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Abstract. In this paper with the help of a newly defined contraction operator, a fixed

point theorem is established and studied the solvability of fractional hybrid differential

equation in a Banach space. Also, with the help of proper examples, we investigate our

findings.
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1. Introduction

Fractional differential equations play a significant role to study different types of real

life phenomenon. Also, fractional integral equations are extremely useful in solving differ-

ent real-world situations. Because of the relevance of integral equations of fractional order,

it is necessary to understand such equations. The idea of a measure of noncompactness

(MNC) plays a relevant role in fixed point theory. Kuratowski [23] pioneered the concept

of MNC in 1930. In the year 1955, G. Darbo [10] developed a result demonstrating the

presence of a fixed point, that is, called condensing operators, utilizing the idea of the

MNC.
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Fixed point theory and the MNC have several applications in the analysis of various

integral equations and differential equations that arise in many real-world scenarios, for

example readers can see [7, 8, 12, 17, 18, 19, 20, 21, 29, 30] and references therein.

The hybrid differential equations is a quadratic perturbations of nonlinear differential

equations. Many researchers have been works on the theory of hybrid differential equa-

tions. The theory of fractional hybrid differential equations (FHDE) was investigated by

Zhao et al. [33]. Dhage and Lakshmikantham [16] discussed some basic results on hybrid

differential equations of first order. Lu et al. [26] and Dhage and Jadhav [15] obtained

basic results of hybrid differential equations with linear perturbations of second type. Re-

cently, Li et al. [24] solved boundary value problems for Hadamard sequential fractional

hybrid differential inclusions and Das et al. [9] investigated existence of solution of an

infinite system of FHDE in a tempered sequence space. Recently, Devi and Borah [14],

discussed the existence of solution for a nonlinear hybrid functional fractional differential

equation. For details on FHDE and its applications, one can see [1, 3, 13, 25, 28, 31]

and references therein.

In the literature an ample amount of work may be seen on the topic of fractional

hybrid differential equations connecting MNC, for convenient one can see [11, 27, 32].

So based on these articles, we are motivated to discuss the existence of solution of hybrid

differential equations using MNC.
The goal of this article is to obtain the generalizations of Darbo’s fixed point theorem

using alternating distance function and apply it to test the solvability of FHDE in Banach

space.

Let D be a real Banach space with the norm ‖ . ‖ .Assume B(θ, r) = {t ∈ D :‖ t− θ ‖≤ r} .
If W( 6= ∅) ⊆ D. Therefore, W̄ and ConvW indicate the closure and convex closure of W .

• R = Real numbers = (−∞,∞),

• R+ = [0,∞) ,

• N = Natural numbers,

• MD = Collection of all nonempty and bounded subsets of D,
• ND = Collection of all relatively compact sets.

The following definition of a MNC is as shown in [5].

Definition 1.1. A mapping H : MD → R+ is called a MNC in D, if it satisfies the

following axioms:

(i) for all W ∈MD, we get H(W) = 0 implies W is relatively compact.

(ii) ker H = {W ∈MD : H (W) = 0} 6= ∅ and ker H ⊂ ND.

(iii) W ⊆W1 =⇒ H (W) ≤ H (W1) .
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(iv) H
(
W̄
)

= H (W) .

(v) H (ConvW) = H (W) .

(vi) H (AW + (1− A)W1) ≤ AH (W) + (1− A)H (W1) for A ∈ [0, 1] .

(vii) if Wl ∈ MD, Wl = W̄l, Wl+1 ⊂ Wl for l = 1, 2, 3, 4, ... and lim
l→∞
H (Wl) = 0, so⋂∞

l=1Wl 6= ∅.

Now, the family kerH is called the kernel of measure H. So, W∞ =
⋂∞
l=1Wl ∈ kerH.

Since H(W∞) ≤ H(Wl) for any l, we conclude H(W∞) = 0.

The following fundamental theorems are useful for our discussion.

Theorem 1.2. [2, Schauder] Let W be a nonempty, bounded, closed and convex subset

(NBCCS) of a Banach space D. Then = : W → W possesses at least one fixed point,

provided that = is a compact and continuous mapping.

Theorem 1.3. [10, Darbo] Let O be a NBCCS of a Banach space D and let = : O→ O.

