DOUBLE PHASE OBSTACLE PROBLEMS INVOLVING SET-VALUED CONVECTION AND MIXED BOUNDARY VALUE CONDITIONS: UPPER-BOUND ERROR ESTIMATES
 VO MINH TAM AND XIEZHEN HUANG

Abstract

The main purpose of this paper is to study upper-bound error estimates (also known as error bounds) for a class of generalized double phase obstacle problems via regularized gap functions. More precisely, we introduce some regularized gap functions for the double phase obstacle problem in forms introduced by Yamashita and Fukushima, and apply these regularized gap functions to provide the upper-bound error estimates for the double phase obstacle problem.

1. Introduction

In 1976, Auslender [3] introduced a valuable tool called the gap function to formulate variational inequalities by virtue of corresponding optimization problems. A gap function is given by

$$
\mathbf{n}(z)=\sup _{v \in C}\langle\pi(z), z-v\rangle,
$$

where $z \in C \subset \mathbb{R}^{n}, \pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, and $\langle\cdot, \cdot\rangle$ is the scalar product in \mathbb{R}^{n}. The function \mathbf{n} has nonnegative values on C and $\mathbf{n}\left(z_{0}\right)=0$ if and only if z_{0} is a solution to the concerning variational inequality. In general, the gap function \mathbf{n} is not differentiable. This disadvantage was improved by Yamashita and Fukushima [41] with proposing a new gap function which also called the regularized gap function:

$$
\mathbf{n}_{\theta}(z)=\sup _{v \in C}\left\{\langle\pi(z), z-v\rangle-\theta\|z-v\|^{2}\right\},
$$

where the regularized parameter $\theta>0$. The regularized gap function \mathbf{n}_{θ} is finite valued and differentiable whenever π is differentiable; see Fukushima [17] for more information. In Ref. [41], Yamashita and Fukushima also provided another gap function based on the Moreau-Yosida regularization involving the regularized gap function \mathbf{n}_{θ} as follows:

$$
\Psi_{\mathbf{n}_{\theta}}^{\vartheta}(z)=\inf _{w \in C}\left\{\mathbf{n}_{\theta}(w)+\vartheta\|z-w\|^{2}\right\}
$$

where $\vartheta>0$. Some error bounds for variational inequalities via the regularized gap functions \mathbf{n}_{θ} and $\Psi_{\mathbf{n}_{\theta}}^{\vartheta}$ were established. Error bound illustrates the upper estimation of the distance between an arbitrary feasible point and the solution set of a certain problem. It was crucial in studying the convergence of iterative methods for solving various classes of variational inequalities. Up to now, the topic on gap functions and error bounds has been important and interesting in optimization theory and nonlinear

[^0]analysis for studying related-optimization problems such as variational inequalities, equilibrium problems and variational-hemivariational inequalities, and so on. For more information on this topic, we refer readers to works, see Refs. [1, 8, 10, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 34, 40, 46, 47, 48] and the references therein.

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \geq 2)$, with Lipschitz boundary $\partial \Omega$ and $\mathbf{S}_{0}^{1, \mathscr{H}}(\Omega)$ be a subspace of the Sobolev-Musielak-Orlicz space $\mathbf{S}^{1, \mathscr{H}}(\Omega)$ (see Section 2). The double phase operator is given by

$$
-\operatorname{div}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right), \quad z \in \mathbf{S}_{0}^{1, \mathscr{H}}(\Omega),
$$

where $1<p<q<N$ and $\mu: \bar{\Omega} \rightarrow[0, \infty)$. The difference between the (p, q)-differential operator and the double phase operator is that the weight function $\mu: \bar{\Omega} \rightarrow[0, \infty)$ can be vanished in Ω.

In the 1980s, Zhikov [50] introduced a class of double phase operators for investigating models of strongly anisotropic materials based on the nonlinear energy functional

$$
\phi \mapsto \int_{\Omega}\left(|\nabla \phi|^{p}+\mu(x)|\nabla \phi|^{q}\right) d x,
$$

(also see Refs. [51, 52]). Besides, Zhikov [53] has aslo used double phase operator to describe the models with Lavrentiev's phenomenon. A large number of interesting results for solutions to problems involving this operator has been published up to now, see Refs. [6, 7, 5, 11, 12, 13, 14, 15, 18, $19,20,35,36,37,42,49]$ and the references therein. Recently, Zeng et al. [43, 44] firstly introduced a double phase implicit obstacle problem involving multivalued operator, and they provided some elegant and effective methods to solve multivalued elliptic problems with double phase differential operators. These works open a new and challenging research direction concerning double phase problems with implicit obstacle constraints, and more and more scholars are attracted to the development on both theoretical and application aspects of double phase obstacle problems. More recently, in order to overcome the challenging and difficulty that nonlinear convection term leads to the invalidity of variational methods, Zeng et al. [45] applied Kakutani-Ky Fan fixed point theorem for multivalued operators along with the theory of nonsmooth analysis and variational methods for pseudomonotone operators to develop a very essential and new framework for investigating double phase problems with implicit obstacle effect and nonlinear convection terms, and obtained the sharpest results concerning existence and compactness to weak solutions. Very recently, based on the ideas in Refs. [39] investigated upper-bound error estimates for a class of double phase obstacle problems by using some regularized gap functions. To the best of my knowledge, such error estimates are the first ones for obstacle problems with the double phase operator.

Motivated by the aforementioned works, this paper represents a continuation of Ref. [39]. First, we consider a class of double phase obstacle problems with set-valued convection and mixed boundary value conditions. Then, several new regularized gap functions for the double phase obstacle problems are introduced. Finally, we provide the upper-bound error estimates for such double phase obstacle problems in terms of regularized gap functions based on the properties of double phase operators and the theory of set-valued analysis.

We first recall those elements which will be used throughout the paper. For more details, we refer to Refs. [14, 16, 29, 30].

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with Lipschitz boundary $\Gamma:=\partial \Omega$. The boundary Γ is divided into two mutually disjoint parts Γ_{a} and Γ_{b} with Γ_{a} having positive Lebesgue measure. Let $r \in[1, \infty)$ and any subset U of $\bar{\Omega}$. We denote the usual Lebesgue spaces $L^{r}(U):=L^{r}(U ; \mathbb{R})$ and $L^{r}\left(\Omega ; \mathbb{R}^{N}\right)$ equipped with the norm $\|\cdot\|_{r, U}$ given by

$$
\|z\|_{r, U}:=\left(\int_{U}|z|^{r} d x\right)^{\frac{1}{r}}
$$

Let $\mathbf{S}^{1, r}(\Omega)$ stand for the Sobolev space endowed with the norm $\|\cdot\|_{1, r, \Omega}$ defined by

$$
\|z\|_{1, r, \Omega}:=\|z\|_{r, \Omega}+\|\nabla z\|_{r, \Omega} \text { for all } z \in \mathbf{S}^{1, r}(\Omega)
$$

Throughout the paper the symbol $\xrightarrow{\mathbf{w}}$ (resp., \longrightarrow) stands for the weak (resp., strong) convergence. By $r^{\prime}>1$, we denote the conjugate of $r \in(1, \infty)$, i.e., $\frac{1}{r}+\frac{1}{r^{\prime}}=1$. Moreover, we denote by p^{*} the critical exponent to p given by

$$
p^{*}= \begin{cases}\frac{N p}{N-p} & \text { if } p<N \tag{1}\\ +\infty & \text { if } p \geq N\end{cases}
$$

Since Γ_{a} has positive measure, it follows from Korn's inequality that the function space

$$
\mathbf{S}_{0}^{1, r}(\Omega):=\left\{z \in \mathbf{S}^{1, r}(\Omega): z=\mathbf{0} \text { for a. a. } x \in \Gamma_{a}\right\}
$$

equipped with the norm $\|\nabla \cdot\|_{p, \Omega}$, is a reflexive Banach space. In what follows, let $\lambda_{p}>0$ be the smallest constant such that

$$
\begin{equation*}
\|z\|_{p, \Omega}^{p} \leq \lambda_{p}\|\nabla z\|_{p, \Omega}^{p} \tag{2}
\end{equation*}
$$

for all $z \in \mathbf{S}_{0}^{1, r}(\Omega)$. We now revisit the well-known inequality (see Simon [38, formula (2.2)])

$$
\begin{equation*}
\left(|x|^{k-2} x-|y|^{k-2} y\right) \cdot(x-y) \geq a(k)|x-y|^{k} \tag{3}
\end{equation*}
$$

for $k \geq 2$ and for all $x, y \in \mathbb{R}^{N}$, where $a(k)$ is a positive constant depending on k.

