1(y) contains g2(y);

thus g1(y) ∈ cl({g2(y)}). Dually, it holds that g2(y) ∈ cl({g1(y)}). Since Z is a T0 space, we have that
g1(y) = g2(y). Therefore, g1 = g2.

(2) Let y ∈Y and V ∈O(Z) such that g(y) ∈V . Then y ∈ g−1(V ) ∈O(Y ), and since k(X) is b-dense
in Y , k(X)∩g−1(V )∩↓y ̸= /0. Then there exists x0 ∈ X such that k(x0) ∈ g−1(V )∩↓y, which implies
that g(y) ≥ g(k(x0)) ∈ V (note that g is monotone since it is continuous); thus f (x0) = g(k(x0)) ∈
f (X)∩V ∩↓g(y) ̸= /0. This shows that g(y) ∈ clb( f (X)). Hence, g(Y )⊆ clb( f (X)). □

Theorem 3.6. Let K be a reflective subcategory of Top0 such that K ⊈ Top1. Then, the following
statements hold.

(1) K is b-closed-hereditary.
(2) The Sierpiński space Σ2 ∈ K. Hence, for any set M, the product (Σ2)M ∈ K.
(3) Sob ⊆ K.

Proof. (1) Let X ∈ K, A be a b-closed subspace of X , and µA : A −→ Ak be the K-reflection for A.
Then, µA(A) is a b-dense subset of Ak by Theorem 2.12. Consider the inclusion mapping e : A −→ X ,
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THE REFLECTIVITY OF SOME CATEGORIES OF T0 SPACES IN DOMAIN THEORY 6

x 7→ x. Then there exists a unique continuous mapping f : Ak −→ X such that f ◦µA = e:

A
µA //

e
&&

Ak

f

��
X .

Then by Lemma 3.5, we have f (Ak)⊆ clb(e(A)) = A, which shows that A is a b-dense retract of Ak.
By Proposition 2.6, A is homeomorphic to Ak, and since Ak ∈ K, it follows that A ∈ K.

(2) Since K ⊈ Top1, there exists a T0 and non-T1 space X ∈ K. By Lemma 3.3, Σ2 is a b-closed
subspace of X up to homeomorphism, and from result (1) it follows that Σ2 ∈ K. Since K is reflective,
K is productive (see V-6 in [15]), hence (Σ2)M ∈ K.

(3) Let X ∈ Sob. By Remark 3.2, there is an embedding e : X −→ (Σ2)M such that e(X) is a b-closed
subspace of (Σ2)M , where M = O(X). By (2), (Σ2)M ∈ K and since K is b-closed-hereditary, we have
that e(X) ∈ K, and since X is homeomorphic to e(X), it follows that X ∈ K. Hence, Sob ⊆ K. □

Note that every saturated subset of a T0 space is b-closed by Remark 2.3(3). Thus, the following
corollary follows directly from Theorem 3.6(1).

Corollary 3.7. Let K be a reflective subcategory of Top0 such that K ⊈ Top1. If X ∈ K and Y is a
saturated subspace of X, then Y belongs to K.

Since there exist sober but non-T1 spaces (such as Σ2), the following corollary follows directly from
Theorem 3.6(3).

Corollary 3.8. Let K be a reflective subcategory of Top0. Then, K ⊈ Top1 if and only if Sob ⊆ K.

Recall that the reflective hull of a subcategory C of Top0 is the smallest reflective subcategory of
Top0 containing C. Let Sier be the full subcategory of Top0 consisting of all T0 spaces X which are
homeomorphic to Σ2.

Corollary 3.9 ([16, Theorem 3.4]). The reflective hull of Sier in Top0 is Sob.

Proof. Suppose K is a reflective subcategory of Top0 such that Sier ⊆ K. Note that Σ2 is a T0 but
non-T1 space; thus K ⊈ Top1. By Theorem 3.6(3), Sob ⊆ K. Since Sob is reflective, it is the smallest
reflective subcategory of Top0 having Sier as a subcategory. Therefore, Sob is the reflective hull of
Sier in Top0. □

Lemma 3.10 ([13, Lemma 5, pp.116]). If { fi : X −→Yi}i∈I is a family of continuous mappings between
T0 spaces, then the diagonal ∆i∈I fi : X −→ ∏i∈I Yi is a continuous mapping, where

∀x ∈ X , (∆i∈I fi)(x) = ( fi(x))i∈I.

