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Abstract. Let n0, n1, . . . , np be a sequence of positive integers such that n0 < n1 < · · · <
np and gcd(n0, n1, . . . , np) = 1. Let S = ⟨(0, np), (n0, np−n0), . . . , (np−1, np−np−1), (np, 0)⟩
be an affine semigroup in N2. The semigroup ring k[S] is the co-ordinate ring of the projective

monomial curve in the projective space Pp+1
k , which is defined parametrically by

x0 = vnp , x1 = un0vnp−n0 , . . . , xp = unp−1vnp−np−1 , xp+1 = unp .

In this article, we consider the case when n0, n1, . . . , np forms an arithmetic sequence, and
give an explicit set of minimal generators for the derivation module Derk(k[S]). Further,
we give an explicit formula for the Hilbert-Kunz multiplicity of the co-ordinate ring of a
projective monomial curve.

1. Introduction

Let k be a field of characteristic 0, and (R,m) be a local (graded) k-algebra. Finding
an explicit set of minimal generators for the derivation module Derk(R) of (R,m) is an
important problem in the literature, where Derk(R) denote the R-module of k-derivations of
R. Previously, this problem has been studied by many authors, for reference see ( [6], [12],
[13], [17], [19]).

Let r ≥ 1, and S be an affine semigroup in Nr generated by a0, a1, . . . , ap. The semigroup
ring k[S] := ⊕s∈Skt

s of S is a k-subalgebra of the polynomial ring k[t1, . . . , tr], where t1, . . . , tr
are indeterminates and ts =

∏r
i=1 t

si
i for all s = (s1, . . . , sr) ∈ S. If r = 1, then S is

a submonoid in N, and the semigroup ring k[S] is isomorphic to a numerical semigroup
ring. When S is a numerical semigroup, Kraft in [6], proved that the derivation module
Derk(k[S]) is minimally generated by the set {tα+1 ∂

∂t
| α ∈ PF(S) ∪ {0}}, where PF(S)

denotes the set of pseudo-Frobenius elements of S. For r ≥ 2, if S is an affine semigroup in
Nr, then Tamone and Molinelli ([7], [8]), give the structure of k-derivations of k[S] for some
special type of semigroups. In [7], they consider the affine semigroup S = ⟨(0, np), (n0, np −
n0), . . . , (np−1, np−np−1), (np, 0)⟩ in N2, where n0, n1, . . . , np is a sequence of positive integers
such that n0 < n1 < · · · < np and gcd(n0, n1, . . . , np) = 1. For i = 1, 2, let S1 and S2 be
the natural projections onto first and second component of S. With the assumption on
the generators, note that S1 and S2 are numerical semigroups. For these type of affine
semigroups, when k[S] is Cohen-Macaulay, they give the structure of the derivations of the
derivation module Derk(k[S]) using the set of pseudo-Frobenius elements of S1 and S2 (see
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2.6). In this article, we give the explicit generators of the derivation module of the co-
ordinate ring of the projective monomial curve defined by an arithmetic sequence using the
structures of derivations given by Tamone and Molinelli [7].

Now, we summarize the contents of the paper. In this article, we consider the affine
semigroup S = ⟨(0, np), (n0, np−n0), . . . , (np−1, np−np−1), (np, 0)⟩ in N2, where n0, n1, . . . , np

is a sequence of positive integers such that n0 < n1 < · · · < np and gcd(n0, n1, . . . , np) = 1,
and k[S] the semigroup algebra associated to S, which is isomorphic to the co-ordinate ring
of a projective monomial curve in Pp+1

k .
In section 2, we recall some definitions about numerical semigroups and when k[S] is

Cohen-Macaulay, we summarize the structure of the generating set of the derivation module
of k[S] in Theorem 2.6. In section 3, we consider p = 1, i.e the sequence of positive integers
n0, n1 such that n0 < n1 and gcd(n0, n1) = 1. In Theorem 3.1, we give the explicit set
of minimal generators of the derivation module for the co-ordinate ring of the projective
monomial curve in P2

k defined by the positive integers n0 and n1.
In section 4, we consider and the sequence n0, n1, n2, . . . , np, which forms a minimal

arithmetic sequence and consider the affine semigroup S = ⟨(0, np), (n0, np − n0), (n1, np −
n1), . . . , (np−1, np−np−1), (np, 0)⟩. From [1], we know that k[S] is Cohen-Macaulay. In Propo-
sition 4.1, we prove that µ(Derk(k[S]m)) = r + 3, where r is the Cohen-Macaulay type of
k[S] and m is the maximal homogeneous ideal of k[S]. In Corollary 4.2, for n0 = ap + b,
0 ≤ b < p, we write the formula for µ(Derk(k[S]m)), which is,

µ(Derk(k[S]m)) =


4 if p = 1;

p+ 2 if p ≥ 2, b = 0;

p+ 3 if p ≥ 2, b = 1;

b+ 2 if p ≥ 2, 1 < b < p.