Assume that a constant B ∈ [0, 1) such that

H(=C) ≤ BH(C), C ⊆ O.

Then, there is a fixed point in O for = provided that = is a continuous mapping.

For an extension of Darbo’s theorem, we consider the following functions.

Definition 1.4. [7] Suppose Υ be a collection of functions S : R+×R+ → R+ satisfying:

(1) max {E,F} ≤ S(E,F) for E,F ≥ 0.

(2) S is continuous and nondecreasing.

(3) S(E1 + E2,F1 + F2) ≤ S(E1,F1) + S(E2,F2).

For example, S(E,F) = E + F.

Definition 1.5. [4] Let f : R+ × R→ R be the continuous mapping of the C-class if the

following axioms are holds:

(1) f(g, k) ≤ g,

(2) f(g, k) = g implies that either g = 0 or k = 0.

Also, f(0, 0) = 0. Note that the C-class mapping is symbolized by C.

As an illustration:

(a) f(g, k) = g − k,
(b) f(g, k) = ng, 0 < n < 1.

Definition 1.6. [22] A mapping ω : R→ R is an alternating distance mapping, if
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(1) ω(s) = 0 ⇔ s = 0.

(2) ω is continuous and increasing.

We use Ψ to denote this class of functions.

For example, ω(s) = (1− a)s, 0 ≤ a < 1.

Definition 1.7. [4] An continuous function υ : R → R is an ultra altering distance

mapping if υ(0) ≥ 0 and υ(s) > 0 for s > 0.

We use Φ to denote this class of functions.

Definition 1.8. Let h : R → R be a continuous mapping of A−class. If h(s) > s for

s ∈ (0,∞). Also h(0) = 0.

For example, h(s) = m̄s, m̄ > 1.

2. Main Theorems

Theorem 2.1. Let Ψ be a NBCCS of a Banach space D. If = : Ψ→ Ψ is a continuous

mapping such that

h [ω [S (H (=C) , γ (H (=C)))]] ≤ f [ω {S (H (C) , γ (H (C)))} , υ {S (L (C) , γ (L (C)))}] ,
(2.1)

where C ⊂ Ψ and H is an arbitrary MNC and S ∈ Υ, υ ∈ Φ, ω ∈ Ψ, f ∈ C, h ∈ A.
Also, γ : R+ → R+ is a non-decreasing and continuous mapping. Then there exists at

least one fixed point for = in Ψ.

Proof. Let us consider a sequence {Ψp}∞p=1 with Ψ1 = Ψ and Ψp+1 = Conv(=Ψp) for

p ∈ N. Also =Ψ1 = =Ψ ⊆ Ψ = Ψ1, Ψ2 = Conv(=Ψ1) ⊆ Ψ = Ψ1. By proceeding in the

same manner gives Ψ1 ⊇ Ψ2 ⊇ Ψ3 ⊇ . . . ⊇ Ψp ⊇ Ψp+1 ⊇ . . . .

If H(Ψp0) = 0 for some p0 ∈ N. So Ψp0 is a compact set. In this instance, = has a

fixed point in Ψ, according to Schauder’s Theorem.

Again, if H(Ψp) > 0 for all p ∈ N.
Now, for all p ∈ N,

h [ω [S (H (Ψp+1) , γ (H (Ψp+1)))]]

= h [ω [S (H (Conv=Ψp) , γ (H (Conv=Ψp)))]]

= h [ω [S (H (=Ψp) , γ (H (=Ψp)))]]

≤ f [ω {S (H (Ψp) , γ (H (Ψp)))} , υ {S (H (Ψp) , γ (H (Ψp)))}]

≤ ω {S (H (Ψp) , γ (H (Ψp)))} .
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Also,

h {ω {S (H (Ψp+1) , γ (H (Ψp+1)))}} ≥ ω {S (H (Ψp+1) , γ (H (Ψp+1)))} .

Hence

ω {S (H (Ψp+1) , γ (H (Ψp+1)))} ≤ ω {S (H (Ψp) , γ (H (Ψp)))} .

Clearly {ω {S (H (Ψp) , γ (H (Ψp)))}}∞p=1 is a non-negative and non-increasing sequence,

hence there exists σ ≥ 0 such that

lim
p→∞

ω {S (H (Ψp) , γ (H (Ψp)))} = σ.

