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Abstract

The module cancellation problem asks whether, given modules X, X ′ and Y
over a ring Λ, the existence of an isomorphism X ⊕ Y ∼= X ′ ⊕ Y implies that
X ∼= X ′. When q is prime we prove a strong cancellation property for certain
modules over Z[C∞×Cq], generalizing, in part, the strong cancellation property
for modules over Z[Cq] established in the paper of R.Wiegand [18].

Keywords: Strong cancellation semigroup, Swan module.

Mathematics Subject Classification (AMS 2020): 13C05; 13C10; 19A13.

Given modules X, X ′ and Y over a ring Λ, we ask whether the existence of an
isomorphism X ⊕ Y ∼= X ′ ⊕ Y implies that X ∼= X ′. When Λ = Z[G] is an integral
group ring this question is central to the homotopy theory of spaces with fundamental
group G (cf [7], [8]). When Cq = 〈x : xq = 1〉 is the finite cyclic group of prime
order q there is a very strong cancellation property ([18]) for modules over Z[Cq]
which are free of finite rank over Z. In the present paper, writing C∞ for the infinite
cyclic group, we extend these results in part to modules over Z[C∞ × Cq].

Let Λ be a ring and C be a class of Λ-modules, closed with respect to isomorphism;
we say that C is a cancellation semigroup when, for Λ-modules C,C ′, C ′′,

(i) C,C ′ ∈ C =⇒ C ⊕ C ′ ∈ C;

(ii) if C,C ′, C ′′ ∈ C and C ⊕ C ′ ∼= C ⊕ C ′′ then C ′ ∼= C ′′.

C is a strong cancellation semigroup when in addition, given a nonzero Λ-module S,

(iii) if C ⊕ S ∈ C then C ∈ C =⇒ S ∈ C.

Let Λ = R[Cq] be the group algebra of Cq over the commutative ring R. Let ε : Λ→ R
be the canonical augmentation homomorphism, put I = Ker(ε) and denote by
Q(R, q) the following class of Λ-modules

Q(R, q) = {Λa ⊕ Ib | a ≥ 0, b ≥ 0, a+ b > 0}.

Taking R = Z[t, t−1] to be the ring of Laurent polynomials we identify R with
integral group ring Z[C∞] and Λ with Z[C∞ × Cq] so that the elements of Q(R, q)
are modules over C∞ × Cq. We will prove:

Main Theorem : Q(Z[C∞], q) is a strong cancellation semigroup for any prime q.

We proceed via a number of subsidiary results. When S is a Λ-module we will show:
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(I) S ⊕ I ∼=Λ I(d+1) =⇒ S ∼=Λ I(d).

(II) Λ⊕ S ∼=Λ Λ(c+1) ⊕ I(d) =⇒ S ∼=Λ Λ(c) ⊕ I(d).

(III) I ⊕ S ∼=Λ Λ(c) ⊕ I(d+1) =⇒ S ∼=Λ Λ(c) ⊕ I(d).

The paper is organized as follows; §1- §4 are preliminary; (I) is proved in §5; (II)
and (III) are proved in §6 and the Main Theorem is proved in §7. We conclude in §8
with a brief account of the cancellation problem in general.

§1: A recognition criterion for projective modules :
Throughout this paper, without further mention, Λ will denote a commutative

algebra which is free of finite rank over a Noetherian ring R. In particular, Λ is itself
Noetherian. We first note that:

(1.1) Let P be a finitely generated Λ-module such that Ext1(P,N) = 0 for
all finitely generated Λ-modules N ; then P is projective.

Proof : Let π : Λa � P be a surjective Λ homomorphism, put K = Ker(π) and
consider the exact sequence P = (0 → K ↪→ Λa π→ P → 0). As Λ is Noetherian
then K is finitely generated so that Ext1(P,K) = 0. Hence P splits so that
P ⊕K ∼= Λa and P is projective. 2

The following are easy consequences of the Noetherian condition on Λ and R.

(1.2) If M , N are finitely generated Λ-modules then ExtkΛ(M,N) is a finitely gener-
ated R-module for each k ≥ 1.

(1.3) Let A, B be finitely generated R-modules; if A⊕B ∼= A then B = 0.

(1.4) If M , P , Q are finitely generated Λ-modules and M ⊕ P ∼= M ⊕Q then

P is projective ⇐⇒ Q is projective.

