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DOUBLE PHASE OBSTACLE PROBLEMS INVOLVING SET-VALUED CONVECTION
AND MIXED BOUNDARY VALUE CONDITIONS: UPPER-BOUND ERROR ESTIMATES

VO MINH TAM AND XIEZHEN HUANG

ABSTRACT. The main purpose of this paper is to study upper-bound error estimates (also known as
error bounds) for a class of generalized double phase obstacle problems via regularized gap functions.
More precisely, we introduce some regularized gap functions for the double phase obstacle problem in
forms introduced by Yamashita and Fukushima, and apply these regularized gap functions to provide
the upper-bound error estimates for the double phase obstacle problem.

1. Introduction

In 1976, Auslender [3] introduced a valuable tool called the gap function to formulate variational
inequalities by virtue of corresponding optimization problems. A gap function is given by

n(z) = sup
v∈C

⟨π(z),z− v⟩,

where z ∈C ⊂Rn, π : Rn →Rn, and ⟨·, ·⟩ is the scalar product in Rn. The function n has nonnegative
values on C and n(z0) = 0 if and only if z0 is a solution to the concerning variational inequality. In
general, the gap function n is not differentiable. This disadvantage was improved by Yamashita and
Fukushima [41] with proposing a new gap function which also called the regularized gap function:

nθ (z) = sup
v∈C

{⟨π(z),z− v⟩−θ∥z− v∥2},

where the regularized parameter θ > 0. The regularized gap function nθ is finite valued and differen-
tiable whenever π is differentiable; see Fukushima [17] for more information. In Ref. [41], Yamashita
and Fukushima also provided another gap function based on the Moreau-Yosida regularization involv-
ing the regularized gap function nθ as follows:

Ψϑ
nθ
(z) = inf

w∈C
{nθ (w)+ϑ∥z−w∥2},

where ϑ > 0. Some error bounds for variational inequalities via the regularized gap functions nθ and
Ψϑ

nθ
were established. Error bound illustrates the upper estimation of the distance between an arbitrary

feasible point and the solution set of a certain problem. It was crucial in studying the convergence of
iterative methods for solving various classes of variational inequalities. Up to now, the topic on gap
functions and error bounds has been important and interesting in optimization theory and nonlinear
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 2

analysis for studying related-optimization problems such as variational inequalities, equilibrium prob-
lems and variational-hemivariational inequalities, and so on. For more information on this topic, we
refer readers to works, see Refs. [1, 8, 10, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 40, 46, 47, 48]
and the references therein.

Let Ω be a bounded domain in RN(N ≥ 2), with Lipschitz boundary ∂Ω and S1,H
0 (Ω) be a subspace

of the Sobolev-Musielak-Orlicz space S1,H (Ω) (see Section 2). The double phase operator is given
by

−div
(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
, z ∈ S1,H

0 (Ω),

where 1 < p < q < N and µ : Ω → [0,∞). The difference between the (p,q)-differential operator and
the double phase operator is that the weight function µ : Ω → [0,∞) can be vanished in Ω.

In the 1980s, Zhikov [50] introduced a class of double phase operators for investigating models of
strongly anisotropic materials based on the nonlinear energy functional

ϕ 7→
∫

Ω
(|∇ϕ |p +µ(x)|∇ϕ |q) dx,

(also see Refs. [51, 52]). Besides, Zhikov [53] has aslo used double phase operator to describe the
models with Lavrentiev’s phenomenon. A large number of interesting results for solutions to prob-
lems involving this operator has been published up to now, see Refs. [6, 7, 5, 11, 12, 13, 14, 15, 18,
19, 20, 35, 36, 37, 42, 49] and the references therein. Recently, Zeng et al. [43, 44] firstly introduced
a double phase implicit obstacle problem involving multivalued operator, and they provided some
elegant and effective methods to solve multivalued elliptic problems with double phase differential
operators. These works open a new and challenging research direction concerning double phase prob-
lems with implicit obstacle constraints, and more and more scholars are attracted to the development
on both theoretical and application aspects of double phase obstacle problems. More recently, in or-
der to overcome the challenging and difficulty that nonlinear convection term leads to the invalidity
of variational methods, Zeng et al. [45] applied Kakutani-Ky Fan fixed point theorem for multivalued
operators along with the theory of nonsmooth analysis and variational methods for pseudomonotone
operators to develop a very essential and new framework for investigating double phase problems
with implicit obstacle effect and nonlinear convection terms, and obtained the sharpest results con-
cerning existence and compactness to weak solutions. Very recently, based on the ideas in Refs. [39]
investigated upper-bound error estimates for a class of double phase obstacle problems by using some
regularized gap functions. To the best of my knowledge, such error estimates are the first ones for
obstacle problems with the double phase operator.

Motivated by the aforementioned works, this paper represents a continuation of Ref. [39]. First, we
consider a class of double phase obstacle problems with set-valued convection and mixed boundary
value conditions. Then, several new regularized gap functions for the double phase obstacle problems
are introduced. Finally, we provide the upper-bound error estimates for such double phase obstacle
problems in terms of regularized gap functions based on the properties of double phase operators and
the theory of set-valued analysis.
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 3

The paper is organized as follows. Some notations, definitions and related properties of function
spaces, set-valued mappings and nonsmooth analysis are recalled in Section 2. In Section 3, we in-
troduce a class of double phase obstacle problems with set-valued convection and mixed boundary
value conditions and recall an existence theorem to the double phase obstacle problem under consid-
eration. Section 4 provides some regularized gap functions for such double phase obstacle problem
under some suitable conditions. Finally, several error bounds of our problem are discussed in Section
5 via regularized gap functions.

2. Preliminaries

We first recall those elements which will be used throughout the paper. For more details, we refer to
Refs. [14, 16, 29, 30].

Let Ω be a bounded domain in RN ,N ≥ 2, with Lipschitz boundary Γ := ∂Ω. The boundary Γ is
divided into two mutually disjoint parts Γa and Γb with Γa having positive Lebesgue measure. Let
r ∈ [1,∞) and any subset U of Ω. We denote the usual Lebesgue spaces Lr(U) := Lr(U ;R) and
Lr(Ω;RN) equipped with the norm ∥ · ∥r,U given by

∥z∥r,U :=
(∫

U
|z|r dx

) 1
r

.