If possible, let σ > 0. As p→∞, we get

h(σ) ≤ σ

which is a contradiction.

Thus, σ = 0.

i.e.,

ω

{
lim
p→∞

S (H (Ψp) , γ (H (Ψp)))

}
= 0,

i.e.,

lim
p→∞

S (H (Ψp) , γ (H (Ψp))) = 0

which gives

lim
p→∞
H (Ψp) = 0.

Since Ψp ⊇ Ψp+1. By Definition 1.1, we obtain Ψ∞ =
⋂∞
p=1 Up is non-empty, closed

and convex subset of U and U∞ is = invariant.

We conclude that = has a fixed point in Ψ based on Theorem 1.2. This completes the

proof of the theorem. �

Theorem 2.2. Let Ψ be a NBCCS of a Banach space D. If = : Ψ→ Ψ is a continuous

mapping such that

h [ω [H (=C) + γ (H (=C))]] ≤ f [ω {H (C) + γ (H (C))} , υ {µ (C) + γ (µ (C))}] , (2.2)

where C ⊂ Ψ and H is an arbitrary MNC, υ ∈ Φ, ω ∈ Ψ, f ∈ C, h ∈ A. Also,

γ : R+ → R+ is a non-decreasing with continuous function. Then there exists at least one

fixed point for = in Ψ.

Proof. Taking the result leads to S(v, w) = v + w in Theorem 2.1. �
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Theorem 2.3. Let Ψ be a NBCCS of a Banach space D. If = : Ψ→ Ψ is a continuous

mapping such that

h [ω [H (=C)]] ≤ f [ω {H (C)} , υ {H (C)}] , (2.3)

where C ⊂ Ψ and H is an arbitrary MNC, υ ∈ Φ, ω ∈ Ψ, f ∈ C, h ∈ A. Then there

exists at least one fixed point for = in Ψ.

Proof. Taking the result leads to γ(t) = 0 in Theorem 2.2. �

Theorem 2.4. Let Ψ be a NBCCS of a Banach space D. If = : Ψ→ Ψ is a continuous

mapping such that

h [ω [S (H (=C) , γ (H (=C)))]] ≤ ω [S (H (=C) , γ (H (=C)))] , (2.4)

where C ⊂ Ψ and H is an arbitraryMNC and S ∈ Υ, ω ∈ Ψ, h ∈ A. Also, γ : R+ → R+

is non-decreasing with continuous function. Then there exists at least one fixed point for

= in Ψ.

Proof. Using f(g, h) ≤ g in Theorem 2.1. �

Corollary 2.5. Taking S(v, w) = v+w, γ(s) = 0, ω(s) = s, f(g, k) = ng and h(s) = m̄s,

where 0 < m < 1, m̄ > 1 in Theorem 2.1, one can obtain

H (=C) ≤ λH (C) , λ =
m

m̄
∈ (0, 1).

It can be observed that our fixed point theorem is a generalization of Darbo’s fixed point

theorem.

Remark 2.6. We have extended Darbo’s fixed point theorem using a new contraction

operator that includes a MNC in order to investigate operators whose properties may

be described as intermediate between those of contraction and compact mapping. The

significant advantage of this generalization based on a MNC is that the compactness of

the operator’s domain, which is crucial to Schauder’s theorem, has been extended.

Definition 2.7. [6] An element (v, w) ∈ W × W is called a coupled fixed point of the

function J :W ×W →W if J(v, w) = v and J(w, v) = w.

Theorem 2.8. [5] Assume that ρ1, ρ2, . . . , ρn be theMNC in D1,D2, . . . ,Dn, respectively.

Moreover, let the mapping W : Rn
+ → R+ be convex with Υ (v1, v2, . . . , vn) = 0 if and only

if vk = 0 for k = 1, 2, 3, . . . , n, then ρ(W) = Υ (ρ1(W1), ρ2(W2), . . . , ρn(Wn)) define a

MNC in D1 ×D2 × . . .×Dn, where Wk denotes the natural projection of W into Dk for

k = 1, 2, 3, . . . , n.
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Example 2.9. [5] Let ρ be a MNC on D. Define Υ(q, y) = q + y, q, y ∈ R+. Then Υ

has all the properties mentioned in the Theorem 2.8. Thus ρcf (W) = ρ(W1) + ρ(W2) is a

MNC in the space D× D, where Wk, k = 1, 2 denote the natural projections of W .