A skeleton of a category C is a full subcategory, denoted by skC, such that each object of C is
isomorphic to exactly one object of skC.

Remark 3.11. Some properties on the skeleton are listed below (see [1, Proposition 4.14, pp. 51]):
(1) Every category has a skeleton.
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(2) Any two skeletons of a category are isomorphic.

A category is a small category if its class of objects is a set.

Lemma 3.12. For any cardinal number α , let Tα be the full subcategory of Top0 consisting of all T0
spaces whose cardinality is less than or equal to α . Then, every skeleton of Tα is a small category.

Proof. Let skTα be the full subcategory of Tα consisting of all T0 spaces of the form (β ,T ), where
β is a cardinal number such that β ≤ α , and T is an arbitrary T0 topology on β . Then, it is clear that
skTα is a skeleton of Tα , and |skTα | ≤ |

⋃
β≤α 2β |, where |skTα | is the cardinality of the class of all

objects of skTα . Thus, the class of objects of skTα is a set. Therefore, skTα is a small category. □

Theorem 3.13. Let K be a full subcategory of Top0 such that K⊈Top1. Then, the following statements
are equivalent:

(1) K is reflective;
(2) K is productive and b-closed-hereditary.

Proof. (1) ⇒ (2): It is well-known that if K is reflective, then it is productive (see V-6 in [15]), and by
Theorem 3.6, it is b-closed-hereditary.

(2) ⇒ (1): Let X ∈ Top0. We will complete the proof in a few steps.
Step 1: We define the full subcategory C(X) of K to consist of all objects Y such that there exists a

continuous mapping f : X −→Y with the property that f (X) is b-dense in Y . Then, for each Y ∈ C(X),
the sobrification f (X)s of f (X) and the sobrification Y s of Y are homeomorphic (see [12, Proposition
3.4]), which implies that

|Y | ≤ |Y s|= | f (X)s|= |Irr( f (X))| ≤ 2| f (X)|,

where Irr( f (X)) is the set of all irreducible closed sets in the subspace f (X) of Y . Note that | f (X)| ≤
|X | (because f is a mapping), so |Y | ≤ 2|X |.

Let skC(X) be a skeleton of C(X). Since the cardinality of each space in skC(X) is less than or
equal to 2|X |, by Lemma 3.12, skC(X) is a small category, so there is a cardinal number α such that
|skC(X)| ≤ α .

Step 2: Denote by Φ(X) the family of all pairs (Y, f ), where Y ∈ skC(X) and f : X −→ Y is a
continuous mapping such that f (X) is b-dense in Y . For each Y ∈ skC(X), since the cardinality of the
set of all continuous mappings from X to Y is less than or equal to |Y ||X |, we have that

|Φ(X)| ≤

∣∣∣∣∣∣ ⋃
Y∈skC(X)

|Y ||X |

∣∣∣∣∣∣ .
Thus, Φ(X) is a set, and then we may assume that Φ(X) = {(Yi, fi) : i ∈ I}, where I is a set. Therefore,
for each i ∈ I, Yi ∈ K and fi : X −→ Yi is a continuous mapping such that fi(X) is b-dense in Yi.

Step 3: Let Xk = clb((∆i∈I fi)(X)) be the b-closure of (∆i∈I fi)(X) in the product space ∏i∈I Yi, where
∆i∈I fi : X −→ ∏i∈I Yi is the diagonal (i.e., x 7→ ( fi(x))i∈I). Since {Yi : i ∈ I} ⊆ K and K is productive,
∏i∈I Yi ∈ K, and since K is b-closed-hereditary, Xk ∈ K. Let k : X −→ Xk be the restriction of the
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diagonal ∆i∈I fi, that is, k(x) = ( fi(x))i∈I for each x ∈ X . It is clear that k is continuous, and since
Xk = clb((∆i∈I fi)(X)), it follows that k(X) = (∆i∈I fi)(X) is b-dense in Xk.