Throughout the paper, we assume that the function $\mu: \bar{\Omega} \rightarrow[0, \infty)$ and exponents p, q satisfy the following conditions (see [16, Proposition 2.18]):

$$
\begin{equation*}
0 \leq \mu(\cdot) \in L^{\infty}(\Omega) \text { and } 1<p<N, \quad q<q<p^{*} \tag{4}
\end{equation*}
$$

Let $\mathbb{R}_{+}:=[0, \infty)$ and the modular function $\mathscr{H}: \Omega \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be defined by

$$
\mathscr{H}(x, s)=s^{p}+\mu(x) s^{q} \quad \text { for all }(x, s) \in \Omega \times \mathbb{R}_{+} .
$$

The Musielak-Orlicz space $L^{\mathscr{H}}(\Omega)$ is given by

$$
L^{\mathscr{H}}(\Omega)=\left\{z \mid z: \Omega \rightarrow \mathbb{R} \text { is measurable and } \zeta_{\mathscr{H}}(z):=\int_{\Omega} \mathscr{H}(x,|z|) d x<+\infty\right\} .
$$

The space $L^{\mathscr{H}}(\Omega)$ equipped with the Luxemburg norm

$$
\|z\|_{\mathscr{H}}=\inf \left\{\tau>0 \left\lvert\, \zeta_{\mathscr{H}}\left(\frac{z}{\tau}\right) \leq 1\right.\right\}
$$

is uniformly convex and so it is a reflexive Banach space. Furthermore, we introduce the seminormed function space $L_{\mu}^{q}(\Omega)$

$$
L_{\mu}^{q}(\Omega)=\left\{z \mid z: \Omega \rightarrow \mathbb{R} \text { is measurable and } \int_{\Omega} \mu(x)|z|^{q} d x<+\infty\right\}
$$

endowed with the seminorm

$$
\|z\|_{q, \mu, \Omega}=\left(\int_{\Omega} \mu(x)|z|^{q} d x\right)^{\frac{1}{q}}
$$

We know that the embeddings

$$
L^{q}(\Omega) \hookrightarrow L^{\mathscr{H}}(\Omega) \hookrightarrow L^{p}(\Omega) \cap L_{\mu}^{q}(\Omega)
$$

are continuous and

$$
\begin{equation*}
\min \left\{\|z\|_{\mathscr{H}}^{p},\|z\|_{\mathscr{H}}^{q}\right\} \leq\|z\|_{p, \Omega}^{p}+\|z\|_{q, \mu, \Omega}^{q} \leq \max \left\{\|z\|_{\mathscr{H}}^{p},\|z\|_{\mathscr{H}}^{q}\right\} \tag{5}
\end{equation*}
$$

for all $z \in L^{\mathscr{H}}(\Omega)$ (see Colasuonno-Squassina [14, Proposition 2.15 (i), (iv) and (v)]).
The corresponding Sobolev-Musielak-Orlicz space $\mathbf{S}^{1, \mathscr{H}}(\Omega)$ is defined by

$$
\mathbf{S}^{1, \mathscr{H}}(\Omega)=\left\{z \in L^{\mathscr{H}}(\Omega)| | \nabla z \mid \in L^{\mathscr{H}}(\Omega)\right\} .
$$

The space $\mathbf{S}^{1, \mathscr{H}}(\Omega)$ is equipped with the norm

$$
\|z\|_{1, \mathscr{H}}=\|\nabla z\|_{\mathscr{H}}+\|z\|_{\mathscr{H}},
$$

where $\|\nabla z\|_{\mathscr{H}}=\||\nabla z|\|_{\mathscr{H}}$.
Given $A: \mathbf{S}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbf{S}^{1, \mathscr{H}}(\Omega)^{*}$ is an operator defined by

$$
\begin{equation*}
\langle A(z), v\rangle_{\mathscr{H}}:=\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla v d x \tag{6}
\end{equation*}
$$

for $z, v \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$, where $\langle\cdot, \cdot\rangle_{\mathscr{H}}$ denotes the duality pairing between $\mathbf{S}^{1, \mathscr{H}}(\Omega)$ and its dual space $\mathbf{S}^{1, \mathscr{H}}(\Omega)^{*}$. Some properties of the operator A defined by (6) are proposed in the following proposition:

Now, we recall some notion and properties concerning set-valued mappings and nonsmooth analysis.

Definition 2.2. (see Ref. [2]) Let Z and X be two Hausdorff topological spaces, $C \subset Z$ be a nonempty set and $\mathscr{M}: Z \rightrightarrows X$ be a set-valued mapping. Then \mathscr{M} is said to be
(a) convex (resp., closed, bounded) valued, if \mathscr{M} is convex (resp., closed, bounded) for each $z \in Z$;
(b) upper semicontinuous at $z_{0} \in Z$, if for each open set $U \subset X$ of $\mathscr{M}\left(z_{0}\right)$, there is a neighborhood $N\left(z_{0}\right)$ of z_{0} such that $\mathscr{M}\left(N\left(z_{0}\right)\right):=\cup_{v \in N\left(z_{0}\right)} \mathscr{M}(v) \subset U$. If it holds for each $z \in C$, then \mathscr{M} is called to be upper semicontinuous on C.

Lemma 2.3. (see Ref. [9]) Let Y be a Banach space and D be a nonempty subset of another Banach space. Assume that $F: D \rightrightarrows Y$ is a set-valued mapping with nonempty, weakly compact, convex values. Then F is strongly-weakly upper semicontinuous if and only if, for each sequence $\left\{z_{k}\right\} \subset D$ which converges to $z_{0} \in D$ and for each sequence $\left\{\zeta_{k}\right\} \subset F\left(z_{k}\right)$, there exists $\zeta_{0} \in F\left(z_{0}\right)$ such that $\zeta_{k} \xrightarrow{\mathbf{w}} \zeta_{0}$ up to a subsequence.
Definition 2.4. (see Ref. [33]) Let E be a real Banach space. A function $g: E \rightarrow \overline{\mathbb{R}}:=\mathbb{R} \cup\{+\infty\}$ is said to be
(a) proper, if $g \not \equiv+\infty$;
(b) convex, if $g(t z+(1-t) v) \leq \operatorname{tg}(z)+(1-t) g(v)$ for all $z, v \in E$ and $t \in[0,1]$;
(c) lower semicontinuous at $z_{0} \in E$, if for any sequence $\left\{z_{n}\right\} \subset E$ such that $z_{n} \rightarrow z_{0}$, it holds $g\left(z_{0}\right) \leq \liminf g\left(z_{n}\right) ;$
(d) upper semicontinuous at $z_{0} \in E$, if for any sequence $\left\{z_{n}\right\} \subset E$ such that $z_{n} \rightarrow z_{0}$, it holds $\limsup g\left(z_{n}\right) \leq g\left(z_{0}\right)$;
(e) lower (resp. upper) semicontinuous on E, if g is lower (resp. upper) semicontinuous at every $z_{0} \in E$
(f) continuous on E if, it is both lower and upper semicontinuous on E.

Definition 2.5. (see Ref. [33]) Let E be a real Banach space with its topological dual E^{*} and $g: E \rightarrow \overline{\mathbb{R}}$ be a proper, convex and lower semicontinuous function. The convex subdifferential $\partial_{c} g: E \rightrightarrows E^{*}$ of g is defined by

$$
\partial_{c} g(z)=\left\{w^{*} \in E^{*} \mid\left\langle w^{*}, v-z\right\rangle_{E} \leq g(v)-g(z) \text { for all } v \in E\right\} \text { for all } z \in E .
$$

An element $w^{*} \in \partial_{c} g(z)$ is called a subgradient of g at $z \in E$.

3. Double phase obstacle problem

In this section, we consider a class of double phase obstacle problems involving set-valued convection and mixed boundary value conditions. This class of problems is a special case of double phase obstacle problems investigated by Zeng et al. [45].

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with Lipschitz boundary $\Gamma:=\partial \Omega$. The boundary Γ is divided into two mutually disjoint parts Γ_{a} and Γ_{b} with Γ_{a} having positive Lebesgue measure and Γ_{b}
can be empty. We introduce the following double phase obstacle problem:

with v being the unit normal vector on $\Gamma, \mu: \bar{\Omega} \rightarrow[0, \infty)$ satisfies the condition (4), $\mathscr{M}: \Omega \times \mathbb{R} \rightrightarrows \mathbb{R}$ is a set-valued mapping, $g: \Gamma_{b} \times \mathbb{R} \rightarrow \mathbb{R}$ is a convex function with respect to the second argument, $\partial_{c} g(x, z)$ is the convex subdifferential of $z \mapsto g(x, z), h: \Omega \times \mathbb{R} \times \mathbb{R}^{N}$ is a nonlinear convection function and $\Psi: \Omega \rightarrow \mathbb{R}$ is a given obstacle.

Remark 1. The double phase obstacle problem (7) combines an obstacle effect along with mixed boundary conditions on Γ_{a} and Γ_{b} (with the convex subdifferential $\partial_{c} g$) and the appearance of setvalued mapping \mathscr{M} and the nonlinear convection function h. The problem (7) is a special case of double phase obstacle problems considered in Zeng et al. [45].

