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Abstract. Let X be a Tychonoff space, Y be a metrizable one and C(X,Y )
be the space of continuous functions from X to Y . It is a classical result that
two compatible metrics on Y generate the same topologies of uniform conver-
gence on compacta on C(X,Y ). We extend the result for the space U(X,Y )
of upper semicontinuous nonempty compact-valued maps from X to Y . We
also present characterizations of uniform equivalence of metrics via uniform
convergence on functional spaces, as well as functional characterizations of lo-
cally compact and k-spaces. We give a partial answer to a question posed in
[23] after Example 1.2.7, when two compatible metrics on Y generate the same
topologies of uniform convergence on C(X,Y ).

1. Introduction

Let X be a Tychonoff space, Y be a metrizable one and C(X, Y ) be the space
of continuous functions from X to Y . It is known that two compatible metrics on
Y generate the same topologies of uniform convergence on compacta on C(X, Y ),
in fact they generate compact-open topology on C(X, Y ). We prove that two
compatible metrics on Y generate the same topologies of uniform convergence
on compacta on the space U(X, Y ) of upper semicontinuous nonempty compact-
valued maps from X to Y . Following Christensen [4] such maps are called usco.

Usco maps have applications in topology, approximation theory, optimization,
differentiability theory of convex functions, variational analysis and the differen-
tiation theory of Lipschitz functions [13, 26, 28, 30]. There are two important
subclasses of usco maps: minimal usco and minimal cusco maps. Both these sub-
classes have many applications too [2, 3, 13, 26, 27]. There are many papers which
study topologies of uniform convergence on compacta and uniform convergence
on usco, minimal usco and minimal cusco maps [9, 10, 11, 14, 17, 18, 19, 20, 21].
Interesting results concerning selections of usco and minimal usco/cusco maps
can be found in [13, 15, 16, 29].

2. Preliminaries

In what follows let X and Y be Hausdorff topological spaces, N be the set of
positive integers, R be the space of real numbers with the usual Euclidean metric.
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2 Ľ. HOLÁ

The symbol A and IntA will stand for the closure and interior of the set A in a
topological space. Throughout the paper all spaces are assumed nontrivial; i.e.
all spaces contain at least 2 different points.

A set-valued map, or a multifunction, from X to Y is a function that assigns
to each element of X a subset of Y . Following [6] the term map is reserved
for a set-valued map. If F is a map from X to Y , then its graph is the set
{(x, y) ∈ X × Y : y ∈ F (x)}. In our paper, we will identify maps with their
graphs.

A map F : X → Y is upper semicontinuous at a point x ∈ X if for every open
set V containing F (x), there exists an open set U such that x ∈ U and

F (U) =
⋃
{F (u) : u ∈ U} ⊂ V.

F is upper semicontinuous if it is upper semicontinuous at each point of X.
Following Christensen [4] we say, that a map F is usco if it is upper semicontinuous
and takes nonempty compact values. Finally, a map F from a topological space
X to a topological space Y is said to be minimal usco if it is a minimal element
in the family of all usco maps (with the domain X and the range Y ); that is, if
it is usco and does not contain properly any other usco map from X into Y .

Let (Y, d) be a metric space. The open d-ball with center z0 ∈ Y and radius
ε > 0 will be denoted by Sε(z0) and the ε-parallel body

⋃
a∈A Sε(a) for a subset

A of Y will be denoted by Sε(A).
Denote by CL(Y ) the space of all nonempty closed subsets of Y and by K(Y )
the space of all nonempty compact subsets of Y .

If A ∈ CL(Y ), the distance functional d(., A) : Y 7→ [0,∞) is described by the
familiar formula

d(z, A) = inf{d(z, a) : a ∈ A}.
Let A and B be nonempty subsets of (Y, d). The excess of A over B with

respect to d is defined by the formula

ed(A,B) = sup{d(a,B) : a ∈ A}.
The Hausdorff metric (extended-valued) Hd on CL(Y ) [Be] is defined by

Hd(A,B) = max{ed(A,B), ed(B,A)}.
We will often use the following equality on CL(Y ):

Hd(A,B) = inf{ε > 0 : A ⊂ Sε(B) and B ⊂ Sε(A)}.
The topology generated by Hd is called the Hausdorff metric topology.