Let S1,r(Ω) stand for the Sobolev space endowed with the norm ∥ · ∥1,r,Ω defined by

∥z∥1,r,Ω := ∥z∥r,Ω +∥∇z∥r,Ω for all z ∈ S1,r(Ω).

Throughout the paper the symbol w−→ (resp., −→) stands for the weak (resp., strong) convergence. By
r′ > 1, we denote the conjugate of r ∈ (1,∞), i.e., 1

r +
1
r′ = 1. Moreover, we denote by p∗ the critical

exponent to p given by

p∗ =

{
N p

N−p if p < N,

+∞ if p ≥ N.
(1)

Since Γa has positive measure, it follows from Korn’s inequality that the function space

S1,r
0 (Ω) := {z ∈ S1,r(Ω) : z = 0 for a. a. x ∈ Γa}

equipped with the norm ∥∇ · ∥p,Ω, is a reflexive Banach space. In what follows, let λp > 0 be the
smallest constant such that

(2) ∥z∥p
p,Ω ≤ λp∥∇z∥p

p,Ω

for all z ∈ S1,r
0 (Ω). We now revisit the well-known inequality (see Simon [38, formula (2.2)])

(3)
(
|x|k−2x−|y|k−2y

)
· (x− y)≥ a(k)|x− y|k

for k ≥ 2 and for all x,y ∈ RN , where a(k) is a positive constant depending on k.
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 4

Throughout the paper, we assume that the function µ : Ω → [0,∞) and exponents p,q satisfy the
following conditions (see [16, Proposition 2.18]):

(4) 0 ≤ µ(·) ∈ L∞(Ω) and 1 < p < N, q < q < p∗.

Let R+ := [0,∞) and the modular function H : Ω×R+ → R+ be defined by

H (x,s) = sp +µ(x)sq for all (x,s) ∈ Ω×R+.

The Musielak-Orlicz space LH (Ω) is given by

LH (Ω) =

{
z | z : Ω → R is measurable and ζH (z) :=

∫
Ω

H (x, |z|)dx <+∞
}
.

The space LH (Ω) equipped with the Luxemburg norm

∥z∥H = inf
{

τ > 0
∣∣ ζH

( z
τ

)
≤ 1

}
is uniformly convex and so it is a reflexive Banach space. Furthermore, we introduce the seminormed
function space Lq

µ(Ω)

Lq
µ(Ω) =

{
z | z : Ω → R is measurable and

∫
Ω

µ(x)|z|q dx <+∞
}

endowed with the seminorm

∥z∥q,µ,Ω =

(∫
Ω

µ(x)|z|q dx
) 1

q

.

We know that the embeddings

Lq(Ω) ↪→ LH (Ω) ↪→ Lp(Ω)∩Lq
µ(Ω)

are continuous and

min
{
∥z∥p

H ,∥z∥q
H

}
≤ ∥z∥p

p,Ω +∥z∥q
q,µ,Ω ≤ max

{
∥z∥p

H ,∥z∥q
H

}
(5)

for all z ∈ LH (Ω) (see Colasuonno-Squassina [14, Proposition 2.15 (i), (iv) and (v)]).

The corresponding Sobolev-Musielak-Orlicz space S1,H (Ω) is defined by

S1,H (Ω) =
{

z ∈ LH (Ω) | |∇z| ∈ LH (Ω)
}
.

The space S1,H (Ω) is equipped with the norm

∥z∥1,H = ∥∇z∥H +∥z∥H ,

where ∥∇z∥H = ∥|∇z|∥H .

Given A : S1,H (Ω)→ S1,H (Ω)∗ is an operator defined by

⟨A(z),v⟩H :=
∫

Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇vdx,(6)

for z,v ∈ S1,H (Ω), where ⟨·, ·⟩H denotes the duality pairing between S1,H (Ω) and its dual space
S1,H (Ω)∗. Some properties of the operator A defined by (6) are proposed in the following proposition:
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 5

Proposition 2.1. (see Ref. [30]) The operator A defined by (6) is bounded, continuous, monotone.

Now, we recall some notion and properties concerning set-valued mappings and nonsmooth analy-
sis.

Definition 2.2. (see Ref. [2]) Let Z and X be two Hausdorff topological spaces, C ⊂ Z be a nonempty
set and M : Z ⇒ X be a set-valued mapping. Then M is said to be

(a) convex (resp., closed, bounded) valued, if M is convex (resp., closed, bounded) for each
z ∈ Z;

(b) upper semicontinuous at z0 ∈ Z, if for each open set U ⊂ X of M (z0), there is a neighborhood
N(z0) of z0 such that M (N(z0)) := ∪v∈N(z0)M (v)⊂U . If it holds for each z ∈C, then M is
called to be upper semicontinuous on C.

Lemma 2.3. (see Ref. [9]) Let Y be a Banach space and D be a nonempty subset of another Banach
space. Assume that F : D ⇒ Y is a set-valued mapping with nonempty, weakly compact, convex
values. Then F is strongly-weakly upper semicontinuous if and only if, for each sequence {zk} ⊂ D
which converges to z0 ∈ D and for each sequence {ζk} ⊂ F(zk), there exists ζ0 ∈ F(z0) such that
ζk

w−→ ζ0 up to a subsequence.

Definition 2.4. (see Ref. [33]) Let E be a real Banach space. A function g : E → R := R∪{+∞} is
said to be

(a) proper, if g ̸≡+∞;
(b) convex, if g(tz+(1− t)v)≤ tg(z)+(1− t)g(v) for all z, v ∈ E and t ∈ [0,1];
(c) lower semicontinuous at z0 ∈ E, if for any sequence {zn} ⊂ E such that zn → z0, it holds

g(z0)≤ liminfg(zn);
(d) upper semicontinuous at z0 ∈ E, if for any sequence {zn} ⊂ E such that zn → z0, it holds

limsupg(zn)≤ g(z0);
(e) lower (resp. upper) semicontinuous on E, if g is lower (resp. upper) semicontinuous at every

z0 ∈ E;
(f) continuous on E if, it is both lower and upper semicontinuous on E.