Next, we make the following assumptions on the data of the problem (7).
$\mathbf{A}(h): h: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function such that
(i) there exist $a_{h}, b_{h} \geq 0$ and a function $\alpha_{h} \in L^{\frac{q_{1}}{q_{1}-1}}(\Omega)_{+}$satisfying

$$
|h(x, s, \xi)| \leq a_{h}|\xi|^{\frac{p\left(q_{1}-1\right)}{q_{1}}}+b_{h}|s|^{q_{1}-1}+\alpha_{h}(x)
$$

for a. a. $x \in \Omega$, for all $\xi \in \mathbb{R}^{N}$ and for all $s \in \mathbb{R}$, where $1<q_{1}<p^{*}$ and p^{*} is the critical exponents to p in the domain considered in (1);
(ii) there exist $c_{h}, d_{h} \geq 0, \theta_{1}, \theta_{2} \in[1, p]$ and a function $\beta_{h} \in L^{1}(\Omega)_{+}$such that

$$
h(x, s, \xi) s \leq c_{h}|\xi|^{\theta_{1}}+d_{h}|s|^{\theta_{2}}+\beta_{h}(x)
$$

for a. a. $x \in \Omega$, for all $\xi \in \mathbb{R}^{N}$ and for all $s \in \mathbb{R}$;
(iii) there exist $e_{h}, f_{h} \geq 0$ such that

$$
\begin{aligned}
(h(x, s, \xi)-h(x, t, \xi))(s-t) & \leq e_{h}|s-t|^{p}, \\
\left|h\left(x, s, \xi_{1}\right)-h\left(x, s, \xi_{2}\right)\right| & \leq f_{h}\left|\xi_{1}-\xi_{2}\right|^{p-1}
\end{aligned}
$$

for a. a. $x \in \Omega$, for all $\xi_{1}, \xi_{2} \in \mathbb{R}^{N}$ and for all $s, t \in \mathbb{R}$.
$\underline{\mathbf{A}(\mathscr{M}): ~} \mathscr{M}: \Omega \times \mathbb{R} \rightrightarrows \mathbb{R}$ satisfies the following conditions:
(i) $\mathscr{M}(x, s)$ is a nonempty, closed, bounded and convex set in \mathbb{R} for a. a. $x \in \Omega$ and all $s \in \mathbb{R}$;
(ii) $x \mapsto \mathscr{M}(x, s)$ is measurable in Ω for all $s \in \mathbb{R}$;
(iii) $s \mapsto \mathscr{M}(x, s)$ is upper semicontinuous for a. a. $x \in \Omega$;
(iv) there exist $\theta_{3} \in[1, p], \alpha_{\mathscr{M}} \in L^{p^{\prime}}(\Omega)_{+}$and $\beta_{\mathscr{M}}>0$ such that

$$
|\mathscr{M}(x, s)| \leq \alpha_{\mathscr{M}}(x)+\beta_{\mathscr{M}}|s|^{\theta_{3}-1}
$$

for a. a. $x \in \Omega$ and for all $s \in \mathbb{R}$.

(i) $x \mapsto g(x, s)$ is measurable on Γ_{b} for all $s \in \mathbb{R}$ such that $x \mapsto g(x, 0)$ belongs to $L^{1}\left(\Gamma_{b}\right)$;
(ii) for a. a. $x \in \Gamma_{b}, s \mapsto g(x, s)$ is convex and lower semicontinuous.
$\underline{\mathbf{A}(\Psi): \Psi: \Omega \rightarrow[0,+\infty) \text { is measurable in } \Omega ; ~}$
$\mathbf{A (0)}$: The following inequalities hold:

$$
\max \left\{e_{h}, f_{h} \lambda_{p}^{\frac{1}{p}}\right\}<a(p) \text { and } \max \left\{c_{h} \chi\left(\theta_{1}\right), d_{h} \chi\left(\theta_{2}\right)+\beta_{\mathscr{M}} \chi\left(\theta_{3}\right)\right\}<1
$$

where $a(p)>0$ is given in (3), λ_{p} is given in (2) and $\chi:[1, p] \rightarrow\{1,0\}$ is defined by

$$
\chi(\theta)= \begin{cases}1 & \text { if } \theta=p \\ 0 & \text { otherwise }\end{cases}
$$

The weak solutions for the problem (7) are given in the following sense.
Definition 3.1. A function $z \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ is said to be a weak solution of the problem (7) if $z \in \mathscr{P}$ and there exists a function $\zeta \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)$ such that

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla(v-z) d x \\
& +\int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)(v-z) d x \\
& +\int_{\Gamma_{b}} g(x, v) d \Gamma-\int_{\Gamma_{b}} g(x, z) d \Gamma \\
\geq & \int_{\Omega} \zeta(x)(v-z) d x+\int_{\Omega} h(x, z, \nabla z)(v-z) d x \quad \text { for all } v \in \mathscr{P}
\end{aligned}
$$

where the set-valued operator $\mathbf{N}_{\mathscr{M}}^{p^{\prime}}: \mathbf{S}^{1, \mathscr{H}}(\Omega) \rightrightarrows L^{p^{\prime}}(\Omega)$ is defined by
(8) $\quad \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)=\left\{\zeta \in L^{p^{\prime}}(\Omega): \zeta(x) \in \mathscr{M}(x, z(x))\right.$, for a. a. $\left.x \in \Omega\right\}, z \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$
and

$$
\begin{equation*}
\mathscr{P}=\left\{z \in \mathbf{S}_{0}^{1, \mathscr{H}}(\Omega): z \leq \Psi \text { in } \Omega\right\} \tag{9}
\end{equation*}
$$

The operator $\mathbf{N}_{\mathscr{M}}^{p^{\prime}}$ is known as the set-valued Nemytskij operator associated with the set-valued function \mathscr{M}. The following properties of $\mathbf{N}_{\mathscr{M}}^{p^{\prime}}$ are deduced from Ref. [45, Lemma 1.1].

Lemma 3.2. Assume that $\mathbf{A}(\mathscr{M})$ is satisfied. Then, the following hold:

Based on the ideas of Yamashita and Fukushima [41] and Tam [39], we shall investigate the regularized gap functions for the problem (7). We now propose the definition of a gap function for the problem (7).
Definition 4.1. A real-valued function $\mathfrak{F}: \mathbf{S}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbb{R}$ is said to be a gap function for the problem (7), if it satisfies the following properties:
(a) $\mathfrak{F}(z) \geq 0$ for all $z \in \mathscr{P}$.
(b) $z^{*} \in \mathscr{P}$ is such that $\mathfrak{F}\left(z^{*}\right)=0$ if and only if z^{*} is a weak solution to the problem (7).

Let $\omega>0$ be a fixed parameter. We consider the following functions $\mathscr{Q}_{\mu, \omega}: \mathscr{P} \times L^{p^{\prime}}(\Omega) \rightarrow \mathbb{R}$ and $\Upsilon_{\mu, \omega}: \mathscr{P} \rightarrow \mathbb{R}$ defined by

$$
\begin{align*}
\mathscr{Q}_{\mu, \omega}(z, \zeta)= & \sup _{v \in \mathscr{P}}\left(\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla(z-v) d x+\int_{\Omega} \zeta(x)(v-z) d x\right. \\
& +\int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)(z-v) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
& \left.+\int_{\Omega} h(x, z, \nabla z)(v-z) d x-\frac{\omega}{p}\|z-v\|_{p, \Omega}^{p}\right) \tag{10}
\end{align*}
$$

for all $z \in \mathscr{P}$ and $\zeta \in L^{p^{\prime}}(\Omega)$, and

$$
\begin{align*}
& \quad \Upsilon_{\mu, \omega}(z) \\
& \begin{array}{l}
=\inf _{\zeta \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)} \sup _{v \in \mathscr{P}}\left(\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla(z-v) d x+\int_{\Omega} \zeta(x)(v-z) d x\right. \\
\quad+\int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)(z-v) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
\left.\quad+\int_{\Omega} h(x, z, \nabla z)(v-z) d x-\frac{\omega}{p}\|z-v\|_{p, \Omega}^{p}\right)
\end{array} \\
& \text { for all } z \in \mathbf{S}^{1, \mathscr{H}}(\Omega)
\end{align*}
$$

Remark 3. Assume that the assumption $\mathbf{A}(\mathscr{M})$ holds. It is easy to see that the function $\mathscr{Q}_{\mu, \omega}$ is convex and continuous in the second component. Moreover, by Lemma 3.2(i), for each $z \in \mathscr{P}, \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)$ is a bounded, closed and convex set. Thus, it follows from an elementary result for convex minimization that for each $z \in \mathscr{P}$, there exists $\zeta_{z} \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)$ such that $\Upsilon_{\mu, \omega}(z)=\mathscr{Q}_{\mu, \omega}\left(z, \zeta_{z}\right)$ (see Ref. [4, Theorem 3.3.12]).

In what follows, the function $\Upsilon_{\mu, \omega}$ defined by (11) is called to be a regularized gap function for the problem (7), where $\omega>0$ is a regularized parameter.

Theorem 4.2. Suppose the hypotheses of Lemma 3.3. Then, for any $\omega>0$, the function $\Upsilon_{\mu, \omega}$ is a gap function for the problem (7).