In Theorem 4.5, we give an explicit set of minimal generators for Derk(k[S]). In section 5, we
compute the Hilbert-Kunz multiplicity of the semigroup algebra k[S]. In Theorem 5.1, we
prove that the Hilbert-Kunz multiplicity of k[S] is equal to 1+ 1

np
(
∑p

r=1(nr − 1)(nr − nr−1)),

where n0 = 0. It is interesting to note that in the case of semigroup algebras, the computation
of Hilbert-Kunz multiplicity is independent of the characteristic of the base field.

2. Preliminaries

Throughout the article, Z and N denote the sets of integers and non-negative integers
respectively.

Definition 2.1. Let S be a submonoid of N such that N \ S is finite, then S is called a
numerical semigroup. Equivalently, there exist n0, . . . , np ∈ N such that gcd(n0, . . . , np) = 1
and

S = ⟨n0, . . . , np⟩ =

{
p∑

i=0

λini | λi ∈ N,∀i

}
.

Since N \S is finite, the largest number in N \S is called the Frobenius number of S, and
it is denoted by F (S).

Definition 2.2. Let S be a numerical semigroup. For any s ∈ S, if s =
∑p

i=0 λini is the
unique expression for s in S, then we say s has unique factorization in S. In other words,
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we say s has a unique factorization in S if given any two expressions of s, s =
∑p

i=0 λini

and s =
∑p

i=0 λ
′
ini, we have λi = λ′

i for all i ∈ [0, p].

Given 0 ̸= s ∈ S, the set of lengths of s in S is defined as

L(s) =

{
p∑

i=0

λi | s =
p∑

i=0

λini, λi ∈ N

}
.

Definition 2.3. A subset T ⊆ S is called homogeneous if either it is empty or L(s) is
singleton for all 0 ̸= s ∈ T .

Definition 2.4. Let S be a numerical semigroup and a be a non-zero element of S. The set
Ap(S, a) = {s ∈ S | s− a /∈ S} is called the Apéry set of S with respect to a.

Definition 2.5. Let S be a numerical semigroup. An element f ∈ Z \ S is called a pseudo-
Frobenius number if f + s ∈ S for all s ∈ S \ {0}. The set of pseudo-Frobenius numbers of S
is denoted by PF(S). Note that F (S) ∈ PF(S) and F (S) is the maximum element of PF(S).

The cardinality of the set of pseudo-Frobenius elements is known as the type of the nu-
merical semigroup S, which is equal to the Cohen-Macaulay type of the numerical semigroup
ring k[S]. Let a0, a1, . . . , ap ∈ Nr then

S = ⟨a0, a1, . . . , ap⟩ =

{
p∑

i=0

λiai | λi ∈ N,∀i

}
is called an affine semigroup generated by a0, a1, . . . , ap. For r = 1, affine semigroups cor-
respond to numerical semigroups. Let k be a field, the semigroup ring k[S] := ⊕s∈Skt

s of
S is a k-subalgebra of the polynomial ring k[t1, . . . , tr], where t1, . . . , tr are indeterminates
and ts =

∏r
i=1 t

si
i , for all s = (s1, . . . , sr) ∈ S. The semigroup ring k[S] = k[ta0 , ta1 , . . . , tap ]

of S can be represented as a quotient of a polynomial ring using a canonical surjection
π : k[x0, x1, . . . , xp] → k[S], given by π(xi) = tai for all i = 0, 1, . . . , p.

Let n0, n1, . . . , np be a sequence of positive integers such that n0 < n1 < · · · < np. Let C
be a projective monomial curve in the projective space Pp+1

k , defined parametrically by

x0 = vnp , x1 = un0vnp−n0 , . . . , xp = unp−1vnp−np−1 , xp+1 = unp .

Let k[C] denote the co-ordinate ring of C. Then k[C] = k[S], where S = ⟨(0, np), (n0, np −
n0), (n1, np − n1), . . . , (np−1, np − np−1), (np, 0)⟩ is an affine semigroup in N2. For such affine
semigroup rings, we recall the following theorem from [7], which gives a set of generators of
the derivation module Derk(k[S]).

Theorem 2.6. [7] Let S = ⟨(0, np), (n0, np −n0), (n1, np −n1), . . . , (np−1, np −np−1), (np, 0)⟩
be an affine semigroup in N2, where n0 < n1 < · · · < np and gcd(n0, n1, . . . , np) = 1. Let
S1 and S2 be the numerical semigroups corresponding the natural projections to the first and
second components of S respectively. If the semigroup ring k[S] is Cohen-Macaulay then the
derivation module Derk(k[S]) is generated by D1 ∪{u ∂

∂u
}∪D2 ∪{t ∂

∂t
}, where D1 and D2 are

defined below.