Step 4: Now, we prove that the subspace Xk of ∏i∈I Yi with the mapping k is the K-reflection for X .
To see this, suppose Y ∈ K and f : X −→ Y is a continuous mapping. We consider the following two
cases:

(c1) f (X) is b-dense in Y . Then, Y ∈ C(X), and there is a homeomorphism h from Y to a unique
space Z in skC(X). It is trivial to check that h◦ f : X −→ Z is a continuous mapping such that
h( f (X)) is b-dense in Z, so (Z,h◦ f ) ∈ Φ(X). Assume (Z,h◦ f ) = (Yj, f j) for some j ∈ I. Let
p j : Xk −→Yj be the restriction of the projection from ∏i∈I Yi to Yj (i.e., (xi)i∈I 7→ x j). Then p j is
a continuous mapping, and clearly p j ◦ k = f j:

X k //

f j
&&

Xk

p j

��
Yj.

Let f̂ = h−1 ◦ p j. Then f̂ : Xk −→ Y is a continuous mapping such that f̂ ◦ k = (h−1 ◦ p j)◦ k =
h−1 ◦ (p j ◦ k) = h−1 ◦ f j = h−1 ◦ (h◦ f ) = (h−1 ◦h)◦ f = f :

X

f

��

k //

f j

&&

Xk

p j

xx

h−1◦p j= f̂

��

Yj

h−1

��
Y

h

OO

.

Recall that k : X −→ Xk is a continuous mapping such that k(X) is b-dense in Xk. Then, by
Lemma 3.5, f̂ is the unique continuous mapping such that f̂ ◦ k = f .

(c2) f (X) is not b-dense in Y . Let clb( f (X)) be the b-closure of f (X) in Y with the relative topology.
Then the co-restriction f ∗ : X −→ clb( f (X)) of f (i.e., ∀x ∈ X , f ∗(x) = f (x)) is a continuous
mapping such that f ∗(X) is b-dense in clb( f (X)). Since Y ∈ K and K is b-closed-hereditary, it
follows that clb( f (X)) ∈ K. Then using the argument of (c1), there is a continuous mapping
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g : Xk −→ clb( f (X)) such that g◦ k = f ∗:

X k //

f ∗ ((

Xk

g

��
clb( f (X)).

Let e : clb( f (X)) −→ Y be the inclusion mapping. Then, e ◦ f ∗ = f . Let f̂ = e ◦ g. Then
f̂ : Xk −→ Y is a continuous mapping such that f̂ ◦ k = (e◦g)◦ k = e◦ (g◦ k) = e◦ f ∗ = f :

X

f

��

k //

f ∗

%%

Xk

g

yy

e◦g= f̂

��

clb( f (X))

e

��
Y .

The uniqueness of f̂ follows from Lemma 3.5.
All these show that k : X −→ Xk is a K-reflection for X . Therefore, K is a reflective subcategory of
Top0. □

Definition 3.14. We say that a full subcategory K of Top0 has equalizers if it has equalizers in the
sense of category theory. Specifically, for any continuous mappings f ,g : X −→ Y in K, the set
{x ∈ X : f (x) = g(x)} equipped with the subspace topology of X belongs to K.

Lemma 3.15. Let X ∈ Top0 and E ⊆ X. Then, the following statements are equivalent:
(1) E is b-closed in X;
(2) there exist continuous mappings f ,g : X −→ (Σ2)M for some set M such that E = {x ∈ X : f (x) =

g(x)};
(3) there exist continuous mappings f ,g : X −→ Y for some Y ∈ Top0 such that E = {x ∈ X : f (x) =

g(x)}.

Proof. (1) ⇒ (2): Since E is b-closed, by Remark 2.3(4), we have that

E =
⋂
i∈M

(Ui ∪ (X \Vi)),

where Ui,Vi ∈ O(X) for all i ∈ M. Define f ,g : X −→ (Σ2)M by

f (x)(i) = χUi(x) and g(x)(i) = χUi∪Vi(x)

for any x ∈ X and i ∈ M. It is easy to verify that both f and g are continuous, and for each x ∈ X ,
f (x)(i) = g(x)(i) iff x ∈Ui ∪ (X \Vi) for all i ∈ M. It follows that E = {x ∈ X : f (x) = g(x)}.