Let X be a topological space and (Y, d) be a metric space. Following [9] we
will define the topology τp of pointwise convergence on CL(Y )X . The topology of
pointwise convergence τp on CL(Y )X is induced by the uniformity Up of pointwise
convergence which has a base consisting of sets of the form
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COMPATIBLE METRICS AND UNIFORM CONVERGENCES ON FUNCTIONAL SPACES 3

W (A, ε) = {(Φ,Ψ) : ∀ x ∈ A Hd(Φ(x),Ψ(x)) < ε},
where A is a finite set in X and ε > 0.

We will define the topology of uniform convergence on compact sets τUC on
CL(Y )X [9]. This topology is induced by the uniformity UUC which has a base
consisting of sets of the form

W (K, ε) = {(Φ,Ψ) : ∀ x ∈ K Hd(Φ(x),Ψ(x)) < ε},
where K ∈ K(X) and ε > 0. The general τUC-basic neighborhood of Φ ∈
CL(Y )X will be denoted by W (Φ, K, ε), i.e. W (Φ, K, ε) = W (K, ε)[Φ] = {Ψ :
Hd(Φ(x),Ψ(x)) < ε for every x ∈ K}.

Finally, we will define the topology of uniform convergence τU on CL(Y )X [9].
This topology is induced by the uniformity UU which has a base consisting of sets
of the form

W (ε) = {(Φ,Ψ) : ∀ x ∈ X Hd(Φ(x),Ψ(x)) < ε},
where ε > 0.

Some topological properties of the space (U(X, Y ), τUC) can be found in [17].
Let X be hemicompact and (Y, d) be a metric space. Let {Kn : n ∈ Z+} be

a countable cofinal subfamily in K(X) with respect to the inclusion. It is easy
to verify that the countable family {W (Km, 1/n) : m,n ∈ N} is a base of the
uniformity UUC [17]. Thus the uniformity UUC is metrizable [22]. We will define
a compatible metric ρ on U(X, Y ).

For every K ∈ K(X) let pK be the pseudometric on U(X, Y ) defined by

pK(F,G) = sup{Hd(F (x), G(x)) : x ∈ K}.

Notice that for every F ∈ U(X, Y ) and every K ∈ K(X) the set F (K) is
compact [1].

Then for every K ∈ K(X) we have the pseudometric hK defined as

hK(F,G) = min{1, pk(F,G)}.

We define a function ρ : U(X, Y )× U(X, Y )→ R as follows

ρ(F,G) =
∞∑
n=1

1

2n
hKn(F,G).

It is easy to see that ρ is a metric on U(X, Y ) and uniformity UUC is generated
by ρ.
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4 Ľ. HOLÁ

3. When two compatible metrics generate the same topologies of
uniform convergences

If (Y, d) is a metric space, then the Vietoris topology and the Hausdorff met-
ric topology generated by Hd coincide on K(Y ) [24]. Thus if d and e are two
compatible metrics on Y , then the topology generated by Hd and the topology
generated by He on K(Y ) are the same.

LetX be a topological space and Y be metrizable. If d is a compatible metric on
Y denote by τ dp , τ dUC and τ dU the topology of pointwise convergence, the topology
of uniform convergence on compacta and the topology of uniform convergence on
CL(Y )X generated by the Hausdorff metric Hd.

We also denote the open d-ball with center z0 ∈ Y and radius ε > 0 by Sdε (z0),
the ε-parallel body

⋃
a∈A S

d
ε (a) for a subset A of Y will be denoted by Sdε (A) and

W d(Φ, K, ε) = {Ψ : Hd(Φ(x),Ψ(x)) < ε for every x ∈ K}.

The following result is obvious.

