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Abstract

This paper is to study the uniqueness of solutions to a new nonlinear Hilfer integro-
differential equation with an initial condition and arbitrary numbers of the Riemann-
Liouville fractional integral operators. Our investigation is based on an equivalent
implicit integral equation in series obtained from Babenko’s approach, the multivariate
Mittag-Leffler function as well as Banach’s contractive principle in a new Banach
space. The technique used clearly opens up new directions for studying other types
of initial or boundary value problems with different fractional derivatives and variable
coefficients. An illustrative example is also provided to demonstrate applications of
the key theorem.
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1 Introduction

Let −∞ < a < b < +∞ and λi ∈ R for i = 1, 2, · · · ,m. We shall consider the following
nonlinear integro-differential equation with an initial condition:Dα,β

a+
u(x) +

m∑
i=1

λi I
βi

a+
u(x) = Iβ

a+
g(x, u(x)), 0 < α < 1, 0 ≤ β < 1, βi ≥ β,

I1−γ
a+

u(a) = ua ∈ R, γ = α+ β − αβ,

(1.1)

where x ∈ (a, b] and Dα,β
a+

is the Hilfer fractional derivative of order α and type β [1, 2],
which is an interpolation between the Riemann-Liouville and Caputo fractional derivatives.
The operator Iβi

a+
is the Riemann-Liouville fractional integral of the order βi, the nonlinear

term g : (a, b]×R → R is a function satisfying certain conditions. In 2000, Hilfer introduced
the Hilfer fractional derivative which combines Caputo and Riemann-Liouville fractional
derivatives, and can be used in the theoretical simulation of dielectric relaxation in glass
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forming materials [3, 4]. Sandev et al. [5] derived the existence results of the fractional
diffusion equation with the Hilfer fractional derivative which attained in terms of the
Mittag Leffler functions. In 2015, Gu and Trujillo [6] studied the existence results of the
fractional differential equations with the Hilfer derivative based on noncompact measure
method.

Clearly, the parameter γ satisfies

0 < max{α, β} ≤ γ < 1, 1− γ < 1− β(1− α).

The two-parameter fractional derivative Dα,β
a+

generates more types of stationary states
and gives an extra degree of freedom on the initial condition with applications in physics
[3, 4, 7]. In 2012, Furati et al. [8] studied the following nonlinear Hilfer differential equation
with an initial condition:{

Dα,β
a+

u(x) = g(x, u(x)), 0 < α < 1, 0 ≤ β ≤ 1, x ∈ (a, b],

I1−γ
a+

u(a+) = ua ∈ R, γ = α+ β − αβ.

They proved the existence and uniqueness of global solutions in a space of weighted con-
tinuous functions using Banach’s fixed point theorem. More generally, Wang and Zhang
[9] considered the existence of solutions to the following nonlocal initial value problem in
2015: 

Dα,β
a+

u(x) = g(x, u(x)), 0 < α < 1, 0 ≤ β ≤ 1, x ∈ (a, b],

I1−γ
a+

u(a+) =
m∑
i=1

λiu(τi), γ = α+ β − αβ, τi ∈ (a, b].

The remainder of this paper is organized as follows. Section 2 introduces some basic
concepts, a Banach space C1−γ [a, b] with γ = α + β − αβ, β < 1, a subspace Wγ [a, b] ⊂
C1−γ [a, b], the multivariate Mittag-Leffler function and Babenko’s approach. In addi-
tion, we convert Equation (1.1) to an equivalent implicit integral equation in series using
Babenko’s technique. Then we obtain sufficient conditions for the uniqueness of solutions
with the help of Banach’s contractive principle in the Banach space Wγ [a, b], and further
demonstrate applications of the main result by an example in Section 3. At the end, we
summarize the entire work in Section 4.

2 Preliminaries

The Riemann-Liouville fractional integral of the order s ≥ 0 of function u(x) is defined by
[10]

(Isa+u)(x) =
1

Γ(s)

∫ x

a
(x− t)s−1u(t)dt, x > a,

and
I0a+u(x) = u(x),

from [11].
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The Riemann-Liouville fractional derivative of order α ∈ [n − 1, n), for n ∈ N , of
function u(x) is defined by [2]

(Dα
a+u) (x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a
(x− t)n−α−1u(t)dt, x > a.