Proof of (1.4) It suffices to prove (⇐=). Let N be a finitely generated Λ-module ; as
M⊕P ∼= M⊕Q then Ext1(M,N)⊕Ext1(P,N) ∼= Ext1(M,N)⊕Ext1(Q,N). As Q
is projective then Ext1(Q,N) = 0; hence Ext1(M,N)⊕Ext1(P,N) ∼= Ext1(M,N).
By (1.2), Ext1(M,N) and Ext1(P,N) are finitely generated R-modules It follows
from (1.3) that Ext1(P,N) = 0 so that P is projective by (1.1). 2

§2: A cancellation theorem :
We now assume given an algebra Ω which is again free of finite rank over R

together with a surjective homomorphism of R-algebras η : Λ→ Ω . We regard Ω as
module over Λ via coinduction by η. As Λ is Noetherian then in the exact sequence

0→ J
j→ Λ

η→ Ω→ 0

J = Ker(η) is finitely generated over Λ. We assume also that:
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(2.1) HomΛ(J,Ω) = 0.

(2.2) X ⊕ Ω(n) ∼=Λ Ω(m+n) =⇒ X ∼=Λ Ω(m)

(2.3) X ⊕ J (n) ∼=Λ J (m+n) =⇒ X ∼=Λ J (m)

With these assumptions we have:

Proposition 2.4 : Let S be a Λ-module for which there exists an isomorphism
f : Λ(b+c) ⊕ J (d) '−→ S ⊕ Λ(c) for some c, d ≥ 0. Then for any homomorphism
α : S → Ω(b) where b ≥ 1 there exists a commutative diagram of Λ-modules as follows
in which the rows are exact, f− is injective and f+ is surjective.

(2.5)


0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0

↓ f− ↓ f ↓ f+

0→ S0 ⊕ J (c) î→ S ⊕ Λ(c) α̂→ Im(α)⊕ Ω(c) → 0

.

Moreover, f− and f+ are uniquely determined by f .

Proof : For any integer n ≥ 1 we write

j(n) =


j

j
. . .

j


︸ ︷︷ ︸

n

; η(n) =


η

η
. . .

η


︸ ︷︷ ︸

n

.

The homomorphisms in the rows are defined by the following matrices.

ĵ =

(
j(b+c) 0

0 IdJ(d)

)
; η̂ =

(
η(b+c) 0

0 0

)
;

î =

(
i 0
0 j(c)

)
; α̂ =

(
α 0
0 η(c)

)
.

As HomΛ(J,Ω) = 0 and Im(α) ⊂ Ω(b) then α̂ ◦ f ◦ ĵ = 0. Hence

f(Im(ĵ)) ⊂ Ker(α̂) = Im(̂i)

and f restricts to an injective homomorphism f− : J (b+c+d) → S0⊕J (c) as indicated.
As Im(ĵ) = Ker(η̂) then f(Ker(η̂)) ⊂ Ker(α̂). After making the Noether identifi-
cations Ω(b+c) ∼= (Λ(b+c) ⊕ J (d))/Ker(η̂) ; Im(α) ⊕ Ω(c) ∼= (S ⊕ Λ(c))/Ker(α̂) then f
induces a homomorphism f+ : Ω(b+c) → Im(α)⊕Ω(c) as indicated. As f+◦η̂ = α̂◦f
and α̂ ◦ f is surjective then f+ is surjective and uniquely determined by f . 2

Continuing the above discussion we now have:
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Proposition 2.6 : The following statements are equivalent :

i) f+ is injective;

ii) f+ is an isomorphism;

iii) f− is an isomorphism;

iv) S0 ⊕ J (c) ∼= J (b+c+d);

v) S0
∼= J (b+d);

vi) HomΛ(S0,Ω) = 0;

vii) Im(α) ∼= Ω(b).

Proof : As f+ is surjective then i) ⇐⇒ ii).

ii) =⇒ vii); If f+ is an isomorphism then Im(α) ⊕ Ω(c) ∼= Ω(b+c) so that, by
assumption (2.2), Im(α) ∼= Ω(b).

vii) =⇒ i); Suppose that ψ : Im(α)
'−→ Ω(b) is an isomorphism. As f+ is

surjective then (ψ⊕ IdΩ(c))◦f+ : Ω(b+c) → Ω(b+c) is surjective. As Ω is Noetherian
then (ψ ⊕ IdΩ(c)) ◦ f+ is an isomorphism and hence f+ is injective.

ii) =⇒ iii); As f is an isomorphism, if f+ is also an isomorphism then, by
extending the diagram (*) one place to the left by zeroes, it follows from the Five
Lemma that f− is an isomorphism.

iii) =⇒ iv) is obvious.

iv) =⇒ v) follows from the underlying hypothesis (2.3).

v) =⇒ vi) is clear as HomΛ(J,Ω) = 0 .

