DERIVATION MODULE AND THE HILBERT-KUNZ MULTIPLICITY OF
THE CO-ORDINATE RING OF A PROJECTIVE MONOMIAL CURVE

OM PRAKASH BHARDWAJ AND INDRANATH SENGUPTA

ABSTRACT. Let ng,n1,...,n, be a sequence of positive integers such that ng <n; <--- <
np and ged(ng, n1,...,np) = 1. Let S = ((0,np), (no, np—n0), ..., (Np—1,np—np—1), (np,0))
be an affine semigroup in N2. The semigroup ring k[S] is the co-ordinate ring of the projective
monomial curve in the projective space ]P’ﬁ“, which is defined parametrically by
To =", xp=utvtrTnO L g, =ttt Tl g =l

In this article, we consider the case when ng,n1,...,n, forms an arithmetic sequence, and
give an explicit set of minimal generators for the derivation module Dery(k[S]). Further,
we give an explicit formula for the Hilbert-Kunz multiplicity of the co-ordinate ring of a
projective monomial curve.

1. INTRODUCTION

Let k be a field of characteristic 0, and (R, m) be a local (graded) k-algebra. Finding
an explicit set of minimal generators for the derivation module Derg(R) of (R, m) is an
important problem in the literature, where Dery(R) denote the R-module of k-derivations of
R. Previously, this problem has been studied by many authors, for reference see ( [6], [12],
13), [17], [19)).

Let r > 1, and S be an affine semigroup in N" generated by ag, a4, ..., a,. The semigroup
ring k[S] := @seskt® of S is a k-subalgebra of the polynomial ring k[t1, ..., t,.], where ty, ... ¢,
are indeterminates and t* = [[._, ¢ for all s = (s1,...,s,) € S. If r = 1, then S is
a submonoid in N, and the semigroup ring k[S] is isomorphic to a numerical semigroup
ring. When S is a numerical semigroup, Kraft in [6], proved that the derivation module
Dery(k[S]) is minimally generated by the set {t*"'2 | a € PF(S) U {0}}, where PF(S)
denotes the set of pseudo-Frobenius elements of S. For r > 2/ if S is an affine semigroup in
N”, then Tamone and Molinelli ([7], [8]), give the structure of k-derivations of k[S] for some
special type of semigroups. In [7], they consider the affine semigroup S = ((0,n,), (ng,n, —
no), -y (Mp—1,mp—"np_1), (np,0)) in N? where ng,nq,...,n, is a sequence of positive integers
such that ng < n; < --- < n, and ged(ng, nq,...,n,) = 1. For i = 1,2, let S; and Sy be
the natural projections onto first and second component of S. With the assumption on
the generators, note that S; and S; are numerical semigroups. For these type of affine
semigroups, when k[S] is Cohen-Macaulay, they give the structure of the derivations of the
derivation module Derg(k[S]) using the set of pseudo-Frobenius elements of Sy and Sy (see
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2 OM PRAKASH BHARDWAJ AND INDRANATH SENGUPTA

2.6). In this article, we give the explicit generators of the derivation module of the co-
ordinate ring of the projective monomial curve defined by an arithmetic sequence using the
structures of derivations given by Tamone and Molinelli [7].

Now, we summarize the contents of the paper. In this article, we consider the affine
semigroup S = ((0,n,), (no, np—n0), - - -, (Np—1,1p—Np_1), (np, 0)) in N2 where ng,nq,...,n,
is a sequence of positive integers such that ng < n; < --- < n, and ged(ng, ny,...,n,) = 1,
and k[S] the semigroup algebra associated to S, which is isomorphic to the co-ordinate ring
of a projective monomial curve in Pi“.

In section 2, we recall some definitions about numerical semigroups and when k[S] is
Cohen-Macaulay, we summarize the structure of the generating set of the derivation module
of k[S] in Theorem 2.6. In section 3, we consider p = 1, i.e the sequence of positive integers
no,n1 such that ng < mn; and ged(ng,n;) = 1. In Theorem 3.1, we give the explicit set
of minimal generators of the derivation module for the co-ordinate ring of the projective
monomial curve in P defined by the positive integers ng and n;.