(2) ⇒ (3): It is clear.
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THE REFLECTIVITY OF SOME CATEGORIES OF T0 SPACES IN DOMAIN THEORY 10

(3) ⇒ (1): Let x /∈ E. That is, f (x) ̸= g(x). Since Y is T0, we may assume f (x) ≰ g(x) without
loss of generality. Then, there exists V ∈ O(Y ) such that f (x) ∈ V and g(x) /∈ V . It follows that
x ∈ f−1(V ) and x /∈ g−1(V ). We claim that E ∩ f−1(V )∩↓x = /0. In fact, if y ∈ ↓x∩ f−1(V )∩E,
then g(y) = f (y) ∈ V and g(y) ≤ g(x), and hence g(x) ∈ V , a contradiction. This shows that E is
b-closed. □

By Lemma 3.15, the following proposition is clear.

Proposition 3.16. Let K be a full subcategory of Top0. If {(Σ2)M : M is a set} ⊆ K, then the following
statements are equivalent:
(1) K has equalizers;
(2) K is b-closed-hereditary.

As an immediate result of Theorem 3.13 and Proposition 3.16, we have the following theorem.

Theorem 3.17 ([8, 9.33 and 10.2.1]). Let K be a full subcategory of Top0 such that K ⊈ Top1. Then,
the following satements are equivalent:
(1) K is reflective;
(2) K is productive and has equalizers.

Theorem 3.18. Let K be a reflective subcategory of Top0 such that K ⊈ Top1, and Z a sober space.
Then, the following statements hold.
(1) If {Xi : i ∈ I} ⊆ K is a family of subspaces of Z, then the subspace

⋂
i∈I Xi of Z belongs to K.

(2) For each subspace X of Z, the inclusion mapping ek : X −→ clk(X) is a K-reflection for X, where
clk(X) =

⋂
{A ∈ K : X ⊆ A ⊆ Z}.

Proof. (1) We prove this in a few steps.
Step 1: Let X =

⋂
i∈I Xi. Then, by Theorem 2.10(2), the inclusion mapping es : X −→ X s is a sober

reflection for X , where X s = clb(X) is the b-closure of X in Z. Assume µX : X −→ Xk is a K-reflection
for X . By Theorem 3.6(3), X s ∈ K, and thus there exists a unique continuous mapping f : Xk −→ X s

such that f ◦µX = es:

X
µX //

es

&&

Xk

f

��
X s.

Step 2: We prove that f (Xk) = X . Note that X = es(X) = f (µX(X))⊆ f (Xk). It remains to prove
that f (Xk)⊆ Xi for each i ∈ I.
(c1) Let ei : X −→ Xi be the inclusion mapping (note that X is a subspace of Xi). Since Xi ∈ K, there

exists a unique continuous mapping fi : Xk −→ Xi such that fi ◦µX = ei:

X
µX //

ei

&&

Xk

fi
��

Xi.
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(c2) Let (Xi)
s = clb(Xi) be the b-closure of Xi in Z, which belongs to K by Theorem 3.6(3). Let

eis : X −→ (Xi)
s be the inclusion mapping (note that X is a subspace of Xi and Xi is a subspace of

(Xi)
s). Then, there exists a unique continuous mapping g : Xk −→ (Xi)

s such that g◦µX = eis:

X
µX //

eis
''

Xk

g

��
(Xi)

s.

(c3) Let eis
i : Xi −→ (Xi)

s be the inclusion mapping. Then, for each x ∈ X , by (c1) and (c2), we have
that

(g◦µX)(x)
(c2)
= eis(x) = x = ei(x)

(c1)
= ( fi ◦µX)(x) = ((eis

i ◦ fi)◦µX)(x).

Hence, g ◦ µX = (eis
i ◦ fi) ◦ µX . By the uniqueness of g, we deduce that g = eis

i ◦ fi, i.e., the
following diagram commutes:

X

eis

��

µX //

ei

''

Xk

fi

ww
g

��

Xi

eis
i
��

(Xi)
s .