Theorem 2.10. Let Ψ be a NBCCS of a Banach space D. Also R : Ψ × Ψ → Ψ is a

continuous mapping such that

h [ω [S (H (R (=1 ×=2)) , γ (H (R (=1 ×=2))))]]

≤ 1

2
ω [S (H (=1) +H (=2) , γ (H (=1) +H (=2)))]

for any nonempty =1,=2 ⊆ Ψ, where H is an arbitraryMNC and S ∈ Υ, h ∈ A, ω ∈ Ψ.

Also, γ : R+ → R+ is an increasing with continuous mapping. Furthermore, γ(q + y) ≤
γ(q) + γ(y), ω(q + y) ≤ ω(q) + ω(y), h(q + y) ≤ h(q) + h(y). Then R has at least one

coupled fixed point in Ψ×Ψ.

Proof. We observe that Hcf (=) = H(=1) +H(=2) is a MNC on D× D for any bounded

subset = ⊆ D× D, where =1,=2 denote the natural projection of =.
Consider a mapping Rcf : Ψ×Ψ→ Ψ×Ψ by Rcf (q, y) = (R(q, y),R(q, y)) .

It is trivial that Rcf is a continuous. Let = ⊆ Ψ×Ψ and we obtain

h
[
ω
[
S
(
Hcf

(
Rcf (=)

)
, γ
(
Hcf

(
Rcf (=)

)))]]
≤ h

[
ω
[
S
(
Hcf (R (=1 ×=2)×R (=2 ×=1)) , γ

(
Hcf (R (=1 ×=2)×R (=1 ×=2))

))]]
= h [ω [S (H (R (=1 ×=2)) +H (R (=2 ×=1)) , γ (H (R (=1 ×=2)) +H (R (=2 ×=1))))]]

≤ h [ω [S (H (R (=1 ×=2)) +H (R (=2 ×=1)) , γ (H (R (=1 ×=2))) + γ (H (R (=2 ×=1))))]]

≤ h [ω [S (H (R (=1 ×=2)) , γ (H (R (=1 ×=2))))]] + h [ω [S (H (R (=2 ×=1)) , γ (H (R (=2 ×=1))))]]

≤ ω [S (H (=1) +H (=2) , γ (H (=1) +H (=2)))]

= ω
[
S
(
Hcf (=) , γ

(
Hcf (=)

))]
.

By Theorem 2.4, we conclude that Rcf has at least one fixed point in Ψ×Ψ. That is, R
has at least one coupled fixed point. �

3. Solvability fractional hybrid differential equation

Suppose D = C(I) represents the space of continuous real functions on I = [0, T ].

Therefore, equipped with

‖ W ‖= sup {|W(σ)| : σ ∈ I} , W ∈ D.
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Let Z(6= ∅) ⊆ D be bounded. For W ∈ Z with δ > 0, denote by G(W , δ) the modulus of

the continuity of W , i.e.,

G(W , δ) = sup {|W(σ1)−W(σ2)| : σ1, σ2 ∈ I, |σ2 − σ1| ≤ δ} .

In addition, we define

G(Z, δ) = sup {G(W , δ) :W ∈ Z} ; G0(Z) = lim
δ→0

G(Z, δ).

It is widely known that the mapping G0 is aMNC in D, with Θ(W) = 1
2
G0(W) (see [5])

functioning as the Hausdorff MNC.
For any $ ∈ R with 0 < c < 1, the mapping µ ∈ R is a solution of the FHDE [26]

Dc[µ(v)e(v, µ(v))] = $(v), v ∈ [v0, v0 + a] = I and µ(v0) = µ0 (3.1)

iff µ satisfies the hybrid integral equation is

µ(v) = µ0 − e(v0, µ0) + e(v, µ(v)) +
1

Γ(c)

∫ v

v0

(v − l)c−1$(l)dl, (3.2)

where 0 < c < 1.