Proof: (a) Clearly, for each $\omega>0$ fixed, $z \in \mathscr{P}$ and $\zeta \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)$, it follows from the definition of $\mathscr{Q}_{\mu, \omega}$ in (10) that

$$
\begin{aligned}
\mathscr{Q}_{\mu, \omega}(z, \zeta) \geq & \int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla(z-z) d x+\int_{\Omega} \zeta(x)(z-z) d x \\
& +\int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)(z-z) d x-\int_{\Gamma_{b}} g(x, z) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
& +\int_{\Omega} h(x, z, \nabla z)(z-z) d x-\frac{\omega}{p}\|z-z\|_{p, \Omega}^{p} \\
= & 0 .
\end{aligned}
$$

By the arbitrariness of $\zeta \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)$, we conclude that

$$
\Upsilon_{\mu, \omega}(z)=\inf _{\zeta \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)} \mathscr{Q}_{\mu, \omega}(z, \zeta) \geq 0, \forall z \in \mathscr{P}
$$

(b) Assume that $z^{*} \in \mathscr{P}$ satisfies $\Upsilon_{\mu, \omega}\left(z^{*}\right)=0$, that is,

$$
\inf _{\zeta \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}\left(z^{*}\right)} \mathscr{Q}_{\mu, \omega}\left(z^{*}, \zeta\right)=0
$$

Thanks to Remark 3, we conclude that there exists $\zeta^{*} \in \mathbf{N}^{p^{\prime}}\left(z^{*}\right)$ such that

$$
\begin{aligned}
0= & \mathscr{Q}_{\mu, \omega}\left(z^{*}, \zeta^{*}\right) \\
=\sup _{v \in \mathscr{P}} & \left(\int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z^{*}-v\right) d x+\int_{\Omega} \zeta^{*}(x)\left(v-z^{*}\right) d x\right. \\
& +\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z^{*}-v\right) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma \\
& \left.+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(v-z^{*}\right) d x-\frac{\omega}{p}\left\|z^{*}-v\right\|_{p, \Omega}^{p}\right)
\end{aligned}
$$

This means

$$
\begin{aligned}
& \frac{\omega}{p}\left\|z^{*}-v\right\|_{p, \Omega}^{p} \\
& \geq \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z^{*}-v\right) d x+\int_{\Omega} \zeta^{*}(x)\left(v-z^{*}\right) d x \\
& \quad+\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z^{*}-v\right) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma \\
& \quad+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(v-z^{*}\right) d x, \forall v \in \mathscr{P} .
\end{aligned}
$$

For any $u \in \mathscr{P}, \sigma \in(0,1)$, since \mathscr{P} is a convex set, we have $v_{\sigma}:=(1-\sigma) z^{*}+\sigma u \in \mathscr{P}$. Hence, we insert v_{σ} into the above inequality to obtain

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z^{*}-v_{\sigma}\right) d x+\int_{\Omega} \zeta^{*}(x)\left(v_{\sigma}-z^{*}\right) d x \\
& +\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z^{*}-v_{\sigma}\right) d x-\int_{\Gamma_{b}} g\left(x, v_{\sigma}\right) d \Gamma+\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma \\
& \\
& +\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(v_{\sigma}-z^{*}\right) d x \\
& \leq \frac{\omega}{p}\left\|z^{*}-v_{\sigma}\right\|_{p, \Omega}^{p}=\frac{\omega \sigma^{p}}{p}\left\|z^{*}-u\right\|_{p, \Omega}^{p}, \forall u \in \mathscr{P} .
\end{aligned}
$$

Using the convexity of $v \mapsto g(x, v)$, one has

$$
\begin{align*}
& \sigma\left(\int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z^{*}-u\right) d x+\int_{\Omega} \zeta^{*}(x)\left(u-z^{*}\right) d x\right. \\
& +\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z^{*}-u\right) d x-\int_{\Gamma_{b}} g(x, u) d \Gamma+\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma \\
& \left.+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(u-z^{*}\right) d x\right) \\
& \leq \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z^{*}-v_{\sigma}\right) d x+\int_{\Omega} \zeta^{*}(x)\left(v_{\sigma}-z^{*}\right) d x \\
& +\int_{\Omega}\left(\left.\left|z^{*}\right|\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z^{*}-v_{\sigma}\right) d x-\int_{\Gamma_{b}} g\left(x, v_{\sigma}\right) d \Gamma+\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma \\
& +\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(v_{\sigma}-z^{*}\right) d x, \forall u \in \mathscr{P} . \tag{13}
\end{align*}
$$

Combining (12) and (13), we have

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z^{*}-u\right) d x+\int_{\Omega} \zeta^{*}(x)\left(u-z^{*}\right) d x \\
& +\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\left.\mu(x)\left|z^{*}\right|\right|^{q-2} z^{*}\right)\left(z^{*}-u\right) d x-\int_{\Gamma_{b}} g(x, u) d \Gamma+\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma \\
& +\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(u-z^{*}\right) d x \\
\leq & \frac{\omega \sigma^{p-1}}{p}\left\|z^{*}-u\right\|_{p, \Omega}^{p}
\end{aligned}
$$

for all $u \in \mathscr{P}$. Letting $\sigma \rightarrow 0^{+}$for the above inequality, it gives

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(u-z^{*}\right) d x+\int_{\Gamma_{b}} g(x, u) d \Gamma \\
& -\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma+\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(u-z^{*}\right) d x \\
\geq & \int_{\Omega} \zeta^{*}(x)\left(u-z^{*}\right) d x+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(u-z^{*}\right) d x
\end{aligned}
$$

for all $u \in \mathscr{P}$. Thus, z^{*} is a solution to the problem (7).
Conversely, suppose that $z^{*} \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ is a weak solution of the problem (7), i.e., $z^{*} \in \mathscr{P}$ and there exists $\zeta^{*} \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}\left(z^{*}\right)$ such that

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(v-z^{*}\right) d x+\int_{\Gamma_{b}} g(x, v) d \Gamma \\
& -\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma+\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right| q^{q-2} z^{*}\right)\left(v-z^{*}\right) d x \\
\geq & \int_{\Omega} \zeta^{*}(x)\left(v-z^{*}\right) d x+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(v-z^{*}\right) d x, \quad \forall v \in \mathscr{P} .
\end{aligned}
$$

Since $v \in \mathscr{P}$ is arbitrary, we have

$$
\begin{aligned}
& \mathscr{Q}_{\mu, \omega}\left(z^{*}, \zeta^{*}\right) \\
& =\sup _{v \in \mathscr{P}}\left(\int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z^{*}-v\right) d x+\int_{\Omega} \zeta^{*}(x)\left(v-z^{*}\right) d x\right. \\
& \quad+\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z^{*}-v\right) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma \\
& \left.\quad+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(v-z^{*}\right) d x-\frac{\omega}{p}\left\|z^{*}-v\right\|_{p, \Omega}^{p}\right) \\
& \leq 0 .
\end{aligned}
$$

Hence, for any $\zeta \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}\left(z^{*}\right)$,

$$
\Upsilon_{\mu, \omega}\left(z^{*}\right)=\inf _{\zeta \in \mathbf{N}^{j^{\prime}}\left(z^{*}\right)} \mathscr{Q}_{\mu, \omega}\left(z^{*}, \zeta\right) \leq 0
$$

Since $\Upsilon_{\mu, \omega}(z) \geq 0$ for all $z \in \mathscr{P}$, then $\Upsilon_{\mu, \omega}\left(z^{*}\right)=0$. The proof is complete.
We shall prove that the regularized gap function $\Upsilon_{\mu, \omega}$ is lower semicontinuous.
Lemma 4.3. Assume that the hypotheses of Lemma 3.3 are satisfied. Then for each $\omega>0$, the gap function $\Upsilon_{\mu, \omega}$ is lower semicontinuous.

Proof: Taking $\ell \in \mathbb{R}$ and a sequence $\left\{z_{k}\right\} \subset \mathbf{S}^{1, \mathscr{H}}(\Omega)$ satisfying $\Upsilon_{\mu, \omega}\left(z_{k}\right) \leq \ell$ for all $k \in \mathbb{N}$, and $z_{k} \rightarrow z_{0}$ in $\mathbf{S}^{1, \mathscr{H}}(\Omega)$. We show that $\Upsilon_{\mu, \omega}\left(z_{0}\right) \leq \ell$. Indeed, we have

$$
\Upsilon_{\mu, \omega}\left(z_{k}\right)=\inf _{\zeta \in \mathbf{N}_{\mu /}^{\prime}\left(z_{k}\right)} \mathscr{Q}_{\mu, \omega}\left(z_{k}, \zeta\right) \leq \ell
$$

$$
\begin{align*}
& \text { for all } k \in \mathbb{N} \text {. It follows from Remark } 3 \text { that for each } k \in \mathbb{N} \text {, there exists } \zeta_{k} \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}\left(z_{k}\right) \text { such that } \\
& \qquad \Upsilon_{\mu, \omega}\left(z_{k}\right)=\mathscr{Q}_{\mu, \omega}\left(z_{k}, \zeta_{k}\right)=\sup _{v \in \mathscr{P}} \widetilde{\mathscr{Q}}_{\mu, \omega}\left(z_{k}, v, \zeta_{k}\right), \\
& \text { where the function } \widetilde{\mathscr{Q}}_{\mu, \omega}: \mathbf{S}^{1, \mathscr{H}}(\Omega) \times \mathbf{S}^{1, \mathscr{H}}(\Omega) \times L^{p^{\prime}}(\Omega) \rightarrow \mathbb{R} \text { is defined by } \\
& \qquad \begin{array}{r}
\widetilde{\mathscr{Q}}_{\mu, \omega}(z, v, \zeta) \\
=\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla(z-v) d x+\int_{\Omega} \zeta(x)(v-z) d x \\
\\
\quad+\int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)(z-v) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
\\
+\int_{\Omega} h(x, z, \nabla z)(v-z) d x-\frac{\omega}{p}\|z-v\|_{p, \Omega}^{p} . \\
\text { Then, for all } v \in \mathscr{P}, \\
\text { (14) }
\end{array} \\
& \widetilde{\mathscr{Q}}_{\mu, \omega}\left(z_{k}, v, \zeta_{k}\right) \leq \ell,
\end{align*}
$$