In section 4, we consider and the sequence ng,ni,ns,...,n,, which forms a minimal
arithmetic sequence and consider the affine semigroup S = ((0,n,), (ng,n, — no), (N1, 1,y —
n1)y .oy (Mp_1,np—np_1), (n,,0)). From [1], we know that k[S] is Cohen-Macaulay. In Propo-
sition 4.1, we prove that u(Derg(k[S]n)) = r + 3, where r is the Cohen-Macaulay type of
k[S] and m is the maximal homogeneous ideal of k[S]. In Corollary 4.2, for no = ap + b,
0 < b < p, we write the formula for p(Dery(k[S]w)), which is,

4 if p=1;

p+2 if p>2b=0;
p+3 if p>2b=1;
b+2 if p>2,1<b<p.

p(Dery(k[S]m)) =

In Theorem 4.5, we give an explicit set of minimal generators for Dery(k[S]). In section 5, we
compute the Hilbert-Kunz multiplicity of the semigroup algebra k[S]. In Theorem 5.1, we
prove that the Hilbert-Kunz multiplicity of k[S] is equal to 1+ n—lp >F_ (ny, — ) (n, —nyp_1)),
where ny = 0. It is interesting to note that in the case of semigroup algebras, the computation

of Hilbert-Kunz multiplicity is independent of the characteristic of the base field.

2. PRELIMINARIES

Throughout the article, Z and N denote the sets of integers and non-negative integers

respectively.
Definition 2.1. Let S be a submonoid of N such that N\ S is finite, then S is called a
numerical semigroup. Equivalently, there exist ng,...,n, € N such that ged(no,...,n,) =1
and
p
S = <7’L0,...,7’Lp> = {Zx\mz ‘ )\Z S N,V'L} .
=0

Since N'\ S is finite, the largest number in N\ S is called the Frobenius number of S, and
it is denoted by F'(S).

Definition 2.2. Let S be a numerical semigroup. For any s € S, if s = Y 0 \n; is the
unique expression for s in S, then we say s has unique factorization in S. In other words,
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DERIVATION MODULE AND HILBERT-KUNZ MULTIPLICITY 3

we say s has a unique factorization in S if given any two expressions of s, s = Y - \in;
and s =Y 5 Nin;, we have \; = X, for all i € [0, p).

Given 0 # s € 9, the set of lengths of s in S is defined as

1=0 =0

Definition 2.3. A subset T C S is called homogeneous if either it is empty or L(s) is
singleton for all0 £ s € T.

Definition 2.4. Let S be a numerical semigroup and a be a non-zero element of S. The set
Ap(S,a) ={s € S| s—a¢ S} is called the Apéry set of S with respect to a.

Definition 2.5. Let S be a numerical semigroup. An element f € Z \ S is called a pseudo-
Frobenius number if f+s € S for all s € S\ {0}. The set of pseudo-Frobenius numbers of S
is denoted by PF(S). Note that F(S) € PF(S) and F(S) is the mazimum element of PF(S).

The cardinality of the set of pseudo-Frobenius elements is known as the type of the nu-
merical semigroup S, which is equal to the Cohen-Macaulay type of the numerical semigroup
ring k[S]. Let ag,ay,...,a, € N" then

p
S = <CL0,CL1,...,CLP> = {Z)\zaz | )\1 c N,Vl}
1=0

is called an affine semigroup generated by ag,ai,...,a,. For r = 1, affine semigroups cor-
respond to numerical semigroups. Let k be a field, the semigroup ring k[S] := ®seskt® of
S is a k-subalgebra of the polynomial ring k[t,...,t.], where ¢1,...,t, are indeterminates

and t° = []'_, ¢/, for all s = (sy,...,s,) € S. The semigroup ring k[S] = k[t®,t*, ... t%]
of S can be represented as a quotient of a polynomial ring using a canonical surjection

7 k[zo, 21, ..., x,] = E[S], given by m(x;) =t% for all i =0,1,...,p.

Let ng,n,...,n, be a sequence of positive integers such that ng <n; <--- <mn,. Let C
be a projective monomial curve in the projective space Pﬁ“, defined parametrically by
To=0"r, xp=uv"T"0 ., =urtotT g = ulr.
Let k[C| denote the co-ordinate ring of C. Then k[C| = k[S], where S = ((0,n,), (o, np —
no), (n1,my —n1), ..., (Np_1,m, — ny_1), (ny,0)) is an affine semigroup in N?. For such affine
semigroup rings, we recall the following theorem from [7], which gives a set of generators of
the derivation module Der(k[S]).