Let

Qr0 = {µ ∈ D :‖ µ ‖≤ r0} .

Assume that

(A1) e : I × R+ → R be a continuous and there exists a constant D ≥ 0 satisfying

|e(v, µ)− e(v, s)| ≤ D |µ− s| ,

for v ∈ I and µ, s ∈ R.
Also, for all v ∈ I

e(v, 0) = 0.

(A2) $ : I → R be continuous and ‖ $ ‖6 H, H ≥ 0. Also

|µ0 − e(v0, s0)| ≤ X0 (say).

(A3) There exists r0 > 0 such that

X0 +Dr0 +
Hac

Γ(c+ 1)
≤ r0

and

D < 1.

Theorem 3.1. If the assupmtions (A1)-(A3) hold, then the equation (3.1) has a solution

in D = C(I).
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Proof. The operator= : D→ D is defined as follows

(=µ)(v) = µ0 − e(v0, µ0) + e(v, µ(v)) +
1

Γ(c)

∫ v

v0

(v − l)c−1$(l)dl.

Phase (1): We show that the operator = maps Qr0 into Qr0 . Let µ ∈ Qr0 . We now have

|(=µ)(v)|

≤ |µ0 − e(v0, µ0)|+ |e(v, µ(v))|+ 1

Γ(c)

∫ v

v0

(v − l)c−1 |$(l)| dl

≤ X0 + |e(v, µ(v))− e(v, 0)|+ |e(v, 0)|+ H

Γ(c)

∫ v

v0

(v − l)c−1 dl

≤ X0 +D ‖ µ ‖ +
H

Γ(c)

[−(v − l)c

c

]v
v0

≤ X0 +D ‖ µ ‖ +
H

Γ(c+ 1)
(v − v0)c

≤ X0 +D ‖ µ ‖ +
Hac

Γ(c+ 1)
.

Hence ‖ µ ‖≤ r0 gives

‖ = ‖≤ X0 +Dr0 +
Hac

Γ(c+ 1)
≤ r0.

Thus = maps Qr0 to Qr0 .

Phase (2): We will show that = is continuous on Qr0 . Let δ > 0 and µ, s ∈ Qr0 such

that ‖ µ− s ‖< δ and s(v0) = s0. We have

|(=µ) (v)− (=s) (v)|

= |µ(v0)− s(v0)|+ |e(v0, µ(v0))− e(v0, s(v0))|+ |e(v, µ(v))− e(v, s(v))|

≤ |µ(v0)− s(v0)|+D |µ(v0)− s(v0)|+D |µ(v)− s(v)|

< δ +Dδ +Dδ

= (1 + 2D)δ,

i.e., as δ → 0, we obtain |(=µ) (v)− (=s) (v)| → 0.

Therefore, = is continuous on Qr0 .

Phase (3): An estimate of = with respect to G0. Now, assuming Ωµ ⊆ Qr0 . Let δ > 0

be arbitrary and choosing µ ∈ Ωµ and v1, v2 ∈ I such as |v2 − v1| ≤ δ with v2 ≥ v1.
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We have

|(=µ) (v2)− (=µ) (v1)|

≤ |e(v2, µ(v2))− e(v1, µ(v1))|

+
1

Γ(c)
|
∫ v2

v0

(v2 − l)c−1$(l)dl −
∫ v1

v0

(v1 − l)c−1$(l)dl |

≤ |e(v2, µ(v2))− e(v1, µ(v2))|+ |e(v1, µ(v2))− e(v1, µ(v1))|

+
1

Γ(c)
|
∫ v2

v0

(v2 − l)c−1$(l)dl −
∫ v1

v0

(v1 − l)c−1$(l)dl |

≤ γr0(e, δ) +DG(µ, δ) +
1

Γ(c)
|
∫ v2

v0

(v2 − l)c−1$(l)dl −
∫ v1

v0

(v1 − l)c−1$(l)dl |,

where

γr0(e, δ) = sup {|e(v2, µ)− e(v1, µ)| : |v2 − v1| ≤ δ, v1, v2 ∈ I, ‖ µ ‖≤ r0} .

