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Abstract
The construction of a suitable Lyapunov function is still a difficult task. This paper mainly
analyzes the practical uniform exponential stability of linear time–varying singular sys-
tems, which are transferable into standard canonical form. Our method used is based on
the explicit solution form of the system via integral inequalities of the type of Gamidov
under some restrictions on the perturbation term. An example is analyzed to verify the
effectiveness of the proposed approach.
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1 Introduction

Singular systems are those dynamics of which are governed by a mixture of algebraic and dif-
ferential equations. In that sense, singular systems represent the constraints to the solution of
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the differential part. These systems are referred to as degenerate systems, generalized systems,
descriptor systems, semi–state systems, and differential–algebraic systems.

In [24], Rosenbrock proposed singular systems for the first time and handled the transfor-
mation of linear singular systems. Later on, singular systems representation has been used as a
perfect tool to model a wide variety of problems, such as electrical engineering, aircraft dynamics,
robotics, economics, optimization problems, chemical, biology, etc.

The complex nature of singular systems causes many difficulties in the analytical and numer-
ical solutions. Because of the existence of the algebraic equations, the investigation of descriptor
systems is more complicated than the study of systems in the classical form.

Because of the difficulty arising in analysis, few results are concerned with the stability of
differential–algebraic equations (DAEs, in short).

The stability theory of linear differential–algebraic systems is an active research topic. Dif-
ferent authors tackled the question of stability of linear time–invariant singular systems. The
interested reader refereed to see [8, 10, 11, 15, 23] and the references therein, for a complete
overview on this subject. However, there have been few results on the stability of linear time–
varying singular systems in the past few decades. Some developments toward this subject have
been done in [4, 6, 9] and the references therein.

The method of Lyapunov is one of the most effective and efficient methods for the investigation
of the stability of singular systems, without knowing the explicit solution form. Different authors
developed the problem of stability of differential algebraic equations via Lyapunov techniques,
see for instance [5, 16]. The construction of an appropriate Lyapunov function is not always
possible, so that it is very important to look for other techniques to develop the problem of
stability.

Few results are concerned with the stability based on the knowledge of the solution form via
Gronwall type inequality, see [12, 19, 25].

The objective of our paper is to investigate the stability of linear time–varying singular
systems under perturbation based on the explicit solution form via integral inequalities of the
Gronwall type, in particular Gamidov’s inequality.

Systems can naturally show a perturbed structure where the solutions of unperturbed equa-
tions are in general supposed to be stable and some restrictions are imposed on the uncertainties
or disturbances like special growth conditions in order to derive conclusions about the behavior
of solutions of the perturbed state equation, see [3].

Our results are related to the relation between a perturbed linear time–varying singular system
and the associated unperturbed one. Given two solutions to the perturbed singular system and
the associated unperturbed one with initial conditions that are close at the same value of time,
these solutions will remain close over the entire time interval and not just at the initial time.

Indeed, the qualitative behavior of the solutions of linear time–varying perturbed singular
systems is often analyzed by regarding the Lyapunov function candidate for the nominal system
as an appropriate Lyapunov function candidate for the perturbed system.

Nevertheless, the construction of an appropriate Lyapunov function is still a difficult task.
Hence, this encourages us to investigate the problem of stability of perturbed singular systems
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by utilizing integral inequalities of the Gronwall type under some constraints on the perturbation
term. The usual property of the solutions concluded for such systems is ultimate boundedness.
That means that the solutions stay in some neighborhoods of the origin after a sufficiently large
time, called “Practical Stability, see [17, 22].

It is well known that asymptotic stability is more critical than stability. Even the selected sys-
tem may oscillate near the origin. Therefore the concept of practical stability is more appropriate
in different cases than asymptotic stability.

In this case, all state trajectories are bounded and approach a sufficiently small neighborhood
of the origin. One also desires that the state approaches the origin (or some sufficiently small
neighborhood of it) in a sufficiently fast manner especially in presence of perturbations.