By Lemma 4.3, the operator $\mathbf{N}_{\mathscr{M}}^{p^{\prime}}$ is strongly-weakly upper semicontinuous with nonempty, weakly compact, convex values. Then using Lemma 2.3, there exists $\zeta_{0} \in \mathbf{N}^{p^{\prime}}\left(z_{0}\right)$ such that, passing to a subsequence if necessary,

$$
\zeta_{k} \xrightarrow{\mathbf{w}} \zeta_{0} \text { in } L^{p^{\prime}}(\Omega) .
$$

Recall that the operator $A: \mathbf{S}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbf{S}^{1, \mathscr{H}}(\Omega)^{*}$ defined by

$$
\langle A(z), v\rangle_{\mathscr{H}}:=\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla v d x,
$$

for $z, v \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$, is continuous (see Proposition 2.1). Then the function $(z, v) \mapsto\langle A(z), v\rangle_{\mathscr{H}}$ is continuous on $\mathbf{S}^{1, \mathscr{H}}(\Omega) \times \mathbf{S}^{1, \mathscr{H}}(\Omega)^{*}$. Furthermore, the function $z \mapsto g(x, z)$ is lower semicontinuos for a. a. $x \in \Gamma_{b}$ and functions $z \mapsto h(x, z, \nabla z)$ and $z \mapsto\|z\|_{p, \Omega}$ are continuous for a. a. $x \in \Omega$. Passing to the lower limit as $k \rightarrow \infty$ to the inequality (14) and using the compactness of the embedding of $\mathbf{S}^{1, \mathscr{H}}(\Omega)$ to $L^{p}(\Omega)$, we have
| ~ \mid -

$$
\begin{aligned}
\ell & \geq \liminf _{k \rightarrow \infty} \widetilde{\mathscr{Q}}_{\mu, \omega}\left(z_{k}, v, \zeta_{k}\right) \\
& \geq \liminf _{k \rightarrow \infty} \int_{\Omega}\left(\left|\nabla z_{k}\right|^{p-2} \nabla z_{k}+\mu(x)\left|\nabla z_{k}\right|^{q-2} \nabla z_{k}\right) \cdot \nabla\left(z_{k}-v\right) d x
\end{aligned}
$$

$$
+\liminf _{k \rightarrow \infty} \int_{\Omega}\left(\left|z_{k}\right|^{p-2} z_{k}+\mu(x)\left|z_{k}\right|^{q-2} z_{k}\right)\left(z_{k}-v\right) d x
$$

$$
+\liminf _{k \rightarrow \infty} \int_{\Omega} \zeta_{k}(x)\left(v-z_{k}\right) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\liminf _{k \rightarrow \infty} \int_{\Gamma_{b}} g\left(x, z_{k}\right) d \Gamma
$$

$$
+\liminf _{k \rightarrow \infty} \int_{\Omega} h\left(x, z_{k}, \nabla z_{k}\right)(v-z) d x-\limsup _{k \rightarrow \infty} \frac{\omega}{p}\left\|z_{k}-v\right\|_{p, \Omega}^{p}
$$

$$
\geq \int_{\Omega}\left(\left|\nabla z_{0}\right|^{p-2} \nabla z_{0}+\mu(x)\left|\nabla z_{0}\right|^{q-2} \nabla z_{0}\right) \cdot \nabla\left(z_{0}-v\right) d x+\int_{\Omega} \zeta_{0}(x)\left(v-z_{0}\right) d x
$$

$$
+\int_{\Omega}\left(\left|z_{0}\right|^{p-2} z_{0}+\mu(x)\left|z_{0}\right|^{q-2} z_{0}\right)\left(z_{0}-v\right) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g\left(x, z_{0}\right) d \Gamma
$$

$$
+\int_{\Omega} h\left(x, z_{0}, \nabla z_{0}\right)\left(v-z_{0}\right) d x-\frac{\omega}{p}\left\|z_{0}-v\right\|_{p, \Omega}^{p}
$$

$$
=\widetilde{\mathscr{Q}}_{\mu, \omega}\left(z_{0}, v, \zeta_{0}\right), \text { for all } v \in \mathscr{P} .
$$

Hence, $\sup _{v \in \mathscr{P}} \widetilde{\mathscr{Q}}_{\mu, \omega}\left(z_{0}, v, \zeta_{0}\right) \leq \ell$. Therefore,

$$
\Upsilon_{\mu, \omega}\left(z_{0}\right)=\inf _{\zeta \in \mathbf{N}_{\mathscr{\prime}}^{p^{\prime}}\left(z_{0}\right)} \sup _{v \in \mathscr{P}} \widetilde{\mathscr{Q}}_{\mu, \omega}\left(z_{0}, v, \zeta\right) \leq \ell
$$

i.e., the level set $\left\{z \in \mathbf{S}^{1, \mathscr{H}}(\Omega) \mid \Upsilon_{\mu, \omega}(z) \leq \ell\right\}$ for any $\ell \in \mathbb{R}$ is closed. Hence, $\Upsilon_{\mu, \omega}$ is lower semicontinuous.

Let $\omega, \delta>0$ be two parameters. Based on Moreau-Yosida regularization of the function $\Upsilon_{\mu, \omega}$, we consider the following function $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}: \mathbf{S}^{1, \mathscr{H}}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\Theta_{\Upsilon_{\mu, \omega}}^{\delta}(z)=\inf _{w \in \mathscr{P}}\left\{\Upsilon_{\mu, \omega}(w)+\delta\|z-w\|_{1, \mathscr{H}}^{p}\right\}, \tag{15}
\end{equation*}
$$

for all $z \in \mathscr{P}$.
We now verify that $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}$ is a gap function for the problem (7). Then, we call $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}$ to be the Moreau-Yosida regularized gap function for the problem (7).

Theorem 4.4. Assume that the hypotheses of Lemma 3.3 are satisfied. Then, for all $\omega, \delta>0$, the function $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}$ is the gap function for the problem (7).

Proof: (a) For any $\omega, \delta>0$ and $w \in \mathscr{P}$, recall that $\Upsilon_{\mu, \omega}$ is a gap function for the problem (7), hence $\Upsilon_{\mu, \omega}(w) \geq 0$. It follows from the definition of $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}$ in (15) that $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}(z) \geq 0$, for all $z \in \mathscr{P}$.

Conversely, let $z^{*} \in \mathscr{P}$ be such that $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}\left(z^{*}\right)=0$, i.e.,

$$
\inf _{w \in \mathscr{P}}\left\{\Upsilon_{\mu, \omega}(w)+\delta\left\|z^{*}-w\right\|_{1, \mathscr{H}}^{p}\right\}=0
$$

Hence, there exists a minimizing sequence $\left\{w_{k}\right\}$ in \mathscr{P} such that

$$
\begin{equation*}
0 \leq \Upsilon_{\mu, \omega}\left(w_{k}\right)+\delta\left\|z^{*}-w_{k}\right\|_{1, \mathscr{H}}^{p}<\frac{1}{k} . \tag{16}
\end{equation*}
$$

It is obvious that $\Upsilon_{\mu, \omega}\left(w_{k}\right) \rightarrow 0$ and $\left\|z^{*}-w_{k}\right\|_{1, \mathscr{H}}^{p} \rightarrow 0$, as $k \rightarrow \infty$. This implies that the sequence $\left\{w_{k}\right\}$ converges to z^{*} in $\mathbf{S}^{1, \mathscr{H}}(\Omega)$, as $k \rightarrow \infty$. Combining the nonnegativity and lower semicontinuity of $\Upsilon_{\mu, \omega}$ (see Lemma 4.3), one has

$$
0 \leq \Upsilon_{\mu, \omega}\left(z^{*}\right) \leq \liminf _{k \rightarrow+\infty} \Upsilon_{\mu, \omega}\left(w_{k}\right)=0,
$$

i.e., $\Upsilon_{\mu, \omega}\left(z^{*}\right)=0$. Since $\Upsilon_{\mu, \omega}$ is a gap function for the problem (7), we get that z^{*} is a weak solution to the problem (7). The proof is complete.

5. Upper-bound error estimates

In this section, we shall provide some error bounds for the problem (7) associated with the regularized gap function $\Upsilon_{\mu, \omega}$ and the Moreau-Yosida regularized gap function $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}$, accordingly.

