WHEN TWO COMPATIBLE METRICS GENERATE THE SAME TOPOLOGIES OF UNIFORM CONVERGENCES ON FUNCTIONAL SPACES

ĽUBICA HOLÁ

ABSTRACT. Let X be a Tychonoff space, Y be a metrizable one and C(X,Y) be the space of continuous functions from X to Y. It is a classical result that two compatible metrics on Y generate the same topologies of uniform convergence on compacta on C(X,Y). We extend the result for the space U(X,Y) of upper semicontinuous nonempty compact-valued maps from X to Y. We also present characterizations of uniform equivalence of metrics via uniform convergence on functional spaces, as well as functional characterizations of locally compact and k-spaces. We give a partial answer to a question posed in [23] after Example 1.2.7, when two compatible metrics on Y generate the same topologies of uniform convergence on C(X,Y).

1. Introduction

Let X be a Tychonoff space, Y be a metrizable one and C(X,Y) be the space of continuous functions from X to Y. It is known that two compatible metrics on Y generate the same topologies of uniform convergence on compacta on C(X,Y), in fact they generate compact-open topology on C(X,Y). We prove that two compatible metrics on Y generate the same topologies of uniform convergence on compacta on the space U(X,Y) of upper semicontinuous nonempty compactvalued maps from X to Y. Following Christensen [4] such maps are called usco.

Usco maps have applications in topology, approximation theory, optimization, differentiability theory of convex functions, variational analysis and the differentiation theory of Lipschitz functions [13, 26, 28, 30]. There are two important subclasses of usco maps: minimal usco and minimal cusco maps. Both these subclasses have many applications too [2, 3, 13, 26, 27]. There are many papers which study topologies of uniform convergence on compacta and uniform convergence on usco, minimal usco and minimal cusco maps [9, 10, 11, 14, 17, 18, 19, 20, 21]. Interesting results concerning selections of usco and minimal usco/cusco maps can be found in [13, 15, 16, 29].

2. Preliminaries

In what follows let X and Y be Hausdorff topological spaces, \mathbb{N} be the set of positive integers, \mathbb{R} be the space of real numbers with the usual Euclidean metric.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C60, 54E35; Secondary 54B20.

 $[\]textit{Key words and phrases.}$ equivalent metric, uniformly equivalent metric, usco map, k-space.

The author would like to thanks to grants Vega 2/0048/21 and APVV 20-0045.

The symbol \overline{A} and Int A will stand for the closure and interior of the set A in a topological space. Throughout the paper all spaces are assumed nontrivial; i.e. all spaces contain at least 2 different points.

A set-valued map, or a multifunction, from X to Y is a function that assigns to each element of X a subset of Y. Following [6] the term map is reserved for a set-valued map. If F is a map from X to Y, then its graph is the set $\{(x,y) \in X \times Y : y \in F(x)\}$. In our paper, we will identify maps with their graphs.

A map $F: X \to Y$ is upper semicontinuous at a point $x \in X$ if for every open set V containing F(x), there exists an open set U such that $x \in U$ and

$$F(U) = \bigcup \{F(u) : u \in U\} \subset V.$$

F is upper semicontinuous if it is upper semicontinuous at each point of X. Following Christensen [4] we say, that a map F is useo if it is upper semicontinuous and takes nonempty compact values. Finally, a map F from a topological space X to a topological space Y is said to be minimal useo if it is a minimal element in the family of all useo maps (with the domain X and the range Y); that is, if it is useo and does not contain properly any other useo map from X into Y.

Let (Y, d) be a metric space. The open d-ball with center $z_0 \in Y$ and radius $\varepsilon > 0$ will be denoted by $S_{\varepsilon}(z_0)$ and the ε -parallel body $\bigcup_{a \in A} S_{\varepsilon}(a)$ for a subset A of Y will be denoted by $S_{\varepsilon}(A)$.

Denote by CL(Y) the space of all nonempty closed subsets of Y and by K(Y) the space of all nonempty compact subsets of Y.

If $A \in CL(Y)$, the distance functional $d(.,A): Y \mapsto [0,\infty)$ is described by the familiar formula

$$d(z,A)=\inf\{d(z,a):\ a\in A\}.$$

Let A and B be nonempty subsets of (Y, d). The excess of A over B with respect to d is defined by the formula

$$e_d(A, B) = \sup\{d(a, B) : a \in A\}.$$

The Hausdorff metric (extended-valued) H_d on CL(Y) [Be] is defined by

$$H_d(A, B) = \max\{e_d(A, B), e_d(B, A)\}.$$

We will often use the following equality on CL(Y):

$$H_d(A, B) = \inf\{\varepsilon > 0 : A \subset S_{\varepsilon}(B) \text{ and } B \subset S_{\varepsilon}(A)\}.$$

The topology generated by H_d is called the Hausdorff metric topology.

Let X be a topological space and (Y, d) be a metric space. Following [9] we will define the topology τ_p of pointwise convergence on $CL(Y)^X$. The topology of pointwise convergence τ_p on $CL(Y)^X$ is induced by the uniformity \mathfrak{U}_p of pointwise convergence which has a base consisting of sets of the form

$$W(A,\varepsilon) = \{(\Phi, \Psi) : \forall x \in A \mid H_d(\Phi(x), \Psi(x)) < \varepsilon\},\$$

where A is a finite set in X and $\varepsilon > 0$.