(1) If S2 ̸= N, then D1 = {tβuα+1 ∂
∂u

| α ∈ PF(S2)}, and β is the least positive integer
such that the pair (β, α) satisfy

(β, α) + (n, np − n) ∈ S for each n ∈ {0, n0, . . . , np−1}.
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(2) If S2 = N, then D1 = {t1+cnp ∂
∂u
}, and c is the least non-negative integer such that

the pair (1 + cnp,−1) satisfies

(1 + cnp,−1) + (n, np − n) ∈ S for each n ∈ {0, n0, . . . , np−1}.

(3) If S1 ̸= N, then D2 = {tδ+1uγ ∂
∂t

| δ ∈ PF(S1)}, and γ is the least positive integer
such that the pair (δ, γ) satisfy

(δ, γ) + (n, np − n) ∈ S for each n ∈ {n0, . . . , np}.

(4) If S1 = N, then D2 = {u1+enp ∂
∂t
}, and e is the least non-negative integer such that

the pair (−1, 1 + enp) satisfies

(−1, 1 + enp) + (n, np − n) ∈ S for each n ∈ {n0, . . . , np}.

3. Derivations in P2
k

In this section, we give the explicit set of minimal generators of the derivation module for
the co-ordinate ring of a projective monomial curve defined by the positive integers n0 and
n1, such that n0 < n1 and gcd(n0, n1) = 1.

Proposition 3.1. Let S = ⟨(0, n1), (n0, n1 − n0), (n1, 0)⟩ be an affine semigroup in N2, such
that n0 < n1 and gcd(n0, n1) = 1. Then we have the following:

(1) If S1, S2 ̸= N, then the derivation module Derk(k[S]) is mimimally generated by{
t
∂

∂t
, tn0(n1−1)−n1+1u(n1−1)(n1−n0)

∂

∂t
, u

∂

∂u
, tn0(n1−1)u(n1−1)(n1−n0)−n1+1 ∂

∂u

}
.

(2) If S1 = N and S2 ̸= N, then the derivation module Derk(k[S]) is mimimally generated
by {

t
∂

∂t
, u1+(n1−2)n1

∂

∂t
, u

∂

∂u
, tn1−1u(n1−1)(n1−2) ∂

∂u

}
.

(3) If S1 ̸= N and S2 = N, then the derivation module Derk(k[S]) is mimimally generated
by {

t
∂

∂t
, tn0(n1−1)−n1+1un1−1 ∂

∂t
, u

∂

∂u
, tn0(n1−1) ∂

∂u

}
.

(4) If S1 = S2 = N, then the derivation module Derk(k[S]) is mimimally generated by{
t
∂

∂t
, u

∂

∂t
, u

∂

∂u
, t

∂

∂u

}
.

Proof. Let S1 and S2 be the projections of S to the first and the second component of S,
then we have S1 = ⟨n0, n1⟩ and S2 = ⟨n1 − n0, n1⟩. We will prove each case separately by
using Theorem 2.6.

Case 1. Suppose S1, S2 ̸= N. From [15, Proposition 2.13], we have PF(S1) = {n0(n1 −
1)− n1} and PF(S2) = {(n1 − 1)(n1 − n0)− n1}. Let β ∈ S1 be such that (β, (n1 − 1)(n1 −
n0) − n1) + (0, n1) = (β, (n1 − 1)(n1 − n0)) ∈ S. Note that (n1 − 1)(n1 − n0) has only one
factorization in S2. Therefore, the possible factorization of (β, (n1 − 1)(n1 − n0)) in S will
be

(β, (n1 − 1)(n1 − n0)) = (n1 − 1)(n0, n1 − n0) + λ(n1, 0), for some λ ≥ 0.
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Therefore, we have β = (n1 − 1)n0 + λn1 ≥ n0(n1 − 1). Now for β = n0(n1 − 1), we have

(n0(n1 − 1), (n1 − 1)(n1 − n0)− n1) + (0, n1) = (n0(n1 − 1), (n1 − 1)(n1 − n0))

= (n1 − 1)(n0, n1 − n0)

and

(n0(n1 − 1), (n1 − 1)(n1 − n0)− n1) + (n0, n1 − n0) = (n0n1, n1(n1 − n0 − 1))

= n0(n1, 0) + (n1 − n0 − 1)(0, n1).

Now, let γ ∈ S2 be such that (n0(n1 − 1) − n1, γ) + (n1, 0) = (n0(n1 − 1), γ) ∈ S. Note
that n0(n1 − 1) has only one factorization in S1. Therefore, the only possible factorization
of (n0(n1 − 1), γ) in S is

(n0(n1 − 1), γ) = (n1 − 1)(n0, n1 − n0) + λ(0, n1) for some λ ≥ 0.