Definition 2.5. (see Ref. [33]) Let E be a real Banach space with its topological dual E∗ and g : E →R
be a proper, convex and lower semicontinuous function. The convex subdifferential ∂cg : E ⇒ E∗ of
g is defined by

∂cg(z) =
{

w∗ ∈ E∗ | ⟨w∗,v− z⟩E ≤ g(v)−g(z) for all v ∈ E
}

for all z ∈ E.

An element w∗ ∈ ∂cg(z) is called a subgradient of g at z ∈ E.

3. Double phase obstacle problem

In this section, we consider a class of double phase obstacle problems involving set-valued convec-
tion and mixed boundary value conditions. This class of problems is a special case of double phase
obstacle problems investigated by Zeng et al. [45].

Let Ω be a bounded domain in RN ,N ≥ 2, with Lipschitz boundary Γ := ∂Ω. The boundary Γ is
divided into two mutually disjoint parts Γa and Γb with Γa having positive Lebesgue measure and Γb
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 6

can be empty. We introduce the following double phase obstacle problem:

−div
(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
+|z|p−2z+µ(x)|z|q−2z ∈ M (x,z)+h(x,z,∇z) in Ω,

z = 0 on Γa,

− ∂ z
∂νa

∈ ∂cg(x,z) on Γb,(7)

z(x)≤ Ψ(x) in Ω,

where 1 < p < q < N and

∂ z
∂νa

:= (|∇z|p−2∇z+µ(x)|∇z|q−2∇z
)
·ν ,

with ν being the unit normal vector on Γ, µ : Ω → [0,∞) satisfies the condition (4), M : Ω×R⇒ R
is a set-valued mapping, g : Γb ×R → R is a convex function with respect to the second argument,
∂cg(x,z) is the convex subdifferential of z 7→ g(x,z), h : Ω×R×RN is a nonlinear convection function
and Ψ : Ω → R is a given obstacle.

Remark 1. The double phase obstacle problem (7) combines an obstacle effect along with mixed
boundary conditions on Γa and Γb (with the convex subdifferential ∂cg) and the appearance of set-
valued mapping M and the nonlinear convection function h. The problem (7) is a special case of
double phase obstacle problems considered in Zeng et al. [45].

Next, we make the following assumptions on the data of the problem (7).

A(h) : h : Ω×R×RN → R is a Carathéodory function such that

(i) there exist ah,bh ≥ 0 and a function αh ∈ L
q1

q1−1 (Ω)+ satisfying

|h(x,s,ξ )| ≤ ah|ξ |
p(q1−1)

q1 +bh|s|q1−1 +αh(x)

for a. a. x ∈ Ω, for all ξ ∈ RN and for all s ∈ R, where 1 < q1 < p∗ and p∗ is the critical
exponents to p in the domain considered in (1);

(ii) there exist ch,dh ≥ 0, θ1,θ2 ∈ [1, p] and a function βh ∈ L1(Ω)+ such that

h(x,s,ξ )s ≤ ch|ξ |θ1 +dh|s|θ2 +βh(x)

for a. a. x ∈ Ω, for all ξ ∈ RN and for all s ∈ R;
(iii) there exist eh, fh ≥ 0 such that

(h(x,s,ξ )−h(x, t,ξ ))(s− t)≤ eh|s− t|p,

|h(x,s,ξ1)−h(x,s,ξ2)| ≤ fh|ξ1 −ξ2|p−1

for a. a. x ∈ Ω, for all ξ1,ξ2 ∈ RN and for all s, t ∈ R.
A(M ) : M : Ω×R⇒ R satisfies the following conditions:

(i) M (x,s) is a nonempty, closed, bounded and convex set in R for a. a. x ∈ Ω and all s ∈ R;
(ii) x 7→ M (x,s) is measurable in Ω for all s ∈ R;

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

25 Dec 2022 20:12:41 PST
221203-Huang Version 3 - Submitted to Rocky Mountain J. Math.



DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 7

(iii) s 7→ M (x,s) is upper semicontinuous for a. a. x ∈ Ω;
(iv) there exist θ3 ∈ [1, p], αM ∈ Lp′(Ω)+ and βM > 0 such that

|M (x,s)| ≤ αM (x)+βM |s|θ3−1

for a. a. x ∈ Ω and for all s ∈ R.

A(g) : g : Γb ×R→ R satisfies the following conditions:

(i) x 7→ g(x,s) is measurable on Γb for all s ∈ R such that x 7→ g(x,0) belongs to L1(Γb);
(ii) for a. a. x ∈ Γb, s 7→ g(x,s) is convex and lower semicontinuous.

A(Ψ) : Ψ : Ω → [0,+∞) is measurable in Ω;

A(0) : The following inequalities hold:

max
{

eh, fhλ
1
p

p

}
< a(p) and max{chχ(θ1),dhχ(θ2)+βM χ(θ3)}< 1,

where a(p)> 0 is given in (3), λp is given in (2) and χ : [1, p]→{1,0} is defined by

χ(θ) =

{
1 if θ = p,
0 otherwise.

The weak solutions for the problem (7) are given in the following sense.

Definition 3.1. A function z ∈ S1,H (Ω) is said to be a weak solution of the problem (7) if z ∈ P and
there exists a function ζ ∈ Np′

M (z) such that∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(v− z)dx

+
∫

Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(v− z)dx

+
∫

Γb

g(x,v)dΓ−
∫

Γb

g(x,z)dΓ

≥
∫

Ω
ζ (x)(v− z) dx+

∫
Ω

h(x,z,∇z)(v− z) dx for all v ∈ P,

where the set-valued operator Np′
M : S1,H (Ω)⇒ Lp′(Ω) is defined by

Np′
M (z) =

{
ζ ∈ Lp′(Ω) : ζ (x) ∈ M (x,z(x)), for a. a. x ∈ Ω

}
, z ∈ S1,H (Ω)(8)

and

P =
{

z ∈ S1,H
0 (Ω) : z ≤ Ψ in Ω

}
.(9)

The operator Np′
M is known as the set-valued Nemytskij operator associated with the set-valued

function M . The following properties of Np′
M are deduced from Ref. [45, Lemma 1.1].