We will define the topology of uniform convergence on compact sets τ_{UC} on $CL(Y)^X$ [9]. This topology is induced by the uniformity \mathfrak{U}_{UC} which has a base consisting of sets of the form

$$W(K,\varepsilon) = \{(\Phi, \Psi) : \forall x \in K \mid H_d(\Phi(x), \Psi(x)) < \varepsilon\},\$$

where $K \in K(X)$ and $\varepsilon > 0$. The general τ_{UC} -basic neighborhood of $\Phi \in CL(Y)^X$ will be denoted by $W(\Phi, K, \varepsilon)$, i.e. $W(\Phi, K, \varepsilon) = W(K, \varepsilon)[\Phi] = \{\Psi : H_d(\Phi(x), \Psi(x)) < \varepsilon \text{ for every } x \in K\}.$

Finally, we will define the topology of uniform convergence τ_U on $CL(Y)^X$ [9]. This topology is induced by the uniformity \mathfrak{U}_U which has a base consisting of sets of the form

$$W(\varepsilon) = \{(\Phi, \Psi) : \forall x \in X \mid H_d(\Phi(x), \Psi(x)) < \varepsilon\},\$$

where $\varepsilon > 0$.

Some topological properties of the space $(U(X,Y), \tau_{UC})$ can be found in [17]. Let X be hemicompact and (Y,d) be a metric space. Let $\{K_n : n \in \mathbb{Z}^+\}$ be a countable cofinal subfamily in K(X) with respect to the inclusion. It is easy to verify that the countable family $\{W(K_m, 1/n) : m, n \in \mathbb{N}\}$ is a base of the uniformity \mathfrak{U}_{UC} [17]. Thus the uniformity \mathfrak{U}_{UC} is metrizable [22]. We will define a compatible metric ρ on U(X,Y).

For every $K \in K(X)$ let p_K be the pseudometric on U(X,Y) defined by

$$p_K(F,G) = \sup\{H_d(F(x), G(x)) : x \in K\}.$$

Notice that for every $F \in U(X,Y)$ and every $K \in K(X)$ the set F(K) is compact [1].

Then for every $K \in K(X)$ we have the pseudometric h_K defined as

$$h_K(F, G) = \min\{1, p_k(F, G)\}.$$

We define a function $\rho:\ U(X,Y)\times U(X,Y)\to\mathbb{R}$ as follows

$$\rho(F,G) = \sum_{n=1}^{\infty} \frac{1}{2^n} h_{K_n}(F,G).$$

It is easy to see that ρ is a metric on U(X,Y) and uniformity \mathfrak{U}_{UC} is generated by ρ .

3. When two compatible metrics generate the same topologies of uniform convergences

If (Y, d) is a metric space, then the Vietoris topology and the Hausdorff metric topology generated by H_d coincide on K(Y) [24]. Thus if d and e are two compatible metrics on Y, then the topology generated by H_d and the topology generated by H_e on K(Y) are the same.

Let X be a topological space and Y be metrizable. If d is a compatible metric on Y denote by τ_p^d , τ_{UC}^d and τ_U^d the topology of pointwise convergence, the topology of uniform convergence on compacta and the topology of uniform convergence on $CL(Y)^X$ generated by the Hausdorff metric H_d .

We also denote the open d-ball with center $z_0 \in Y$ and radius $\varepsilon > 0$ by $S_{\varepsilon}^d(z_0)$, the ε -parallel body $\bigcup_{a \in A} S_{\varepsilon}^d(a)$ for a subset A of Y will be denoted by $S_{\varepsilon}^d(A)$ and $W^d(\Phi, K, \varepsilon) = \{\Psi : H_d(\Phi(x), \Psi(x)) < \varepsilon \text{ for every } x \in K\}.$

The following result is obvious.

Proposition 3.1. Let X be a topological space and d and e be two compatible metrics on Y. Then the topologies τ_p^d and τ_p^e on the space $K(Y)^X$ are the same, so also on U(X,Y).

Theorem 3.2. Let X be a Hausdorff topological space and d and e be two compatible metrics on Y. Then the topologies τ_{UC}^d and τ_{UC}^e on the space U(X,Y) of usco maps from X to Y are the same.

Proof. Let $\{F_{\sigma} : \sigma \in \Sigma\}$ converge to F in $(U(X,Y), \tau_{UC}^d)$ and suppose that it fails to converge to F in $(U(X,Y), \tau_{UC}^e)$. There is $K \in K(X)$ and $\epsilon > 0$ such that

for every σ there is $\eta > \sigma$ with $F_{\eta} \notin W^{e}(F, K, \epsilon)$.

Without loss of generality we can suppose that there is a net $\{x_a : a \in A\}$ in K and a subnet $\{F_a : a \in A\}$ of the net $\{F_\sigma : \sigma \in \Sigma\}$ such that $H_e(F_a(x_a), F(x_a)) \geq \epsilon$.

We have two possibilities: either i) $F(x_{\lambda})$ is not contained in $S_{\epsilon}^{e}(F_{\lambda}(x_{\lambda}))$ for $\lambda \in \Lambda$, where Λ is a cofinal family in A or ii) $F_{i}(x_{i})$ is not contained in $S_{\epsilon}^{e}(F(x_{i}))$ for $i \in I$, where I is a cofinal family in A.