Proposition 3.1. Let X be a topological space and d and e be two compatible
metrics on Y . Then the topologies τ dp and τ ep on the space K(Y )X are the same,
so also on U(X, Y ).

Theorem 3.2. Let X be a Hausdorff topological space and d and e be two com-
patible metrics on Y . Then the topologies τ dUC and τ eUC on the space U(X, Y ) of
usco maps from X to Y are the same.

Proof. Let {Fσ : σ ∈ Σ} converge to F in (U(X, Y ), τ dUC) and suppose that it fails
to converge to F in (U(X, Y ), τ eUC). There is K ∈ K(X) and ε > 0 such that

for every σ there is η > σ with Fη /∈ W e(F,K, ε).

Without loss of generality we can suppose that there is a net {xa : a ∈ A} in K
and a subnet {Fa : a ∈ A} of the net {Fσ : σ ∈ Σ} such that He(Fa(xa), F (xa)) ≥
ε.

We have two possibilities: either i) F (xλ) is not contained in Seε (Fλ(xλ) for
λ ∈ Λ, where Λ is a cofinal family in A or ii) Fi(xi) is not contained in Seε (F (xi)
for i ∈ I, where I is a cofinal family in A.

Consider i). Without loss of generality we can suppose that Λ = A. For
every a ∈ A there is ya ∈ F (xa) \ Seε (Fa(xa)). Let x be a cluster point of
{xa : a ∈ A}. There is a cluster point y of {ya : a ∈ A}. There is η > 0 such that
Sdη(y) ⊂ Seε/2(y). There is a0 ∈ A such that

Fa ∈ W d(F,K, η/2) for every a ≥ a0.

Let a ≥ a0 be such that ya ∈ Sdη/2(y). Then ya ∈ F (xa) ⊂ Sdη/2(Fa(xa)). There

is za ∈ Fa(xa) such that d(ya, za) < η/2. Thus d(y, za) < η. Then e(y, za) < ε/2.
Thus e(ya, za) < ε, a contradiction.
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COMPATIBLE METRICS AND UNIFORM CONVERGENCES ON FUNCTIONAL SPACES 5

Consider ii). Without loss of generality we can suppose that I = A. For every
a ∈ A there is ya ∈ Fa(xa) \ Seε (F (xa)). Let x be a cluster point of {xa : a ∈ A}.
Suppose first that there is a cluster point y of the net {ya : a ∈ A}. There is
η > 0 such that Sdη(y) ⊂ Seε/2(y). There is a0 ∈ A such that

Fa ∈ W d(F,K, η/2) for every a ≥ a0.

Let a ≥ a0 be such that ya ∈ Sdη/2(y). Then ya ∈ Fa(xa) ⊂ Sdη/2(F (xa)). There

is za ∈ F (xa) such that d(ya, za) < η/2. Thus d(y, za) < η. Then e(y, za) < ε/2.
Thus e(ya, za) < ε, a contradiction.

Suppose now there is no cluster point of the net {ya : a ∈ A}. Since F (x) is
compact there is η > 0 and a0 ∈ A such that ya /∈ Sdη(F (x)) for every a ≥ a0.
The upper semicontinuity of F at x implies that there is an open neighbourhood
U of x such that F (z) ⊂ Sdη/2(F (x)) for every z ∈ U . There is a1 ∈ A such that
a1 ≥ a0 and

Fa ∈ W d(F,K, η/2) for every a ≥ a1.

Let a ≥ a1 be such that xa ∈ U . Then ya ∈ Fa(xa) ⊂ Sdη/2(F (xa)) ⊂ Sdη(F (x)),
a contradiction.

�

Concerning the topology of uniform convergence, Example 1.2.7 in [23] presents
two compatible metrics ρ and σ on R such that τ ρU 6= τσU on C(R,R), the space
of continuous functions from R to R. Of course the metrics ρ and σ in Example
1.2.7. in [23] are not uniformly equivalent.