Hence, we have γ = (n1−1)(n1−n0)+λn1 ≥ (n1−1)(n1−n0). Now for γ = (n1−1)(n1−n0),
we have

(n0(n1 − 1)− n1, (n1 − 1)(n1 − n0)) + (n0, n1 − n0) = (n0n1 − n1, n1(n1 − n0))

= (n0 − 1)(n1, 0) + (n1 − n0)(0, n1);

and

(n0(n1 − 1)− n1, (n1 − 1)(n1 − n0)) + (n1, 0) = (n0(n1 − 1), (n1 − 1)(n1 − n0))

= (n1 − 1)(n0, n1 − n0).

Case 2. Suppose S1 = N. Therefore, we must have n0 = 1. Let e be a non-negative integer
such that (−1, 1 + en1) + (n1, 0) = (n1 − 1, 1 + en1) ∈ S. Observe that n1 − 1 has only one
factorization in S1. Therefore the only possible factorization of (n1 − 1, 1 + en1) in S is

(n1 − 1, 1 + en1) = (n1 − 1)(1, n1 − 1) + λ(0, n1), for some λ ≥ 0.

Therefore, we have 1 + en1 ≥ (n1 − 1)2, which implies that e ≥ n1 − 2. Now for e = n1 − 2,
we have

(−1, 1 + (n1 − 2)n1) + (n1, 0) = (n1 − 1, (n1 − 1)2) = (n1 − 1)(1, n1 − 1);

and

(−1, 1 + (n1 − 2)n1) + (1, n1 − 1) = (0, n1(n1 − 1)) = (n1 − 1)(0, n1).

Case 3. Suppose S2 = N. Therefore we must have n1 − n0 = 1. Let c be a non-negative
integer such that (1 + cn1,−1) + (0, n1) = (1 + cn1, n1 − 1) ∈ S. Observe that n1 − 1 has
only one factorization in S2. Therefore the only possible factorization of (1 + cn1, n1 − 1) in
S is

(1 + cn1, n1 − 1) = (n1 − 1)(n0, 1) + λ(n1, 0), for some λ ≥ 0.

Therefore, we have 1 + cn1 ≥ (n1 − 1)n0 = n1(n0 − 1) + 1. This implies that c ≥ n0 − 1.
Now for c = n0 − 1, we have

(1 + (n0 − 1)n1,−1) + (0, n1) = (1 + (n0 − 1)(n0 + 1), (n1 − 1)) = (n1 − 1)(n0, 1);

and

(1 + (n0 − 1)n1,−1) + (n0, 1) = (n0n1, 0) = n0(n1, 0).
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Case 4. Suppose S1 = N = S2. In this case, the only possibility is S = ⟨(0, 2), (1, 1), (2, 0)⟩.
From the arguements of cases 2 and 3, it is easy to observe that the derivation module
Derk(k[S]) is minimally generated by

{
t ∂
∂t
, u ∂

∂t
, u ∂

∂u
, t ∂

∂u

}
. □

Example 3.2. Let S = ⟨(0, 3), (1, 2), (3, 0)⟩. Here S1 = N and S2 ̸= N. The derivation
module Derk(k[S]) is minimally generated by

{
t ∂
∂t
, u4 ∂

∂t
, u ∂

∂u
, t2u2 ∂

∂u

}
.

Example 3.3. Let S = ⟨(0, 9), (5, 4), (9, 0)⟩. Here S1 ̸= N ̸= S2. The derivation module
Derk(k[S]) is minimally generated by

{
t ∂
∂t
, t32u32 ∂

∂t
, u ∂

∂u
, t40u24 ∂

∂u

}
.

4. Derivations in Pp+1
k

For a numerical semigroup S, it is well known that µ(Derk(k[S]m)) = r+1, where r is the
Cohen-Macaulay type of k[S] and m is the maximal homogeneous ideal of k[S]. Such a nice
relation between µ(Derk(k[S]m)) and Cohen-Macaulay type of k[S] does not hold in general
for the affine semigroups (see [7, Remark 3.6]).

We now assume that n0, n1, . . . , np is an arithmetic sequence of positive integers i.e., for
a fixed positive integer d, ni = n0 + id for i ∈ [0, p], such that gcd(n0, n1, . . . , np) = 1.
Also assume that the sequence n0, n1, . . . , np forms a minimal generating set for a numerical
semigroup, and we say that n0, n1, . . . , np is a minimal arithmetic sequence. Now define

S = ⟨(0, np), (n0, np − n0), (n1, np − n1), . . . , (np−1, np − np−1), (np, 0)⟩,

an affine semigroup in N2. We will denote the natural projections to the first and second
components of S by S1 and S2 respectively. These notations will be followed throughout the
section.

From the [1, Corollary 3.2], we know that k[S] is Cohen-Macaulay. The following Propo-
sition gives a nice relation between µ(Derk(k[S]m)) and Cohen-Macaulay type of k[S].

Proposition 4.1. Let S = ⟨(0, np), (n0, np−n0), (n1, np−n1), . . . , (np−1, np−np−1), (np, 0)⟩ be
an affine semigroup in N2, where n0, n1, . . . , np is a minimal arithmetic sequence of positive
integers such that gcd(n0, n1, . . . , np) = 1. Then µ(Derk(k[S]m)) = r + 3, where r is the
Cohen-Macaulay type of k[S] and m is the maximal homogeneous ideal of k[S].