The remainder of this paper is organized as follows. In Section 2, we introduce the linear
time–varying singular systems transferable into standard canonical form, basic notations and
some necessary properties. In Section 3, we present a class of linear time–varying perturbed
singular system, where its associated unperturbed nominal system is transferable into standard
canonical form. In Section 4, we investigate the practical stability of different classes of linear
time–varying perturbed singular systems via non linear–integral inequalities of Gamidov’s type.
In Section 5, we present an example to show the effectiveness of the obtained results. Finally,
some conclusions are included.

Notations

kerA : Kernel of the matrix A ∈ Rd×n.

imA : Image of the matrix A ∈ Rd×n.

GLn(R) : General linear group of degree n, i.e., the set of all invertible n× n matrices over R.

C(J, u) : Set of continuous functions f : J → u from an open set J ⊆ R to a vector space u.

Ck(J, u) : Set of k–times continuously differentiable functions f : J → u from an open set

J ⊆ R to a vector space u.

dom f : Domain of the function f.

In : Identity matrix in Rn×n.

||x|| :=
√
xTx : Euclidean norm of x ∈ Rn.

||A|| := sup{||Ax|| | ||x|| = 1}, induced matrix norm of A ∈ Rd×n.

2 Preliminaries

In this section, we introduce all needed preliminaries about linear time–varying singular system
transferable into a standard canonical form. Also, we remember some required properties for the
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sequel. For extra details, we refer the reader to see [4, 5].

Consider the following linear time–varying continuous singular system:

E(t)ẋ(t) = A(t)x(t), x(t0) = x0, (2.1)

where x(t) ∈ Rn is the system state vector, x(t0) = x0 ∈ Rn is the initial condition, with
E,A ∈ C(R+,R

n×n)× C(R+,R
n×n), and E is a singular matrix.

Definition 2.1. [4] A pair (t0, x0) ∈ R+ × Rn is called a pair of consistent initial values of the
linear time–varying singular system (2.1) if there exists a solution x(·) of (2.1), with t0 ∈ dom x(·)
and x(t0) = x0.

In the sequel, we represent the set of all pairs of consistent initial values of the linear time–
varying singular system (2.1) by W . Furthermore, for t0 ∈ R+,

W(t0) = {x0 ∈ Rn : (t0, x0) ∈ W} .

W(t0) is the linear subspace of initial values, which are consistent at time t0.

Definition 2.2. [4] DAEs (E1,A1) and (E2,A2) ∈ C(R+,R
n×n)2 are said to be equivalent if there

exist S ∈ C(R+,GLn(R)) and T ∈ C1(R+,GLn(R)) such that

E2 = SE1T, A2 = SA1T− SE1Ṫ,

and we note (E1,A1) ∼ (E2,A2).

Definition 2.3. [4] The singular system (2.1) is said to be transferable into a standard canonical
form (SCF) if there exist S ∈ C(R+,GLn(R)), T ∈ C1(R+,GLn(R)), and a > 0 such that

(E,A) ∼
((

Ia 0
0 N

)
,

(
J 0
0 In−a

))
,

where J : R+ → Ra×a and N : R+ → R(n−a)×(n−a), which is a pointwise strictly lower triangular
matrix.

Next, we characterize the set of consistent initial conditions of DAEs (E,A) transferable into
a standard canonical form.

Proposition 2.1. [4] Assume that a DAE (E,A) ∈ C(R+,R
n×n)2 is transferable into a standard

canonical form. Then we have

(t0, x0) ∈ W ⇔ x0 ∈ im T(t0)

(
Ia
0

)
.
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We recall some needed properties of the generalized transition matrix.