The Hilfer fractional derivative of order 0 < α < 1 and 0 ≤ β ≤ 1 of function u(x) is
defined by [3]

Dα,β
a+

u(x) =
(
I
β(1−α)
a+

DI
(1−β)(1−α)
a+

)
u(x),

where D =
d

dx
.

It follows from [3] that the operator Dα,β
a+

can also be written as

Dα,β
a+

= I
β(1−α)
a+

Dγ
a+

,

where α ≤ γ = α+β−αβ. Clearly, the Riemann-Liouville fractional derivative Dα
a = Dα,0

a+

and the Caputo fractional derivative CDα
a = Dα,1

a+
.

For any 0 ≤ γ < 1, we define the Banach space C1−γ [a, b] as

C1−γ [a, b] =
{
u : (a, b] → R : (x− a)1−γu(x) ∈ C[a, b]

}
,

with the norm
∥u∥C1−γ

= max
x∈[a,b]

|(x− a)1−γu(x)|.

Clearly, C[a, b] ⊂ C1−γ [a, b] for any 0 ≤ γ < 1. Further, a subspace C1
1−γ [a, b] ⊂ C1−γ [a, b]

is defined as
C1
1−γ [a, b] =

{
u ∈ C[a, b] : u′ ∈ C1−γ [a, b]

}
,

with the norm
∥u∥C1

1−γ
= ∥u∥C +

∥∥u′∥∥
C1−γ

.

Evidently, C1
1−γ [a, b] is a Banach space. Finally, the Banach space Wγ [a, b] is defined as

Wγ [a, b] =
{
u ∈ C1−γ [a, b] : I

1−γ
a+

u ∈ C1
1−γ [a, b]

}
⊂ C1−γ [a, b],

with the norm

∥u∥Wγ
= max

{
∥u∥C1−γ

,
∥∥∥I1−γ

a+
u
∥∥∥
C
,
∥∥∥DI1−γ

a+
u
∥∥∥
C1−γ

}
.

Lemma 1. (see [8]) Let 0 < α < 1 and γ = α+ β − αβ with 0 ≤ β < 1. If u ∈ C1−γ [a, b]

and I1−β+αβ
a+

u ∈ C1
1−γ [a, b], then Dα,β

a+
Iαa+u exists in (a, b] and

Dα,β
a+

Iαa+u = u,

for all x ∈ (a, b].
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The following lemma can be found in [2].

Lemma 2. (see [2]) Let 0 < t < 1 and 0 ≤ s < 1. If u ∈ Cs[a, b] and I1−t
a+

u ∈ C1
s [a, b],

then

Ita+D
t
a+u(x) = u(x)−

I1−t
a+

u(a)

Γ(t)
(x− a)t−1,

for all x ∈ (a, b].

It follows from t = γ and s = 1− γ that

Iγ
a+

Dγ
a+

u(x) = u(x)−
I1−γ
a+

u(a)

Γ(γ)
(x− a)γ−1,

for all x ∈ (a, b] and u ∈ Wγ [a, b].
The multivariate Mittag-Leffler function [12] is defined as follows

E(α1,··· ,αm),β(z1, · · · , zm) =

∞∑
k=0

∑
k1+···+km=k

(
k

k1, · · · , km

)
zk11 · · · zkmm

Γ(α1k1 + · · ·+ αmkm + β)
,

where αi, β > 0 for i = 1, 2, · · · ,m and(
k

k1, · · · , km

)
=

k!

k1! · · · km!
.

3 Main results

One of the powerful methods for solving differential equations with initial conditions, as
well as integral equations is Babenko’s approach [13]. This method is generally the same
as the Laplace transform, while dealing with equations with constant coefficients. How-
ever, this technique can be applied for differential and integral equations with continuous
variable coefficients and boundary value problems [14, 15]. In the following, to show
the applications of this approach, we will deduce an implicit integral equation which is
equivalent to Equation (1.1) in the space Wγ [a, b].