Proof. Since n0 < n2 < . . . < np is an arithmetic sequence of positive integers, then for a
fixed positive integer d, we have ni = n0+ id for i ∈ [0, p]. Since S1 and S2 are the numerical
semigroups corresponding the natural projections to the first and second components of S
respectively, we have S1 = ⟨n0, n1, . . . , np⟩ and S2 = ⟨d, np⟩. For i = 1, 2, let ri be the
Cohen-Macaulay type of Si. By [16, Corollary 4.7], we have r1 = r and by [15, Proposition
2.13], we get r2 = 1. Therefore by [7, Corollary 3.5], we have

µ(Derk(k[S]m)) = r1 + r2 + 2 = r + 3. □

Corollary 4.2. With the assumptions of Proposition 4.1 and n0 = ap + b, 0 ≤ b < p, we
have

µ(Derk(k[S]m)) =


4 if p = 1;

p+ 2 if p ≥ 2, b = 0;

p+ 3 if p ≥ 2, b = 1;

b+ 2 if p ≥ 2, 1 < b < p.
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Proof. Since the case p = 1 reduces to the Theorem 3.1, we have µ(Derk(k[S]m)) = 4 if p = 1.
We now assume that p ≥ 2. Therefore by [10, Theorem 3.1], the Cohen-macaulay type of S1

is

r1 =


p− 1 if b = 0;

p if b = 1;

b− 1 if 1 < b < p.

Now, the result follows from Proposition 4.1. □

Lemma 4.3. Let S1 be the natural projection to the first component of S. Then the set
Ap(S1, np) is a homogeneous subset of S1.

Proof. Define the map ϕ : k[x0, . . . , xp] −→ k[t] such that xi → tni for 0 ≤ i ≤ p. Then,

k[S1] ∼= k[x0,...,xp]

ker(ϕ)
. From [11], we have a minimal generating set (say B) of Ker(ϕ) such that

one term of each non-homogeneous element of B is divisible by xp. Hence, the result follows
from [18, Proposition 3.9]. □

Lemma 4.4. Let S1 be the natural projection to the first component of S and s ∈ Ap(S1, np).
If s =

∑p
i=0 λini =

∑p
i=0 λ

′
ini has two expressions in S, then

p∑
i=0

λi(p− i)d =

p∑
i=0

λ′
i(p− i)d.

Proof. Since

s =

p∑
i=0

λini =

p∑
i=0

λ′
ini,

we get
p∑

i=0

λin0 +

p∑
i=0

λi(id) =

p∑
i=0

λ′
in0 +

p∑
i=0

λ′
i(id).

By Lemma 4.3, we have
∑p

i=0 λi =
∑p

i=0 λ
′
i. Thus, we have

p∑
i=0

λi(pd)−
p∑

i=0

λi(id) =

p∑
i=0

λ′
i(pd)−

p∑
i=0

λ′
i(id).

Therefore, we get
p∑

i=0

λi(p− i)d =

p∑
i=0

λ′
i(p− i)d.

□

Theorem 4.5. Suppose p ≥ 2. Let S = ⟨(0, np), (n0, np − n0), (n1, np − n1), . . . , (np−1, np −
np−1), (np, 0)⟩ be an affine semigroup in N2, where n0, n1, . . . , np is a minimal arithmetic
sequence of positive integers, i.e., for i ∈ [1, p], ni = n0 + id for some positive integer d, and
gcd(n0, n1, . . . , np) = 1. Write n0 = ap+ b, 0 ≤ b < p, then we have the following:

(1) If b = 0, then the derivation module Derk(k[S]) is mimimally generated by{
u
∂

∂u
, tanp+du(d−1)(np−1) ∂

∂u
, t

∂

∂t
, tanp−np−i+1ud(np−i) ∂

∂t
| 1 ≤ i ≤ p− 1

}
.
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(2) If b = 1, then the derivation module Derk(k[S]) is mimimally generated by{
u
∂

∂u
, tanp+du(d−1)(np−1) ∂

∂u
, t

∂

∂t
, tanp−np−i+1ud(np−i) ∂

∂t
| 1 ≤ i ≤ p

}
.

(3) If b ̸= 0, 1, then the derivation module Derk(k[S]) is mimimally generated by{
u
∂

∂u
, t(a+1)np+du(d−1)(np−1) ∂

∂u
, t

∂

∂t
, tanp+id+1ud(np−i) ∂

∂t
| 1 ≤ i ≤ b− 1

}
.

Proof. Let S1 and S2 be the numerical semigroups corresponding the natural projections to
the first and second components of S respectively. Then we have PF(S2) = {(d− 1)np − d}.
Also by [10, Theorem 3.1], we can write the following formulas for PF(S1).