Consider i). Without loss of generality we can suppose that $\Lambda = A$. For every $a \in A$ there is $y_a \in F(x_a) \setminus S^e_{\epsilon}(F_a(x_a))$. Let x be a cluster point of $\{x_a : a \in A\}$. There is a cluster point y of $\{y_a : a \in A\}$. There is $\eta > 0$ such that $S^d_{\eta}(y) \subset S^e_{\epsilon/2}(y)$. There is $a_0 \in A$ such that

$$F_a \in W^d(F, K, \eta/2)$$
 for every $a \ge a_0$.

Let $a \ge a_0$ be such that $y_a \in S^d_{\eta/2}(y)$. Then $y_a \in F(x_a) \subset S^d_{\eta/2}(F_a(x_a))$. There is $z_a \in F_a(x_a)$ such that $d(y_a, z_a) < \eta/2$. Thus $d(y, z_a) < \eta$. Then $e(y, z_a) < \epsilon/2$. Thus $e(y_a, z_a) < \epsilon$, a contradiction.

Consider ii). Without loss of generality we can suppose that I=A. For every $a \in A$ there is $y_a \in F_a(x_a) \setminus S^e_{\epsilon}(F(x_a))$. Let x be a cluster point of $\{x_a : a \in A\}$. Suppose first that there is a cluster point y of the net $\{y_a : a \in A\}$. There is $\eta > 0$ such that $S^d_{\eta}(y) \subset S^e_{\epsilon/2}(y)$. There is $a_0 \in A$ such that

$$F_a \in W^d(F, K, \eta/2)$$
 for every $a \ge a_0$.

Let $a \geq a_0$ be such that $y_a \in S^d_{\eta/2}(y)$. Then $y_a \in F_a(x_a) \subset S^d_{\eta/2}(F(x_a))$. There is $z_a \in F(x_a)$ such that $d(y_a, z_a) < \eta/2$. Thus $d(y, z_a) < \eta$. Then $e(y, z_a) < \epsilon/2$. Thus $e(y_a, z_a) < \epsilon$, a contradiction.

Suppose now there is no cluster point of the net $\{y_a: a \in A\}$. Since F(x) is compact there is $\eta > 0$ and $a_0 \in A$ such that $y_a \notin S^d_{\eta}(F(x))$ for every $a \geq a_0$. The upper semicontinuity of F at x implies that there is an open neighbourhood U of x such that $F(z) \subset S^d_{\eta/2}(F(x))$ for every $z \in U$. There is $a_1 \in A$ such that $a_1 \geq a_0$ and

$$F_a \in W^d(F, K, \eta/2)$$
 for every $a \geq a_1$.

Let $a \geq a_1$ be such that $x_a \in U$. Then $y_a \in F_a(x_a) \subset S^d_{\eta/2}(F(x_a)) \subset S^d_{\eta}(F(x))$, a contradiction.

Concerning the topology of uniform convergence, Example 1.2.7 in [23] presents two compatible metrics ρ and σ on \mathbb{R} such that $\tau_U^{\rho} \neq \tau_U^{\sigma}$ on $C(\mathbb{R}, \mathbb{R})$, the space of continuous functions from \mathbb{R} to \mathbb{R} . Of course the metrics ρ and σ in Example 1.2.7. in [23] are not uniformly equivalent.

Two metrics d and e on Y are called uniformly equivalent iff for every $\epsilon > 0$ there are positive numbers $\alpha_1 = \alpha_1(\epsilon)$ and $\alpha_2 = \alpha_2(\epsilon)$ such that

$$d(x,y) < \alpha_1 \Rightarrow e(x,y) < \epsilon \text{ and } e(x,y) < \alpha_2 \Rightarrow d(x,y) < \epsilon.$$

The following proposition is obvious.

Proposition 3.3. Let X be a topological space and d and e be two compatible metrics on Y. If the identity mapping $id_Y : (Y, d) \to (Y, e)$ on Y is uniformly continuous, then the topology τ_U^e is weaker than τ_U^d on Y^X , thus also on C(X, Y).

Corollary 3.4. Let X be a topological space d and e be two uniformly equivalent metrics on Y. Then $\tau_U^d = \tau_U^e$ on Y^X , thus also on C(X,Y).

Remark 3.5. Let d be the Euclidean metric on \mathbb{R} . As was mentioned above, Example 1.2.7 in [23] presents two compatible metrics ρ and σ on \mathbb{R} such that $\tau_U^{\rho} \neq \tau_U^{\sigma}$ on $C(\mathbb{R}, \mathbb{R})$. In the Example 1.2.7 in [23] the metric ρ is uniformly equivalent to d and the identity mapping $id_{\mathbb{R}} : (\mathbb{R}, \sigma) \to (\mathbb{R}, d)$ is not uniformly continuous. In the following Example we present a metric e on \mathbb{R} compatible with d and such that the identity mapping $id_{\mathbb{R}} : (\mathbb{R}, d) \to (\mathbb{R}, e)$ is not uniformly continuous and $\tau_U^d \neq \tau_U^e$ on $C(\mathbb{R}, \mathbb{R})$.

Example 3.6. Let d be the Euclidean metric on \mathbb{R} . Define a continuous function $f: \mathbb{R} \to \mathbb{R}$ as follows: f(x) = 0 for x < 2 and on every interval [n, n+1], $n \ge 2$, f is the piecewise linear function whose graph connects the following points in the succession:

$$(n,0), (n+1/n), 1)$$
 and $(n+1,0)$.