It remains only to show that vi) =⇒ i). Put g = f−1 : S ⊕ Λ(c) '−→ Λ(b+c) ⊕ J (d)

and extend the diagram (2.5) as follows:

(2.7)



0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0
↓ f− ↓ f ↓ f+

0→ S0 ⊕ J (c) î→ S ⊕ Λ(c) α̂→ Im(α)⊕ Ω(c) → 0
↓ g

0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0

By our assumption (2.1), HomΛ(J,Ω) = 0. By hypothesis, HomΛ(S0,Ω) = 0.
It follows that η̂ ◦ g ◦ î = 0. As in the the proof of (2.4), we may construct
homomorphisms g− and g+ which extend (2.7) to the following commutative diagram:

0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0
↓ f− ↓ f ↓ f+

0→ S0 ⊕ J (c) î→ S ⊕ Λ(c) α̂→ Im(α)⊕ Ω(c) → 0
↓ g− ↓ g ↓ g+

0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0

4
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On eliminating the middle row by composition we obtain the commutative diagram:

0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0

↓ g− ◦ f− ↓ g ◦ f ↓ g+ ◦ f+

0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0

As g ◦ f = Id then η̂ = (g+ ◦ f+) ◦ η̂. As η̂ is surjective it follows that
g+ ◦ f+ = Id. Hence f+ is injective. This completes the proof. 2

Maintaining the above notation we now prove:

Theorem 2.8 : If S ⊕ Λ(c) ∼= Λ(b+c) ⊕ J (d) then S is a module extension

0→ J (b+d) i→ S
α→ Ω(b) → 0.

Proof : As HomΛ(J,Ω) = 0 then in what follows we may make the identifications

HomΛ(S ⊕ Λ(c),Ω) = HomΛ(S,Ω)⊕ HomΛ(Λ(c),Ω);

HomΛ(Λ(b+c) ⊕ J (d),Ω) = HomΛ(Λ(b+c),Ω).

Moreover HomΛ(S,Ω)⊕ HomΛ(Λ(c),Ω) ∼= HomΛ(Λb+c,Ω) ∼= HomΛ(Λ,Ω)(b+c).

As HomΛ(Λ,Ω) ∼= Ω then HomΛ(S,Ω) ⊕ Ω(c) ∼= Ω(b+c). By assumption (2.2),
HomΛ(S,Ω) ∼= Ω(b). Let {α1, · · · , αb} be an Ω-basis for HomΛ(S,Ω) and define

α =

 α1
...
αb

 : S −→ Ω(b) S0 = Ker(α)

In particular, we have an exact sequence 0 → S0 → S → Im(α) → 0. Suppose

given an isomorphism f : Λ(b+c) ⊕ J (d) '−→ S ⊕ Λ(c) ⊕ J (d). As in (2.4), we may
construct the following diagram with exact rows

0→ J (b+c+d) ĵ→ Λ(b+c) ⊕ J (d) η̂→ Ω(b+c) → 0

↓ f− ↓ f ↓ f+

0→ S0 ⊕ J (c) î→ S ⊕ Λ(c) α̂→ Im(α)⊕ Ω(c) → 0

in which f+ is surjective. We claim that f+ is also injective. Thus let {ηb+1, . . . ηb+c}
be the canonical basis for HomΛ(Λ(c),Ω) so that {α1, . . . , αb, ηb+1, . . . , ηb+c} is an Ω-
basis for HomΛ(S,Ω) ⊕ HomΛ(Λ(c),Ω) = HomΛ(S ⊕ Λ(c),Ω). From the induced

isomorphism f ∗ : HomΛ(S ⊕ Λ(c),Ω)
'−→ HomΛ(Λ(b+c) ⊕ J (d),Ω) we see that
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(*) {f ∗(α1), . . . , f ∗(αb), f
∗(ηb+1), . . . , f ∗(ηb+c)} is an Ω-basis for HomΛ(Λ(b+c)⊕J (d),Ω).

If {η1, . . . ηb+c} is the canonical basis of HomΛ(Λ(b+c)⊕ J (d),Ω) ∼= Ω(b+c) there exists
an invertible Ω-linear map T : HomΛ(Λ(b+c) ⊕ J (d),Ω)→ HomΛ(Λ(b+c) ⊕ J (d),Ω)

such that T (ηi) =


f ∗(αi) = αi ◦ f 1 ≤ i ≤ b

f ∗(ηi) = ηi−b ◦ f b+ 1 ≤ i ≤ b+ c.