If b = 0, then

PF(S1) = {an0 + ℓd− n0 | (a− 1)p+ 1 ≤ ℓ ≤ ap− 1}
= {(a− 1)np + id | 1 ≤ i ≤ p− 1}
= {anp − np−i | 1 ≤ i ≤ p− 1} .

If b = 1, then

PF(S1) = {an0 + ℓd− n0 | (a− 1)p+ 1 ≤ ℓ ≤ ap}
= {anp − np−i | 1 ≤ i ≤ p} .

If b ̸= 0, 1, then

PF(S1) = {(a+ 1)n0 + ℓd− n0 | ap+ 1 ≤ ℓ ≤ ap+ b− 1}
= {anp + id | 1 ≤ i ≤ b− 1} .

Now set β =

{
anp + d if b = 0, 1

(a+ 1)np + d if b ̸= 0, 1
, and α = (d− 1)np − d.

Also set, for i ∈ I,

δi =

{
anp − np−i if b = 0, 1

anp + id if b ̸= 0, 1
, and γi = d(np − i),

where

I =


[1, p− 1] if b = 0;

[1, p] if b = 1;

[1, b− 1] if b ̸= 0, 1.

Since k[S] is Cohen-Macaulay, to prove (β, α)+(n, np−n) ∈ S, for each n ∈ {0, n0, . . . , np−1}
and (δi, γi) + (n, np − n) ∈ S, for each i ∈ I, n ∈ {n0, n1, . . . , np}, is equivalent to prove that
(β, α)+(n, np−n) ∈ (S1×S2)∩G(S), for each n ∈ {0, n0, . . . , np−1} and (δi, γi)+(n, np−n) ∈
(S1 × S2)∩G(S), for each i ∈ I, n ∈ {n0, n1, . . . , np}, where G(S) is the group generated by
S in Z2.

Now, observe that β ∈ S1 and since α = F (S2), we have α + np − n ∈ S2, for each
n ∈ {0, n0, . . . , np−1}. Therefore, we have (β, α) + (n, np − n) ∈ S1 × S2, for each n ∈
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{0, n0, . . . , np−1}. Also, if b = 0, 1, we have

β + α + n+ np − n = anp + d+ (d− 1)np − d+ np = (a+ d)np,

and if b ̸= 0, 1, we have

β + α + n+ np − n = (a+ 1)np + d+ (d− 1)np − d+ np = (a+ d+ 1)np.

Therefore by [2, Lemma 4.1], we have (β, γ)+(n, np−n) ∈ G(S), for each n ∈ {0, n0, . . . , np−1}.
Now, since δi ∈ PF(S1), we have δi + n ∈ S1, for all i, n. Also, we have

γi + np − n = d(np − i) + np − n = (d− 1)np − d+ np−(i−1) + np − n

= F (S2) + np−(i−1) + np − n.

Therefore, we have (δi, γi) + (n, np − n) ∈ (S1 × S2), for each i ∈ I, n ∈ {n0, n1, . . . , np}.
Also, if b = 0, 1, we have

δi + γi + n+ np − n = anp − np−i + d(np − i) + np = (a+ d)np,

and if b ̸= 0, 1, we have

δi + γi + n+ np − n = anp + id+ d(np − i) + np = (a+ d+ 1)np.

Therefore by [2, Lemma 4.1], we have (δi, γi) + (n, np − n) ∈ G(S) for each i ∈ I, n ∈
{n0, n1, . . . , np}.

To complete the proof, it is sufficient to prove that β and γi’s are least positive integers
such that (β, α)+(n, np−n) ∈ S, for each n ∈ {0, n0, . . . , np−1} and (δi, γi)+(n, np−n) ∈ S,
for each i ∈ I, n ∈ {n0, n1, . . . , np}. Suppose b ̸= 0, 1, we have

α + np = (d− 1)np − d+ np = dnp − d = d(n0 + pd)− d = (a+ d)pd+ (b− 1)d.

If there exist β such that (β, α) + (0, np) ∈ S, then we get

β ≥ (a+ d)n0 + n0 + (p− b+ 1)d ≥ an0 + dn0 + np − (b− 1)d

≥ an0 + dap+ np + d

≥ (a+ 1)np + d.

Thus, if b ̸= 0, 1 then β = (a+ 1)np + d is minimal satisfying the required properties. Now,
suppose b ∈ 0, 1, then we have

α + np = (d− 1)np − d+ np = (a+ d− 1)pd+ (p− 1)d if b = 0,

and

α + np = (d− 1)np − d+ np = (a+ d)pd if b = 1.

If there exist β such that (β, α) + (0, np) ∈ S, then we get

β ≥ (a+ d− 1)n0 + n0 + d ≥ an0 + dn0 + d ≥ a(n0 + pd) + d if b = 0,

and

β ≥ (a+ d)n0 ≥ an0 + d(ap+ 1) ≥ a(n0 + pd) + d if b = 1.