Proposition 2.2. [4] Let (E,A) ∈ C(R+,R
n×n)2 be transferable into SCF for (S,T) defined in

(2.3). Then any solution to the initial value problem x(t0) = x0 where (t0, x0) ∈ W, extends
uniquely to a global solution x(·). This solution satisfies

x(t) = U(t, t0)x0,

where

U(t, t0) = T(t)

(
φJ(t, t0) 0

0 0

)
T−1(t0),

and φJ(·, ·) denotes the transition matrix of ẏ = J(t)y. If the linear time–varying singular system
(2.1) is transferable into SCF, then for all t, τ, s ∈ R+, the generalized transition matrix satisfies
the following properties

(i) E(t) d
dt

U(t, s) = A(t)U(t, s),

(ii) imU(t, s) =W(t),

(iii) U(t, s) = U(t, τ)U(τ, s),

(iv) U2(t, t) = U(t, t),

(v) ∀x ∈ W(t), U(t, t)x = x,

(vi) d
dt

U(s, t) = −U(s, t)T(t)S(t)A(t).

Definition 2.4. [4] The linear time–varying singular system (2.1) is said to be uniformly expo-
nentially stable if there exist two positive constants λ1 and λ2 such that for all (t0, x0) ∈ W ,

||x(t)|| ≤ λ1||x0||e−λ2(t−t0), ∀t ≥ t0.

Theorem 2.3. [4] Let (2.1) be transferable into SCF, then the linear time–varying singular
system (2.1) is uniformly exponentially stable, if and only if, there exist two positive constants α
and µ such that for all (t0, x0) ∈ W , we have

‖U(t, t0)x0‖ ≤ αe−µ(t−t0)||x0||, ∀t ≥ t0.
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3 Linear time–varying perturbed singular systems

Assume that some parameters of the linear time–varying singular system (2.1) are excited or
perturbed, and the perturbed singular system is defined as follows:

E(t)ẋ(t) = A(t)x(t) + E(t)Π(t)f(t, x(t)), x(0) = x0, (3.1)

where Π ∈ C(R+,R
n×n) such that imΠ(t) = W(t) for all t ∈ R+, and f : R+ × Rn → Rn is a

continuous function in (t, x), Lipschitz in x, uniformly in t. Rather, we assume that (E,A) are
transferable into a standard canonical form.

Remark 3.1. Various authors have attacked the technique of structured perturbation for linear
differential–algebraic equations, see [6, 8, 9, 16]. Indeed, EΠf is a structured perturbation that
guarantees “consistency” with the DAE. Thus,

E(t)Π(t)f(t, x(t)) ∈ W(t), for all t ≥ 0.

Assume that there exists t such that f(t, 0) 6= 0, i.e., the linear time–varying perturbed sin-
gular system (3.1) does not have the trivial solution x ≡ 0.

The notion of practical stability has been introduced and well studied by different researchers
such as cited in [1, 18, 21]

Definition 3.1. The perturbed singular system (3.1) is said to be practically uniformly exponen-
tially stable if there exist two positive constants λ1, λ2, and r > 0 such that for all (0, x0) ∈ W ,
the following inequality is

‖ x(t, 0, x0) ‖≤ λ1 ‖ x0 ‖ exp(−λ2t) + r, ∀t ≥ 0. (3.2)

Remark 3.2. Eq. (3.2) implies that x(t) will be bounded by a small bound r > 0, thus ||x(t)||
will be small for sufficiently large t. That is to say, the solution provided in (3.2) will be uniformly
ultimately bounded for sufficiently large t. The factor λ2 in Eq. (3.2) is called the convergence
speed, whereas the factor λ1 is called the transient estimate.

It is even worth seeing that, in the earlier definition if we take r = 0, then we recover the
standard concept of the uniform exponential stability of the origin viewed as an equilibrium
point.

Remark 3.3. Several authors deal with the issue of the practical stability of singular systems
within the method of Lyapunov, see [8, 9, 16]. The construction of an appropriate Lyapunov
function is not always feasible, which encourages us to search for another method. Our process in
this paper is to analyze the stability of the linear time–varying perturbed singular system based
on the explicit solution form and Gamidov’s inequality.
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Our principal purpose is to state sufficient conditions to provide the practical uniform expo-
nential stability of the linear time–varying perturbed singular system (3.1). In fact if we suppose
that the perturbation term is bounded, then the origin is not necessarily an equilibrium point.
For that reason, we will analyze the convergence of the solutions toward a neighborhood of origin.