On identifying HomΛ(Λ(b+c) ⊕ J (d),Ω) = HomΛ(S ⊕ Λ(c) ⊕ J (d),Ω) = Ω(b+c) it is
evident that Im(T ) = Im(α̂) ⊕ Ω(c) and that the following diagram commutes

Λ(b+c) ⊕ J (d) η̂→ Ω(b+c)

↓ f ↓ T

S ⊕ Λ(c) α̂→ Im(α)⊕ Ω(c)

As f+ is uniqely determined by f it follows that f+ = T. As T is invertible then
f+ is injective as claimed. As f+ is injective, then regarding S as a module extension
0→ S0 → S

α→ Ω(b) → 0 it follows from (2.6) that S0
∼= J (b+d). 2

§3 : Matrices with a Smith Normal Form:
Let Λ be a commutative ring. We denote by mMn(Λ) the set of m× n matrices

with coefficients in Λ; when m = n we write nMn(Λ) = Mn(Λ), in which case
Mn(Λ) is a ring with the canonical Λ-basis ε(i, j)1≤i,j≤n given by ε(i, j)r,s = δirδjs.
We denote by E(i, j;λ), D(i,−1) the elementary invertible matrices

E(i, j;λ) = In + λε(i, j) (λ ∈ Λ; i 6= j)

D(i,−1) = In − 2ε(i, i).

Let En(Λ) (resp. ∆n(±1)) denote the subgroup of GLn(Λ) generated by the matrices
E(i, j;λ), (resp. D(i,−1)). Then ∆n(±1) normalizes En(Λ). and we define

(3.1) Ẽn(Λ) = ∆n(±1) · En(Λ).

A ring homomorphism π : A→ B induces a homomorphism of groups

π∗ : En(A)→ En(B). :

(3.2) If π : A→ B is surjective then π∗ : Ẽn(A)→ Ẽn(B) is surjective.

Suppose k ≥ 1 and m ≥ 0 are fixed; if α1, . . . , αk ∈ Λ we write

k+m∆k(α1, . . . , αk) = (αiδi,j) ∈ m+kMk(Λ)

where δi,j is the Kronecker delta, 1 ≤ i ≤ k +m and 1 ≤ j ≤ k; that is:
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k∆k(α1, . . . , αk) =

 α1 0
. . .

0 αk

 (m = 0);

k+m∆k(α1, . . . , αk) =



α1 0
. . .

0 αk
. . . . . . . . .
0 0 0
...

...
...

0 0 0


(m > 0).

If X, Y ∈ k+mMk(Λ) we write X ∼ Y when X = E+Y E− for some E+ ∈ Ẽk+m(Λ)

and E− ∈ Ẽk(Λ). Evidently ‘∼’ is an equivalence relation; then X ∈ k+mMk(Λ) has
a Smith normal form when for some α1, . . . , αk ∈ Λ,

X ∼ k+m∆k(α1, . . . , αk).

We say the commutative ring Ω is generalized Euclidean when each X ∈ k+mMk(Ω)
has a Smith normal form. The argument of H.J.S. Smith ([6], [13]) shows that:

(3.3) If Λ is a Euclidean domain then Λ is generalized Euclidean.

If S ⊂ Λ - {0} is a multiplicative submonoid we denote by ΛS the localization of
Λ obtained by inverting each s ∈ S. By clearing fractions we see that:

(3.4) If Λ is a generalized Euclidean domain then so is ΛS.

If F is a field, it follows from the division algorithm that the polynomial ring F[t] is
a Euclidean domain. It now follows from (3.4) that:

(3.7) The Laurent polynomial ring F[t, t−1] over the field F is generalized Euclidean.

§4 : Swan modules and their duals:
For the remainder if this paper we fix a prime q and put Λ = R[Cq] where

R = Z[C∞]. If M is a Λ-module we denote by M• its Λ-dual M• = HomΛ(M,Λ).
There is a canonical homomorphism \ : M → M•• given by \(x)(f) = f(x). If M
is free of finite rank over R then \ : M →M•• is an isomorphism.

Let ε : Λ → R be the augmentation homomorphism and let I = Ker(ε) be the
augmentation ideal. By a Swan module of rank k we mean an extension module X
of the form 0 → I(k) → X → R(k) → 0 . We see from the augmentation sequence

E = (0→ I
i→ Λ

ε→ R→ 0) that Λ is a Swan module of rank 1. On dualizing the
augmentation sequence we obtain an exact sequence

0→ HomΛ(R,Λ)
ε•→ HomΛ(Λ,Λ)

i•→ HomΛ(I,Λ)
δ→ Ext1

Λ(R,Λ).
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It is straightforward to see that R• ∼= R and Λ• ∼= Λ and that:

(4,2) HomΛ(R, I•) = 0.

From the Eckmann-Shapiro Lemma we see that Ext1
Λ(R,Λ) ∼= Ext1

R(R,R) = 0.

Hence we have a dual exact sequence E• = (0 → R
ε•→ Λ

i•→ I• → 0). Observe that
I• has a natural ring structure as ε• imbeds R onto the two-sided ideal

(∑q−1
k=0 x

k
)

in
Λ. In the case under consideration it is also true that, as modules, I• ∼= I but this
fact plays no part in what follows. By a dual Swan module of rank k we shall mean
an extension module X of the form

0→ R(k) −→ X → (I•)(k) → 0.