Thus, if b ∈ {0, 1} then β = anp+d is minimal satisfying the required properties. Now, since
we have δi ∈ PF(S1) for all i ∈ I, then δi + np ∈ Ap(S1, np) for all i ∈ I. Suppose b ∈ {0, 1},
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we have

δi + np = anp − np−i + np = a(n0 + pd)− n0 − (p− i)d+ n0 + pd

= (a+ d− 1)n0 + apd+ id+ n0 − n0d

= (a+ d− 1)n0 + id+ n0 − bd

= (a+ d− 1)n0 + ni−b.

If there exist γi such that (δi, γi) + (np, 0) ∈ S, then by Lemma 4.4, we get

γi ≥ (a+ d− 1)pd+ pd− (i− b)d ≥ (a+ d)pd− id+ bd

≥ (a+ d)pd− id+ n0d− apd

≥ d(n0 + pd)− id.

Thus, if b ∈ {0, 1} then γi = d(np − i) is minimal satisfying the required properties. Now,
suppose b ̸= 0, 1. Therefore, we have

δi + np = anp + id+ np = a(n0 + pd) + id+ n0 + pd

= (a+ d)n0 + n0 + id− (n0 − ap)d+ pd

= (a+ d)n0 + n0 + (p+ i− b)d

= (a+ d)n0 + np+i−b.

If there exist γi such that (δi, γi) + (np, 0) ∈ S, then by Lemma 4.4, we get

γi ≥ (a+ d)pd+ pd− (p+ i− b)d ≥ (a+ d)pd− id+ bd

≥ (a+ d)pd− id+ n0d− apd

≥ d(n0 + pd)− id.

Thus, if b ̸= 0, 1, then also γi = d(np − i) is minimal satisfying the required properties. This
completes the proof. □

Example 4.6. Let S = ⟨(0, 23), (11, 12), (13, 10), (15, 8), (17, 6), (19, 4), (21, 2), (23, 0)⟩, then
S1 = ⟨11, 13, 15, 17, 19, 21, 23⟩ and S2 = ⟨2, 23⟩. Here we have n0 = 11 and p = 6, therefore
we get a = 1, b = 5. Therefore, we have PF(S1) = {25, 27, 29, 31} and PF(S2) = {21}. In
the notation of proof of Theorem 4.5, we have δ1 = 25, δ2 = 27, δ3 = 29, δ4 = 31. Note that

δ1 + n6 = 2 · 11 + 2 · 13 = 3 · 11 + 15,

δ2 + n6 = 11 + 3 · 13 = 2 · 11 + 13 + 15 = 3 · 11 + 17,

δ3 + n6 = 4 · 13 = 11 + 2 · 13 + 15 = 2 · 11 + 2 · 15 = 2 · 11 + 13 + 17 = 3 · 11 + 19,

δ4+n6 = 3·13+15 = 11+13+2·15 = 11+2·13+17 = 2·11+15+17 = 2·11+13+19 = 3·11+21,

are the only factorizations of δ1 + n6, δ2 + n6, δ3 + n6, δ4 + n6 respectively. Also note that
L(δi + n6) = 4 for all i ∈ [1, 4]. Therefore the minimal choices for γi’s such that (δi, γi) +
(nd, 0) ∈ S are

γ1 = 2 · 12 + 2 · 10 or 3 · 12 + 8,

γ2 = 12 + 3 · 10 or 2 · 12 + 10 + 8 or 3 · 12 + 6,

γ3 = 4 · 10 or 12 + 2 · 10 + 8 or 2 · 12 + 2 · 8 or 2 · 12 + 10 + 6 or 3 · 12 + 4,

γ4 = 3·10+8 or 12+10+2·8 or 12+2·10+6 or 2·12+8+6 or 2·12+10+4 or 3·12+2.
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In each case, we have γ1 = 44, γ2 = 42, γ3 = 40 and γ4 = 38. Further, we observe that
these γi’s satisfy the condition (δi, γi)+(n, n6−n) ∈ S, for each i ∈ [1, 4], n ∈ {n0, n1, . . . , n6}.
Now, since α = 21, we have α + n6 = 44. Observe that 48 is the smallest natural number
such that (48, α) + (0, n6) = (48, 44) ∈ S. Also, observe that β = 48 satisfies the property
that (β, α) + (n, n6 − n) ∈ S for all n ∈ {n0, n1, . . . , n6}. Therefore, the set{

u
∂

∂u
, t48u22 ∂

∂u
, t

∂

∂t
, t26u44 ∂

∂t
, t28u42 ∂

∂t
, t30u40 ∂

∂t
, t32u38 ∂

∂t

}
forms a minimal generating set for Derk(k[S]).