Lemma 3.2. Assume that A(M ) is satisfied. Then, the following hold:
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 8

(i) Np′
M is well-defined and for each z ∈ Lp(Ω), the set Np′

M (z) is bounded, closed and convex in
Lp′(Ω);

(ii) Np′
M is strongly-weakly upper semicontinuous.

Remark 2. Under the assumption A(Ψ), the set P defined by (9) is a nonempty, closed and convex
subset of S1,H (Ω) (see Ref. [42, page 8]).

The existence result for the problem (7) is provided in the following lemma which is followed from
Ref. [45, Theorem 3.9].

Lemma 3.3. Let p≥ 2. Assume that A(h),A(M ),A(g),A(Ψ)andA(0) hold. Then the set of solutions
for the problem (7) is nonempty and weakly compact in S1,H (Ω).

4. Regularized gap functions

Based on the ideas of Yamashita and Fukushima [41] and Tam [39], we shall investigate the regu-
larized gap functions for the problem (7). We now propose the definition of a gap function for the
problem (7).

Definition 4.1. A real-valued function F : S1,H (Ω) → R is said to be a gap function for the prob-
lem (7), if it satisfies the following properties:

(a) F(z)≥ 0 for all z ∈ P .
(b) z∗ ∈ P is such that F(z∗) = 0 if and only if z∗ is a weak solution to the problem (7).

Let ω > 0 be a fixed parameter. We consider the following functions Qµ,ω : P ×Lp′(Ω)→R and
ϒµ,ω : P → R defined by

Qµ,ω(z,ζ ) = sup
v∈P

(∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− v)dx+

∫
Ω

ζ (x)(v− z) dx

+
∫

Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z− v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z)dΓ

+
∫

Ω
h(x,z,∇z)(v− z) dx− ω

p
∥z− v∥p

p,Ω

)
(10)

for all z ∈ P and ζ ∈ Lp′(Ω), and

ϒµ,ω(z)

= inf
ζ∈Np′

M (z)
sup
v∈P

(∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− v)dx+

∫
Ω

ζ (x)(v− z) dx

+
∫

Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z− v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z)dΓ

+
∫

Ω
h(x,z,∇z)(v− z) dx− ω

p
∥z− v∥p

p,Ω

)
,(11)

for all z ∈ S1,H (Ω).
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It follows from (10) and (11) that ϒµ,ω(z) = inf
ζ∈Np′

M (z)
Qµ,ω(z,ζ ).

Remark 3. Assume that the assumption A(M ) holds. It is easy to see that the function Qµ,ω is convex
and continuous in the second component. Moreover, by Lemma 3.2(i), for each z ∈ P , Np′

M (z) is a
bounded, closed and convex set. Thus, it follows from an elementary result for convex minimization
that for each z ∈ P , there exists ζz ∈ Np′

M (z) such that ϒµ,ω(z) = Qµ,ω(z,ζz) (see Ref. [4, Theorem
3.3.12]).

In what follows, the function ϒµ,ω defined by (11) is called to be a regularized gap function for the
problem (7), where ω > 0 is a regularized parameter.

Theorem 4.2. Suppose the hypotheses of Lemma 3.3. Then, for any ω > 0, the function ϒµ,ω is a gap
function for the problem (7).

Proof: (a) Clearly, for each ω > 0 fixed, z ∈ P and ζ ∈ Np′
M (z), it follows from the definition of

Qµ,ω in (10) that

Qµ,ω(z,ζ )≥
∫

Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− z)dx+

∫
Ω

ζ (x)(z− z) dx

+
∫

Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z− z)dx−

∫
Γb

g(x,z)dΓ+
∫

Γb

g(x,z)dΓ

+
∫

Ω
h(x,z,∇z)(z− z) dx− ω

p
∥z− z∥p

p,Ω

=0.

By the arbitrariness of ζ ∈ Np′
M (z), we conclude that

ϒµ,ω(z) = inf
ζ∈Np′

M (z)
Qµ,ω(z,ζ )≥ 0, ∀z ∈ P.

(b) Assume that z∗ ∈ P satisfies ϒµ,ω(z∗) = 0, that is,

inf
ζ∈Np′

M (z∗)
Qµ,ω(z∗,ζ ) = 0.

Thanks to Remark 3, we conclude that there exists ζ ∗ ∈ Np′
M (z∗) such that

0 = Qµ,ω(z∗,ζ ∗)

= sup
v∈P

(∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z∗− v)dx+

∫
Ω

ζ ∗(x)(v− z∗) dx

+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z∗− v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z∗)dΓ

+
∫

Ω
h(x,z∗,∇z∗)(v− z∗) dx− ω

p
∥z∗− v∥p

p,Ω

)
.
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 10

This means
ω
p
∥z∗− v∥p

p,Ω

≥
∫

Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z∗− v)dx+

∫
Ω

ζ ∗(x)(v− z∗) dx

+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z∗− v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z∗)dΓ

+
∫

Ω
h(x,z∗,∇z∗)(v− z∗) dx, ∀v ∈ P.

For any u ∈ P , σ ∈ (0,1), since P is a convex set, we have vσ := (1−σ)z∗+σu ∈ P . Hence, we
insert vσ into the above inequality to obtain∫

Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z∗− vσ )dx+

∫
Ω

ζ ∗(x)(vσ − z∗) dx

+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z∗− vσ )dx−

∫
Γb

g(x,vσ )dΓ+
∫

Γb

g(x,z∗)dΓ

+
∫

Ω
h(x,z∗,∇z∗)(vσ − z∗) dx

≤ω
p
∥z∗− vσ∥p

p,Ω =
ωσ p

p
∥z∗−u∥p

p,Ω, ∀u ∈ P.(12)

Using the convexity of v 7→ g(x,v), one has

σ
(∫

Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z∗−u)dx+

∫
Ω

ζ ∗(x)(u− z∗) dx

+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z∗−u)dx−

∫
Γb

g(x,u)dΓ+
∫

Γb

g(x,z∗)dΓ

+
∫

Ω
h(x,z∗,∇z∗)(u− z∗) dx

)
≤

∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z∗− vσ )dx+

∫
Ω

ζ ∗(x)(vσ − z∗) dx

+

∫
Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z∗− vσ )dx−

∫
Γb

g(x,vσ )dΓ+
∫

Γb

g(x,z∗)dΓ

+
∫

Ω
h(x,z∗,∇z∗)(vσ − z∗) dx, ∀u ∈ P.(13)