As Λ and R are self dual, then on dualizing the augmentation exact sequence we see
that Λ(k) is also a dual Swan module of rank k. Taking ζq = exp(2πi/q) we may
compare E• with the corresponding exact sequence over Z[Cq] (cf [11] p.29)

E = (0→
(∑q−1

k=0 x
k
)
↪→ Z[Cq] �Z(ζq)→ 0).

It is straightforward to see that E• = E⊗Z Z[t, t−1], from which it follows that:

(4.3) I• ∼= Z(ζq)[t, t
−1].

Proposition 4.4: X ⊕ (I•)(n) ∼=Λ (I•)(m+n) =⇒ X ∼=Λ (I•)(m)

Proof : Evidently X⊕(I•)(n) ∼=I• (I•)(m+n) so that, considered purely as a module
over I• = Z(ζq)[t, t

−1], X is stably free of rank m. As Z(ζq) is a Dedekind domain it
follows from the solution to the Serre Conjecture (cf. [10]. p.189. Cor. 4.12 ) that X
is induced from a projective module P over Z(ζq). As X is stably free and Z(ζq) is a
retract of I• then P is also stably free. However as Z(ζq) satisfies the Eichler condition
then every stably free Z(ζq) module is free (cf. [16], p.176-178) . Thus P is free and
X, being induced from a free module, is also free; that is X ∼=I• (I•)(m). However,

the Λ-module structure on I• is coinduced from the epimorphism i• : Λ
i•−→ I•. As

X ⊕ (I•)(n) ∼=Λ (I•)(m+n) then the Λ-structure on X is also coinduced from I• and
hence X ∼=Λ (I•)(m). 2

A similar but slightly easier argument (in this case we may appeal to the earlier
theorem of Sheshadri [12]) shows that:

Proposition 4.5: X ⊕R(n) ∼=Λ R(m+n) =⇒ X ∼=Λ R(m).

Statements (4.2), (4.4) and (4.5) allow us to apply the arguments of §2 on taking

Ω = I• ; J = R.

As Ext1
Λ(I•, R) ∼= Fq[t, t−1] we identify

(4.6) Ext1
Λ((I•)(k+m), R(k)) = k+mMk(Fq[t, t−1]).

In the simplest case, a dual Swan module of rank 1 is defined by an extension

X = (0→ R→ X → I• → 0)

8
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and is classified up to congruence by an element eX ∈ Ext1
Λ(I•, R) ∼= F[t, t−1]. We

write X = X(α) where α ∈ F[t, t−1] corresponding to eX under the isomorphism
Ext1

Λ(I•, R) ∼= F[t, t−1]. Furthermore, we have the following instance of Swan’s pro-
jectivity criterion ([7], (5.41), p.115):

(4.7) X(α) is projective ⇐⇒ α ∈ F[t, t−1]∗.

Observe that we have a Milnor fibre square

(S0)

-

-

? ?

Z[Cq] Z(ζq)

Z Fq .

i•

ε

\

ν

Applying the functor −⊗Z Z[t, t−1] we obtain another Milnor square

(S)

-

-

? ?

Λ I•

Z[t, t−1] Fq[t, t−1] .

i•

ε

\

ν

We say that X is locally free of rank 1 with respect to S when X is a fibre product

X(α) =


X −→ I•

↓ ↓ ϕ

Z[t, t−1]
\−→ Fq[t, t−1]

obtained by glueing via an element α ∈ GL1(Fq[t, t−1]) = Fq[t, t−1]∗. By Milnor’s
classification ([11] pp. 20-24), any such module is projective over Λ. With respect to
the fibre square S, a locally free module X can equally be described as a projective
dual Swan module; that is there is a bijective correspondence of isomorphism classes:

(4.8)

{
locally free modules

of rank 1 with respect to S

}
←→

{
projective dual Swan

modules of rank 1

}
By the theorem of Higman ([5], [7] Appendix C), for any commutative integral domain
A, the group ring A[C∞] has only trivial units; that is GL1(A[C∞]) ∼= A∗ × 〈t〉. As
I• = Z(ζq)[C∞] then GL1(I•) ∼= Z(ζq)

∗ × 〈t〉. Likewise, GL1(Fq[t, t−1]) ∼= F∗q × 〈t〉.
As is well known (cf [2], p87), the canonical homomorphism ν : Z(ζq)

∗ → F∗q is
surjective. Hence we see that:

(4.9) ν∗ : GL1(I•)→ GL1(Fq[t, t−1]) is surjective.

Milnor’s classification now implies:

9
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(4.10) If X is a projective dual Swan module of rank 1 then X ∼= Λ.

Next consider extensions of the form X = (0→ R(k) → X → (I•)(k) → 0).