Theorem 3.4. [16] A function x : R+ → Rn is a solution of (3.1), if and only if, x(·) satisfies
the following integral equation

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)Π(s)f(s, x(s))ds, t ≥ 0.

We suppose the following assumptions which are required for the stability purposes.

(H1) The unperturbed nominal singular system (2.1) is uniformly exponentially stable.

(H2) The matrix Π is a continuous bounded matrix.

(H3) There exists a continuous non–negative known function ϑ(t) such that

‖f(t, x)‖ ≤ ϑ(t), ∀(t, x) ∈ W .

The bounds of the nonlinearities should be generally associated with the dynamic of the
nominal system, and in our case, they should be small enough. We restrict the function ϑ(t) to
study the stability of the linear time–varying perturbed singular system (3.1).

(H4) The non–negative continuous function ϑ(t) is such that

lim
t→∞

ϑ(t) = 0.

Theorem 3.5. Under assumptions (H1)− (H4) the linear time–varying perturbed singular sys-
tem (3.1) is practically uniformly exponentially stable.

Proof. By using Theorem 3.4, the solution with initial condition x0 of the linear time–varying
perturbed singular system (3.1) is expressed as follows:

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)Π(s)f(s, x(s))ds, ∀t ≥ 0.

Based on assumption (H1) and Theorem 2.3, there exist two positive constants α and µ such
that for all (0, x0) ∈ W , one obtains

‖U(t, 0)x0‖ ≤ αe−µt||x0||, ∀t ≥ 0.
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Further, since Π(s)f(s, x(s)) ∈ W(s), it follows that for all t ≥ 0,

||x(t)|| ≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s)f(s, x(s))||ds

≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s)|| ||f(s, x(s))||ds. (3.3)

The assumption (H2) yields that there exists m > 0 such that

||Π(t)|| ≤ m, ∀t ≥ 0. (3.4)

Substituting (3.4) and (H3) into (3.3), yields

||x(t)|| ≤αe−µt||x0||+
∫ t

0

mαe−µ(t−s)ϑ(s)ds

≤ αe−µt||x0||+mαe−µt
∫ t

0

eµsϑ(s)ds.

Assumption (H4) yields that there exists ϑ̃ > 0 such that

ϑ(t) ≤ ϑ̃, ∀t ≥ 0.

It follows that,

||x(t)|| ≤ αe−µt||x0||+mαϑ̃e−µt
∫ t

0

eµsds

≤ αe−µt||x0||+mαϑ̃e−µt
(

1

µ
eµt − 1

µ

)
≤ αe−µt||x0||+

mαϑ̃

µ
.

That is, we arrive at

||x(t)|| ≤ αe−µt||x0||+
mαϑ̃

µ
, ∀ (0, x0) ∈ W , ∀t ≥ 0.

As a consequence, the linear time–varying perturbed singular system (3.1) is practically uni-
formly exponentially stable. 2

A simple extension can be done if we replace the assumption (H4) by the following:
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(H′4) The continuous non–negative function ϑ(t) satisfies∫ ∞
0

ϑ(t) <∞,

or
ϑ(t) ≤ ϑ̄ <∞, ∀t ≥ 0.

Theorem 3.6. Under assumptions (H1)− (H3) and (H′4) the linear time–varying perturbed sin-
gular system (3.1) is practically uniformly exponentially stable.

Proof. The solution with initial condition x0 of the linear time–varying perturbed singular
system (3.1) is the following

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)Π(s)f(s, x(s))ds, ∀t ≥ 0.

By using assumptions (H1) and (H2), we see that

||x(t)|| ≤ αe−µt||x0||+
∫ t

0

mαe−µ(t−s)||f(s, x(s))||ds.

In light of assumption (H3), we arrive at

||x(t)|| ≤ αe−µt||x0||+
∫ t

0

mαe−µ(t−s)ϑ(s)ds

≤ αe−µt||x0||+mαe−µt
∫ t

0

eµsϑ(s)ds.