(c4) Let eis
s : X s −→ (Xi)

s be the inclusion mapping (by noting that X s = clb(X) ⊆ clb(Xi) = (Xi)
s).

Then, for each x ∈ X , we have that

(g◦µX)(x)
(c2)
= eis(x) = x = es(x)

Step 1
= ( f ◦µX)(x) = ((eis

s ◦ f )◦µX)(x).

Hence, g ◦ µX = (eis
s ◦ f ) ◦ µX . By the uniqueness of g, we deduce that g = eis

s ◦ f , i.e., the
following diagram commutes:

X

eis

��

µX //

es

''

Xk

f

ww
g

��

X s

eis
s
��

(Xi)
s .

(c5) For each y ∈ Xk, we have that

f (y) = eis
s ( f (y))

(c4)
= g(y)

(c3)
= eis

i ( fi(y)) = fi(y) ∈ Xi.
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THE REFLECTIVITY OF SOME CATEGORIES OF T0 SPACES IN DOMAIN THEORY 12

Thus, f (Xk)⊆ Xi.
Therefore, f (Xk) =

⋂
i∈I Xi = X .

Step 3: Now we have proved that the codomain of f : Xk −→ X s is X , that is, f (Xk) = X . Then,
we define the co-restriction f̂ : Xk −→ f (Xk) = X of f , which is a continuous mapping such that
f̂ ◦ µX = idX , the identity mapping on X . From Theorem 2.12, µX is a b-dense embedding, which
implies that X is a b-retract of Xk; then by Proposition 2.6, X is homeomorphic to Xk ∈ K. Therefore,
X =

⋂
i∈I Xi ∈ K.

(2) We prove the conclusion in the following steps.
Step 1: Suppose that µX : X −→ Xk is a K-reflection for X . Applying result (1), we have that

clk(X) ∈ K. Thus, there exists a unique continuous mapping f : Xk −→ clk(X) such that f ◦µX = ek :

X
µX //

ek
''

Xk

f

��
clk(X).

Step 2: Suppose that ηXk : Xk −→Y is a sober reflection for Xk. Let X s = clb(X) be the b-closure of
X in Z. Then, X s ∈ Sob⊆K by Theorem 3.6(3), which implies that clk(X)⊆X s. Let es

k : clk(X)−→ X s

be the inclusion mapping. Then, there exists a unique continuous mapping h : Y −→ X s such that
h◦ηXk = es

k ◦ f :

Xk

f

��

ηXk
// Y

h

��
clk(X)

es
k // X s.

Step 3: Let es = es
k ◦ ek : X −→ X s be the inclusion mapping. Using results of Step 2 and Step 3,

we have that h◦ηXk ◦µX = (es
k ◦ f )◦µX = es

k ◦ ( f ◦µX) = es
k ◦ ek = es:

X //µX //

ek

''

es

��

Xk
ηXk

//

f

��

Y

h

��

clk(X)

es
k

��
X s .

By Theorems 2.11 and 2.12, both µX and ηXk are b-dense embeddings, so is their composition
ηXk ◦µX : X −→Y . Then, by Theorem 2.11, ηXk ◦µX is a sober reflection for X , and by Theorem 2.10,
the inclusion mapping es = es

k ◦ ek : X −→ X s is also a sober reflection for X . Applying Lemma 2.8,
we deduce that h is a homeomorphism.
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Step 4: We prove that f (Xk) = h(ηXk(Xk)) = clk(X). On the one hand, by Step 3, it is clear that
X = es(X) = h(ηXk(µX(X)))⊆ h(ηXk(Xk))⊆ X s ⊆ Z. On the other hand, since ηXk is an embedding
and h is a homeomorphism, h(ηXk(Xk)) is homeomorphic to Xk ∈ K, so h(ηXk(Xk)) ∈ K. Recall that
clk(X) =

⋂
{K ∈ K : X ⊆ K ⊆ Z}, so we have that

clk(X)⊆ h(ηXk(Xk))
Step 2
= es

k( f (Xk)) = f (Xk)⊆ clk(X).