Define the metric $e: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ as follows: e(x,y) = d(x,y) + |f(x) - f(y)|. Of course, the metrics d and e are compatible and $id_{\mathbb{R}}: (\mathbb{R}, d) \to (\mathbb{R}, e)$ is not uniformly continuous, since d(n, n + 1/n) = 1/n and e(n, n + 1/n) > 1 for every $n \geq 2, n \in \mathbb{N}$. For every $n \in \mathbb{N}$ define a continuous function $g_n: \mathbb{R} \to \mathbb{R}$ as: $g_n(x) = x + 1/n$ for $x \in \mathbb{R}$. It is easy to verify that $\{g_n: n \in \mathbb{N}\}$ converges to $id_{\mathbb{R}}$ in $(C(\mathbb{R}, \mathbb{R}), \tau_U^d)$, however it fails to converge to $id_{\mathbb{R}}$ in $(C(\mathbb{R}, \mathbb{R}), \tau_U^e)$.

We have the following characterization.

Proposition 3.7. Let X be a non compact metric space, Y be a locally convex space metrizable by a translation invariant metric d. Let e be a metric on Y compatible with d. The following are equivalent:

- (1) the identity mapping $id_Y: (Y,d) \to (Y,e)$ is uniformly continuous;
- (2) τ_U^e is weaker than τ_U^d on C(X,Y).

Proof. It is sufficient to prove that $(2) \Rightarrow (1)$. Suppose that $id_Y : (Y, d) \to (Y, e)$ fails to be uniformly continuous, where id_Y is the identity function on Y. We can find $\epsilon > 0$ and sequences $\{y_n : n \in \mathbb{N}\}$ and $\{v_n : n \in \mathbb{N}\}$ such that for every $n \in \mathbb{N}$, $d(y_n, v_n) < 1/n$ and $e(y_n, v_n) \geq \epsilon$. Since X is a non compact metric space, X is not countably compact. Thus there is a countably infinite subset A of X which has no accumulation point. Enumerate A as $\{x_n : n \in \mathbb{N}\}$. Then A is a closed discrete set in X. We will define a continuous function $f: A \to Y$ as: $f(x_n) = y_n$, $n \in \mathbb{N}$. Let $n \in \mathbb{N}$. Define a function $f_n: A \to Y$ as follows: $f_n(x_n) = v_n$ and $f_n(x) = f(x)$ otherwise. Of course $\{f_n: n \in \mathbb{N}\}$ converges to f in $(C(A, Y), \tau_U^d)$. Notice that the uniformity generated by d on Y is the standard uniformity on Y (generated by a local base of absolutely convex neigbourhoods of the zero element in Y). By Theorem 7.1 in [25] there is a mapping

$$\Phi: (C(A,Y),\tau_U^d) \to (C(X,Y),\tau_U^d)$$

such that $\Phi(f)$ is an extension of f for every $f \in C(A, Y)$ and Φ is an isomorphism. Thus the sequence $\{\Phi(f_n) : n \in \mathbb{N}\}$ converges to $\Phi(f)$ in $(C(X, Y), \tau_U^d)$.

Since for every $n \in \mathbb{N}$ $e(\Phi(f_n)(x_n), \Phi(f)(x_n)) = e(v_n, y_n) \geq \epsilon$, the sequence $\{\Phi(f_n) : n \in \mathbb{N}\}$ fails to converge to $\Phi(f)$ in $(C(X, Y), \tau_U^e)$, a contradiction.

Michael wrote in his paper [25], that the mapping Φ in the proof of Proposition 3.7 was constructed by Dugundji in [7].

Corollary 3.8. Let d be the usual Euclidean metric on \mathbb{R} and e be a compatible metric on \mathbb{R} . The following are equivalent:

- (1) the identity mapping $id_{\mathbb{R}}:(\mathbb{R},d)\to(\mathbb{R},e)$ is uniformly continuous;
- (2) τ_U^e is weaker than τ_U^d on $C(\mathbb{R}, \mathbb{R})$.

We have the following partial answer to a question posed in [23] after Example 1.2.7.

Theorem 3.9. Let X be a zero-dimensional non compact metric space, Y be a metrizable one and d and e be two compatible metrics on Y. The following are equivalent:

- (1) d and e are uniformly equivalent;
- (2) $\tau_U^d = \tau_U^e \text{ on } C(X, Y).$

Proof. It is sufficient to prove that $(2) \Rightarrow (1)$. Suppose that $id_Y: (Y,d) \to (Y,e)$ fails to be uniformly continuous, where id_Y is the identity function on Y. We can find $\epsilon > 0$ and sequences $\{y_n : n \in \mathbb{N}\}$ and $\{v_n : n \in \mathbb{N}\}$ such that for every $n \in \mathbb{N}, d(y_n, v_n) < 1/n \text{ and } e(y_n, v_n) \geq \epsilon.$ Since X is a non compact metric space, X is not countably compact. Thus there is a countably infinite subset Aof X which has no accumulation point. Enumerate A as $\{x_n : n \in \mathbb{N}\}$. Then A is a closed discrete set in X. Let ρ be a compatible metric on X. There is a sequence $\{\epsilon_n : n \in \mathbb{N}\}$ such that $0 < \epsilon_n < 1/n$ for every $n \in \mathbb{N}$ and the family $\{S_{\epsilon_n}(x_n): n \in \mathbb{N}\}\$ is pairwise disjoint, where $S_{\epsilon_n}(x_n) = \{x \in X: \rho(x_n, x) < \epsilon_n\}$ for every $n \in \mathbb{N}$. Since X is zero-dimensional, it has a base consisting of clopen sets. Thus for every $n \in \mathbb{N}$ there is an open and closed set $O(x_n)$ such that $x_n \in O(x_n)$ and $O(x_n) \subset S_{\epsilon_n}(x_n)$. The set $L = \bigcup \{O(x_n) : n \in \mathbb{N}\}$ is also open and closed. Without loss of generality we can suppose that the set $X \setminus L$ is nonempty. We will define a continuous function $f: X \to Y$ as follows: $f(x) = y_n$, if $x \in O(x_n)$, $n \in \mathbb{N}$ and $f(x) = y_1$ if $x \in X \setminus L$. Let $n \in \mathbb{N}$. Define a continuous function $f_n: X \to Y$ as follows: $f_n(x) = v_n$ if $x \in O(x_n)$ and $f_n(x) = f(x)$ otherwise. Of course the sequence $\{f_n:n\in\mathbb{N}\}$ converges to f in $(C(X,Y),\tau_U^d)$ and fails to converge to f in $(C(X,Y), \tau_U^e)$.