Two metrics d and e on Y are called uniformly equivalent iff for every ε > 0
there are positive numbers α1 = α1(ε) and α2 = α2(ε) such that

d(x, y) < α1 ⇒ e(x, y) < ε and e(x, y) < α2 ⇒ d(x, y) < ε.

The following proposition is obvious.

Proposition 3.3. Let X be a topological space and d and e be two compatible
metrics on Y . If the identity mapping idY : (Y, d) → (Y, e) on Y is uniformly
continuous, then the topology τ eU is weaker than τ dU on Y X , thus also on C(X, Y ).

Corollary 3.4. Let X be a topological space d and e be two uniformly equivalent
metrics on Y . Then τ dU = τ eU on Y X , thus also on C(X, Y ).

16 Jan 2023 01:23:41 PST
230116-Hola Version 1 - Submitted to Rocky Mountain J. Math.



6 Ľ. HOLÁ

Remark 3.5. Let d be the Euclidean metric on R. As was mentioned above,
Example 1.2.7 in [23] presents two compatible metrics ρ and σ on R such that
τ ρU 6= τσU on C(R,R). In the Example 1.2.7 in [23] the metric ρ is uniformly
equivalent to d and the identity mapping idR : (R, σ) → (R, d) is not uniformly
continuous. In the following Example we present a metric e on R compatible
with d and such that the identity mapping idR : (R, d)→ (R, e) is not uniformly
continuous and τ dU 6= τ eU on C(R,R).

Example 3.6. Let d be the Euclidean metric on R. Define a continuous function
f : R→ R as follows: f(x) = 0 for x < 2 and on every interval [n, n+ 1], n ≥ 2,
f is the piecewise linear function whose graph connects the following points in
the succession:

(n, 0), (n+ 1/n), 1) and (n+ 1, 0).

Define the metric e : R × R → R as follows: e(x, y) = d(x, y) + |f(x) − f(y)|.
Of course, the metrics d and e are compatible and idR : (R, d) → (R, e) is not
uniformly continuous, since d(n, n+ 1/n) = 1/n and e(n, n+ 1/n) > 1 for every
n ≥ 2, n ∈ N. For every n ∈ N define a continuous function gn : R → R as:
gn(x) = x+ 1/n for x ∈ R. It is easy to verify that {gn : n ∈ N} converges to idR
in (C(R,R), τ dU), however it fails to converge to idR in (C(R,R), τ eU).

We have the following characterization.

Proposition 3.7. Let X be a non compact metric space, Y be a locally convex
space metrizable by a translation invariant metric d. Let e be a metric on Y
compatible with d. The following are equivalent:

(1) the identity mapping idY : (Y, d)→ (Y, e) is uniformly continuous;
(2) τ eU is weaker than τ dU on C(X, Y ).

Proof. It is sufficient to prove that (2)⇒ (1). Suppose that idY : (Y, d)→ (Y, e)
fails to be uniformly continuous, where idY is the identity function on Y . We
can find ε > 0 and sequences {yn : n ∈ N} and {vn : n ∈ N} such that for every
n ∈ N, d(yn, vn) < 1/n and e(yn, vn) ≥ ε. Since X is a non compact metric
space, X is not countably compact. Thus there is a countably infinite subset A
of X which has no accumulation point. Enumerate A as {xn : n ∈ N}. Then A
is a closed discrete set in X. We will define a continuous function f : A → Y
as: f(xn) = yn, n ∈ N. Let n ∈ N. Define a function fn : A → Y as follows:
fn(xn) = vn and fn(x) = f(x) otherwise. Of course {fn : n ∈ N} converges to f
in (C(A, Y ), τ dU). Notice that the uniformity generated by d on Y is the standard
uniformity on Y (generated by a local base of absolutely convex neigbourhoods
of the zero element in Y ). By Theorem 7.1 in [25] there is a mapping

Φ : (C(A, Y ), τ dU)→ (C(X, Y ), τ dU)

such that Φ(f) is an extension of f for every f ∈ C(A, Y ) and Φ is an isomor-
phism. Thus the sequence {Φ(fn) : n ∈ N} converges to Φ(f) in (C(X, Y ), τ dU).
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COMPATIBLE METRICS AND UNIFORM CONVERGENCES ON FUNCTIONAL SPACES 7

Since for every n ∈ N e(Φ(fn)(xn),Φ(f)(xn)) = e(vn, yn) ≥ ε, the sequence
{Φ(fn) : n ∈ N} fails to converge to Φ(f) in (C(X, Y ), τ eU), a contradiction.