Combining (12) and (13), we have∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z∗−u)dx+

∫
Ω

ζ ∗(x)(u− z∗) dx

+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z∗−u)dx−

∫
Γb

g(x,u)dΓ+
∫

Γb

g(x,z∗)dΓ

+
∫

Ω
h(x,z∗,∇z∗)(u− z∗) dx

≤ ωσ p−1

p
∥z∗−u∥p

p,Ω
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 11

for all u ∈ P . Letting σ → 0+ for the above inequality, it gives∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(u− z∗)dx+

∫
Γb

g(x,u)dΓ

−
∫

Γb

g(x,z∗)dΓ+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(u− z∗)dx

≥
∫

Ω
ζ ∗(x)(u− z∗) dx+

∫
Ω

h(x,z∗,∇z∗)(u− z∗) dx

for all u ∈ P . Thus, z∗ is a solution to the problem (7).

Conversely, suppose that z∗ ∈ S1,H (Ω) is a weak solution of the problem (7), i.e., z∗ ∈P and there
exists ζ ∗ ∈ Np′

M (z∗) such that∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(v− z∗)dx+

∫
Γb

g(x,v)dΓ

−
∫

Γb

g(x,z∗)dΓ+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(v− z∗)dx

≥
∫

Ω
ζ ∗(x)(v− z∗) dx+

∫
Ω

h(x,z∗,∇z∗)(v− z∗) dx, ∀v ∈ P.

Since v ∈ P is arbitrary, we have

Qµ,ω(z∗,ζ ∗)

= sup
v∈P

(∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z∗− v)dx+

∫
Ω

ζ ∗(x)(v− z∗) dx

+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z∗− v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z∗)dΓ

+
∫

Ω
h(x,z∗,∇z∗)(v− z∗) dx− ω

p
∥z∗− v∥p

p,Ω

)
≤ 0.

Hence, for any ζ ∈ Np′
M (z∗),

ϒµ,ω(z∗) = inf
ζ∈Np′

M (z∗)
Qµ,ω(z∗,ζ )≤ 0.

Since ϒµ,ω(z)≥ 0 for all z ∈ P , then ϒµ,ω(z∗) = 0. The proof is complete. �
We shall prove that the regularized gap function ϒµ,ω is lower semicontinuous.

Lemma 4.3. Assume that the hypotheses of Lemma 3.3 are satisfied. Then for each ω > 0, the gap
function ϒµ,ω is lower semicontinuous.

Proof: Taking ℓ ∈ R and a sequence {zk} ⊂ S1,H (Ω) satisfying ϒµ,ω(zk) ≤ ℓ for all k ∈ N, and
zk→z0 in S1,H (Ω). We show that ϒµ,ω(z0)≤ ℓ. Indeed, we have

ϒµ,ω(zk) = inf
ζ∈Np′

M (zk)

Qµ,ω(zk,ζ )≤ ℓ,
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DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 12

for all k ∈ N. It follows from Remark 3 that for each k ∈ N, there exists ζk ∈ Np′
M (zk) such that

ϒµ,ω(zk) = Qµ,ω(zk,ζk) = sup
v∈P

Q̃µ,ω(zk,v,ζk),

where the function Q̃µ,ω : S1,H (Ω)×S1,H (Ω)×Lp′(Ω)→ R is defined by

Q̃µ,ω(z,v,ζ )

=
∫

Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− v)dx+

∫
Ω

ζ (x)(v− z) dx

+
∫

Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z− v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z)dΓ

+
∫

Ω
h(x,z,∇z)(v− z) dx− ω

p
∥z− v∥p

p,Ω.

Then, for all v ∈ P ,

Q̃µ,ω(zk,v,ζk)≤ ℓ,(14)

By Lemma 4.3, the operator Np′
M is strongly-weakly upper semicontinuous with nonempty, weakly

compact, convex values. Then using Lemma 2.3, there exists ζ0 ∈ Np′
M (z0) such that, passing to a

subsequence if necessary,

ζk
w−→ ζ0 in Lp′(Ω).

Recall that the operator A : S1,H (Ω)→ S1,H (Ω)∗ defined by

⟨A(z),v⟩H :=
∫

Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇vdx,

for z,v ∈ S1,H (Ω), is continuous (see Proposition 2.1). Then the function (z,v) 7→ ⟨A(z),v⟩H is
continuous on S1,H (Ω)×S1,H (Ω)∗. Furthermore, the function z 7→ g(x,z) is lower semicontinuos
for a. a. x ∈ Γb and functions z 7→ h(x,z,∇z) and z 7→ ∥z∥p,Ω are continuous for a. a. x ∈ Ω. Passing
to the lower limit as k → ∞ to the inequality (14) and using the compactness of the embedding of
S1,H (Ω) to Lp(Ω), we have
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ℓ≥ liminf
k→∞

Q̃µ,ω(zk,v,ζk)

≥ liminf
k→∞

∫
Ω

(
|∇zk|p−2∇zk +µ(x)|∇zk|q−2∇zk

)
·∇(zk − v)dx

+ liminf
k→∞

∫
Ω

(
|zk|p−2zk +µ(x)|zk|q−2zk

)
(zk − v)dx

+ liminf
k→∞

∫
Ω

ζk(x)(v− zk) dx−
∫

Γb

g(x,v)dΓ+ liminf
k→∞

∫
Γb

g(x,zk)dΓ

+ liminf
k→∞

∫
Ω

h(x,zk,∇zk)(v− z) dx− limsup
k→∞

ω
p
∥zk − v∥p

p,Ω

≥
∫

Ω

(
|∇z0|p−2∇z0 +µ(x)|∇z0|q−2∇z0

)
·∇(z0 − v)dx+

∫
Ω

ζ0(x)(v− z0) dx

+
∫

Ω

(
|z0|p−2z0 +µ(x)|z0|q−2z0

)
(z0 − v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z0)dΓ

+
∫

Ω
h(x,z0,∇z0)(v− z0) dx− ω

p
∥z0 − v∥p

p,Ω

= Q̃µ,ω(z0,v,ζ0), for all v ∈ P.