If d and e are uniformly equivalent metrics on Y, then for every $\epsilon > 0$ there are positive numbers $\alpha_1 = \alpha_1(\epsilon)$ and $\alpha_2 = \alpha_2(\epsilon)$ such that for every nonempty set B in Y

$$\{y \in Y : d(y,B) < \alpha_1\} \subset \{y \in Y : e(y,B) < \epsilon\}$$

and

$$\{y \in Y : e(y, B) < \alpha_2\} \subset \{y \in Y : d(y, B) < \epsilon\}.$$

Thus uniform equivalence of d and e yields uniform equivalence of H_d and H_e on CL(Y) (see the proof of Theorem 3.3.2 in [1]).

Thus we have the following proposition.

Proposition 3.10. Let X be a topological space, d and e be two uniformly equivalent metrics on Y. Then $\tau_U^d = \tau_U^e$ on $CL(Y)^X$ and thus on $K(Y)^X$ and U(X,Y).

The following characterization holds.

Proposition 3.11. Let X be an unbounded metric space, Y be a metrizable one and d and e be two compatible metrics on Y. The following are equivalent:

- (1) d and e are uniformly equivalent;
- (2) $\tau_U^d = \tau_U^e \text{ on } U(X, Y).$

Proof. It is sufficient to prove that $(2) \Rightarrow (1)$. Suppose that d and e are not uniformly equivalent. Let us say that $id_Y : (Y, d) \to (Y, e)$ fails to be uniformly continuous, where id_Y is the identity function on Y. We can find $\epsilon > 0$ and sequences $\{y_n : n \in \mathbb{N}\}$ and $\{v_n : n \in \mathbb{N}\}$ such that for every $n \in \mathbb{N}$, $d(y_n, v_n) < 1/n$ and $e(y_n, v_n) \geq \epsilon$. By the Efremovič lemma [1] and by passing to a subsequence we can suppose that

$$inf\{e(y_n, v_m) : n, m \in \mathbb{N}\} \ge \epsilon/4.$$

Let x_0 be any point in X. There is a sequence of positive integers $\{\alpha_n : n \in \mathbb{N}\}$ such that $\alpha_n < \alpha_{n+1}, n \in \mathbb{N}, \alpha_n \to \infty$ and

$$S_{\alpha_n}(x_0) \setminus S_{\alpha_{n-1}}(x_0) \neq \emptyset$$
 for every $n \in \mathbb{N}, n \geq 2$.

We will define an usco map $F: X \to Y$ as follows: $F(x) = \{y_1\}$ if $x \in S_{\alpha_1}(x_0)$ and $F(x) = \{y_1, ..., y_n\}$ for $x \in S_{\alpha_n}(x_0) \setminus S_{\alpha_{n-1}}(x_0)$, $n \ge 2$. Let $n \in \mathbb{N}$. We will define an usco map $F_n: X \to Y$. Put $F_1 = F$ and for $n \ge 2$ define F_n as follows: $F_n(x) = F(x)$ if $x \in S_{\alpha_n}(x_0)$,

$$F_n(x) = \{y_1, ..., y_n, v_{n+1}\}$$
 if $x \in S_{\alpha_{n+1}}(x_0) \setminus S_{\alpha_n}(x_0)$ and

$$F_n(x) = \{y_1, ..., y_n, v_{n+1}, ...v_k\}$$
 if $x \in S_{\alpha_k}(x_0) \setminus S_{\alpha_{k-1}}(x_0), k > n+1$.

It is easy to verify that the sequence $\{F_n : n \in \mathbb{N}\}$ converges to F in $(U(X,Y), \tau_U^d)$. For every $n \in \mathbb{N}, n \geq 2$ and $x \in S_{\alpha_{n+1}}(x_0) \setminus S_{\alpha_n}(x_0)$ we have

$$H_e(F_n(x), F(x)) = H_e(\{y_1, ..., y_n, v_{n+1}\}, \{y_1, ..., y_n, y_{n+1}\}) \ge \epsilon/4.$$

Thus the sequence $\{F_n : n \in \mathbb{N}\}$ fails to converge to F in $(U(X,Y), \tau_U^e)$, a contradiction.

Passing to set-valued maps with nonempty closed values we have the following result.