Theorem 4.11 : Let X be an extension X = (0→ R(k) → X → (I•)(k) → 0) then
X decomposes as a direct sum of dual Swan modules X ∼= X(α1)⊕ . . .⊕X(αk).

Proof : The case k = 1 is covered by (4.7). Thus suppose k ≥ 2. Under the
correspondence (4.6) X is classified up to congruence by an extension class eX ∈
Ext1

Λ((I•)(k), R(k)) = Mk(F[t, t−1]). As Fq[t, t−1] is generalized Euclidean there exist

E+ ∈ Ẽk(Fq[t, t−1]), E− ∈ Ẽk(Fq[t, t−1]) and α1 . . . , αk ∈ Fq[t, t−1] such that

E+eXE− = ∆(α1, . . . , αk).

Lifting E+ to Ê+ ∈ Ẽk(I•) and E− to Ê− ∈ Ẽk(R) we see that X decomposes as

X = X(α1) ⊕ . . . ⊕ X(αk)

where, as in (4.7), X(αi) is classified by αi ∈ Fq[t, t−1] ∼= Ext1
Λ(I•, R). 2

Clearly eX is invertible if and only if each αi ∈ Fq[t, t−1]∗; hence by (4.7) we have:

Corollary 4.12: Given an extension X = (0 → R(k) → X → (I•)(k) → 0); then
the following are equivalent;

i) X is projective; ; ii) eX is invertible in Mk(F[t, t−1]); iii) X ∼= Λ(k).

Finally we consider extensions of the form S = (0→ R(k) → S → (I•)(k+m) → 0)
where m ≥ 1.

Theorem 4.13: Let X be a Λ-module which occurs in an exact sequence

X = (0→ R(k) → X → (I•)(k+m) → 0);

then X ∼= X1 ⊕ . . . ⊕ Xk⊕ (I•)(m) where each Xi is a dual Swan module of rank 1.

Proof : By (4.11) we may suppose that m ≥ 1; as above, X is classified up to
congruence by eX ∈ Ext1

Λ((I•)(k+m), R(k)) = k+mMk(Fq[t, t−1]). As Fq[t, t−1] is
generalized Euclidean then

E+eXE− = k+m∆k(α1, . . . , αk) =



α1 0
. . .

0 αk
. . . . . . . . .
0 0 0
...

...
...

0 0 0


for some E+ ∈ Ẽk+m(Fq[t, t−1]), E− ∈ Ẽk(Fq[t, t−1]) and α1 . . . , αk ∈ Fq[t, t−1]

Lifting E+ to Ê+ ∈ Ẽk+m(I•) and E− to Ê− ∈ Ẽk(R) we see that X decomposes as
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X = X(α1) ⊕ . . . ⊕ X(αk) ⊕ (I•)(m)

where, as above, X(αi) is the dual Swan module classified by αi ∈ Ext1
Λ(I•, R). 2

§5 : Proof of (I):

Let D be a Dedekind domain. It follows from the theorem of Steinitz ([4], [14]) that:

(5.1) Every stably free D-module is free.

The correspondence t 7→ 1 induces an augmentation homomorphism D[t, t−1] → D
whereby D becomes a module over D[t, t−1]. We have ’change of ring’ functors

i∗ :ModD →ModD[t,t−1] ; i∗(M) = M ⊗D D[t, t−1]
r∗ :ModD[t,t−1] →ModD ; r∗(N) = N ⊗D[t,t−1] D

under which

(5.2) r∗ ◦ i∗ = IdModD
.

The following is proved in [10] ((4.12), p.189);

(5.3) If S is a finitely generated projective module over D[t, t−1]; then
S ∼= i∗(P ) for some finitely generated projective module P over D.

It follows from (5.1), (5.2) and (5.3) that:

(5.4) Every stably free D[t, t−1]-module is free.

Now put D = Z(ζ) where ζ = exp(2πi
q

) so that I• = R(ζ) = D[t, t−1]. It follows

from (5.4) that:

(5.5) If S is an I•-module such that S ⊕ I• ∼=I• (I•)(d+1) then S ∼=I• (I•)(d).

Now let S be a Λ-module such that S ⊕ I ∼=Λ I(d+1). Applying Hom(−.Λ) gives

S• ⊕ I• ∼=Λ (I•)(d+1).

However I• · Σ = 0 where Σ =
∑q−1

r=0 x
r. Hence S• · Σ = 0, As Λ/Σ ∼= I• then

S• ⊕ I• ∼=I• (I•)(d+1)

By (5.4), S• ∼=I• (I•)(d). Thus also S• ∼=Λ (I•)(d). On taking Λ-duals then
S ∼=Λ I(d) and we obtain the following, which is statement (I) of the Introduction.

(5.6) If S is a Λ-module such that S ⊕ I ∼=Λ I(d+1) then S ∼=Λ I(d).