�

Michael wrote in his paper [25], that the mapping Φ in the proof of Proposition
3.7 was constructed by Dugundji in [7].

Corollary 3.8. Let d be the usual Euclidean metric on R and e be a compatible
metric on R. The following are equivalent:

(1) the identity mapping idR : (R, d)→ (R, e) is uniformly continuous;
(2) τ eU is weaker than τ dU on C(R,R).

We have the following partial answer to a question posed in [23] after Example
1.2.7.

Theorem 3.9. Let X be a zero-dimensional non compact metric space, Y be a
metrizable one and d and e be two compatible metrics on Y . The following are
equivalent:

(1) d and e are uniformly equivalent;
(2) τ dU = τ eU on C(X, Y ).

Proof. It is sufficient to prove that (2)⇒ (1). Suppose that idY : (Y, d)→ (Y, e)
fails to be uniformly continuous, where idY is the identity function on Y . We
can find ε > 0 and sequences {yn : n ∈ N} and {vn : n ∈ N} such that for every
n ∈ N, d(yn, vn) < 1/n and e(yn, vn) ≥ ε. Since X is a non compact metric
space, X is not countably compact. Thus there is a countably infinite subset A
of X which has no accumulation point. Enumerate A as {xn : n ∈ N}. Then
A is a closed discrete set in X. Let ρ be a compatible metric on X. There is a
sequence {εn : n ∈ N} such that 0 < εn < 1/n for every n ∈ N and the family
{Sεn(xn) : n ∈ N} is pairwise disjoint, where Sεn(xn) = {x ∈ X : ρ(xn, x) < εn}
for every n ∈ N. Since X is zero-dimensional, it has a base consisting of clopen
sets. Thus for every n ∈ N there is an open and closed set O(xn) such that
xn ∈ O(xn) and O(xn) ⊂ Sεn(xn). The set L =

⋃
{O(xn) : n ∈ N} is also

open and closed. Without loss of generality we can suppose that the set X \L is
nonempty. We will define a continuous function f : X → Y as follows: f(x) = yn,
if x ∈ O(xn), n ∈ N and f(x) = y1 if x ∈ X \ L. Let n ∈ N. Define a continuous
function fn : X → Y as follows: fn(x) = vn if x ∈ O(xn) and fn(x) = f(x)
otherwise. Of course the sequence {fn : n ∈ N} converges to f in (C(X, Y ), τ dU)
and fails to converge to f in (C(X, Y ), τ eU).

�

If d and e are uniformly equivalent metrics on Y , then for every ε > 0 there
are positive numbers α1 = α1(ε) and α2 = α2(ε) such that for every nonempty
set B in Y

{y ∈ Y : d(y,B) < α1} ⊂ {y ∈ Y : e(y,B) < ε}
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and

{y ∈ Y : e(y,B) < α2} ⊂ {y ∈ Y : d(y,B) < ε}.

Thus uniform equivalence of d and e yields uniform equivalence of Hd and He

on CL(Y ) (see the proof of Theorem 3.3.2 in [1]).

Thus we have the following proposition.

Proposition 3.10. Let X be a topological space, d and e be two uniformly equiv-
alent metrics on Y . Then τ dU = τ eU on CL(Y )X and thus on K(Y )X and U(X, Y ).

The following characterization holds.