To obtain error bounds for the problem (7), we introduce the following assumption:
$\mathbf{A}\left(\mathscr{M}^{*}\right)$: For the set-valued mapping $\mathscr{M}: \Omega \times \mathbb{R} \rightrightarrows \mathbb{R}$, there is a constant $c_{\mathscr{M}}>0$ such that

$$
\left(\zeta_{1}-\zeta_{2}\right)\left(s_{1}-s_{2}\right) \leq c_{\mathscr{M}}\left|s_{1}-s_{2}\right|^{p}
$$

for all $\zeta_{i} \in \mathscr{M}\left(x, s_{i}\right), s_{i} \in \mathbb{R}, i=1,2$ and for a. a. $x \in \Omega$.
Theorem 5.1. Let $z^{*} \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ be a weak solution of the problem (7). Assume that all assumptions of Lemma 3.3 and the hypothesis $\mathbf{A}\left(\mathscr{M}^{*}\right)$ hold. Assume further that $\omega>0$ satisfies

$$
\min \left\{a(p)-f_{h} \lambda_{p}^{\frac{1}{p}}, a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}, a(q)\right\}>0 .
$$

Then, for each $z \in \mathscr{P}$, we have

$$
\begin{equation*}
\left\|z-z^{*}\right\|_{1, \mathscr{H}} \leq \max \left\{\mathscr{E}^{\frac{1}{p}}(z), \mathscr{E}^{\frac{1}{q}}(z)\right\} \tag{17}
\end{equation*}
$$

where

$$
\mathscr{E}(z)=\frac{\Upsilon_{\mu, \omega}(z)}{\min \left\{a(p)-f_{h} \lambda_{p}^{\frac{1}{p}}, a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}, a(q)\right\}}
$$

Proof: Let $z^{*} \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ be a weak solution of the problem (7), i.e., $z^{*} \in \mathscr{P}$ and there exists $\zeta^{*} \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}\left(z^{*}\right)$ such that

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(v-z^{*}\right) d x+\int_{\Gamma_{b}} g(x, v) d \Gamma \\
& -\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma+\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(v-z^{*}\right) d x \\
\geq & \int_{\Omega} \zeta^{*}(x)\left(v-z^{*}\right) d x+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(v-z^{*}\right) d x
\end{aligned}
$$

for all $v \in \mathscr{P}$.
For any $z \in \mathscr{P}$ fixed, we insert $v=z$ into the above inequality to obtain

$$
\begin{align*}
& \int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z-z^{*}\right) d x+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
& -\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma+\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z-z^{*}\right) d x \\
& -\int_{\Omega} \zeta^{*}(x)\left(z-z^{*}\right) d x-\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(z-z^{*}\right) d x \geq 0 \tag{18}
\end{align*}
$$

Recall the function $\mathscr{Q}_{\mu, \omega}: \mathscr{P} \times L^{p^{\prime}}(\Omega) \rightarrow \mathbb{R}$ is defined by

$$
\begin{aligned}
\mathscr{Q}_{\mu, \omega}(z, \zeta)= & \sup _{v \in \mathscr{P}}\left(\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla(z-v) d x+\int_{\Omega} \zeta(x)(v-z) d x\right. \\
& +\int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)(z-v) d x-\int_{\Gamma_{b}} g(x, v) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
& \left.+\int_{\Omega} h(x, z, \nabla z)(v-z) d x-\frac{\omega}{p}\|z-v\|_{p, \Omega}^{p}\right)
\end{aligned}
$$

it follows from Remark 3 and the definition of $\Upsilon_{\mu, \omega}$ that there exists $\zeta_{z} \in \mathbf{N}_{\mathscr{M}}^{p^{\prime}}(z)$ such that

$$
\begin{aligned}
& \Upsilon_{\mu, \omega}(z) \\
= & \mathscr{Q}_{\mu, \omega}\left(z, \zeta_{z}\right) \\
\geq & \int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla\left(z-z^{*}\right) d x+\int_{\Omega} \zeta_{z}(x)\left(z^{*}-z\right) d x \\
& +\int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)\left(z^{*}-z\right) d x-\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
& +\int_{\Omega} h(x, z, \nabla z)\left(z^{*}-z\right) d x-\frac{\omega}{p}\left\|z-z^{*}\right\|_{p, \Omega}^{p}
\end{aligned}
$$

By the hypothesis $\mathbf{A}\left(\mathscr{M}^{*}\right)$, we have

$$
\begin{align*}
& \frac{\frac{2}{4}}{\frac{5}{\frac{5}{6}}} \begin{array}{l}
\frac{7}{7} \\
\frac{8}{8} \\
\text { (20) }
\end{array} \\
& \int_{\Omega} \zeta_{z}(x)\left(z^{*}-z\right) d x+\int_{\Omega} \zeta^{*}(x)\left(z-z^{*}\right) d x \\
& =\int_{\Omega}\left(\zeta_{z}(x)-\zeta^{*}(x)\right)\left(z^{*}-z\right) d x \\
& \geq-\int_{\Omega} c_{\mathscr{M}}\left|z^{*}-z\right|^{p} d x \\
& =-c_{\mathcal{M}}\left\|z-z^{*}\right\|_{p, \Omega}^{p} . \\
& \text { Moreover, we have } \\
& \int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla\left(z-z^{*}\right) d x \\
& -\int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z-z^{*}\right) d x \\
& =\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z-\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}\right) \cdot \nabla\left(z-z^{*}\right) d x \\
& +\int_{\Omega} \mu(x)\left(|\nabla z|^{q-2} \nabla z-\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z-z^{*}\right) d x \\
& \geq \int_{\Omega} a(p)\left|\nabla\left(z-z^{*}\right)\right|^{p} d x+\int_{\Omega} \mu(x) a(q)\left|\nabla\left(z-z^{*}\right)\right|^{q} d x \\
& =a(p)\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}+a(q)\left\|\nabla\left(z-z^{*}\right)\right\|_{q, \mu, \Omega}^{q}, \tag{21}\\
& \int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)\left(z-z^{*}\right) d x-\int_{\Omega}\left(\left|z^{*}\right|^{p-2} z^{*}+\mu(x)\left|z^{*}\right|^{q-2} z^{*}\right)\left(z-z^{*}\right) d x \\
& =\int_{\Omega}\left(|z|^{p-2}-\left|z^{*}\right|^{p-2} z^{*}\right)\left(z-z^{*}\right) d x+\int_{\Omega} \mu\left(|z|^{q-2} z-\left|z^{*}\right|^{q-2} z^{*}\right)\left(z-z^{*}\right) d x \\
& \geq a(p)\left\|z-z^{*}\right\|_{p, \Omega}^{p}+a(q)\left\|z-z^{*}\right\|_{q, \mu, \Omega}^{q} .
\end{align*}
$$

By the condition $\mathbf{A}(h)$ (iii), one has

$$
\begin{aligned}
& \int_{\Omega} h(x, z, \nabla z)\left(z^{*}-z\right) d x+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(z-z^{*}\right) d x \\
& =\int_{\Omega}\left(h(x, z, \nabla z)-h\left(x, z^{*}, \nabla z\right)\right)\left(z^{*}-z\right) d x \\
& +\int_{\Omega}\left(h\left(x, z^{*}, \nabla z\right)-h\left(x, z^{*}, \nabla z^{*}\right)\right)\left(z^{*}-z\right) d x \\
& \geq-\int_{\Omega} e_{h}\left|z-z^{*}\right|^{p} d x-\int_{\Omega} f_{h}\left|\nabla\left(z-z^{*}\right)\right|^{p-1}\left|z-z^{*}\right| d x
\end{aligned}
$$

Applying Hölder's inequality gives

$$
\begin{aligned}
& \int_{\Omega} h(x, z, \nabla z)\left(z^{*}-z\right) d x+\int_{\Omega} h\left(x, z^{*}, \nabla z^{*}\right)\left(z-z^{*}\right) d x \\
& \geq-e_{h}\left\|z-z^{*}\right\|_{p, \Omega}^{p}-f_{h}\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p-1}\left\|z-z^{*}\right\|_{p, \Omega} .
\end{aligned}
$$

From (18), (20)-(23), we have

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla\left(z-z^{*}\right) d x+\int_{\Omega} \zeta_{z}(x)\left(z^{*}-z\right) d x \\
& -\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma+\int_{\Omega} h(x, z, \nabla z)\left(z^{*}-z\right) d x \\
& \geq a(p)\left(\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}+\left\|z-z^{*}\right\|_{p, \Omega}^{p}\right)+a(q)\left(\left\|\nabla\left(z-z^{*}\right)\right\|_{q, \mu, \Omega}^{q}+\left\|z-z^{*}\right\|_{p, \Omega}^{p}\right) \\
& -\left(e_{h}+c_{\mathscr{M}}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p}-f_{h}\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p-1}\left\|z-z^{*}\right\|_{p, \Omega} . \\
& \text { Combining (2), (19) and (24), one has } \\
& \Upsilon_{\mu, \omega}(z) \\
& \geq a(p)\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}+\left(a(p)-e_{h}-c_{\mathscr{M}}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p}-\frac{\omega}{p}\left\|z-z^{*}\right\|_{p, \Omega}^{p} \\
& -f_{h}\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p-1}\left\|z-z^{*}\right\|_{p, \Omega}+a(q)\left(\left\|\nabla\left(z-z^{*}\right)\right\|_{q, \mu, \Omega}^{q}+\left\|z-z^{*}\right\|_{q, \mu, \Omega}^{q}\right) \\
& \geq a(p)\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}+\left(a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p} \\
& -f_{h} \lambda_{p}^{\frac{1}{p}}\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}+a(q)\left(\left\|\nabla\left(z-z^{*}\right)\right\|_{q, \mu, \Omega}^{q}+\left\|z-z^{*}\right\|_{q, \mu, \Omega}^{q}\right) \\
& \geq L_{0}\left(\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}+\left\|z-z^{*}\right\|_{p, \Omega}^{p}+\left\|\nabla\left(z-z^{*}\right)\right\|_{q, \mu, \Omega}^{q}+\left\|z-z^{*}\right\|_{q, \mu, \Omega}^{q}\right) \\
& \geq L_{0} \min \left\{\left\|z-z^{*}\right\|_{1, \mathscr{H}}^{p},\left\|z-z^{*}\right\|_{1, \mathscr{H}}^{q}\right\},
\end{aligned}
$$

where $L_{0}>0$ is defined by

$$
L_{0}:=\min \left\{a(p)-f_{h} \lambda_{p}^{\frac{1}{p}}, a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}, a(q)\right\} .
$$

Set

$$
\mathscr{E}(z)=\frac{\Upsilon_{\mu, \omega}(z)}{L_{0}} .
$$

Then, the inequality (25) implies that

$$
\left\|z-z^{*}\right\|_{1, \mathscr{H}} \leq \max \left\{\mathscr{E}^{\frac{1}{p}}(z), \mathscr{E}^{\frac{1}{q}}(z)\right\}
$$

Therefore, the inequality (17) is valid.
The following results derive upper-bound error estimates for the problem (7) under the norm \|. $\|_{p, \Omega}$.