Indeed, since the non–negative continuous function ϑ(t) satisfies assumption (H′3), there exists
ζ > 0 such that

e−µt
∫ t

0

eµsϑ(s)ds ≤ ζ, ∀t ≥ 0,

where ζ = min

(
ϑ̄

µ
, ||ϕ||1

)
, which implies that

||x(t)|| ≤ αe−µt||x0||+ ζmα, ∀(0, x0) ∈ W , ∀t ≥ 0.

Hence, the linear time–varying perturbed singular system (3.1) is practically uniformly exponen-
tially stable. 2
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4 Gamido’s type inequality and applications

In this section, we aim to prove the practical uniform exponential stability of the linear time–
varying perturbed singular system (3.1), based on the generalized integral inequality of the
Gamidov type.

The generalized integral inequality of the Gamidov type was proved by Gamidov [20].

Lemma 4.1. [20] Assume that

V(t) ≤ τ(t) + ς

∫ t

0

χ(s)Vq(s)ds,

where all functions are continuous and non–negative on [0, h), 0 < q < 1, and h, ς > 0.
Then there exists a constant % > 0 such that

V(t) ≤ τ(t) + ς%q
(∫ t

0

χ
1

1−q (s)ds

)1−q

.

Later on Abdellatif et al. [2] improved the previous lemma for h =∞.

Lemma 4.2. [2] Assume that

V(t) ≤ τ(t) + ς

∫ t

0

χ(s)Vq(s)ds,

where all functions are continuous and non–negative on [0,∞), 0 < q < 1, and ς > 0.
Then there exists a constant % > 0 such that

V(t) ≤ τ(t) + ς%q(t)

(∫ t

0

χ
1

1−q (s)ds

)1−q

.

In particular for χ(t) = e(1−q)µt and τ(t) ≤ m̄, they proved the following lemma.

Lemma 4.3. [2] Assume that

V(t) ≤ m̄+ ς

∫ t

0

e(1−q)µsVq(s)ds,

where V is continuous and non–negative on [0,∞), 0 < q < 1, and m̄, ς > 0.
Then

V(t) ≤ 2
q

1−q m̄+

(
2qς

µ

) 1
1−q

eµt.
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(A3) There exists a continuous positive functions β1(t) and β2(t) such that

||f(t, x)|| ≤ β1(t)||x||q + β2(t), 0 < q < 1, ∀(0, x) ∈ W ,

where the function β1(·) satisfies

β1(t) ≤ β̃1, ∀t ≥ 0,

and the function β2(·) satisfies ∫ ∞
0

eµsβ2(s)ds = β̄ <∞.

Theorem 4.4. Suppose that assumptions (H1) − (H2) and (A3) are satisfied, then the linear
time–varying perturbed singular system (3.1) is practically uniformly exponentially stable.

Proof By using Theorem 3.4, the solution with initial condition x0 of the linear time–varying
perturbed singular system (3.1) is expressed as follows:

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)Π(s)f(s, x(s))ds, ∀t ≥ 0.

From assumption (H1) and Theorem 2.3, we arrive at

||x(t)|| ≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s)f(s, x(s))||ds

≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s)|| ||f(s, x(s))||ds.

It follows from assumption (H2) and (A3) that

||x(t)|| ≤ αe−µt||x0||+ αme−µt
∫ t

0

eµs (β1(s)||x(s)||q + β2(s)) ds

≤ αe−µt||x0||+ αme−µt
∫ t

0

(
β̃1e

µs||x(s)||q + eµsβ2(s)
)
ds.

Multiplying both sides by eµt, one obtains

eµt||x(t)|| ≤ α||x0||+ αmβ̃1

∫ t

0

eµs||x(s)||qds+ αm

∫ t

0

eµsβ2(s)ds.

Setting V(t) = eµt||x(t)||, we obtain

V(t) ≤ α||x0||+ αmβ̃1

∫ t

0

e(1−q)µsVq(s)ds+ αm

∫ t

0

eµsβ2(s)ds.
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Since,

∫ ∞
0

eµsβ2(s)ds = β̄ <∞, we have

V(t) ≤ α||x0||+ αmβ̃1

∫ t

0

e(1−q)µsVq(s)ds+ αmβ̄.