Proposition 3.11. Let X be an unbounded metric space, Y be a metrizable one
and d and e be two compatible metrics on Y . The following are equivalent:

(1) d and e are uniformly equivalent;
(2) τ dU = τ eU on U(X, Y ).

Proof. It is sufficient to prove that (2) ⇒ (1). Suppose that d and e are not
uniformly equivalent. Let us say that idY : (Y, d) → (Y, e) fails to be uniformly
continuous, where idY is the identity function on Y . We can find ε > 0 and se-
quences {yn : n ∈ N} and {vn : n ∈ N} such that for every n ∈ N, d(yn, vn) < 1/n
and e(yn, vn) ≥ ε. By the Efremovič lemma [1] and by passing to a subsequence
we can suppose that

inf{e(yn, vm) : n,m ∈ N} ≥ ε/4.

Let x0 be any point in X. There is a sequence of positive integers {αn : n ∈ N}
such that αn < αn+1, n ∈ N, αn →∞ and

Sαn(x0) \ Sαn−1(x0) 6= ∅ for every n ∈ N, n ≥ 2.

We will define an usco map F : X → Y as follows: F (x) = {y1} if x ∈ Sα1(x0)
and F (x) = {y1, ...yn} for x ∈ Sαn(x0) \ Sαn−1(x0), n ≥ 2. Let n ∈ N. We will
define an usco map Fn : X → Y . Put F1 = F and for n ≥ 2 define Fn as follows:
Fn(x) = F (x) if x ∈ Sαn(x0),

Fn(x) = {y1, ..., yn, vn+1} if x ∈ Sαn+1(x0) \ Sαn(x0) and

Fn(x) = {y1, ..., yn, vn+1, ...vk} if x ∈ Sαk
(x0) \ Sαk−1

(x0), k > n+ 1.

It is easy to verify that the sequence {Fn : n ∈ N} converges to F in (U(X, Y ), τ dU).
For every n ∈ N, n ≥ 2 and x ∈ Sαn+1(x0) \ Sαn(x0) we have

He(Fn(x), F (x)) = He({y1, ..., yn, vn+1}, {y1, ..., yn, yn+1}) ≥ ε/4.

Thus the sequence {Fn : n ∈ N} fails to converge to F in (U(X, Y ), τ eU), a
contradiction.

�
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COMPATIBLE METRICS AND UNIFORM CONVERGENCES ON FUNCTIONAL SPACES 9

Passing to set-valued maps with nonempty closed values we have the following
result.

Proposition 3.12. Let X be a topological space and Y be a metrizable space.
Let d and e be compatible metrics. The following are equivalent:

(1) d and e are uniformly equivalent;
(2) τ dU = τ eU on CL(Y )X ;
(3) τ dUC = τ eUC on CL(Y )X ;
(4) τ dp = τ ep on CL(Y )X ;
(5) τHd

= τHe on CL(Y ), where τHd
(τHe) is the topology generated by Hd (He).

Proof. (5)⇒ (1) is proved in Theorem 3.3.2 in [1].
�

4. Functional characterizations of k-spaces and locally compact
spaces

A Hausdorff topological space X is a k-space if a set A is closed in X if and
only if A∩K is closed in X for every compact K in X. It is known that if X is a
k-space and (Y, d) is a metric space, then C(X, Y ) is a closed subset of (Y X , τUC).
It was mention in [17] (without a complete proof) that if X is a k-space and (Y, d)
is a metric space, then U(X, Y ) is a closed subset of (K(Y )X , τUC). For a reader’s
convenience we present the proof of it.

Proposition 4.1. Let X be a k-space and (Y, d) be a metric space. Then U(X, Y )
is a closed subset of (K(Y )X , τUC).

Proof. Let G be in the closure of U(X, Y ) in (K(Y )X , τUC). We prove that
G ∈ U(X, Y ). By [1] G ∈ U(X, Y ) if, and only if, for every closed set B in Y ,
the set G−(B) = {x ∈ X : G(x)∩B 6= ∅} is closed in X. Since X is a k-space, it
is sufficient to prove that G−(B) ∩ C is a closed set in X for every compact set
C in X. Suppose that there are a closed set B in Y and a compact set C in X
such that G−(B) ∩ C is not closed in X. Let

x ∈ G−(B) ∩ C \G−(B); i.e. G(x) ∩B = ∅.