§6 : Proof of (II) and (III):

To prove (II), let S be a Λ-module such that Λ ⊕ S ∼=Λ Λ(c+1) ⊕ I(d). On taking
Ω = R, J = I and b = 1 in (2.8) we see that S occurs as an extension

0→ I(c+d) → S
β−→ R(c) → 0.
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It follows from (4.13) that S decomposes as S ∼= X⊕I(d) where X is a Swan module
of rank c. As Λ⊕ S ∼= Λ(c+1) ⊕ I(d) then Λ⊕X ⊕ I(d) ∼= Λ(c+1) ⊕ I(d). It follows
from (1.4) that X is projective. Hence X ∼= Λ(c) by (4.12). Thus S ∼= Λ(c)⊕I(d). To
summarize we have proved the following which is statement (II) of the Introduction:

(6.1) Let S be a Λ-module such that Λ⊕ S ∼=Λ Λ(c+1) ⊕ I(d); then

S ∼=Λ Λ(c) ⊕ I(d).

The proof of (III) is similar to that of (II). Suppose that f : Λ(c) ⊕ I(d+1) '→ I ⊕ S
is an isomorphism with inverse g and put

ε̂ = (ε⊕ . . .⊕ ε︸ ︷︷ ︸
c

⊕ 0) : Λ(c) ⊕ I(d+1) ε̂→ R(c);

then ε̂ ◦ g : I ⊕S → Rc is surjective. As HomΛ(I, R) = 0 then ε̂ ◦ g|I ≡ 0. Putting
α = ε̂ ◦ g|S and S0 = Ker(α) we have an exact sequence

0 → S0 → S → R(c) → 0.

Now consider the following diagram with exact rows
0→ I(c+d+1) î→ Λ(c) ⊕ I(d+1) ε̂→ R(c) → 0

↓ f− ↓ f ↓ f+

0→ I ⊕ S0
ĵ→ I ⊕ S (0,α)→ R(c) → 0

As HomΛ(I, R) = 0 then (0, α) ◦ f ◦ i = 0. Hence there exist homomorphisms
f+ : R(c) → R(c) and f− : I(c+d+1) → I⊕S0 as indicated. As (0, α)◦f is surjective
then so is f+. As R is Noetherian then f+ is an isomorphism. Therefore f− is also
an isomorphism. It follows from (I) that S0

∼= I(c+d) and we have an exact sequence

0→ I(c+d) −→ S
β−→ R(c) → 0

By (4.11), S decomposes as S ∼= X ⊕ I(d) where X is a Swan module of rank c. As
I ⊕ S ∼= Λ(c) ⊕ I(d+1) then X ⊕ I(d+1) ∼= Λ(c) ⊕ I(d+1). It follows from (1.4) that
X is projective. By (4.12) it follows that X ∼= Λ(c). Thus S ∼= Λ(c) ⊕ I(d) and we
have proved statement (III) of the Introduction, namely:

(6.2) Let S be a Λ-module such that I⊕S ∼=Λ Λ(c)⊕I(d+1); then S ∼=Λ Λ(c)⊕I(d).

§7 : Proof of Main Theorem :

For integers a, b ≥ 0 let Q(a, b) = Λ(a) ⊕ I(b) and define Q = {Q(a, b) | a+b > 0}.
Clearly Q(a, b) ⊕ Q(c, d) ∼= Q(a+ c, b+ d) so that, up to isomorphism, Q forms
an additive semigroup under ‘⊕’. To show that Q is a cancellation semigroup it
suffices to show that the following statement P(a, b) holds when a, b ≥ and a+ b > 0:

P(a, b) : Q(a, b)⊕ S ∼= Q(a, b)⊕Q(c, d) =⇒ S ∼= Q(c, d)
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By (II) we see that P(1, 0) holds. Similarly P(0, 1) holds by (III).

Proposition 7.1: P(1, 0) ∧ P(a, b) =⇒ P(a+ 1, b).

Proof: Suppose that Q(a+ 1, b)⊕Q(c, d) ∼= Q(a+ 1, b)⊕ S. We must show that
Q(c, d) ∼= S. Re-writing we see that Λ⊕Q(c+ a, b+ d) ∼= Λ⊕Q(a, b)⊕ S. By
P(1, 0) it follows that Q(c+ a, b+ d) ∼= Q(a, b)⊕ S and hence

Q(a, b)⊕Q(c, d) ∼= Q(a, b)⊕ S.

By P(a, b) it now follows, as desired, that Q(c, d) ∼= S. 2

Proposition 7.2: P(0, 1) ∧ P(a, b) =⇒ P(a, b+ 1).