Theorem 5.2. Let $z^{*} \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ be a weak solution of the problem (7). Assume that all assumptions of Lemma 3.3 and the hypothesis $\mathbf{A}\left(\mathscr{M}^{*}\right)$ hold. Assume further that $\omega>0$ satisfies

$$
a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}>0 .
$$

Then, for each $z \in \mathscr{P}$, we have

$$
\begin{equation*}
\left\|z-z^{*}\right\|_{p, \Omega} \leq\left[\frac{\Upsilon_{\mu, \omega}(z)}{a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}}\right]^{\frac{1}{p}} . \tag{26}
\end{equation*}
$$

Proof: Let $z^{*} \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ be a weak solution of the problem (7). Using a similar method as in the first part of the demonstration of Theorem 5.1 leads to the expressions (18)-(20) and (23). Since

$$
\int_{\Omega} \mu(x)\left(|\nabla z|^{q-2} \nabla z-\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z-z^{*}\right) d x \geq 0
$$

taking

$$
\int_{\Omega}\left(|\nabla z|^{p-2} \nabla z-\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}\right) \cdot \nabla\left(z-z^{*}\right) d x \geq a(p)\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}
$$

into account (21) gives

$$
\begin{align*}
& \int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla\left(z-z^{*}\right) d x \\
& -\int_{\Omega}\left(\left|\nabla z^{*}\right|^{p-2} \nabla z^{*}+\mu(x)\left|\nabla z^{*}\right|^{q-2} \nabla z^{*}\right) \cdot \nabla\left(z-z^{*}\right) d x \geq a(p)\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p} \tag{27}
\end{align*}
$$

From (2), (18), (20), (23) and (27), we obtain

$$
\begin{aligned}
& \int_{\Omega}\left(|\nabla z|^{p-2} \nabla z+\mu(x)|\nabla z|^{q-2} \nabla z\right) \cdot \nabla\left(z-z^{*}\right) d x+\int_{\Omega} \zeta_{z}(x)\left(z^{*}-z\right) d x \\
& \quad \int_{\Omega}\left(|z|^{p-2} z+\mu(x)|z|^{q-2} z\right)\left(z-z^{*}\right) d x-\int_{\Gamma_{b}} g\left(x, z^{*}\right) d \Gamma+\int_{\Gamma_{b}} g(x, z) d \Gamma \\
& \quad \quad+\int_{\Omega} h(x, z, \nabla z)\left(z^{*}-z\right) d x \\
& \geq a(p)\left\|\nabla\left(u-z^{*}\right)\right\|_{p, \Omega}^{p}+\left(a(p)-e_{h}-c_{\mathscr{M}}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p}-f_{h} \lambda_{p}^{\frac{1}{p}}\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p} \\
& =\left(a(p)-f_{h} \lambda_{p}^{\frac{1}{p}}\right)\left\|\nabla\left(z-z^{*}\right)\right\|_{p, \Omega}^{p}+\left(a(p)-e_{h}-c_{\mathscr{M}}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p} \\
& \geq \\
& \left(a(p)-f_{h} \lambda_{p}^{\frac{1}{p}}\right) \lambda_{p}^{-1}\left\|z-z^{*}\right\|_{p, \Omega}^{p}+\left(a(p)-e_{h}-c_{\mathscr{M}}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p} \\
& =\left(a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p} .
\end{aligned}
$$

Combining (19) and (28), one has

$$
\begin{equation*}
\Upsilon_{\mu, \omega}(z) \geq\left(a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}\right)\left\|z-z^{*}\right\|_{p, \Omega}^{p} . \tag{29}
\end{equation*}
$$

Thus, the desired inequality (26) holds.

Theorem 5.3. Let $z^{*} \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ be a weak solution of the problem (7). Assume that the hypotheses of Theorem 5.2 hold. Then, for each $z \in \mathscr{P}$ and all $\omega, \delta>0$, we have

$$
\begin{equation*}
\left\|z-z^{*}\right\|_{p, \Omega} \leq\left[\frac{2^{p-1} \Theta_{\Upsilon_{\mu, \omega}}^{\delta}(z)}{\min \left\{a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}, \delta \beta^{*-1}\right\}}\right]^{\frac{1}{p}} \tag{30}
\end{equation*}
$$

where $\beta^{*}>0$ is the constant such that $\|z\|_{p, \Omega}^{p} \leq \beta^{*}\|z\|_{1, \mathscr{H}}^{p}$ for all $z \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ due to the continuity of the embedding of $\mathbf{S}^{1, \mathscr{H}}(\Omega)$ into $L^{p}(\Omega)$.

Proof: Let $z^{*} \in \mathbf{S}^{1, \mathscr{H}}(\Omega)$ be a weak solution of the problem (7). By the definition of the function $\Theta_{\Upsilon_{\mu, \omega}}^{\delta}$ and the inequality (29), for any $z \in \mathscr{P}$ we get

$$
\begin{aligned}
& \Theta_{\Upsilon_{\mu, \omega}^{\delta}}^{\delta}(z) \\
& =\inf _{w \in \mathscr{P}}\left\{\Upsilon_{\mu, \omega}(w)+\delta\|z-w\|_{1, \mathscr{H}}^{p}\right\} \\
& \geq \inf _{w \in \mathscr{P}}\left\{\left(a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}\right)\left\|w-z^{*}\right\|_{p, \Omega}^{p}+\delta\|z-w\|_{1, \mathscr{H}}^{p}\right\} \\
& \geq \inf _{w \in \mathscr{P}}\left\{\left(a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}\right)\left\|w-z^{*}\right\|_{p, \Omega}^{p}+\delta \beta^{*-1}\|z-w\|_{p, \Omega}^{p}\right\} .
\end{aligned}
$$

Hence,

$$
\begin{align*}
\Theta_{\Upsilon_{\mu, \omega}}^{\delta}(z) \geq \min & \left\{a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}, \delta \beta^{*-1}\right\} \\
& \times \inf _{w \in \mathscr{P}}\left\{\left\|w-z^{*}\right\|_{p, \Omega}^{p}+\|z-w\|_{p, \Omega}^{p}\right\} . \tag{31}
\end{align*}
$$

By applying the following inequality

$$
\left\|w-z^{*}\right\|_{p, \Omega}^{p}+\|z-w\|_{p, \Omega}^{p} \geq \frac{1}{2^{p-1}}\left\|z-z^{*}\right\|_{p, \Omega}^{p}
$$

it follows from (31) that

$$
\Theta_{\Upsilon_{\mu, \omega}^{\delta}}^{\delta}(z) \geq \frac{1}{2^{p-1}} \min \left\{a(p) \lambda_{p}^{-1}-f_{h} \lambda_{p}^{\frac{1-p}{p}}+a(p)-e_{h}-c_{\mathscr{M}}-\frac{\omega}{p}, \delta \beta^{*-1}\right\}\left\|z-z^{*}\right\|_{p, \Omega}^{p}
$$

This implies that the inequality (30) holds.

Acknowledgements

The authors are very grateful to the anonymous referee for his/her valuable remarks which improved the result and presentation of the paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This project has received funding from the Natural Science Foundation of Guangxi Grant No. 2021GXNSFFA196004, the NNSF of China Grant No. 12001478, the Research Ability Enhancement Projects of Young and Middle-Aged Teachers in Guangxi Universities No. 2020KY14008, the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH, National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, and the Startup Project of Doctor Scientific Research of Yulin Normal University No. G2020ZK07. It is also supported by the Ministry of Science and Higher Education of Republic of Poland under Grants Nos. 4004/GGPJII/H2020/2018/0 and 440328/PnH2/2019.

