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On the energy equality for axisymmetric weak

solutions to the 3D Navier-Stokes equations

Jiaqi Yang *!

1School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, 710129,
China

Abstract

In this paper, we are focus on the energy equality for axisymmetric weak solutions
of the 3D Navier-Stokes equations. The classical Shinbrot condition says that if
the weak solution u of the Navier-Stokes equations belongs L4(0,T; LP(R3)) with
é + % = % and p > 4, then v must satisfy the energy equality. A novel point is that,
for the axisymmetric Navier-Stokes equations, the Shinbrot condition can be relaxed
as follows: if & = u"e, + u®e, € L4(0,T; LP(R3)) with % + % = 1 and p > 4, then u
must satisfy the energy equality. Furthermore, some other interesting results will be

obtained.

Mathematics Subject Classification 2020: 76D03, 76D05, 35Q35.
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1 Introduction

We are concerned with the energy equality for weak solutions of the Navier-Stokes equa-

tions:
Ou—Au+u-Vu+Vp=0, inR3x(0,T),

Vou=0, in R? x (0,7), (1.1)
u(z,0) = up(x), in R?,

*Jiaqi Yang (yjgmath@nwpu.edu.cn, yjgmath@163.com) is supported by NSF of China under Grant:
12001429 and the Fundamental Research Funds for the Central Universities under Grant: G2020KY05205.
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where u stands for the velocity field of the flow and p represents the pressure of the fluid,
respectively.

Concerning the Navier-Stokes equations , it is well known that, for any finite energy
initial data there exists at least one weak solution satisfying the energy inequality. Weak
solutions obeying the energy inequality are called Leray—Hopf solutions, see J. Leray and
E. Hopf [13, 9]. However, the regularity problem of weak solutions is an outstanding open
problem in mathematical fluid mechanics. This problem is so difficult that one investigates
the solution with some special structure. A interesting case of global well-posedness to (|1.1))
is for data which is axisymmetric and without swirl (i.e., the case when v’ in (1.7)). In
this case, M.R. Ukhovskii and V.I. Yudovich [20], and independently O.A. Ladyzhenskaya
[T0] proved the existence of solutions, uniqueness and regularity. If the swirl is not zero,
in general, the global well-posedness of are still open. Refer to [4l [5] 6] [7, 111, [12] 22]
for this subject.

We know that LerayHopf weak solution enjoys the energy inequality:

1 ! 1
— | |u(s,t)|*dw —I—/ \Vu(z, 7)|?drvdr < = | |uo(z)|*dx . (1.2)
2 R3 0 R3 2 R3

A important question of whether such solutions satisfy the energy equality is open, and
only conditional criteria are available. In [18] M. Shinbrot shows that if a weak solution u

to the Navier-Stokes equations (1.1)) satisfies

u € L9(0,T; LP(R?)), (1.3)
where

2 2

-+ - = 17 p Z 47

q p

then it satisfies the energy equality. This result is a generalization of previous results
due to G. Prodi [I7] and J.L. Lions [16], where these authors proved the above result for
p=q=4

In [14] 15, 19], the authors established energy equality under assumptions on the size
and/or structure of the singularity set in addition to the integrability of the solution, and
proved that any solution to the 3-dimensional NavierStokes Equations which is Type-I in
time must satisfy the energy equality at the first blowup time.

Recently, H. Beirao da Veiga and the author of this paper [2] generalized the above
criterion to the case of p < 4:

u € LU0, T; LF(R?)), (1.4)
where
1—|—§:1, 3<p<4.
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Another line is to establish some criteria via the gradient of the velocity. In [3], L.C.

Berselli and E. Chiodaroli established the following criterion:

1 3 __ 3 9
5"’5—27 §<p<5,
. 3 :
Vue L0 M(RY) with {1481 f<p<3 (1.5)
1 2
5+p+2 1, p>3

Later on, H. Beirao da Veiga and the author of this paper [I] improved the above results

for p > 3 to
1,6,
q 5p

Recently, Y. Wang, X. Mei and Y. Huang[21] established an energy conservation cri-

Vu € L0, T; L*(R*)) with

terion via a combination of the velocity and the gradient of velocity. In the following, we
will extend their results to the axisymmetric Navier-Stokes equations, as a corollary, we
obtain some interesting results.

In the present paper, we consider the energy equality for axisymmetric weak solutions

of the Navier-Stokes equations. Recall the cylindrical coordinates given by

x1 =rcost,
(1.6)

To =rsinf,

T3 = 2.

By an axisymmetric solutions of Navier-Stokes equations, we mean a solution of (|1.1)
with the form:

u(t,z) = u'(t,r, 2)e, +u’(t,r, 2)eg + u*(t,r, 2)e, , (1.7)

where

e, = (cosf,sinf,0), e.=(—sinf,cos60,0), e,=(0,0,1).

For the axisymmetric solutions, we can rewrite (1.1)) as follows.

;

Dyr (2402 +% - D) — 2 L 9p-0, mRx(0,7),
%ue—(83+a§+%—}2)u9+@:0, in R3 x (0,7),
D> — (24P + 2 u+dp=0, in R® x (0, 7), (1.8)
u” + tu" +0.u” =0, in R? x (0,7),
\(u’”,ue,uz)hzo = (ub, ub, ui), in R?,

where

D r z
D—t—ﬁt%—u&«—i—u 82.

3
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1 Compared with the classical Navier-Stokes equations , it is natural to conjecture
> some better criteria for the axisymmetric Navier-Stokes equations. A very interesting
3 finding that one only needs to impose the condition on the components @ = u"e, + u’e,
« (rub € L®(R3) is needed), see below. As far as we know, this is a first result on the energy
s conservation law for the axisymmetric Navier-Stokes equations.