Theorem 2.6. [7] Let S = ((0,n,), (no, np —no), (N1, np —n1), ..., (Np—1,np —Np—1), (1, 0))
be an affine semigroup in N*, where ng < ny < --- < n, and ged(ng,ny,...,n,) = 1. Let
Sy and Sy be the numerical semigroups corresponding the natural projections to the first and
second components of S respectively. If the semigroup ring k[S] is Cohen-Macaulay then the
derivation module Dery,(k[S]) is generated by Dy U{u2} U D, U{t2}, where Dy and Dy are
defined below.

(1) If S2 # N, then Dy = {tPu*'2 | a € PF(S,)}, and B is the least positive integer

such that the pair (8, ) satisfy

(B,a) + (n,n, —n) € S for each ne€{0,ng,...,np_1}
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4 OM PRAKASH BHARDWAJ AND INDRANATH SENGUPTA

(2) If So = N, then Dy = {t"*"2} and c is the least non-negative integer such that
the pair (14 cn,, —1) satisfies

(1+cny,,—1)+ (n,n, —n) €S foreach n € {0,ng,...,np1}
(3) If S1 # N, then Dy = {t*" w2 | 6 € PF(S1)}, and ~ is the least positive integer
such that the pair (0,7) satisfy
(0,7) + (n,ny, —n) €S for each n € {ng,...,ny}.
(4) If Sy = N, then Dy = {u!**"» 2} and e is the least non-negative integer such that
the pair (—1,1+ en,) satisfies
(=1,1+en,) + (n,n, —n) € S foreach n € {ng,...,n,}.

3. DERIVATIONS IN P?

In this section, we give the explicit set of minimal generators of the derivation module for
the co-ordinate ring of a projective monomial curve defined by the positive integers ny and
ny, such that ng < ny and ged(ng,ny) = 1.

Proposition 3.1. Let S = ((0,n1), (ng, n1 —ng), (n1,0)) be an affine semigroup in N?, such
that ng < ny and ged(ng,n1) = 1. Then we have the following:

(1) If S1, S2 # N, then the derivation module Dery(k[S]) is mimimally generated by

{tﬁ tno(n1—1)—n1+1u(n1—1)(TL1—n0)2 ug tno(n1—l)u(nl—l)(nl—no)—n1+13}
at’ ) 7 *

ot’ Ou ou
(2) If Sy = N and Sy # N, then the derivation module Dery(k[S]) is mimimally generated

by
0 o 0 0
t_ 1+(n172)n1_ . t’nlfl (nlfl)(’n172)_ )
{ o ot o' " ou

(3) If S1 # N and Sy = N, then the derivation module Dery(k[S]) is mimimally generated

by
0 o 0 0
t— tno(n1—1)—n1+1 ni—1 "7 . tno(?’u—l)_ )
{ ot o You Bu

(4) If Sy = So =N, then the derivation module Dery(k[S]) is mimimally generated by

, 0 .99 .9
at’uﬁt’uau’ ou | -

Proof. Let S; and S5 be the projections of S to the first and the second component of S,
then we have S; = (ng,n;) and Sy = (n; — ng,n1). We will prove each case separately by
using Theorem 2.6.

Case 1. Suppose 51,52 # N. From [15, Proposition 2.13], we have PF(S;) = {n¢(n; —
1) = ni1} and PF(Sy) = {(ny — 1)(ny —ng) — n1}. Let B € Sy be such that (5, (ny — 1)(ny —
no) —n1) + (0,n1) = (B, (n1 — 1)(n1 —ng)) € S. Note that (n; — 1)(n; — ny) has only one
factorization in Sy. Therefore, the possible factorization of (5, (ny — 1)(ny — ng)) in S will
be

(B, (ny — 1)(ny —ng)) = (n1 — 1)(ng,n1 — ng) + A(n1,0), for some A\ > 0.
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DERIVATION MODULE AND HILBERT-KUNZ MULTIPLICITY 5