Therefore, f (Xk) = h(ηXk(Xk)) = clk(X).

Step 5: Let f̂ : Xk −→ clk(X) be the co-restriction of h◦ηXk , i.e., f̂ (y) = h(ηXk(y)) for any y ∈ Xk.
Then, f̂ is a homeomorphism, since h ◦ηXk is a topological embedding. In addition, by Step 4, it
satisfies that f̂ (µX(x)) = h(ηXk(µX(x))) = f (µX(x)) for each x ∈ X . Hence, f̂ ◦µX = f ◦µX . By the
uniqueness of f , we deduce that f = f̂ is a homeomorphism:

X
µX //

ek
''

Xk

f̂= f (a homeomorphism)
��

clk(X) .

Therefore, by Lemma 2.8, ek : X −→ clk(X) is also a K-reflection for X . □

Theorem 3.19. Let K be a reflective subcategory of Top0 such that K ⊈ Top1. If f : X −→ Y is a
continuous mapping from a sober space X to a sober space Y , then for any subspace Y1 of Y , Y1 ∈ K
implies that the subspace f−1(Y1) of X belongs to K.

Proof. Let X1 = f−1(Y ) and (X1)
k =

⋂
{K ∈ K : X1 ⊆ K ⊆ X} be the subspace of X . By Theorem 3.18,

the inclusion mapping e1 : X1 −→ (X1)
k is a K-reflection for X1. Consider the restriction f1 : X1 −→Y1

(x 7→ f (x)) of f , then there exists a unique continuous mapping g1 : (X1)
k −→Y1 such that g1 ◦e1 = f1:

X1
e1 //

f1
''

(X1)
k

g1

��
Y1.

Consider the composition eY1 ◦ f1 : X1 −→ Y , where eY1 : Y1 −→ Y is the inclusion mapping. Since
Y is a sober space, by Theorem 3.6(3), Y ∈ K. Then, there exists a unique continuous mapping
g2 : (X1)

k −→ Y such that g2 ◦ e1 = eY1 ◦ f1:

X1
e1 //

f1
''

(X1)
k

g2

''
Y1 eY1

// Y.

Let f2 : (X1)
k −→ Y (x 7→ f (x)) be the restriction of f . On the one hand, for each x ∈ X1, we have

( f2 ◦e1)(x) = f (x) = (eY1 ◦ f1)(x) = (g2 ◦e1)(x), it follows that f2 ◦e1 = g2 ◦e1, which implies g2 = f2
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by the uniqueness of g2. On the other hand, g2 ◦ e1 = eY1 ◦ f1 = eY1 ◦ (g1 ◦ e1) = (eY1 ◦g1)◦ e1, which
implies that eY1 ◦g1 = g2 = f2 by the uniqueness of g2, i.e., the following diagram commutes:

X1
e1 //

f1
''

(X1)
k

g1

��

g2= f2

''
Y1

eY1 // Y.

Then for each x ∈ (X1)
k, we have f (x) = f2(x) = g2(x) = (eY1 ◦g1)(x) = g1(x) ∈ Y1, which implies

x ∈ f−1(Y1) = X1. Hence, (X1)
k ⊆ X1, and so X1 = (X1)

k ∈ K. □

Using Theorems 3.6, 3.18 and 3.19, and Keimel and Lawson’s result in [12], we obtain the main
result in this paper.

Theorem 3.20. Let K be a full subcategory of Top0 such that K ⊈ Top1. Then, the following satements
are equivalent:

(1) K is reflective;
(2) K satisfies conditions (K1)–(K4).

By Theorems 3.13, 3.17 and 3.20, several equivalent conditions for the reflectivity of K are
summarized as follows.

Theorem 3.21. Let K be a full subcategory of Top0 such that K⊈Top1. Then, the following statements
are equivalent:

(1) K is reflective in Top0;
(2) K satisfies conditions (K1)–(K4);
(3) K is productive and b-closed-hereditary;
(4) K is productive and has equalizers.