Thus,

V(t) ≤ m̄+ ας

∫ t

0

e(1−q)µsVq(s)ds,

where m̄ = α||x0|| and ς = αmβ̃1.

From the Gamidov inequality (Lemma 4.3), it follows that

V(t) ≤ 2
q

1−q m̄+

(
2qς

µ

) 1
1−q

eµt.

Accordingly, we see

eµt||x(t)|| ≤ 2
q

1−q m̄+

(
2qς

µ

) 1
1−q

eµt.

Then we arrive at

||x(t)|| ≤ 2
q

1−qα||x0||e−µt + 2
q

1−qmαβ̄ +

(
2qmαβ̃1

µ

) 1
1−q

, ∀ (0, x0) ∈ W , ∀t ≥ 0,

which means that the linear time–varying perturbed singular system (3.1) is practically uniformly
exponentially stable.
2

Finally, for the standard case, we suppose that the perturbation term f(t, x) satisfies the
following assumption.

(A′3) There exists a continuous non–negative known function ϕ̄(t) such that

||f(t, x)|| ≤ ϕ̄(t)||x||, ∀(t, x) ∈ W ,

where ϕ̄(t) is bounded and satisfies

sup
t≥0

ϕ̄(t) ≤ θµ, 0 < θ <
1

mα
.

Theorem 4.5. Suppose that assumptions (H1) − (H2) and (A′3) are satisfied, then the linear
time–varying perturbed singular system (3.1) is uniformly exponentially stable.
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Proof. The solution with initial condition x0 of the linear time–varying perturbed singular
system (3.1) is given by the following:

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)Π(s)f(s, x(s))ds, ∀t ≥ 0.

Based on the standing hypothesis, we see that

||x(t)|| ≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s)f(s, x(s))||ds

≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s)|| ||f(s, x(s))||ds

≤ αe−µt||x0||+
∫ t

0

αme−µ(t−s)||f(s, x(s))||ds

≤ αe−µt||x0||+
∫ t

0

αme−µ(t−s)ϕ̄(s)||x(s)||ds.

Multiplying both sides by eµt, one obtains

||x(t)||eµt ≤ α||x0||+ αm

∫ t

0

eµsϕ̄(s)||x(s)||ds.

Suppose u(t) = ||x(t)||eµt, it yields that

u(t) ≤ α||x0||+ αm

∫ t

0

ϕ̄(s)u(s)ds.

By applying the Gronwall lemma [13], one gets

u(t) ≤ α||x0||eαm
∫ t
0 ϕ̄(s)ds ≤ α||x0|| exp(αmθµt).

As a consequence, we derive that

||x(t)|| ≤ α||x0|| exp (−(1−mαθ)µt) , ∀(0, x) ∈ W(t).

That is, the linear time–varying perturbed singular system (3.1) is uniformly exponentially sta-
ble. 2

Next, we will consider the following linear time–varying perturbed singular system associated
to the system (3.1):

E(t)ẋ(t) = A(t)x(t) + E(t)Π(t)f(t, x(t)) + E(t)Π(t)h(t, x(t)), x(0) = x0, (4.1)
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where h : R+ × Rn → Rn is a continuous function in (t, x), Lipschitz in x, uniformly in t.

(A4) There exists a continuous non–negative constant ρ such that

||h(t, x)|| ≤ ρ||x(t)||, ∀(t, x) ∈ W .

Theorem 4.6. Suppose that assumptions (H1) − (H2) and (A3) − (A4) are satisfied, then the
linear time–varying perturbed singular system (3.1) is practically uniformly exponentially stable.

To prove the previous theorem, we need to recall a generalized integral inequality of the
Gamidov type, proved in [2].

Lemma 4.7. [2] Assume that

V(t) ≤ m̄+

∫ t

0

(
ςe(1−q)µsVq(s) + σV(s)

)
ds,

where V is continuous and non–negative on [0,∞), 0 < q < 1, and m̄, ς > 0, and µ, σ such that
0 ≤ σ < µ.