Therefore, we have § = (ny — 1)ng + Any > ng(ny — 1). Now for 5 = ng(n; — 1), we have
(no(n1 — 1), (n1 = 1)(n1 = no) — 1) +(0,n1) = (no(n1 — 1), (n1 — 1)(n1 — ny))
= (n1 — 1)(no, n1 — no)
and
(no(n1 — 1), (n1 — 1)(n1 — ng) — n1) + (ng, 1 — ng) = (nona, na(ny —ng — 1))
= ng(n1,0) + (ny —ng — 1)(0,nq).
Now, let v € Sy be such that (ng(n; — 1) — n1,7v) + (n1,0) = (ng(n; — 1),7) € S. Note
that ng(ny — 1) has only one factorization in S;. Therefore, the only possible factorization
of (ng(ny —1),v) in S is
(no(ny —1),v) = (n1 — 1)(ng,n1 — no) + A(0,ny) for some A >0.
Hence, we have v = (ny—1)(n1 —ng)+Any > (n1—1)(n1—nyp). Now for v = (ny—1)(n1—ny),
we have
(no(n1 — 1) — ny, (ny — 1)(n1 — ng)) + (no, n1 — ng) = (nony — ny,ni(ng — ng))
= (ng — 1)(n1,0) + (n1 — no)(0, n1);
and
(no(n1 — 1) = na, (n1 = 1)(n1 — no)) + (n1,0) = (no(ny — 1), (n1 — 1)(n1 — no))
= (n1 — 1)(no, n1 — ng).
Case 2. Suppose S; = N. Therefore, we must have nyg = 1. Let e be a non-negative integer
such that (=1,1+4+eny) + (n1,0) = (ny — 1,1 + eny) € S. Observe that n; — 1 has only one
factorization in S;. Therefore the only possible factorization of (ny — 1,1+ eny) in S is
(np—1,1+eny)=(n1—1)(1,ny — 1)+ A(0,ny), for some A >0.

Therefore, we have 1+ en; > (n; — 1)?, which implies that e > n; — 2. Now for e = ny — 2,
we have

(=1,1+ (ng —2)n1) + (n1,0) = (ny — 1, (1 — 1)?) = (ny — 1)(1,ny — 1);
and
(-1, 1+ (n1 - 2)”1) + (1,711 - 1) = (O,nl(nl - ].)) = (n1 — 1)(0,711)
Case 3. Suppose S, = N. Therefore we must have n; — ng = 1. Let ¢ be a non-negative
integer such that (1 + cny, —1) + (0,n1) = (1 + cny,ny — 1) € S. Observe that ny — 1 has
only one factorization in Sy. Therefore the only possible factorization of (1 + cny,ny — 1) in
S is
(14 cny,ng —1) = (ng — 1)(ng, 1) + A(n1,0), for some X >0.
Therefore, we have 1+ cny > (n; — 1)ng = ni(ng — 1) + 1. This implies that ¢ > ny — 1.
Now for ¢ = ng — 1, we have
(14 (no = D)ny, =1) + (0,n1) = (1 + (no — 1)(no + 1), (m1 — 1)) = (n1 — 1)(no, 1);

and

(14 (ng — 1)ny, —1) + (ng, 1) = (non1,0) = ng(ny, 0).
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6 OM PRAKASH BHARDWAJ AND INDRANATH SENGUPTA

Case 4. Suppose S; = N = Sy. In this case, the only possibility is S = ((0,2), (1,1), (2,0)).
From the arguements of cases 2 and 3, it is easy to observe that the derivation module

Dery(k[S]) is minimally generated by {tat, ul ul 21 O

Example 3.2. Let S = ((0,3),(1,2),(3,0)). Here S; = N and Sy # N. The derivation

module Dery(k[S]) is minimally generated by {t2, u'2 ul t*u*2L}.

Example 3.3. Let S = ((0,9), (5,4),(9,0)). Here S; # N # Sy. The derivation module
Dery(k[S]) is minimally generated by {¢t2, 32022 w2 140424 21

4. DERIVATIONS IN Pp*!

For a numerical semigroup S, it is well known that p(Derg(k[S]m)) = 7+ 1, where 7 is the
Cohen-Macaulay type of k[S] and m is the maximal homogeneous ideal of k[S]. Such a nice
relation between p(Derg(k[S]n)) and Cohen-Macaulay type of k[S] does not hold in general
for the affine semigroups (see [7, Remark 3.6]).

We now assume that ng,n,...,n, is an arithmetic sequence of positive integers i.e., for
a fixed positive integer d, n; = ng + id for ¢ € [0,p], such that ged(ng,ny,...,n,) = 1.
Also assume that the sequence ng, n, ..., n, forms a minimal generating set for a numerical
semigroup, and we say that ng,ni,...,n, is a minimal arithmetic sequence. Now define

S = <(07np)7 (nOa ny — n())) (nla ny — nl)a ey (np—la ny — np—l)v (np7 0)>7

an affine semigroup in N2. We will denote the natural projections to the first and second
components of S by S; and S; respectively. These notations will be followed throughout the
section.