Remark 3.22. In the paper [5], Ershov proved that K is reflective in Top0 if and only if K satisfies
conditions (K1)–(K4) for every wide category K, where a wide category K is a full subcategory of
Top0 such that every T0 space X can be topologically embedded into some space Y belonging to K.
By Corollary 3.4, it is clear that every wide category K satisfies K ⊈ Top1. However, the converse is
not true. For example, the full subcategory Sier of Top0, consisting of all topological spaces that are
homeomorphic to Σ2, satisfies Sier ⊈ Top1 but is not a wide category. Consequently, Ershove’s result
can be regarded as a corollary of Theorem 3.21. Furthermore, the condition K ⊈ Top1 of Theorem 3.21
is a common and easily checkable condition in domain theory. Additionally, the approach presented in
this paper differs significantly from that employed in [5].

4. Some applications

By using the results in the last section, we investigate the reflectivity of several categories of T0 spaces,
including co-sober spaces, strong d-spaces, k-bounded sober spaces, and consonant T0 spaces. It is
worth noting that all these classes of spaces are closed under the formation of homeomorphic objects.
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4.1. Co-sober spaces. In order to study the dual Hofmann-Mislove Theorem, Escardó, Lawson and
Simpson [4] introduced the co-sober spaces [4], which are defined below.

Definition 4.1 ([4]). Let X be a T0 space, and Q a nonempty compact saturated subset of X .
(1) Q is called k-irreducible if for any compact saturated subsets Q1,Q2 of X , Q = Q1 ∪Q2 implies

Q = Q1 or Q = Q2.
(2) X is called co-sober if for each k-irreducible set Q, there exists a unique x ∈ X such that Q = ↑x.

For a poset P, the family of all upper sets of P forms a topology, called the Alexandroff topology on
P [7].

Lemma 4.2. (1) Every poset equipped with the Alexandroff topology is co-sober.
(2) A poset equipped with the Alexandroff topology is sober if and only if the poset is a dcpo. Hence,

co-sober spaces need not be sober.

Proof. Let P be a poset equipped with the Alexandroff topology.

(1) Note that every nonempty compact saturated set in P is of the form ↑F , where F is a finite subset
of P. Thus, every k-irreducible compact saturated set is of the form ↑x, where x ∈ P. Therefore, P is
co-sober.

(2) This follows immediately from the fact that the irreducible subsets of P are exactly the directed
sets. □

Let Co-Sob be the full subcategory of Top0 consisting of all co-sober spaces.
It is worth noting that the topology of the Sierpiński space Σ2 coincides with the Alexandroff

topology on the two-point chain 2 = {0,1}. Thus, by Lemma 4.2, Σ2 is co-sober, and since it is not
T1, we can conclude that Co-Sob ⊈ Top1. The question of whether every sober space is co-sober was
raised in [4]. A negative answer was given by Wen and Xu in [21], where they proved that Isbell’s
complete lattice (see [11]) equipped with the lower topology is sober but not co-sober. Furthermore,
it has been proved in [18] that there exists a dcpo that is sober but not co-sober with respected to the
Scott topology. Therefore, we have that Sob ⊈ Co-Sob. Then, by applying Theorem 3.6(3), we obtain
the following result.

Corollary 4.3. The category Co-Sob is not reflective in Top0.

4.2. Strong d-spaces. The class of strong d-spaces was introduced by Xu and Zhao [25], which lies
between the classes of T1 spaces and d-spaces.

Definition 4.4 ([25]). A T0 space X is called a strong d-space if for any x ∈ X , any directed subset D
of X , and any open subset U of X ,

⋂
d∈D ↑d ∩↑x ⊆U implies ↑d0 ∩↑x ⊆U for some d0 ∈ D.

Let SD be the full subcategory of Top0 consisting of all strong d-spaces.
In [25, Example 3.34], it was shown that there exists a continuous dcpo P whose Scott topology

is not a strong d-space. However, it is well-known that the Scott topology on any continuous dcpo
is always sober. In addition, it has been noted in [25, Remark 3.21] that the Scott topology on every
continuous lattice is a strong d-space. Therefore, Sob ⊈ SD and SD ⊈ Top1. By applying Theorem
3.6(3), we deduce the following result.