Proposition 3.12. Let X be a topological space and Y be a metrizable space. Let d and e be compatible metrics. The following are equivalent:

- (1) d and e are uniformly equivalent:
- (2) $\tau_{U}^{d} = \tau_{U}^{e} \text{ on } CL(Y)^{X};$ (3) $\tau_{UC}^{d} = \tau_{UC}^{e} \text{ on } CL(Y)^{X};$ (4) $\tau_{p}^{d} = \tau_{p}^{e} \text{ on } CL(Y)^{X};$
- (5) $\tau_{H_d} = \tau_{H_e}$ on CL(Y), where τ_{H_d} (τ_{H_e}) is the topology generated by H_d (H_e).

Proof. (5) \Rightarrow (1) is proved in Theorem 3.3.2 in [1].

4. Functional characterizations of k-spaces and locally compact SPACES

A Hausdorff topological space X is a k-space if a set A is closed in X if and only if $A \cap K$ is closed in X for every compact K in X. It is known that if X is a k-space and (Y, d) is a metric space, then C(X, Y) is a closed subset of (Y^X, τ_{UC}) . It was mention in [17] (without a complete proof) that if X is a k-space and (Y, d)is a metric space, then U(X,Y) is a closed subset of $(K(Y)^X, \tau_{UC})$. For a reader's convenience we present the proof of it.

Proposition 4.1. Let X be a k-space and (Y, d) be a metric space. Then U(X, Y)is a closed subset of $(K(Y)^X, \tau_{UC})$.

Proof. Let G be in the closure of U(X,Y) in $(K(Y)^X,\tau_{UC})$. We prove that $G \in U(X,Y)$. By [1] $G \in U(X,Y)$ if, and only if, for every closed set B in Y, the set $G^-(B) = \{x \in X : G(x) \cap B \neq \emptyset\}$ is closed in X. Since X is a k-space, it is sufficient to prove that $G^{-}(B) \cap C$ is a closed set in X for every compact set C in X. Suppose that there are a closed set B in Y and a compact set C in X such that $G^-(B) \cap C$ is not closed in X. Let

$$x \in \overline{G^-(B) \cap C} \setminus G^-(B)$$
; i.e. $G(x) \cap B = \emptyset$.

Since G(x) is compact, there is $\epsilon > 0$ such that $S_{\epsilon}(B) \cap G(x) = \emptyset$. Put $D = \overline{S_{\epsilon/4}(B)}$. Consider $W(G, C, \epsilon/4)$. Let $H \in U(X, Y) \cap W(G, C, \epsilon/4)$. Thus

$$H(x) \subset S_{\epsilon/4}(G(x)) \subset D^c \text{ and } x \in \overline{H^-(D) \cap C},$$

a contradiction, since $H \in U(X,Y)$.

We can characterize k-spaces as follows.

Proposition 4.2. Let X be a Hausdorff topological space and (Y, d) be a metric space. The following are equivalent:

- (1) X is a k-space;
- (2) U(X,Y) is a closed subset of $(K(Y)^X, \tau_{UC})$.

Proof. (1) \Rightarrow (2) is proved in Proposition 4.1. To prove (2) \Rightarrow (1) suppose that X is not a k-space. Let A be a non-closed set in X, such that $A \cap K$ is a closed set in X for every $K \in K(X)$. Let $x_0 \in \overline{A} \setminus A$ and let y_1, y_2 be two different points in Y. Put $K = \{K \in K(X) : K \cap A \neq \emptyset\}$ and for every $K \in K$ define a set-valued map $F_K : X \to Y$ as follows: $F_K(x) = \{y_1, y_2\}$ if $x \in K \cap A$ and $F_K(x) = \{y_1\}$ otherwise. It is easy to verify that F_K is usco for every $K \in K$. Define a set-valued map $F : X \to Y$ as $F(x) = \{y_1, y_2\}$ if $x \in A$ and $F(x) = \{y_1\}$ otherwise. F is not upper semicontinuous at x_0 . K is a directed set with respect to set inclusion; $C \subseteq K$ if and only if $C \subseteq K$. The net $\{F_K : K \in K\}$ converges to F in $(K(Y)^X, \tau_{UC})$, a contradiction.

Denote by MU(X,Y) the space of minimal usco maps from a topological space X into a metric space (Y,d). Of course, the following inclusions hold

$$C(X,Y) \subset MU(X,Y) \subset U(X,Y)$$
.

It is interesting to mention that if X is a k-space and (Y, d) a metric one, then MU(X, Y) need not be a closed subset of $(K(Y)^X, \tau_{UC})$.

Proposition 4.3. ([11] Let X be a locally compact space and (Y, d) be a metric space. Then MU(X, Y) is a closed subset of $(K(Y)^X, \tau_{UC})$.

In the class of metric spaces we can even characterize local compactness via Proposition 4.3. We will need the following lemmas.

Lemma 4.4. ([13], Proposition 1.3.5) Let X and Y be topological spaces and $F: X \to Y$ be usco. Then F is minimal usco if, and only if, for each pair of open subsets U of X and W of Y with $F(U) \cap W \neq \emptyset$ there exists a nonempty open set $V \subset U$ such that $F(V) \subset W$.

Lemma 4.5. Let X be a topological space, Y be a compact topological space and D be a dense set in X. If $F:D\to Y$ is a minimal usco map, then $\overline{F}:X\to Y$ is a minimal usco map.

Proof. By Corollary 1.1.15 from [13] \overline{F} is usco. To prove that \overline{F} is minimal usco we use Lemma 4.4.