Hence, supv∈P Q̃µ,ω(z0,v,ζ0)≤ ℓ. Therefore,

ϒµ,ω(z0) = inf
ζ∈Np′

M (z0)

sup
v∈P

Q̃µ,ω(z0,v,ζ )≤ ℓ,

i.e., the level set {z ∈ S1,H (Ω) | ϒµ,ω(z)≤ ℓ} for any ℓ ∈ R is closed. Hence, ϒµ,ω is lower semicon-
tinuous. �

Let ω , δ > 0 be two parameters. Based on Moreau-Yosida regularization of the function ϒµ,ω , we
consider the following function Θδ

ϒµ ,ω
: S1,H (Ω)→ R defined by

Θδ
ϒµ,ω (z) = inf

w∈P

{
ϒµ,ω(w)+δ∥z−w∥p

1,H

}
,(15)

for all z ∈ P .

We now verify that Θδ
ϒµ,ω

is a gap function for the problem (7). Then, we call Θδ
ϒµ,ω

to be the
Moreau-Yosida regularized gap function for the problem (7).

Theorem 4.4. Assume that the hypotheses of Lemma 3.3 are satisfied. Then, for all ω,δ > 0, the
function Θδ

ϒµ ,ω
is the gap function for the problem (7).

Proof: (a) For any ω,δ > 0 and w ∈ P , recall that ϒµ,ω is a gap function for the problem (7),
hence ϒµ,ω(w)≥ 0. It follows from the definition of Θδ

ϒµ,ω
in (15) that Θδ

ϒµ,ω
(z)≥ 0, for all z ∈ P .
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(b) Suppose that z∗ ∈ S1,H (Ω) is a weak solution of the problem (7). Thanks to Theorem 4.2, we
obtain that z∗ ∈ P and ϒµ,ω(z∗) = 0. Moreover, the inequality

Θδ
ϒµ,ω (z

∗) = inf
w∈P

{
ϒµ,ω(w)+δ∥z∗−w∥p

1,H

}
≤ ϒµ,ω(z∗)+δ∥z∗− z∗∥p

1,H = 0

and the fact Θδ
ϒµ,ω

(z∗)≥ 0 implies that Θδ
ϒµ,ω

(z∗) = 0.

Conversely, let z∗ ∈ P be such that Θδ
ϒµ,ω

(z∗) = 0, i.e.,

inf
w∈P

{
ϒµ,ω(w)+δ∥z∗−w∥p

1,H

}
= 0.

Hence, there exists a minimizing sequence {wk} in P such that

(16) 0 ≤ ϒµ,ω(wk)+δ∥z∗−wk∥p
1,H <

1
k
.

It is obvious that ϒµ,ω(wk) → 0 and ∥z∗−wk∥p
1,H → 0, as k → ∞. This implies that the sequence

{wk} converges to z∗ in S1,H (Ω), as k → ∞. Combining the nonnegativity and lower semicontinuity
of ϒµ,ω (see Lemma 4.3), one has

0 ≤ ϒµ,ω(z∗)≤ liminf
k→+∞

ϒµ,ω(wk) = 0,

i.e., ϒµ,ω(z∗) = 0. Since ϒµ,ω is a gap function for the problem (7), we get that z∗ is a weak solution
to the problem (7). The proof is complete. �

5. Upper-bound error estimates

In this section, we shall provide some error bounds for the problem (7) associated with the regularized
gap function ϒµ,ω and the Moreau-Yosida regularized gap function Θδ

ϒµ,ω
, accordingly.

To obtain error bounds for the problem (7), we introduce the following assumption:

A(M ∗) : For the set-valued mapping M : Ω×R⇒ R, there is a constant cM > 0 such that

(ζ1 −ζ2)(s1 − s2)≤ cM |s1 − s2|p,
for all ζi ∈ M (x,si), si ∈ R, i = 1,2 and for a. a. x ∈ Ω.

Theorem 5.1. Let z∗ ∈ S1,H (Ω) be a weak solution of the problem (7). Assume that all assumptions
of Lemma 3.3 and the hypothesis A(M ∗) hold. Assume further that ω > 0 satisfies

min
{

a(p)− fhλ
1
p

p ,a(p)− eh − cM − ω
p
,a(q)

}
> 0.

Then, for each z ∈ P , we have

(17) ∥z− z∗∥1,H ≤ max
{
E

1
p (z),E

1
q (z)

}
,

where

E (z) =
ϒµ,ω(z)

min
{

a(p)− fhλ
1
p

p ,a(p)− eh − cM − ω
p ,a(q)

} .
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Proof: Let z∗ ∈ S1,H (Ω) be a weak solution of the problem (7), i.e., z∗ ∈ P and there exists
ζ ∗ ∈ Np′

M (z∗) such that

∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(v− z∗)dx+

∫
Γb

g(x,v)dΓ

−
∫

Γb

g(x,z∗)dΓ+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(v− z∗)dx

≥
∫

Ω
ζ ∗(x)(v− z∗) dx+

∫
Ω

h(x,z∗,∇z∗)(v− z∗) dx

for all v ∈ P .
For any z ∈ P fixed, we insert v = z into the above inequality to obtain

∫
Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z− z∗)dx+

∫
Γb

g(x,z)dΓ

−
∫

Γb

g(x,z∗)dΓ+
∫

Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z− z∗)dx

−
∫

Ω
ζ ∗(x)(z− z∗) dx−

∫
Ω

h(x,z∗,∇z∗)(z− z∗) dx ≥ 0.(18)

Recall the function Qµ,ω : P ×Lp′(Ω)→ R is defined by

Qµ,ω(z,ζ ) = sup
v∈P

(∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− v)dx+

∫
Ω

ζ (x)(v− z) dx

+
∫

Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z− v)dx−

∫
Γb

g(x,v)dΓ+
∫

Γb

g(x,z)dΓ

+
∫

Ω
h(x,z,∇z)(v− z) dx− ω

p
∥z− v∥p

p,Ω

)
,

it follows from Remark 3 and the definition of ϒµ,ω that there exists ζz ∈ Np′
M (z) such that

ϒµ,ω(z)

=Qµ,ω(z,ζz)