Since G(x) is compact, there is ε > 0 such that Sε(B) ∩ G(x) = ∅. Put

D = Sε/4(B). Consider W (G,C, ε/4). Let H ∈ U(X, Y ) ∩W (G,C, ε/4). Thus

H(x) ⊂ Sε/4(G(x)) ⊂ Dc and x ∈ H−(D) ∩ C,

a contradiction, since H ∈ U(X, Y ).
�

We can characterize k-spaces as follows.
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Proposition 4.2. Let X be a Hausdorff topological space and (Y, d) be a metric
space. The following are equivalent:

(1) X is a k-space;
(2) U(X, Y ) is a closed subset of (K(Y )X , τUC).

Proof. (1) ⇒ (2) is proved in Proposition 4.1. To prove (2) ⇒ (1) suppose that
X is not a k-space. Let A be a non-closed set in X, such that A ∩K is a closed
set in X for every K ∈ K(X). Let x0 ∈ A \ A and let y1, y2 be two different
points in Y . Put K = {K ∈ K(X) : K ∩ A 6= ∅} and for every K ∈ K define
a set-valued map FK : X → Y as follows: FK(x) = {y1, y2} if x ∈ K ∩ A and
FK(x) = {y1} otherwise. It is easy to verify that FK is usco for every K ∈ K.
Define a set-valued map F : X → Y as F (x) = {y1, y2} if x ∈ A and F (x) = {y1}
otherwise. F is not upper semicontinuous at x0. K is a directed set with respect
to set inclusion; C ≤ K if and only if C ⊆ K. The net {FK : K ∈ K)} converges
to F in (K(Y )X , τUC), a contradiction.

�

Denote by MU(X, Y ) the space of minimal usco maps from a topological space
X into a metric space (Y, d). Of course, the following inclusions hold

C(X, Y ) ⊂MU(X, Y ) ⊂ U(X, Y ).

It is interesting to mention that if X is a k-space and (Y, d) a metric one, then
MU(X, Y ) need not be a closed subset of (K(Y )X , τUC).

Proposition 4.3. ([11] Let X be a locally compact space and (Y, d) be a metric
space. Then MU(X, Y ) is a closed subset of (K(Y )X , τUC).

In the class of metric spaces we can even characterize local compactness via
Proposition 4.3. We will need the following lemmas.

Lemma 4.4. ([13], Proposition 1.3.5) Let X and Y be topological spaces and
F : X → Y be usco. Then F is minimal usco if, and only if, for each pair of
open subsets U of X and W of Y with F (U) ∩W 6= ∅ there exists a nonempty
open set V ⊂ U such that F (V ) ⊂ W .

Lemma 4.5. Let X be a topological space, Y be a compact topological space and
D be a dense set in X. If F : D → Y is a minimal usco map, then F : X → Y
is a minimal usco map.

Proof. By Corollary 1.1.15 from [13] F is usco. To prove that F is minimal usco
we use Lemma 4.4. �

Proposition 4.6. Let (X, ρ) and (Y, d) be metric spaces. The following are
equivalent:

(1) X is locally compact;
(2) MU(X, Y ) is a closed subset of (K(Y )X , τUC).
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Proof. It is sufficient to prove (2) ⇒ (1). We will use an idea from [13]. Let
x0 ∈ X fail to have a local base of compact sets. Let δ1 = 1. There is a sequence
{x1i : i ∈ N} of different points of {z ∈ X : 0 < ρ(x0, z) < δ1} with no cluster
point in X. There exists ε1 > 0 such that ε1 < ρ(x0, x