Proposition 4.6. Let (X, ρ) and (Y, d) be metric spaces. The following are equivalent:

- (1) X is locally compact;
- (2) MU(X,Y) is a closed subset of $(K(Y)^X, \tau_{UC})$.

Proof. It is sufficient to prove $(2) \Rightarrow (1)$. We will use an idea from [13]. Let $x_0 \in X$ fail to have a local base of compact sets. Let $\delta_1 = 1$. There is a sequence $\{x_i^1: i \in \mathbb{N}\}$ of different points of $\{z \in X: 0 < \rho(x_0, z) < \delta_1\}$ with no cluster point in X. There exists $\varepsilon_1 > 0$ such that $\varepsilon_1 < \rho(x_0, x_i^1)$ for every $i \in \mathbb{N}$. Next, let $\delta_2 = \min\{\frac{1}{2}, \frac{\varepsilon_1}{2}\}$ and let $\{x_i^2: i \in \mathbb{N}\}$ be a sequence of different points of $\{z \in X: 0 < \rho(x_0, z) < \delta_2\}$ with no cluster point in X. Chose $\varepsilon_2 > 0$ such that $\varepsilon_2 < \rho(x_0, x_i^2)$ for every $i \in \mathbb{N}$ and set $\delta_3 = \min\{\frac{1}{3}, \frac{\varepsilon_2}{2}\}$. Continuing we can produce for each $n \in \mathbb{N}$ a sequence $\{x_i^n: i \in \mathbb{N}\}$ of different points with no cluster point in X and sequences of positive real numbers $\{\delta_n: n \in \mathbb{N}\}$, $\{\epsilon_n: n \in \mathbb{N}\}$, such that $\delta_n = \min\{\frac{1}{n}, \frac{\varepsilon_{n-1}}{2}\}$, $0 < \varepsilon_n < \delta_n$ and $\{x_i^n: i \in \mathbb{N}\} \subset \{z \in X: \varepsilon_n < \rho(x_0, z) < \delta_n\}$.

Let $S_{\varepsilon_i^n}(x_i^n)$ be an open ball with the center x_i^n and radius $\varepsilon_i^n < 1/i$ for every $i \in \mathbb{N}$ and $n \in \mathbb{N}$ such that the family $\{\overline{S_{\varepsilon_i^n}(x_i^n)}: i \in \mathbb{N}\}$ is parwise disjoint and $\overline{S_{\varepsilon_i^n}(x_i^n)} \subset \{z \in X: \varepsilon_n < \rho(x_0, z) < \delta_n\}$. Let $\mathbb{N}^{\mathbb{N}}$ be partially ordered by the product order; i.e., $h \leq g$, if $h(n) \leq g(n)$ for every $n \in \mathbb{N}$.

Let a,b be two different points in Y. For every $g \in \mathbb{N}^{\mathbb{N}}$ define a dense set D_g in X and a minimal usco map $F_g:D_g \to \{a,b\}$ as follows. Put $D_g = \bigcup_{n \in \mathbb{N}} S_{\varepsilon_{g(n)}^n}(x_{g(n)}^n) \cup (X \setminus \overline{\bigcup_{n \in \mathbb{N}} S_{\varepsilon_{g(n)}^n}(x_{g(n)}^n)})$ and

$$F_g(x) = \begin{cases} \{a\}, & x \in X \setminus \overline{\bigcup_{n \in N} S_{\varepsilon_{g(n)}^n}(x_{g(n)}^n)}; \\ \{b\}, & x \in \bigcup_{n \in N} S_{\varepsilon_{g(n)}^n}(x_{g(n)}^n). \end{cases}$$

Evidently $F_g: D_g \to \{a,b\}$ is a minimal usco map. By Lemma 4.5 $\overline{F_g}$ is a minimal usco map from X to $\{a,b\}$. Thus $\overline{F_g}$ is also a minimal usco map from X to Y. Now define a map F as follows:

$$F(x) = \begin{cases} \{a, b\}, & x = x_0; \\ \{a\}, & \text{otherwise.} \end{cases}$$

Then $F \notin MU(X,Y)$ and the net $\{\overline{F_g} : g \in \mathbb{N}^{\mathbb{N}}\}$ converges in $(K(Y)^X, \tau_{UC})$ to F. Clearly, $\overline{F_g}(x_0) = \{a,b\}$ for every $g \in \mathbb{N}^{\mathbb{N}}$. For every $g \in \mathbb{N}^{\mathbb{N}}$ we have $\overline{\bigcup_{n \in \mathbb{N}} S_{\varepsilon_{g(n)}^n}(x_{g(n)}^n)} = (\bigcup_{n \in \mathbb{N}} S_{\varepsilon_{g(n)}^n}(x_{g(n)}^n) \cup \{x_0\}.$

Let K be a compact set in (X, ρ) and let $0 < \epsilon < 1$. Then for every $n \in \mathbb{N}$, there are only finitely many i such that $\overline{S_{\epsilon_i^n}(x_i^n)} \cap K \neq \emptyset$. For every $n \in \mathbb{N}$, let $k_n \in \mathbb{N}$ be such that $\overline{S_{\epsilon_k^n}(x_k^n)} \cap K = \emptyset$ for every $k \geq k_n$. Define $g : \mathbb{N} \to \mathbb{N}$ as follows: $g(n) = k_n$. Then for every $h \geq g$ we have $H_d(\overline{F_h}(x), F(x)) = 0$ for every $x \in K$. (Notice that if $x \in K$ and $x \neq x_0$, then $x \in X \setminus \overline{\bigcup_{n \in \mathbb{N}} S_{\epsilon_{g(n)}^n}(x_{g(n)}^n)}$.) Thus MU(X,Y) is not a closed subspace of $(K(Y)^X, \tau_{UC})$, a contradiction.