Theorem 3. Let g : (a, b]×R → R be a continuous and bounded function. Then Equation
(1.1) is equivalent to the following implicit integral equation

u(x) =
ua
Γ(γ)

∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
(α+β1)k1+···+(α+βm)km
a+

(x− a)γ−1

+
∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
α+β+(α+β1)k1+···+(α+βm)km
a+

g(x, u(x)), (3.1)

in the space Wγ [a, b].
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Proof. Clearly for γ = α+ β − αβ with β < 1,

Iαa+D
α,β
a+

u(x) = Iαa+I
β(1−α)
a+

Dγ
a+

u(x) = Iγ
a+

Dγ
a+

u(x) = u(x)−
I1−γ
a+

u(a)

Γ(γ)
(x− a)γ−1,

for all x ∈ (a, b] and u ∈ Wγ [a, b].
Applying the operator Iαa+ to both sides of Equation

Dα,β
a+

u(x) +

m∑
i=1

λi I
βi

a+
u(x) = Iβ

a+
g(x, u(x)),

we come to

u(x)− ua
Γ(γ)

(x− a)γ−1 +

m∑
i=1

λi I
α+βi

a+
u(x) = Iα+β

a+
g(x, u(x)),

using the initial condition
I1−γ
a+

u(a) = ua.

This implies that(
1 +

m∑
i=1

λi I
α+βi

a+

)
u(x) =

ua
Γ(γ)

(x− a)γ−1 + Iα+β
a+

g(x, u(x)).

Treating the factor

(
1 +

m∑
i=1

λi I
α+βi

a+

)
as a variable, we derive that by Babenko’s approach

u(x) =

(
1 +

m∑
i=1

λi I
α+βi

a+

)−1(
ua
Γ(γ)

(x− a)γ−1 + Iα+β
a+

g(x, u(x))

)

=
∞∑
k=0

(−1)k

(
m∑
i=1

λi I
α+βi

a+

)k (
ua
Γ(γ)

(x− a)γ−1 + Iα+β
a+

g(x, u(x))

)

=
∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 · · ·λkm

m I
(α+β1)k1+···+(α+βm)km
a+

×(
ua
Γ(γ)

(x− a)γ−1 + Iα+β
a+

g(x, u(x))

)
=

ua
Γ(γ)

∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
(α+β1)k1+···+(α+βm)km
a+

(x− a)γ−1

+

∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
α+β+(α+β1)k1+···+(α+βm)km
a+

g(x, u(x)).
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Next, we are going to show that u ∈ Wγ [a, b]. Clearly,

I
(α+β1)k1+···+(α+βm)km
a+

(x− a)γ−1

=
Γ(γ)

Γ((α+ β1)k1 + · · ·+ (α+ βm)km + γ)
(x− a)(α+β1)k1+···+(α+βm)km+γ−1,

and

max
x∈[a,b]

|(x− a)1−γu(x)| ≤ |ua|
∞∑
k=0

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
|λ1|k1 · · · |λm|km

× (b− a)(α+β1)k1+···+(α+βm)km

Γ((α+ β1)k1 + · · ·+ (α+ βm)km + γ)

+ (b− a)1+αβ
∞∑
k=0

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
|λ1|k1 · · · |λm|km

× (b− a)(α+β1)k1+···+(α+βm)km

Γ((α+ β1)k1 + · · ·+ (α+ βm)km + α+ β + 1)
sup

x∈(a,b]
|g(x, u(x))|

= |ua|E(α+β1,··· ,α+βm), γ

(
|λ1|(b− a)α+β1 , · · · , |λm|(b− a)α+βm

)
+ (b− a)1+αβE(α+β1,··· ,α+βm), α+β+1

(
|λ1|(b− a)α+β1 , · · · , |λm|(b− a)α+βm

)
× sup

x∈(a,b]
|g(x, u(x))| < +∞.

Using
I1−γ
a+

(x− a)γ−1 = Γ(γ),

we get ∥∥∥I1−γ
a+

u
∥∥∥
C
≤ |ua|

∞∑
k=0

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
|λ1|k1 · · · |λm|km

× (b− a)(α+β1)k1+···+(α+βm)km

Γ((α+ β1)k1 + · · ·+ (α+ βm)km + 1)

+

∞∑
k=0

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
|λ1|k1 · · · |λm|km

× (b− a)1+αβ+(α+β1)k1+···+(α+βm)km

Γ((α+ β1)k1 + · · ·+ (α+ βm)km + 2 + αβ)
sup

x∈(a,b]
|g(x, u(x))|

= |ua|E(α+β1,··· ,α+βm), 1

(
|λ1|(b− a)α+β1 , · · · , |λm|(b− a)α+βm

)
+(b− a)1+αβE(α+β1,··· ,α+βm), 2+αβ

(
|λ1|(b− a)α+β1 , · · · , |λm|(b− a)α+βm

)
× sup

x∈(a,b]
|g(x, u(x))| < +∞.
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Finally, we consider the norm∥∥∥DI1−γ
a+

u
∥∥∥
C1−γ

= max
x∈[a,b]