Then

V(t) ≤ 2
q

1−q m̄eσt +

(
2qς

µ− σ

) 1
1−q

eµt.

Proof of Theorem 4.6. The solution of the perturbed singular system (4.1) is expressed as
follows:

x(t) = U(t, 0)x0 +

∫ t

0

U(t, s)Π(s) (f(s, x(s)) + h(s, x(s))) ds, ∀t ≥ t0.

Since the unperturbed nominal system (2.1) is uniformly exponentially stable, we have

‖U(t, 0)x0‖ ≤ αe−µt||x0||, ∀t ≥ 0.

Further, we have Π(s) (f(s, x(s)) + h(s, x(s))) ∈ W(s), then for all t ≥ 0, it yields that,

||x(t)|| ≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s) (f(s, x(s)) + h(s, x(s))) ||ds

≤ αe−µt||x0||+
∫ t

0

αe−µ(t−s)||Π(s)|| ||f(s, x(s)) + h(s, x(s))||ds.

From assumption (H2), one obtains

||x(t)|| ≤ αe−µt||x0||+
∫ t

0

αme−µ(t−s)||f(s, x(s)) + h(s, x(s))||ds.
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Based on assumption (A4), for ρ =
Θµ

α
, 0 < Θ < 1

m
, it yields that

||h(t, x)|| ≤ Θµ

α
||x(t)||, ∀(t, x) ∈ W . (4.2)

By assumption (A3) and Eq. (4.2), we obtain

||x(t)|| ≤ αe−µt||x0||+ αme−µt
∫ t

0

eµs
(
β1(s)||x(s)||q +

Θµ

α
||x(s)||+ β2(s)

)
ds.

Multiplying both sides by eµt, yields

||x(t)||eµt ≤ α||x0||+ αm

∫ t

0

eµs
(
β1(s)||x(s)||q +

Θµ

α
||x(s)||

)
ds+ αm

∫ t

0

eµsβ2(s)ds.

Let V(t) = eµt||x(t)||, and by using assumption (A3), it comes that

V(t) ≤ α||x0||+
∫ t

0

(
e(1−q)µsαmβ̃1Vq(s) + ΘµmV(s)

)
ds+ αm

∫ ∞
0

eµsβ2(s)ds

≤ α||x0||+
∫ t

0

(
e(1−q)µsαmβ̃1Vq(s) + ΘµmV(s)

)
ds+ αmβ̄.

That is,

V(t) ≤ m̄+

∫ t

0

(
ςe(1−q)µsVq(s) + σV(s)

)
ds,

where m̄ = α||x0||+ αmβ̄, ς = αmβ̃1, and σ = Θµm.

By application of the Gamidov lemma (Lemma 4.7), one obtains

V(t) ≤ 2
q

1−q m̄eσt +

(
2qς

µ− σ

) 1
1−q

eµt.

That is,

eµt||x(t)|| ≤ 2
q

1−q m̄eσt +

(
2qς

µ− σ

) 1
1−q

eµt.

Thus, we obtain

||x(t)|| ≤ 2
q

1−qα||x0||e−(1−Θm)µt +

(
2qαmβ̃1

(1−Θm)µ

) 1
1−q

+ 2
q

1−qαmβ̄, ∀(0, x) ∈ W .

So, the system (4.1) is practically uniformly exponentially stable. 2
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5 Example

In this section, we present an example to illustrate the validity of the results.

Let’s consider the following linear time–varying perturbed singular system:

E(t)ẋ(t) = A(t)x(t) + E(t)Π(t)f(t, x(t)), (5.1)

where x = (x1, x2) ∈ R2,

E(t) =

(
1 0
0 0

)
, A(t) =

(
−t 0
0 1

)
, t ∈ R+, f(t, x) =

(
f1(t, x)
f2(t, x)

)
,

with 
f1(t, x) = ζ

√
|x1|+ e−ιt

f2(t, x) = e−νt, ζ, ν > 0, ι ≥ 1.