References

[1] L.Q. Anh, N.V. Hung, and V.M. Tam, "Regularized gap functions and error bounds for generalized mixed strong vector quasiequilibrium problems", Comput. Appl. Math. 37 (2018), 5935-5950.
[2] J.P. Aubin, and I. Ekeland, Applied nonlinear analysis, Wiley, New York, 1984.
[3] A.Auslender, Optimisation: Méthodes Numériques, Masson, Paris, 1976 (in French).
[4] K. Atkinson, and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn., Springer, NewYork, 2009.
[5] A.Bahrouni, V.D. Rădulescu, and D.D. Repovs̆, "Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves", Nonlinearity 32:7 (2019), 2481-2495.
[6] P. Baroni, M. Colombo, and G. Mingione, "Harnack inequalities for double phase functionals", Nonlinear Anal. 121 (2015), 206-222.
[7] P. Baroni, M. Colombo, and G. Mingione, "Regularity for general functionals with double phase", Calc. Var. Partial Differ. Equ. 57:2 (2008), Art. 62.
[8] G.Bigi, and M. Passacantando, " D-gap functions and descent techniques for solving equilibrium problems", J. Global. Optim. 62 (2015), 183-203.
[9] D. Bothe, "Multivalued perturbations of m-accretive differential inclusions", Isr. J. Math. 108 (1998), 109-138.
[10] J.X.. Cen, A.A. Khan, D. Motreanu, S.D. Zeng, "Inverse problems for generalized quasi-variational inequalities with application to elliptic mixed boundary value systems", Inverse Problems, 38: (2022), 065006, 28 pp.
[11] M. Cencelj, V.D. Rădulescu, and D.D. Repovs̆, "Double phase problems with variable growth", Nonlinear Anal. 177 (2018), 270-287.
[12] M. Colombo, and G. Mingione, "Bounded minimisers of double phase variational integrals", Arch. Ration Mech. Anal. 218:1 (2015), 219-273.
[13] M. Colombo, and G. Mingione, "Regularity for double phase variational problems", Arch. Ration Mech. Anal. 215:2 (2015), 443-496.
[14] F. Colasuonno, and M. Squassina, "Eigenvalues for double phase variational integrals", Ann. Mat. Pura. Appl. 195:6 (2016), 1917-1959.
[15] C. Farkas, and P. Winkert, "An existence result for singular Finsler double phase problems", J. Differ. Equ. 286 (2021), 455-473.
[16] Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, and P. Winkert, "A new class of double phase variable exponent problems: Existence and uniqueness", J. Differ. Equ. 323 (2022), 182-228.
[17] M. Fukushima, "Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems", Math. Program. 53 (1992), 99-110.
[18] L. Gasiński, and P. Winkert, "Constant sign solutions for double phase problems with superlinear nonlinearity", Nonlinear Anal. 195 (2000), 111739.
[19] L. Gasiński, and P. Winkert, "Existence and uniqueness results for double phase problems with convection term", J. Differ. Equ. 268:8 (2020), 4183-4193.
[20] L. Gasiński, and P. Winkert, "Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold", J. Differ. Equ. 274 (2021), 1037-1066.
[21] N.V. Hung, S. Migórski, V.M. Tam, and S.D. Zeng, "Gap functions and error bounds for variational-hemivariational inequalities", Acta Appl. Math. 169 (2020), 691-709.
[22] N.V. Hung, V. Novo, and V.M. Tam, "Error bound analysis for vector equilibrium problems with partial order provided by a polyhedral cone", J. Glob. Optim. 82 (2022), 139-159.
[23] N.V. Hung, and V.M. Tam, "Error bound analysis of the D-gap functions for a class of elliptic variational inequalities with applications to frictional contact mechanics", Z. Angew. Math. Phys. 72 (2021), Art. 173.
[24] N.V. Hung, V.M. Tam, and D. Baleanu, "Regularized gap functions and error bounds for split mixed vector quasivariational inequality problems", Math. Methods Appl. Sci. 43 (2020), 614-4626.
[25] N.V. Hung, V.M. Tam, and A. Pitea, "Global error bounds for mixed quasi-hemivariational inequality problems on Hadamard manifolds", Optimization 69 (2020), 2033-2052.
[26] N.V. Hung, V.M. Tam, N.H. Tuan, and D. O'Regan, "Regularized gap functions and error bounds for generalized mixed weak vector quasi variational inequality problems in fuzzy environments", Fuzzy Sets Syst. 400 (2020), 162176.
[27] N.V. Hung, V.M. Tam, and Y. Zhou, "A new class of strong mixed vector GQVIP-generalized quasi-variational inequality problems in fuzzy environment with regularized gap functions based error bounds", J. Comput. Appl. Math. 381 (2021), 113055.
[28] S.A. Khan, and J.W. Chen, "Gap functions and error bounds for generalized mixed vector equilibrium problems", J Optim Theory Appl. 166 (2015), 767-776.
[29] Lê A, "Eigenvalue problems for the p-Laplacian", Nonlinear Anal. 64:5 (2006), 1057-1099.
[30] W. Liu, and G. Dai, "Existence and multiplicity results for double phase problem", J. Differ. Equ. 265:9 (2018), 4311-4334.
[31] Z.H. Liu, D. Motreanu, S.D. Zeng, "Generalized penalty and regularization method for differential variationalhemivariational inequalities", SIAM J. Optim. 31: (2021), 1158-1183.
[32] G. Mastroeni, "Gap functions for equilibrium problems", J. Glob. Optim. 27 (2003), 411-426.
[33] S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities, Springer, New York, 2013.
[34] S. Migórski, S.D. Zeng, A class of differential hemivariational inequalities in Banach spaces, J. Glob. Optim. 72: (2018), 761-779.
[35] N.S. Papageorgiou, V.D. Rădulescu, and D.D. Repovs̆, "Double-phase problems with reaction of arbitrary growth", Z. Angew. Math. Phys. 69 (2018), Art. 108.
[36] N.S. Papageorgiou, V.D. Rădulescu, and D.D. Repovs̆, "Double-phase problems and a discontinuity property of the spectrum", Proc. Amer. Math. Soc. 147:7 (2019), 2899-2910.
[37] V.D. Rădulescu, "Isotropic and anistropic double-phase problems: old and new", Opuscula Math. 39:2 (2019), 259279.
[38] J. Simon, Régularité de la solution d'une équation non linéaire dans \mathbb{R}^{N}. Journées d'Analyse Non Linéaire, Springer, Berlin, 1978, p.205-227 (Proc. Conf. Besançon; 1977).
[39] V.M. Tam, "Upper-bound error estimates for double phase obstacle problems with Clarke's subdifferential", Numer. Funct. Anal. Optim. 43:4 (2022), 463-485.
[40] V.M. Tam, "Sharp Hölder continuous behaviour of solutions to vector network equilibrium problems with a polyhedral ordering cone", Filomat 36:13 (2022), 4563-4573.
[41] N.Yamashita, and M. Fukushima, "Equivalent unconstrained minimization and global error bounds for variational inequality problems", SIAM J. Control Optim. 35 (1997), 273-284.
[42] S.D. Zeng, Y. Bai, P. Winkert, and J.C. Yao, "Identification of discontinuous parameters in double phase obstacle problems", Adv. Nonlinear Anal. 12:1 (2023), 1-22.
[43] S.D. Zeng, Y. Bai, L. Gasiński, and P. Winkert, "Existence results for double phase implicit obstacle problems involving set-valued operators", Calc. Var. Partial Differ. Equ. 59 (2020), 1-18.
[44] S.D. Zeng, Y.R. Bai, L. Gasiński, "Nonlinear nonhomogeneous obstacle problems with multivalued convection term", J. Geom. Anal. 32:3 (2022), 1-14.
[45] S.D. Zeng, V.D. Rădulescu, P. Winkert, "Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions", SIAM J. Math. Anal. 54:2 (2022), 1898-1926.
[46] S.D. Zeng, S. Migórski, Z.H. Liu, "Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities", SIAM J. Optim. 31: (2021), 2829-2862.
[47] S.D. Zeng, S. Migórski, Z.H. Liu, "Nonstationary incompressible Navier-Stokes system governed by a quasilinear reaction-diffusion equation (in Chinese)", Sci. Sin. Math. 52: (2022), 331-354.
[48] S.D. Zeng, S. Migórski, A.A. Khan, "Nonlinear quasi-hemivariational inequalities: existence and optimal control", SIAM J. Control Optim. 59: (2021), 1246-1274.
[49] Q. Zhang, and V.D. Rădulescu, "Double phase anisotropic variational problems and combined effects of reaction and absorption terms", J. Math. Pures Appl. 118 (2018), 159-203.
[50] V.V. Zhikov, "Averaging of functionals of the calculus of variations and elasticity theory", Izv. Akad. Nauk. SSSR Ser. Mat. 50:4 (1986), 675-710.
[51] V.V. Zhikov, S.M. Kozlov, and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, 1994.
[52] V.V. Zhikov, "On some variational problems", Russ. J. Math. Phys. 5:1 (1997), 105-116.
[53] V.V. Zhikov, "On Lavrentiev’s phenomenon", Russ. J. Math. Phys. 3:2 (1995), 249-269.
Department of Mathematics, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam
E-mail address: vmt am@dthu.edu.vn
Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin 537000, Guangxi, P.R. China

E-mail address: xiezhenhuangylnu@163.com

[^0]: Corresponding Author: Xiezhen Huang.
 2020 Mathematics Subject Classification. 47J20, 49J40, 49K40.
 Key words and phrases. Upper bound, Error estimate, Double phase obstacle problem, convection, Regularized gap function.