∣∣∣(x− a)1−γDI1−γ
a+

u
∣∣∣

≤ |ua|
∞∑
k=1

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
|λ1|k1 · · · |λm|km

× (b− a)(α+β1)k1+···+(α+βm)km−γ

Γ((α+ β1)k1 + · · ·+ (α+ βm)km)

+ (b− a)1−γ+αβ
∞∑
k=0

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
|λ1|k1 · · · |λm|km

× (b− a)(α+β1)k1+···+(α+βm)km

Γ((α+ β1)k1 + · · ·+ (α+ βm)km + αβ + 1)
< +∞,

by noting that
(α+ β1)k1 + · · ·+ (α+ βm)km − γ ≥ 0,

for k1 + · · ·+ km = k ≥ 1, since βi ≥ β for all i = 1, 2, · · · ,m. In summary, u ∈ Wγ [a, b].
Conversely, if u is given by Equation (3.1) in the space Wγ [a, b] then

I1−γ
a+

u(a) = ua.

Indeed,

u(x) =
ua
Γ(γ)

(x− a)γ−1 +
ua
Γ(γ)

∞∑
k=1

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
(α+β1)k1+···+(α+βm)km
a+

(x− a)γ−1

+
∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
α+β+(α+β1)k1+···+(α+βm)km
a+

g(x, u(x)) =
ua
Γ(γ)

(x− a)γ−1 + u1(x).

Using
I1−γ
a+

(x− a)γ−1 = Γ(γ),

and noting that

I1−γ
a+

u1(x)
∣∣∣
x=a

= 0,

we have I1−γ
a+

u(a) = ua.

Furthermore, applying the operator Dα,β
a+

to(
1 +

m∑
i=1

λi I
α+βi

a+

)
u(x) =

ua
Γ(γ)

(x− a)γ−1 + Iα+β
a+

g(x, u(x)),
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which is equivalent to Equation (3.1), we obtain

Dα,β
a+

u(x) +
m∑
i=1

λiD
α,β
a+

Iα+βi

a+
u(x) =

ua
Γ(γ)

Dα,β
a+

(x− a)γ−1 +Dα,β
a+

Iα+β
a+

g(x, u(x)).

Clearly,

Dα,β
a+

(x− a)γ−1 = I
β(1−α)
a+

(Dγ
a+

(x− a)γ−1) = I
β(1−α)
a+

0 = 0,

for 0 < γ < 1, and
Dα,β

a+
Iα+βi

a+
u = Dα,β

a+
Iαa+I

βi

a+
u = Iβi

a+
u,

by Lemma 1 due to the fact that

Iβi

a+
u ∈ C1−γ [a, b], and I1+βi−β+αβ

a+
u ∈ C1

1−γ [a, b].

Similarly,
Dα,β

a+
Iα+β
a+

g(x, u(x)) = Iβ
a+

g(x, u(x)).

Hence, u satisfies Equation (1.1). This completes the proof of Theorem 3.

We are now ready to present the following theorem about the uniqueness of solutions
to Equation (1.1).

Theorem 4. Let g : (a, b]×R → R be a continuous and bounded function satisfying

|g(x, y1)− g(x, y2)| ≤ L|y1 − y2|, y1, y2 ∈ R,

for a nonnegative constant L. Furthermore, assume

q = L(b−a)α+βΓ(γ)E(α+β1,··· ,α+βm), 2(α+β)−αβ

(
|λ1|(b− a)α+β1 , · · · , |λm|(b− a)α+βm

)
< 1.

Then Equation (1.1) has a unique solution in the space Wγ [a, b].