The system (5.1) might be regarded as a perturbed singular system of the following linear
time–varying system:

E(t)ẋ(t) = A(t)x(t). (5.2)

Note that, with this term of perturbation f , the fact that the function
√
|x1| is not Lipschitzian

around zero does not pose a problem for the uniqueness of the solutions because the concept of
practical stability is based on the convergence of solutions to a neighborhood of the origin.

The nominal system (5.2) is transferable into a standard canonical form, where S(·) = T(·) =
I2. As a consequence, by applying Proposition 2.1, one obtains

W = R+ × im

(
1
0

)
.

As we know that imΠ(t) =W(t), so we may select the matrix Π as follows:

Π(t) =

(
1 0
0 0

)
.

That is, we arrive at EΠf =

(
f1

0

)
.

Based on Theorem 2.3 the nominal system (5.2) is uniformly exponentially stable, as we can
see in Figure 1. Actually, the transition matrix U(t, 0) related to the unperturbed system (5.2)
fulfills the following expression:

U(t, 0) = e−
1
2
t2 .
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Figure 1: The initial response of the unperturbed nominal system (5.2), with the initial condition
x0 = [1, 0]T

For their part, we have

||f(t, x)||2 = f 2
1 (t, x) + f 2

2 (t, x) ≤ ζ|x1|+ e−2ιt + e−2νt.

Accordingly, we achieve that for all (t, x) ∈ W ,

||f(t, x)|| ≤ ζ
√
|x1|+ e−ιt.

It is clear that assumption (A3) is satisfied with β1(t) = ζ and β2(t) = e−ιt. Furthermore, the
matrix Π is bounded. Hence, all the assumptions of Theorem 4.4 are satisfied, and then the lin-
ear time–varying perturbed singular system (5.1) is practically uniformly exponentially stable,
as shown in Figure 2, for ζ = 2, ι = ν = 1.
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Figure 2: The initial response of the perturbed singular system (5.1), with the initial condition
x0 = [1, 0]T

6 Conclusion

The construction of a suitable Lyapunov function is not always possible. In this paper, we
investigate the problem of stability of linear time–varying perturbed singular systems, which are
transferable into standard canonical form based on the explicit solution form through integral
inequalities of Gamidov type under some restrictions on the perturbation term. An example is
offered to demonstrate the utility of the conclusions reached.
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neering theory: Stability in the sense of Lyapunov: A survey, Hemijska Industrija, 6 (2001),
260–272.

[15] L. Dai, Singular control systems, Springer, New York, 1989.

[16] F. Ezzine, M. A. Hammami, Growth conditions for the stability of a class of time–varying
perturbed singular systems, Kybernetika, 58 (2022), 1–24.

19

5 Feb 2023 10:09:51 PST
221226-Ezzine Version 4 - Submitted to Rocky Mountain J. Math.



[17] B. Ghanmi, I. Basdouri, T. Fajraoui, L. Souden, Some results on the practical α–exponential
stability of nonlinear systems, Rocky Mountain Journal of Mathematics, 51 (2021), no. 2, 509–
526.

[18] B. Ghanmi, M. Dlala, M. A. Hammami, Converse for practical stability of nonlinear impul-
sive systems and applications, Kybernetika, 54 (2018), 496–521.

[19] B. Ghanmi, N. Hadj Taieb, M. A. Hammami, Growth conditions for exponential stability
of time–varying perturbed systems, International Journal of Control, 86 (2013), 1086–1097.

[20] Sh. G. Gamidov, Certain integral inequalities for boundary value problems of differential
equations, D ifferentsialnye Uravneniya, 5 (1969), 463–472.

[21] Z. P. Jiang, A. R. Teel, L. Praly, Small gain theorem for ISS systems and applications,
Mathematics of Control Signals and Systems, 7 (1995), 95–120.

[22] A. Martynyuk, G. Stamov, I. Stamova, Practical stability analysis with respect to manifolds
and boundedness of differential equations with fractional–like derivatives, Rocky Mountain
Journal of Mathematics, 49 (2019), no. 1, 211–233.
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