≥
∫

Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− z∗)dx+

∫
Ω

ζz(x)(z∗− z) dx

+
∫

Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z∗− z)dx−

∫
Γb

g(x,z∗)dΓ+
∫

Γb

g(x,z)dΓ

+
∫

Ω
h(x,z,∇z)(z∗− z) dx− ω

p
∥z− z∗∥p

p,Ω(19)
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By the hypothesis A(M ∗), we have∫
Ω

ζz(x)(z∗− z) dx+
∫

Ω
ζ ∗(x)(z− z∗) dx

=
∫

Ω
(ζz(x)−ζ ∗(x))(z∗− z) dx

≥−
∫

Ω
cM |z∗− z|p dx

=−cM ∥z− z∗∥p
p,Ω.(20)

Moreover, we have ∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− z∗)dx

−
∫

Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z− z∗)dx

=
∫

Ω

(
|∇z|p−2∇z−|∇z∗|p−2∇z∗

)
·∇(z− z∗)dx

+
∫

Ω
µ(x)

(
|∇z|q−2∇z−|∇z∗|q−2∇z∗

)
·∇(z− z∗)dx

≥
∫

Ω
a(p)|∇(z− z∗)|p dx+

∫
Ω

µ(x)a(q)|∇(z− z∗)|q dx

= a(p)∥∇(z− z∗)∥p
p,Ω +a(q)∥∇(z− z∗)∥q

q,µ,Ω,(21)

and ∫
Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z− z∗)dx−

∫
Ω

(
|z∗|p−2z∗+µ(x)|z∗|q−2z∗

)
(z− z∗)dx

=
∫

Ω

(
|z|p−2 −|z∗|p−2z∗

)
(z− z∗)dx+

∫
Ω

µ
(
|z|q−2z−|z∗|q−2z∗

)
(z− z∗)dx

≥ a(p)∥z− z∗∥p
p,Ω +a(q)∥z− z∗∥q

q,µ,Ω.(22)

By the condition A(h)(iii), one has∫
Ω

h(x,z,∇z)(z∗− z) dx+
∫

Ω
h(x,z∗,∇z∗)(z− z∗) dx

=
∫

Ω
(h(x,z,∇z)−h(x,z∗,∇z))(z∗− z) dx

+
∫

Ω
(h(x,z∗,∇z)−h(x,z∗,∇z∗))(z∗− z) dx

≥−
∫

Ω
eh|z− z∗|p dx−

∫
Ω

fh|∇(z− z∗)|p−1|z− z∗|dx

Applying Hölder’s inequality gives∫
Ω

h(x,z,∇z)(z∗− z) dx+
∫

Ω
h(x,z∗,∇z∗)(z− z∗) dx

≥−eh∥z− z∗∥p
p,Ω − fh∥∇(z− z∗)∥p−1

p,Ω ∥z− z∗∥p,Ω.(23)
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From (18), (20)–(23), we have∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− z∗)dx+

∫
Ω

ζz(x)(z∗− z) dx

−
∫

Γb

g(x,z∗)dΓ+
∫

Γb

g(x,z)dΓ+
∫

Ω
h(x,z,∇z)(z∗− z) dx

≥ a(p)
(
∥∇(z− z∗)∥p

p,Ω +∥z− z∗∥p
p,Ω

)
+a(q)

(
∥∇(z− z∗)∥q

q,µ,Ω +∥z− z∗∥p
p,Ω

)
− (eh + cM )∥z− z∗∥p

p,Ω − fh∥∇(z− z∗)∥p−1
p,Ω ∥z− z∗∥p,Ω.(24)

Combining (2), (19) and (24), one has

ϒµ,ω(z)

≥ a(p)∥∇(z− z∗)∥p
p,Ω +(a(p)− eh − cM )∥z− z∗∥p

p,Ω − ω
p
∥z− z∗∥p

p,Ω

− fh∥∇(z− z∗)∥p−1
p,Ω ∥z− z∗∥p,Ω +a(q)

(
∥∇(z− z∗)∥q

q,µ,Ω +∥z− z∗∥q
q,µ,Ω

)
≥ a(p)∥∇(z− z∗)∥p

p,Ω +

(
a(p)− eh − cM − ω

p

)
∥z− z∗∥p

p,Ω

− fhλ
1
p

p ∥∇(z− z∗)∥p
p,Ω +a(q)

(
∥∇(z− z∗)∥q

q,µ,Ω +∥z− z∗∥q
q,µ,Ω

)
≥ L0

(
∥∇(z− z∗)∥p

p,Ω +∥z− z∗∥p
p,Ω +∥∇(z− z∗)∥q

q,µ,Ω +∥z− z∗∥q
q,µ,Ω

)
≥ L0 min

{
∥z− z∗∥p

1,H ,∥z− z∗∥q
1,H

}
,(25)

where L0 > 0 is defined by

L0 := min
{

a(p)− fhλ
1
p

p ,a(p)− eh − cM − ω
p
,a(q)

}
.

Set

E (z) =
ϒµ,ω(z)

L0
.

Then, the inequality (25) implies that

∥z− z∗∥1,H ≤ max
{
E

1
p (z),E

1
q (z)

}
.

Therefore, the inequality (17) is valid. �
The following results derive upper-bound error estimates for the problem (7) under the norm ∥ ·

∥p,Ω.

Theorem 5.2. Let z∗ ∈ S1,H (Ω) be a weak solution of the problem (7). Assume that all assumptions
of Lemma 3.3 and the hypothesis A(M ∗) hold. Assume further that ω > 0 satisfies

a(p)λ−1
p − fhλ

1−p
p

p +a(p)− eh − cM − ω
p
> 0.
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Then, for each z ∈ P , we have

(26) ∥z− z∗∥p,Ω ≤

 ϒµ,ω(z)

a(p)λ−1
p − fhλ

1−p
p

p +a(p)− eh − cM − ω
p


1
p

.