From the [1, Corollary 3.2], we know that k[S] is Cohen-Macaulay. The following Propo-
sition gives a nice relation between p(Derg(k[S]n)) and Cohen-Macaulay type of k[S].

Proposition 4.1. Let S = ((0,n,), (no, ny—no), (n1,np—n1), - . ., (Np—1, Np—"np_1), (1, 0)) be
an affine semigroup in N*, where ng,ny,...,n, is a minimal arithmetic sequence of positive
integers such that ged(ng,ny,...,n,) = 1. Then u(Derg(k[S|m)) = r + 3, where r is the
Cohen-Macaulay type of k[S] and m is the maximal homogeneous ideal of k[S].

Proof. Since ng < ng < ... < n, is an arithmetic sequence of positive integers, then for a
fixed positive integer d, we have n; = ng+id for ¢ € [0, p]. Since S; and Sy are the numerical
semigroups corresponding the natural projections to the first and second components of S
respectively, we have S1 = (ng,n1,...,n,) and Sy = (d,n,). For i = 1,2, let r; be the
Cohen-Macaulay type of S;. By [16, Corollary 4.7], we have r; = r and by [15, Proposition
2.13], we get ro = 1. Therefore by [7, Corollary 3.5, we have

p(Dery(k[S]m)) =r1+1m2+2=1+3. O

Corollary 4.2. With the assumptions of Proposition 4.1 and ng = ap+b, 0 < b < p, we
have

4 if p=1;

p+2 if p>2,b=0;
p+3 if p>2,b=1;
b+2 if p>2,1<b<np.

p(Der(k[STm)) =
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Proof. Since the case p = 1 reduces to the Theorem 3.1, we have p(Dery(k[S]nm)) =4 if p = 1.
We now assume that p > 2. Therefore by [10, Theorem 3.1], the Cohen-macaulay type of S}
is

p—1 if b=0;
rL=9p if b=1,;
b—1 if 1<b<p.
Now, the result follows from Proposition 4.1. [l

Lemma 4.3. Let S, be the natural projection to the first component of S. Then the set
Ap(Si1,n,) is a homogeneous subset of S.

Proof. Define the map ¢ : k[zo, ..., x,] —> k[t] such that z; — ™ for 0 < i < p. Then,
k[S)] = Mzl - Fyom [11], we have a minimal generating set (say B) of Ker(¢) such that

ker(¢)
one term of each non-homogeneous element of B is divisible by x,. Hence, the result follows
from [18, Proposition 3.9]. O

Lemma 4.4. Let Sy be the natural projection to the first component of S and s € Ap(Sy, n,).
If s =3P A\ini = >0 ANin; has two expressions in S, then

p p
S Nlp—i)d =Y X(p—i)d.
i=0 i=0
Proof. Since

p p
=0 1=0

we get

1=0 i=0 i=0 i=0

By Lemma 4.3, we have Y ¢ X; = >""_ A;. Thus, we have

=0 "‘¢°

D_Ailpd) = D Nilid) = 3 Xi(pd) = Y Xi(id).

Therefore, we get
p p

Z Ai(p — i)d = Z Ai(p —i)d.

O

Theorem 4.5. Suppose p > 2. Let S = ((0,n,), (no,n, — no), (n1,n, —n1),..., (np_1,my —
np-1), (ny,0)) be an affine semigroup in N?, where ng,ny,...,n, is a minimal arithmetic
sequence of positive integers, i.e., for i € [1,p|, n; = ng +id for some positive integer d, and
ged(ng, na,...,n,) = 1. Write ng =ap+b, 0 < b < p, then we have the following:

(1) If b =0, then the derivation module Dery(k[S]) is mimimally generated by

9, 0 0 5 0
-~ tanp+d (d-1)(np—1) ¥ t— tanpfnp,ﬂrl d(np—i) ¥ 1<i<p—1%
{“au’ " ou’ ot " ot [1=isp
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(2) If b =1, then the derivation module Dery(k[S]) is mimimally generated by