Now,

|
∫ v2

v0

(v2 − l)c−1$(l)dl −
∫ v1

v0

(v1 − l)c−1$(l)dl |

≤|
∫ v2

v0

(v2 − l)c−1$(l)dl −
∫ v1

v0

(v2 − l)c−1$(l)dl |

+ |
∫ v1

v0

(v2 − l)c−1$(l)dl −
∫ v1

v0

(v1 − l)c−1$(l)dl |

≤
∫ v2

v1

(v2 − l)c−1 | $(l) | dl +

∫ v1

v0

{
(v1 − l)c−1 − (v2 − l)c−1} | $(l) | dl

≤ H

∫ v2

v1

(v2 − l)c−1 dl +H

∫ v1

v0

{
(v1 − l)c−1 − (v2 − l)c−1} dl

=
H

c
(v2 − v1)c +

H

c
[(v2 − v1)c + (v1 − v0)c − (v2 − v0)c]

≤ 2Hδc

c
+
H

c
[(v1 − v0)c − (v2 − v0)c].

Therefore

|(=µ)(v2)− (=µ)(v1)|

≤ γr0(e, δ) +DG(µ, δ) +
2Hδc

Γ(c+ 1)
+

H

Γ(c+ 1)
[(v1 − v0)c − (v2 − v0)c].

As δ → 0, v2 → v1 so

|(=µ)(v2)− (=µ)(v1)| ≤ DG0(µ),
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i.e.,

G(=Cµ, δ) ≤ DG0(Cµ).

As δ → 0,

G(=Cµ) ≤ DG0(Cµ).

Thus by Corollary 2.5, = has a fixed point in Qr0 . i.e., the equation (3.2) has a solution

in D. �

Example 3.2. Consider the fractional hybrid differential equation as follows

D
1
2

[
µ(v)− µ(v)

6v

]
= v2, µ(1) = 1 (3.3)

for v ∈ [1, 3] = I.

Solution: Here c = 1
2
, a = 2, v0 = 1, µ(v) = 1 = µ0. Also,

e(v, µ(v)) =
µ(v)

6v
, $(v) = v2, e(v, 0) = 0

and

H = 9.

Therefore

|e(v, µ(v))− e(v, s(v))| ≤ |µ(v)− s(v)|
6

,

and

D =
1

6
< 1.

Also,

| µ0 − e(v0, µ0) |= 5

6
= X0.

Substituting these values in the inequality of assumption (A3), we get

5

6
+
r0

6
+

9(2)
1
2

Γ(3
2
)
≤ r0

=⇒ 5r0

6
≥ 5

6
+

9(2)
1
2

Γ(3
2
)

=⇒ r0 ≥ 1 +
54(2)

1
2

5Γ(3
2
)
.

However, assumption (A3) is also fulfilled for r0 = 1 + 54(2)
1
2

5Γ( 3
2

)
.

We see that all of the assumptions from (A1) to (A3) in Theorem 3.1 are achieved.

Therefore by Theorem 3.1, we conclude that equation (3.3) has a solution in D = C(I).
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Example 3.3. Consider another fractional hybrid differential equation as follows

D
1
3

[
µ(v)− µ(v)

3v2 + 1

]
= v3, µ(1) = 1 (3.4)

for v ∈ [1, 2] = I.

Solution: Here c = 1
2
, a = 1, v0 = 1, µ(v) = 1 = µ0. Also,

e(v, µ(v)) =
µ(v)

3v2 + 1
, $(v) = v3, e(v, 0) = 0

and

H = 8.

Therefore

|e(v, µ(v))− e(v, s(v))| ≤ |µ(v)− s(v)|
4

,

and

D =
1

4
< 1.

Also,

| µ0 − e(v0, µ0) |= 3

4
= X0.

Substituting these values in the inequality of assumption (A3), we get

3

4
+
r0

4
+

8

Γ(4
3
)
≤ r0

=⇒ 3r0

4
≥ 3

4
+

8

Γ(4
3
)

=⇒ r0 ≥ 1 +
32

3Γ(4
3
)
.

However, assumption (A3) is also fulfilled for r0 = 1 + 32
3Γ( 4

3
)
.

We see that all of the assumptions from (A1) to (A3) in Theorem 3.1 are achieved. By

Theorem 3.1, we can conclude that equation (3.3) haa a solution in D = C(I).
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