1
i ) for every i ∈ N. Next,

let δ2 = min{1
2
, ε1

2
} and let {x2i : i ∈ N} be a sequence of different points of

{z ∈ X : 0 < ρ(x0, z) < δ2} with no cluster point in X. Chose ε2 > 0 such
that ε2 < ρ(x0, x

2
i ) for every i ∈ N and set δ3 = min{1

3
, ε2

2
}. Continuing we can

produce for each n ∈ N a sequence {xni : i ∈ N} of different points with no cluster
point in X and sequences of positive real numbers {δn : n ∈ N}, {εn : n ∈ N},
such that δn = min{ 1

n
, εn−1

2
}, 0 < εn < δn and {xni : i ∈ N} ⊂ {z ∈ X : εn <

ρ(x0, z) < δn}.
Let Sεni (xni ) be an open ball with the center xni and radius εni < 1/i for every

i ∈ N and n ∈ N such that the family {Sεni (xni ) : i ∈ N} is parwise disjoint and

Sεni (xni ) ⊂ {z ∈ X : εn < ρ(x0, z) < δn}. Let NN be partially ordered by the
product order; i.e., h ≤ g, if h(n) ≤ g(n) for every n ∈ N.

Let a, b be two different points in Y . For every g ∈ NN define a dense set
Dg in X and a minimal usco map Fg : Dg → {a, b} as follows. Put Dg =⋃
n∈N Sεng(n)

(xng(n)) ∪ (X \
⋃
n∈N Sεng(n)

(xng(n))) and

Fg(x) =

{
{a}, x ∈ X \

⋃
n∈N Sεng(n)

(xng(n));

{b}, x ∈
⋃
n∈N Sεng(n)

(xng(n)).

Evidently Fg : Dg → {a, b} is a minimal usco map. By Lemma 4.5 Fg is a
minimal usco map from X to {a, b}. Thus Fg is also a minimal usco map from
X to Y . Now define a map F as follows:

F (x) =

{
{a, b}, x = x0;
{a}, otherwise.

Then F /∈ MU(X, Y ) and the net {Fg : g ∈ NN} converges in (K(Y )X , τUC)
to F . Clearly, Fg(x0) = {a, b} for every g ∈ NN. For every g ∈ NN we have⋃
n∈N Sεng(n)

(xng(n)) = (
⋃
n∈N Sεng(n)

(xng(n))) ∪ {x0}.
Let K be a compact set in (X, ρ) and let 0 < ε < 1. Then for every n ∈ N,

there are only finitely many i such that Sεni (xni ) ∩K 6= ∅. For every n ∈ N, let

kn ∈ N be such that Sεnk (xnk) ∩ K = ∅ for every k ≥ kn. Define g : N → N as

follows: g(n) = kn. Then for every h ≥ g we have Hd(Fh(x), F (x)) = 0 for every

x ∈ K. (Notice that if x ∈ K and x 6= x0, then x ∈ X \
⋃
n∈N Sεng(n)

(xng(n)).) Thus

MU(X, Y ) is not a closed subspace of (K(Y )X , τUC), a contradiction.
�

In the following propositions we will use the well-known fact that if (Y, d) is a
complete metric space, then (K(Y ), Hd) is also a complete metric space [1].
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Proposition 4.7. Let X be a k-space and (Y, d) be a complete metric space.
Then the uniform space (U(X, Y ),UUC) is complete.

Proof. By Theorem 7.10 in [22] (K(Y )X ,UUC) is complete. By Proposition 4.1
we are done.

�

The proof of the following Proposition is similar.

Proposition 4.8. Let X be a locally compact space and (Y, d) be a complete
metric space. Then the uniform space (MU(X, Y ),UUC) is complete.
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[11] Ľ. Holá, D. Holý, Minimal usco and minimal cusco maps and compactness, J. Math.

Anal. Appl. 439 (2016), 737–744.
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[18] Ľ. Holá, R.A. McCoy, Cardinal invariants of the topology of uniform convergence on

compact sets on the space of minimal usco maps, Rocky Mountain Math. J. 37 (2007),
229–246.
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