0 o ,0 e,
-~ tanp—l-d (d=1)(np—1) ¥ — tanp—np_i—i-l d(np—i) ¥ 1<i< )
{uﬁu’ N ou’ Ot N ot [lsisp

(3) If b # 0,1, then the derivation module Dery(k[S]) is mimimally generated by

0 o 0 A o,
- t(a+1)np+d (d=1)(np—1) ¥ — tanp+zd+1 d(np—1i) ¥ 1<i<b-1%.
{“au’ " ouw ot G IS

Proof. Let S7 and S be the numerical semigroups corresponding the natural projections to
the first and second components of S respectively. Then we have PF(Sy) = {(d — 1)n, — d}.
Also by [10, Theorem 3.1}, we can write the following formulas for PF(S;).
If b =0, then
PF(S;) ={ang+4ld—ng | (a—1p+1<{l<ap—1}
={(a—1)n,+id |1 <i<p-—1}
={an, —n,_; |1 <i<p—1}.
If b=1, then

PF(Sy) ={ang+4d—ng | (a—1)p+1 <1l <ap}
={an, —n,_; | 1 <i<p}.
£ 40,1, then

PF(S)) ={(a+1)ng+4ld—ng|ap+1<{L<ap+b—1}
={an, +id |1 <i<b—1}.

an, +d it b=0,1

d a=(d—1)n,—d
@+, +d if bpo1 M a=@=Ln

Now set § = {

Also set, for i € I,

5 {cmp—np_i if b=0,1

d z:d —.,
an, +id  if b£0,17 (np =)

where

[1,p—1] if b=0;
I=<[1,p if b=1;
[1,b—1] if b#£0,L

Since k[S] is Cohen-Macaulay, to prove (5, «)+(n,n,—n) € S, for each n € {0,ng, ..., np_1}
and (d;,7v:) + (n,n, —n) € S, for each i € I, n € {ng,ny,...,n,}, is equivalent to prove that
(B, @)+ (n,n,—n) € (S1xS2)NG(S), for each n € {0,ng,...,n,_1} and (&;,7:)+(n,n,—n) €
(S1x S2)NG(S), for each i € I, n € {ng,ny,...,n,}, where G(S) is the group generated by
S in Z2.

Now, observe that § € S; and since o = F(S;), we have o« + n, —n € Sy, for each
n € {0,ng,...,np_1}. Therefore, we have (8,a) + (n,n, —n) € S; x Sy, for each n €
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{0,n9,...,np—1}. Also, if b= 0, 1, we have
f+a+n+n,—n=an,+d+ (d—1)n, —d+n, = (a+ d)n,,
and if b # 0,1, we have
B+a+n+n,—n=(a+1)n,+d+(d—1)n, —d+n, = (a+d+ 1)n,.

Therefore by [2, Lemma 4.1}, we have (3, v)+(n,n,—n) € G(S5), for eachn € {0,ng, ..., np_1}.
Now, since ¢; € PF(S;), we have ¢; +n € Sy, for all i,n. Also, we have

Yi+n,—n=dn, —i)+n,—n=(d—1)n, —d+ny__1)+np, —n
= F(S2) + np_(i—1) +np — n.
Therefore, we have (&;,7;) + (n,n, —n) € (S1 x Sz), for each i € I, n € {ng,n1,...,n,}.
Also, if b =0, 1, we have
O +v+n+n,—n=an, —ny_; +d(n, —i)+n, = (a+d)n,,
and if b #£ 0, 1, we have
di+vi+n+n,—n=an,+id+d(n,—1i) +n, = (a+d+ 1)n,.

Therefore by [2, Lemma 4.1], we have (6;,7;) + (n,n, — n) € G(S) for each i € I, n €
{Tbo, Ny, ... ,np}.

To complete the proof, it is sufficient to prove that § and ~;’s are least positive integers
such that (5, a)+(n,n,—n) € S, for each n € {0,no,...,n,_1} and (;, v;) +(n,n, —n) € S,
for each i € I, n € {ng,nq,...,n,}. Suppose b # 0, 1, we have

a+n,=(d—1n,—d+n,=dn,—d=d(ng+pd) —d= (a+d)pd+ (b —1)d.
If there exist /5 such that (5, )+ (0,n,) € S, then we get
B>(a+d)ng+no+ (p—>b+1)d>ang+dng+n, — (b—1)d
> ang +dap +ny +d
> (a+1)n, +d.
Thus, if b # 0,1 then § = (a + 1)n, + d is minimal satisfying the required properties. Now,
suppose b € 0,1, then we have
a+n,=(d—-1n,—d+n,=(a+d—1)pd+ (p—1)d if b=0,
and
a+n,=(d—-1n,—d+n,=(a+d)pd if b=1.
If there exist 5 such that (5, )+ (0,n,) € S, then we get
B>(a+d—1)ng+mny+d>ang+dng+d>alng+pd) +d if b=0,
and
B> (a+dng>ang+d(ap+1) > a(ng+pd)+d if b=1.