5. Hilbert-Kunz multiplicity

Let R be a d-dimensional graded k-algebra, with homogeneous maximal ideal m. Let M
be a finite R-module and q = ⟨x1, x2, . . . , xs⟩ be a homogeneous m-primary ideal of R, then
the Hilbert-Kunz multiplicity is defined by

eHK(q,M) = lim
n→∞

ℓR(M/q[n]M)

nd
,

where q[n] = ⟨xn
1 , x

n
2 , . . . , x

n
s ⟩. In general, it is not clear that this quantity is well defined.

If char(k) = p > 0, then for n = pe, lime→∞
ℓR(M/q[p

e]M)
ped

always exists (see [9]). If q = m,

then we denote eHK(m, R) by eHK(R). In this section, we give an explicit formula for the
Hilbert-Kunz multiplicity of the co-ordinate ring of the projective monomial curve defined
by n1, . . . , np, such that n1 < n2 < · · · < np and gcd(n1, n2, . . . , np) = 1.

Theorem 5.1. Let S = ⟨(0, np), (n1, np − n1), (n2, np − n2), . . . , (np−1, np − np−1), (np, 0)⟩
be an affine semigroup in N2, where n1 < n2 < · · · < np and gcd(n1, n2, . . . , np) = 1. Put
n0 = 0. Then the Hilbert-Kunz multiplicity of k[S] is

eHK (k[S]) = 1 +
1

np

(
p∑

r=1

(nr − 1)(nr − nr−1)

)
.

Proof. Let G be the group generated by S in Z2. Then G is a free Z-module of rank 2. By
[2, Lemma 4.1], G has a basis {(0, np), (1,−1)}. Let {(1, 0), (0, 1)} be the canonical basis of
Z2 as Z-module. Then we have

(0, np) = 0 · (1, 0) + np(0, 1) and (1,−1) = (1, 0)− (0, 1).

Therefore, the cardinality of Z2

G
is finite and equal to the modulus of the determinant of the

matrix

[
0 np

1 −1

]
. Therefore, we have |Z2

G
| = np.

Let J denote the ideal ⟨xnp , xn1ynp−n1 , . . . , xnp−1ynp−np−1 , ynp⟩ in k[x, y]. Observe that the
radical ideal of J is the maximal homogeneous ideal of k[x, y]. Therefore, the length of
k[x,y]
J

is finite and equal to the dimk
k[x,y]
J

as a k-vector space. Let B be the basis of k[x,y]
J

as k-vector space. Then by [14, Theorem 39.6], observe that B = B ∪
⋃p

r=1Br, where
B = {1, y, y2, · · · , ynp−1} and for r ∈ [1, p],

Br =
{
xiyj | 1 ≤ i ≤ nr − 1, np − nr ≤ j ≤ np − nr−1 − 1

}
.
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The cardinality of B is np and the cardinality of Br is (nr−1)(nr−nr−1), for each r ∈ [1, p].

Therefore, the length of k[x,y]
J

is

ℓk[x,y]

(
k[x, y]

J

)
= np +

(
p∑

r=1

(nr − 1)(nr − nr−1)

)
.

Now, the result follows from [4, Corollary 2.3]. □

Corollary 5.2. Let S = ⟨(0, np), (n0, np − n0), (n1, np − n1), . . . , (np−1, np − np−1), (np, 0)⟩,
where n0, n1, . . . , np is a minimal arithmetic sequence of positive integers, such that n0 <
n2 < . . . < np and gcd(n0, n1, . . . , np) = 1. Then the Hilbert-Kunz multiplicity of k[S] is

eHK (k[S]) = n0 +
p(p+ 1)d2

2np

,

where d is the common difference.

Proof. By Theorem 5.1, we have

eHK (k[S]) = 1 +
1

n0 + pd

(
p∑

r=1

(nr − 1)(nr − nr−1)

)
+ (n0 − 1)n0 =

n2
0 + d(n1 + n2 + · · ·+ np)

n0 + pd

=
2n2

0 + 2n0pd+ p(p+ 1)d2

2(n0 + pd)
.

□

Example 5.3. Let A = k[x3, x2y, xy2, y3] be the co-ordinate ring of the twisted cubic
curve in the projective space P3. The affine semigroup parametrizing this curve is S =
⟨(0, 3), (1, 2), (2, 1), (3, 0)⟩. Therefore, by Corollary 5.2, eHK(A) = 2.

Example 5.4. Let S = ⟨(0, 19), (7, 12), (10, 9), (13, 6), (16, 3), (19, 0)⟩. Therefore, in the
notation of Corollary 5.2, we have n0 = 7, p = 4 and d = 3. Hence eHK(k[S]) = 7+ 20·9

2·19 = 223
19
.

Example 5.5. Let A = k[x4, x3y, xy3, y4]. Then it will correspond to the semigroup ring of
the affine semigroup S = ⟨(0, 4), (1, 3), (3, 1), (4, 0)⟩. Therefore, by Theorem 5.1, eHK(A) =
1 + 1

4
(0 · 1 + 2 · 2 + 3 · 1) = 11

4
.
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