In the following propositions we will use the well-known fact that if (Y, d) is a complete metric space, then $(K(Y), H_d)$ is also a complete metric space [1].

Proposition 4.7. Let X be a k-space and (Y,d) be a complete metric space. Then the uniform space $(U(X,Y),\mathfrak{U}_{UC})$ is complete.

Proof. By Theorem 7.10 in [22] $(K(Y)^X, \mathfrak{U}_{UC})$ is complete. By Proposition 4.1 we are done.

The proof of the following Proposition is similar.

Proposition 4.8. Let X be a locally compact space and (Y,d) be a complete metric space. Then the uniform space $(MU(X,Y),\mathfrak{U}_{UC})$ is complete.

References

- [1] G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Publishers, 1993
- [2] J.M. Borwein, Minimal cuscos and subgradients of Lipschitz functions. In Fixed point theory and applications (Marseille, 1989), Pitman Res. Notes Math. Ser. 252, Longman Sci. Tech., Harlow 1991, 57–81.
- [3] J.M. Borwein, Q.J. Zhu, Techniques of variational analysis, Springer, 2005.
- [4] J.P.R. Christensen, Theorems of Namioka and R.E. Johnson type for upper semicontinuous and compact valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649–655.
- [5] E.F. Collingwood, A.J. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys. 56 (1989), 301–324.
- [6] L. Drewnowski, I. Labuda, On minimal upper semicontinuous compact valued maps, Rocky Mountain Journal of Mathematics, 20 (1990), 737–752.
- [7] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353–367.
- [8] R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.
- [9] S.T. Hammer, R.A. McCoy, *Spaces of densely continuous forms*, Set-Valued Analysis **5** (1997), 247–266.
- [10] L. Holá, D. Holý, Relation between minimal USCO and minimal CUSCO maps, Port. Math. 70, (2013), 211–224.
- [11] L. Holá, D. Holý, Minimal usco and minimal cusco maps and compactness, J. Math. Anal. Appl. 439 (2016), 737–744.
- [12] Ľ. Holá, D. Holý, Minimal usco and minimal cusco maps, Khayyam J. Math. 1 (2015), 125–150.
- [13] Ľ. Holá, D. Holý and W. B. Moors, *USCO and Quasicontinuous Mappings*, De Gruyter, Studies in Mathematics, Volume 81, 2021.
- [14] D. Holý, Uniform convergence on spaces of multifunctions, Math. Slovaca 57 (2007), 561–570 1 (2015), 125–150.
- [15] L. Holá, D. Holý, Minimal usco maps, densely continuous forms and upper semicontinuous functions, Rocky Mount. Math. J. 39 (2009), 545–562.
- [16] L. Holá, D. Holý, New characterization of minimal CUSCO maps, Rocky Mount. Math. J. 44 (2014), 1851–1866.
- [17] L. Holá, Spaces of Densely Continuous Forms, USCO and Minimal USCO Maps, Set-Valued Analysis 11 (2003), 133–151.
- [18] L. Holá, R.A. McCoy, Cardinal invariants of the topology of uniform convergence on compact sets on the space of minimal usco maps, Rocky Mountain Math. J. 37 (2007), 229–246.
- [19] L. Holá, B. Novotný, Topological properties of the space of convex minimal usco maps, Set-Valued and Variational Analysis 28 (2020), 287–300.

- [20] Ľ. Holá, B. Novotný, When is the space of minimal usco/cusco maps a topological vector space, J. Math. Anal. Appl. 489 (2020), 124125.
- [21] D. Holý, Ascoli-type theorems for locally bounded quasicontinuous functions, minimal usco and minimal cusco maps, Ann. Funct. Anal. 6 (2015), no. 3, 29–41, http://projecteuclid.org/afa
- [22] J. Kelley, General Topology, Springer, 1984
- [23] R.A. McCoy, I. Ntantu, Topological properties of spaces of continuous functions, Lecture Notes in Mathematics 1315 (1988), Springer-Verlag Berlin.
- [24] E Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152– 182.
- [25] E Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789–806.
- [26] W.B. Moors, A characterization of minimal subdifferential mappings of locally Lipschitz functions, Set-Valued Anal. 3 (1995), 129–141.
- [27] W.B. Moors, J.R. Giles, Generic continuity of minimal set-valued mappings, J. Australian Math. Soc. Series A. Mathematics and Statistics 63 (1997), 238–262.
- [28] W.B. Moors, S. Somasundaram, USCO selections of densely defined set-valued mappings, Bull. Australian Math. Soc. Series A. Mathematics and Statistics 65(2) (2002), 307–313.
- [29] W.B. Moors, A selection theorem for weak upper semi-continuous set-valued mappings, Bull. Austral. Math. Soc., **53(2)** (1996), 213–227.
- [30] R.R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, vol.1364, Springer Berlin Heidelberg, (1993).

ACADEMY OF SCIENCES, INSTITUTE OF MATHEMATICS ŠTEFÁNIKOVA 49, 81473 BRATISLAVA, SLOVAKIA

Email address: hola@mat.savba.sk