Thus, if b € {0, 1} then § = an, +d is minimal satisfying the required properties. Now, since
we have §; € PF(S;) for all ¢ € I, then 6; +n, € Ap(Si,n,) for all i € I. Suppose b € {0, 1},
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we have
8 +np = any, —np_; +ny, = a(ng + pd) —ng — (p — i)d + ng + pd
= (a+d— 1)ng+ apd + id + ng — nod
=(a+d—1)ng+id+ ng— bd
=(a+d—1)ng+n;y.
If there exist ; such that (d;,7;) + (n,,0) € S, then by Lemma 4.4, we get
v > (a+d—1)pd+ pd — (i — b)d > (a + d)pd — id + bd
> (a + d)pd — id + nod — apd
> d(ng + pd) — id.
Thus, if b € {0,1} then v; = d(n, — ¢) is minimal satisfying the required properties. Now,
suppose b # 0, 1. Therefore, we have
8; +nyp = any, +id 4+ n, = a(ng + pd) +id + ny + pd
= (a+ d)ng + ng + id — (ng — ap)d + pd
=(a+dng+no+ (p+i—10)d
= (a+ d)ng + npti—yp.
If there exist ; such that (d;,7;) + (n,,0) € S, then by Lemma 4.4, we get
v > (a+d)pd+pd— (p+i—0b)d> (a+d)pd —id + bd
> (a+ d)pd — id + nod — apd
> d(ng + pd) — id.
Thus, if b # 0, 1, then also v; = d(n, — i) is minimal satisfying the required properties. This
completes the proof. O

Example 4.6. Let S = ((0,23), (11,12), (13,10), (15,8), (17,6), (19, 4), (21,2), (23,0)), then
S1 = (11,13,15,17,19,21,23) and Sy = (2,23). Here we have ny = 11 and p = 6, therefore
we get a = 1, b = 5. Therefore, we have PF(S7) = {25,27,29,31} and PF(S5;) = {21}. In
the notation of proof of Theorem 4.5, we have d; = 25, d, = 27, 93 = 29, o, = 31. Note that

S 4+ng=2-11+2-13=3-11+ 15,
0g+ng=11+3-13=2-11+134+15=3-11+ 17,
034+ng=4-13=1142-13+15=2-11+2-15=2-11+134+17=3-11+ 19,
O04+ng = 3-13+15 = 11+13+2-15 = 114213417 = 2-114+154+17 = 2-11+13+19 = 3-11+21,
are the only factorizations of d; + ng, 09 + ng, 03 + ng, 04 + ng respectively. Also note that

L(6; +ng) = 4 for all i € [1,4]. Therefore the minimal choices for v;’s such that (d;,7;) +
(n4,0) € S are

1=2-12+2-10 or 3-12+8,
Yo=1243-10 or 2-124+10+8 or 3-12+46,
v3=4-10 or 12+4+2-104+8 or 2-12+2-8 or 2-12410+6 or 3-12+4,
Y4 = 31048 or 1241042-8 or 1242-10+46 or 2-12484+6 or 2-124+10+4 or 3-1242.
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In each case, we have y; = 44, v = 42, v3 = 40 and 7, = 38. Further, we observe that
these v;’s satisfy the condition (0;,7;)+(n,neg—n) € S, for each i € [1,4], n € {ng,n1,...,n}.
Now, since a = 21, we have a + ng = 44. Observe that 48 is the smallest natural number
such that (48, a) + (0,n6) = (48,44) € S. Also, observe that § = 48 satisfies the property
that (8, a) 4+ (n,ng —n) € S for all n € {ng,n1,...,ns}. Therefore, the set

8 48 22 a a 26 44a 28 42a 30 40a 32 388
{(9ut alar T a T  a t

forms a minimal generating set for Dery(k[S]).