Proof. For u ∈ C1−γ [a, b], we define a nonlinear mapping T over the space C1−γ [a, b] by

(Tu)(x) =
ua
Γ(γ)

∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
(α+β1)k1+···+(α+βm)km
a+

(x− a)γ−1

+
∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 λk2

2 · · ·λkm
m

× I
α+β+(α+β1)k1+···+(α+βm)km
a+

g(x, u(x)).
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It follows from the proof of Theorem 3 that Tu ∈ C1−γ [a, b]. We further show that T is
contractive. In fact, we get for u, v ∈∈ C1−γ [a, b]

∥Tu− Tv∥C1−γ

= max
x∈[a,b]

∣∣∣∣∣∣(x− a)1−γ
∞∑
k=0

(−1)k
∑

k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
λk1
1 · · ·λkm

m

× I
α+β+(α+β1)k1+···+(α+βm)km
a+

(g(x, u)− g(x, v))
∣∣∣

≤ L(b− a)α+βΓ(γ)
∞∑
k=0

∑
k1+k2+···+km=k

(
k

k1, k2, · · · , km

)
|λ1|k1 · · · |λm|km

× (b− a)(α+β1)k1+···+(α+βm)km

Γ(2(α+ β)− αβ + (α+ β1)k1 + · · ·+ (α+ βm)km)
∥u− v∥C1−γ

= q ∥u− v∥C1−γ
,

using
g(x, u)− g(x, v) = (x− a)γ−1[(x− a)1−γ(g(x, u)− g(x, v))],

and

I
α+β+(α+β1)k1+···+(α+βm)km
a+

(x− a)γ−1

=
Γ(γ)

Γ(α+ β + γ + (α+ β1)k1 + · · ·+ (α+ βm)km)

× (x− a)α+β+(α+β1)k1+···+(α+βm)km+γ−1

=
Γ(γ)

Γ(2(α+ β)− αβ + (α+ β1)k1 + · · ·+ (α+ βm)km)

× (x− a)α+β+(α+β1)k1+···+(α+βm)km+γ−1.

Since q < 1, the mapping T has a unique fixed point in the space C1−γ [a, b]. Moreover, if
u ∈ Wγ [a, b] then Tu ∈ Wγ [a, b]. Therefore, T has a unique fixed point in Wγ [a, b] in the
sense of the topology in C1−γ [a, b]. This implies that Equation (1.1) has a unique solution
in Wγ [a, b]. This completes the proof of Theorem 4.

Example 5. The following nonlinear Hilfer integro-differential equation with an initial
condition: D0.6,0.4

0+
u(x) + 2 I0.40+ u(x)− 2 I0.50+ u(x) =

1

23
I0.40+ sinu(x),

I0.240+ u(0) = −4,

has a unique solution in the space W0.76[0, 1].

Proof. Clearly, g(x, u(x)) =
1

23
sinu(x) and

|g(x, u(x))− g(x, v(x))| ≤ 1

23
|u(x)− v(x)|,
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and

q =
1

23
Γ(0.76)E(1,1.1), 1.76(2, 2)

=
1

23
Γ(0.76)

∞∑
k=0

∑
k1+k2=k

(
k

k1, k2

)
2k12k2

Γ(k1 + 1.1k2 + 1.76)
.

Applying ∑
k1+k2=k

(
k

k1, k2

)
= 2k,

and
2k12k2

Γ(k1 + 1.1k2 + 1.76)
≤ 2k

Γ(k + 1.76)
,

we imply that

q ≤ 1

23
Γ(0.76)

∞∑
k=0

4k

Γ(k + 1.76)
≈ 22.8418

23
< 1,

since

Γ(0.76)
∞∑
k=0

4k

Γ(k + 1.76)
≈ 22.8418,

by the online calculator on the site https://www.wolframalpha.com/. From Theorem 4,
the above equation has a unique solution in the space W0.76[0, 1]. This completes the
proof.

Remark 6. From the proof of Theorem 3, we imply that

u(x) =
ua
Γ(γ)

(x− a)γ−1 −
m∑
i=1

λi I
α+βi

a+
u(x) + Iα+β

a+
g(x, u(x)),

which can be used in finding an approximate solution by the following recursion:

un(x) =
ua
Γ(γ)

(x− a)γ−1 −
m∑
i=1

λi I
α+βi

a+
un−1(x) + Iα+β

a+
g(x, un−1(x)),

for n = 1, 2, · · · , and an initial function u0(x).

4 Conclusion

We have investigated the uniqueness of solutions to the new nonlinear Hilfer integro-
differential equation with an initial condition, based on its equivalent implicit integral
equation in series derived from Babenko’s approach, the multivariate Mittag-Leffler func-
tion as well as Banach’s contractive principle, with an illustrative example demonstrating
applications of the key theorem at the end.
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