Proof: Let z∗ ∈ S1,H (Ω) be a weak solution of the problem (7). Using a similar method as in the
first part of the demonstration of Theorem 5.1 leads to the expressions (18)–(20) and (23). Since∫

Ω
µ(x)

(
|∇z|q−2∇z−|∇z∗|q−2∇z∗

)
·∇(z− z∗)dx ≥ 0,

taking ∫
Ω

(
|∇z|p−2∇z−|∇z∗|p−2∇z∗

)
·∇(z− z∗)dx ≥ a(p)∥∇(z− z∗)∥p

p,Ω,

into account (21) gives∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− z∗)dx

−
∫

Ω

(
|∇z∗|p−2∇z∗+µ(x)|∇z∗|q−2∇z∗

)
·∇(z− z∗)dx ≥ a(p)∥∇(z− z∗)∥p

p,Ω.(27)

From (2), (18), (20), (23) and (27), we obtain∫
Ω

(
|∇z|p−2∇z+µ(x)|∇z|q−2∇z

)
·∇(z− z∗)dx+

∫
Ω

ζz(x)(z∗− z) dx∫
Ω

(
|z|p−2z+µ(x)|z|q−2z

)
(z− z∗)dx−

∫
Γb

g(x,z∗)dΓ+
∫

Γb

g(x,z)dΓ

+
∫

Ω
h(x,z,∇z)(z∗− z) dx

≥ a(p)∥∇(u− z∗)∥p
p,Ω +(a(p)− eh − cM )∥z− z∗∥p

p,Ω − fhλ
1
p

p ∥∇(z− z∗)∥p
p,Ω

=

(
a(p)− fhλ

1
p

p

)
∥∇(z− z∗)∥p

p,Ω +(a(p)− eh − cM )∥z− z∗∥p
p,Ω

≥
(

a(p)− fhλ
1
p

p

)
λ−1

p ∥z− z∗∥p
p,Ω +(a(p)− eh − cM )∥z− z∗∥p

p,Ω

=

(
a(p)λ−1

p − fhλ
1−p

p
p +a(p)− eh − cM

)
∥z− z∗∥p

p,Ω.(28)

Combining (19) and (28), one has

ϒµ,ω(z)≥
(

a(p)λ−1
p − fhλ

1−p
p

p +a(p)− eh − cM − ω
p

)
∥z− z∗∥p

p,Ω.(29)

Thus, the desired inequality (26) holds. �
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Theorem 5.3. Let z∗ ∈ S1,H (Ω) be a weak solution of the problem (7). Assume that the hypotheses
of Theorem 5.2 hold. Then, for each z ∈ P and all ω,δ > 0, we have

(30) ∥z− z∗∥p,Ω ≤

 2p−1Θδ
ϒµ,ω

(z)

min
{

a(p)λ−1
p − fhλ

1−p
p

p +a(p)− eh − cM − ω
p ,δβ ∗−1

}


1
p

,

where β ∗ > 0 is the constant such that ∥z∥p
p,Ω ≤ β ∗∥z∥p

1,H for all z ∈ S1,H (Ω) due to the continuity
of the embedding of S1,H (Ω) into Lp(Ω).

Proof: Let z∗ ∈ S1,H (Ω) be a weak solution of the problem (7). By the definition of the function
Θδ

ϒµ,ω
and the inequality (29), for any z ∈ P we get

Θδ
ϒµ ,ω (z)

= inf
w∈P

{
ϒµ,ω(w)+δ∥z−w∥p

1,H

}
≥ inf

w∈P

{(
a(p)λ−1

p − fhλ
1−p

p
p +a(p)− eh − cM − ω

p

)
∥w− z∗∥p

p,Ω +δ∥z−w∥p
1,H

}
≥ inf

w∈P

{(
a(p)λ−1

p − fhλ
1−p

p
p +a(p)− eh − cM − ω

p

)
∥w− z∗∥p

p,Ω +δβ ∗−1∥z−w∥p
p,Ω

}
.

Hence,

Θδ
ϒµ,ω (z)≥ min

{
a(p)λ−1

p − fhλ
1−p

p
p +a(p)− eh − cM − ω

p
,δβ ∗−1

}
× inf

w∈P

{
∥w− z∗∥p

p,Ω +∥z−w∥p
p,Ω

}
.(31)

By applying the following inequality

∥w− z∗∥p
p,Ω +∥z−w∥p

p,Ω ≥ 1
2p−1 ∥z− z∗∥p

p,Ω,

it follows from (31) that

Θδ
ϒµ,ω (z)≥

1
2p−1 min

{
a(p)λ−1

p − fhλ
1−p

p
p +a(p)− eh − cM − ω

p
,δβ ∗−1

}
∥z− z∗∥p

p,Ω.

This implies that the inequality (30) holds. �

Acknowledgements

The authors are very grateful to the anonymous referee for his/her valuable remarks which improved
the result and presentation of the paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

25 Dec 2022 20:12:41 PST
221203-Huang Version 3 - Submitted to Rocky Mountain J. Math.



DOUBLE PHASE OBSTACLE PROBLEMS: UPPER-BOUND ERROR ESTIMATE 20

Funding

This project has received funding from the Natural Science Foundation of Guangxi Grant No. 2021GX-
NSFFA196004, the NNSF of China Grant No. 12001478, the Research Ability Enhancement Projects
of Young and Middle-Aged Teachers in Guangxi Universities No. 2020KY14008, the European U-
nion’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant
agreement No. 823731 CONMECH, National Science Center of Poland under Preludium Project No.
2017/25/N/ST1/00611, and the Startup Project of Doctor Scientific Research of Yulin Normal Uni-
versity No. G2020ZK07. It is also supported by the Ministry of Science and Higher Education of
Republic of Poland under Grants Nos. 4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019.

References

[1] L.Q. Anh, N.V. Hung, and V.M. Tam, “Regularized gap functions and error bounds for generalized mixed strong
vector quasiequilibrium problems”, Comput. Appl. Math. 37 (2018), 5935–5950.

[2] J.P. Aubin, and I. Ekeland, Applied nonlinear analysis, Wiley, New York, 1984.
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[36] N.S. Papageorgiou, V.D. Rădulescu, and D.D. Repovs̆, “Double-phase problems and a discontinuity property of the

spectrum”, Proc. Amer. Math. Soc. 147:7 (2019), 2899–2910.
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[46] S.D. Zeng, S. Migórski, Z.H. Liu, “Well-posedness, optimal control, and sensitivity analysis for a class of differential
variational-hemivariational inequalities”, SIAM J. Optim. 31: (2021), 2829–2862.
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