5. HILBERT-KUNZ MULTIPLICITY

Let R be a d-dimensional graded k-algebra, with homogeneous maximal ideal m. Let M
be a finite R-module and ¢ = (x1, 9, ..., z,) be a homogeneous m-primary ideal of R, then
the Hilbert-Kunz multiplicity is defined by

Cr(M/q™ M
6HK(Q7 M) = lim Lg)7
n—o0 n
where ¢ = (27, 23,...,2"). In general, it is not clear that this quantity is well defined.
If char(k) = p > 0, then for n = p°, lim, tn(M /g7 1M) always exists (see [9]). If ¢ = m,

pe
then we denote egk(m, R) by enk(R). In this section, we give an explicit formula for the
Hilbert-Kunz multiplicity of the co-ordinate ring of the projective monomial curve defined

by ni,...,n,, such that n; < ny <--- <n, and ged(ny,no,...,n,) = 1.

Theorem 5.1. Let S = ((0,n,), (n1,n, — n1), (na,ny — na), ..., (Np—1,np — np_1), (n,,0))
be an affine semigroup in N?, where ny < ny < -+ < n, and ged(ny,na,...,n,) = 1. Put
ng = 0. Then the Hilbert-Kunz multiplicity of k[S] is

P

enk (k[S]) = 1 + nip (Z(nr —1)(n, — nr1)> .

r=1

Proof. Let G be the group generated by S in Z?. Then G is a free Z-module of rank 2. By
2, Lemma 4.1], G has a basis {(0,n,), (1, —1)}. Let {(1,0), (0,1)} be the canonical basis of
Z? as Z-module. Then we have

(0,n,) =0-(1,0) +n,(0,1) and (1,—1)=(1,0)—(0,1).

Therefore, the cardinality of Z—2 is finite and equal to the modulus of the determinant of the

matrix [(1) 211 Therefore, we have |Z | = ny.

Let J denote the ideal (z"»,x™ y™ =™ ... g"v-1y"™ -1 y") in k[z,y|. Observe that the
radical ideal of J is the maximal homogeneous ideal of k[z,y]. Therefore, the length of
klz,y] klz y]

=4 is finite and equal to the dim;=5* as a k-vector space. Let B be the basis of @
as k-vector space. Then by [14, Theorem 39.6], observe that B = B U |J'_, B,, where
B={l,y,9% - ,y™ '} and for r € [1,p],

Br:{xiyjllgignr—l, np—nrgjgnp—nr,l—l}.
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The cardinality of B is n, and the cardinality of B, is (n,—1)(n, —n,_1), for each r € [1, p].
Therefore, the length of @ is

b (1) =+ (Zm - 1)(n, - n>) .

r=1

Now, the result follows from [4, Corollary 2.3]. O

Corollary 5.2. Let S = ((0,n,), (no,n, — no), (N1,np —n1), ..., (Np—1,np — Np_1), (1, 0)),
where ng,nq,...,ny, s a minimal arithmetic sequence of positive integers, such that ny <
ne < ...<n, and ged(ng,ny,...,ny,) = 1. Then the Hilbert-Kunz multiplicity of k[S] is
p(p + 1)d?

EHK (/{[S]) =Ny + 2np

Y

where d is the common difference.

Proof. By Theorem 5.1, we have

e (KS]) = 1+ — (Z(nr—n(nr—m_l))+<n0_1> _ gt dim +na - +my)

no +pd \ <= no + pd
B 2n2 + 2nopd + p(p + 1)d?
B 2(no + pd)
O

Example 5.3. Let A = k[23, 2%y, 2y% v°] be the co-ordinate ring of the twisted cubic
curve in the projective space P3. The affine semigroup parametrizing this curve is S =
((0,3),(1,2),(2,1),(3,0)). Therefore, by Corollary 5.2, egk(A) = 2.

Example 5.4. Let S = ((0,19),(7,12),(10,9),(13,6), (16,3),(19,0)). Therefore, in the

notation of Corollary 5.2, we have ng = 7, p = 4 and d = 3. Hence epk (k[S]) = 7+ golg s,

Example 5.5. Let A = k[z*, 23y, 733,
the afﬁne semigroup S = ) (1,3

y*]. Then it will correspond to the semigroup ring of

0, (3,
ST

(O 1+2-243-1)= .

) 1),(4,0)). Therefore, by Theorem 5.1, egx(A) =
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