Proof : Suppose that Q(a, b + 1) ⊕ Q(c, d) ∼= Q(a, b + 1) ⊕ S. Re-writing
we see that I ⊕ Q(c + a, b + d) ∼= I ⊕ Q(a, b) ⊕ S. By P(0, 1) it follows that
Q(c+ a, b+ d) ∼= Q(a, b)⊕ S and hence

Q(a, b)⊕Q(c, d) ∼= Q(a, b)⊕ S.

The desired conclusion that Q(c, d) ∼= S now follows from P(a, b). 2

It follows easily that:

(7.3) P(a, b) is true for all a, b ≥ 0 such that a+ b 6= 0.

However, the truth of the statements P(a, b) suffices to show that Q is a strong
cancellation semigroup. To see this, put ΛE = Λ ⊗Z[t,t−1] E where E is the field of
fractions of Z[t, t−1]. Then ΛE = E[Cq] is a semisimple E-algebra. Now suppose that
Q ∈ Q and that S is a nonzero Λ-module such that Q⊕ S ∈ Q. Write Q = Q(a, b)
and Q⊕S = Q(e, f). By considering the Wedderburn decompositions of Q⊗Z[t,t−1]E
and S ⊗Z[t,t−1] E, it follows easily that a ≤ e and b ≤ f . Writing c = e − a
and d = f − b we see that Q(a, b) ⊕ S ∼= Q(a, b) ⊕ Q(c, d). It follows from the
statement P(a, b) proved in (7.3) that S ∼= Q(c, d) and hence S ∈ Q. Thus we
have shown the following, which is the Main Theorem of the Introduction:

(7.4) Q(Z[C∞], q) = {Λ(a) ⊕ I(b) | a ≥ 0, b ≥ 0, a+ b > 0} is a strong
cancellation semigroup for any prime q.

§8 : The module cancellation problem in general:
There is a considerable literature on the cancellation problem for modules over

group rings. However, the problem considered in the present paper does not seem to
have been studied previously. To describe what is known in general, let q be a positive
integer and let L(R, q) denote the class of modules over R[Cq] which are free of finite
positive rank as modules over the commutative ring R. A theorem of Wiegand [18],
completed by Swan [17] shows that:

(8.1) L(Z, q) is a strong cancellation semigroup⇐⇒ q is prime or q ∈ {4, 6, 8, 9, 10, 14}.
The rings Z[Cq] have Krull dimension 1. In the present paper we replace the coefficient
ring Z by the ring Z[C∞] of Krull dimension 2. In view of Wiegand’s result we ask:
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Question I: For which integers q ≥ 2 does L(Z[C∞], q) have strong cancellation?

The inclusion i : Cq → C∞ × Cq and projection π : C∞ × Cq → Cq induce homo-
morphisms i∗ : L(Z, q) → L(Z[C∞], Cq) and π∗ : L(Z[C∞], Cq) → L(Z, q) such that
π∗ ◦ i∗ = Id. Thus L(Z, q) is a retract of L(Z[C∞], q). Hence in partial answer to
the above general question, Wiegand’s conditions are certainly necessary. However to
decide whether they are also sufficient would seem to require a complete description
of L(Z[C∞], Cq) analogous to the well known description of L(Z, Cq) ([3], p.508).
To the best of the author’s knowledge this has yet to be done.

In the present paper we have restricted attention to the subsemigroup Q(Z[C∞], q)
of L(Z[C∞], q) thereby raising the following:

Question II: For which integers q ≥ 2 does Q(Z[C∞], q) have strong cancellation?

The Main Theorem gives an positive answer to Question II when q is prime. Whether
Q(Z[C∞], q) has strong cancellation for any non-prime values of q remains an open
question. In this connection there are two further considerations; firstly, in contrast
to (8.1) the author has shown:

(8.2) Q(Z, q) has strong cancellation for all positive integers q.

This is an immediate consequence of (77.6) on p. 248 of [8]. It requires only the
additional observations that Z[Cq] satisfies the Eichler condition and that every pro-
jective Swan module over Z[Cq] is free (cf. the remark on p.279 of [15]). What is
nevertheless clear is that the proof of the Main Theorem given above breaks down
when q fails to be prime. In particular, when q is not prime there are always projective
Swan modules of rank 1 which are not free. This can be shown directly, observing
that when q is not prime there are units in (Z/q)[C∞] which do not lift to Z(ζq)[C∞].
Alternatively one can appeal to a theorem of Bass and Murthy ([1] Theorem 8.10).
Finally, one can ask the corresponding questions for Q(Z[C∞ × . . .× C∞︸ ︷︷ ︸

n

], q); in this

case the group ring Z[C∞ × . . .× C∞︸ ︷︷ ︸
n

×Cq] has Krull dimension n+ 1. When q = 1,

every projective module is free ([10], p.189). More generally, when q is prime the
author has shown ([9]) that every projective Swan module is free. However again this
conclusion fails when q is not prime.
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