Corollary 4.5. The category SD is not reflective in Top0.
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4.3. k-bounded sober spaces. In [26], Zhao and Ho introduced another weaker notion of sobriety,
called k-bounded sobriety. This notion is defined as follows.

Definition 4.6 ([26]). A T0 space X is k-bounded sober if for any irreducible closed subset F of X
with

∨
F existing, there is a unique point x ∈ X such that F = ↓x.

Let KSob be the full subcategory of Top0 consisting of all k-bounded sober spaces. It is clear that
Sob ⊆ KSob and Sob ⊈ Top1. Thus, we conclude that KSob ⊈ Top1.

Example 4.7. Let X = [0,3] equipped with the Scott topology (i.e., the open sets are /0, [0,3] and all
sets of the form (x,3], where x ∈ [0,3]). Since [0,3] is a continuous lattice, we know that X is a sober
space, and hence it is also k-bounded sober. For each integer n ≥ 2, let Xn = [0,1)∪ (2− 1

n ,2+
1
n). We

have the following facts.
(1) Each subspace Xn of X is k-bounded sober. To show this, let F be an irreducible closed set in Xn

and x ∈ Xn such that
∨

Xn F = x. There are two cases:
(c1) x ∈ [0,1). Then, F ⊆ ↓x ⊆ [0,1), which follows that clXn(F) = clXn({x}).
(c2) x ∈ (2− 1

n ,2+
1
n). Then, F ∩ (2− 1

n ,2+
1
n) ̸= /0, which implies that

x =
∨

Xn F =
∨

Xn F ∩ (2− 1
n ,2+

1
n) =

∨
X F ∩ (2− 1

n ,2+
1
n) =

∨
X F ∩Xn =

∨
X F.

Since X is sober, we have clX(F) = clX({x}), and thus clXn(F) = clX(F)∩Xn = clX({x})∩Xn =
clXn({x}), where the last equality holds because x ∈ Xn.
All these show that Xn is k-bounded sober.

(2) The intersection Y =
⋂

n≥2 Xn = [0,1)∪{2} equipped with the subspace topology of X is not
k-bounded sober. In fact, the set F :=[0,1) is irreducible since it is directed, and

∨
Y F = 2. In

addition, since [0,1] is a closed set in X and F = [0,1]∩Y , we have that F is a closed set in Y . For
each x ∈ [0,1), we have that clY ({x}) = [0,x] ̸= F , and clY ({2}) = Y ̸= F . Therefore, Y is not a
k-bounded sober space.

The above example shows that KSob does not satisfy (K3). Thus, by Theorem 3.21, we obtain the
following corollary.

Corollary 4.8 ([14]). The category KSob is not reflective in Top0.

4.4. Consonant spaces. The class of consonant spaces was introduced by Dolecki, Greco and Lechicki
in [2], which plays an important role in discussion of the equality of the Isbell topology and the compact-
open topology on function spaces [20]. The definition is given as follows.

Definition 4.9 ([2]). A topological space X is called consonant if for every Scott open subset U of
O(X), there exists a family {Ki : i ∈ I} of compact subsets of X such that U =

⋃
i∈I N (Ki), where

N (Ki):={U ∈ O(X) : Ki ⊆U} for all i ∈ I.

Let Const be the full subcategory of Top0 consisting of all consonant T0 spaces. We note the
following facts:
(1) Every finite topological space X is consonant, since every subset of X is compact. As a consequence,

Σ2 is a consonant T0 but non-T1 space, so we have that Const ⊈ Top1;
(2) Nogura and Shakhmatov [20] have shown that there exists a metric space (hence is sober) that is

not consonant, so we have that Sob ⊈ Const.
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Therefore, by Theorem 3.6(3), we obtain the following corollary.

Corollary 4.10. The category Const is not reflective in Top0.

5. Conclusion

In this paper we proved that if a reflective subcategory of Top0 contains a non-T1 space and satisfies
the (K2) condition proposed by Lawson and Keimel, then it also satisfies the remaining conditions
(K1), (K3) and (K4). Based on this result, we concluded that several subcategories are not reflective,
thus giving negative answers to some open problems. We expect that this result might also serve as a
tool for verifying the reflectivity of other subcategories of Top0.
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