6 To state our results, we first recall the definition of the weak solution.

7 Definition 1.1. Let ug € L*(R?) with V- u = 0. The vector field u is called a Leray-Hopf
s weak solution of (L.1) in (0,7) if u satisfies

o (1) we L®(0,T; L*(R%) N L*(0, T; H'(R?));
0 (2) (u,p) solves (1.1)) in the sense of distributions.

u  (3) w satisfies the energy inequality for ¢ € [0,7T),

1 ! 1
= |u(s,t)|2dx+/ / \Vu(z, 7)|*dvdr < —/ |[uo()|*da . (1.9)
2 0 R3 2 R3

R3
12 We shall establish the following theorem.

13 Theorem 1.2. Let u be a axisymmetric weak solution to the 3D Navier-Stokes equations
w (1.8), and ruf € L°(R3). Then the energy equality holds if one of the following conditions
15 is satisfied for k,l € (1,00):

w (1) @€ Limi(0,T; L1(R%)), w’ € L*0,T; L{(R3)), w* € Li+2(0,T; L+ (R?));
v (2) we Lit(0,T; L1 (R3)) N Li+z (0, T; L2 (R?)), w? | w® € LE(0, T; L(R?)).
18 As a direct consequence of the above theorem, we have the following results.

1o Corollary 1.3. Let § > 0 be given and rul € L>®(R3), then the energy equality is valid if

2 one of the following conditions is satisfied:
a (1) @l,<5 € L0, T; LP(R?)) with £ + 1 = § and p > 4;
»  (2) ul.<s € L9(0,T; LP(R?)) with%+%:1and3<p§4;

3) w? € L9(0,T; LP(R?)), w* € Li%2(0,T; Lv+2 (R?)) with 1 + & =1 and p > £;
s (3) W € LIO,T; L(RY)), w € L5 (0, T; L (R9)) with 1+ & =1 and p > 2,

O € L9(0, T; L'(R?)), w* € Loz (0, T; Li2 (R®)) with L + 2 =2 and 3 < p < %;

u  (4) W€ L0, T; LP(RY)), w* € La+2(0,T; Lv+2 (R?)) wi sto=2and 5 <p<g;
x  (5) w? w* e LY0,T; LP(R?)) with%—i—% =1and2<p<4.

4
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on the components u", u* or w

2 Some important observations

This section will give the explanations why the conditional criteria can only be imposed

9 w*. This is due to the following observations:

e 1’ enjoys a better proposition (see Lemma :
u’ € L*0,T; LY(R?)), (2.1)

0

which implies v’ is a good component due to the Shinbrot condition.

e The term u"d,uu’ belongs to L'(0,T; L*(R?)), which means the w" is a good com-

ponent. Indeed, we have

t

/ / u" O, ululdrds
]R3

27?// / T@u Ordrdzds

(2.2)
< H—||L2 o122 10,07 || 20,222y 17U || Lo (R (0.7
< IVl 207522 I VU || 200,702 o) 7 || oo 0,1y < 00
e Vi can be controlled by w’ (see Lemma [3.4):
IVl Logsy < Cllw’ | o as) - (2.3)

Hence, we only need impose the condition on vorticity. We remark that (2.3)) can be

obtained by the following equations:

diva =0,
(2.4)
curl @ = woey,
that is
— At = curl (We). (2.5)

3 Some useful lemmas

Lemma 3.1 ([§], Lemma 2.2). Let u be a weak solution to (1.1)) in R3 x (0,T). Then u

1 can be redefined on a set of zero Lebesque measure in such a way that u(t) € L*(R?) for all

15

t € [0,T) and satisfies the identity

/ /R3 —Vu-Vo—u-Vu-¢)drdr = /R3 u(t) - (t)de — /Rs u(s) - ¢(s)dz (3.1)

bt
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forall s €10,t], t <T and all p € CL(R? x [0,T)) with V - ¢ = 0.
0

Lemma 3.2 ([7], Lemma 2.1). Let u be an azisymmetric vector field. Then the following

equalities hold:
2

+ |V |2 4 |Vu?|?, (3.2)

r

Vil® = |~

2
+ |V 2. (3.3)

0

IV (u’eq)* =

Lemma 3.3. Suppose that u is a axisymmetric weak solution of the Navier-Stokes equa-
tions, if ruf € L>®(R3), then ru’ € L®(R3 x (0,T)). Moreover, v’ € L*(0,T; L*(R?)).

Proof. ru® € L®(R? x (0,T)) follows from [4, Proposition 1]. From this estimate and
Lemma [3.2] since u € L2(0,T; H'(R?)), we derive that

T T e’} 0
/ / (u9)4dxdt:27r/ / / (u9)4rdrdzdt
0o JR3 0 J-xJo
T o] o] o\ 2
3.4
§||’f‘u6||%oo(R3><(0,T))/ / / (u?) rdrdzdt (3.4)
0 —o00 JO

< e s o, | VUllZ2 (0,2 sy < 00

Lemma 3.4 ([7], Lemma 2.3). Let 1 < p < co. Then we have
IVl ooy < Clle® | Loes) - (3.5)

Lemma 3.5 ([22], Lemma 2.1). Suppose that u is a axisymmetric weak solution of the
Navier-Stokes equations. Let 6 > 0, then

HU1TZ5||%,4(O,T;L4(]R3)) < g|’u0‘|i2(n@3)- (3.6)

4 Proof of Theorem 1.2

Proof. 1t follows from [I, Lemma 5.1] that there exists a sequence {u,,} such that

lim ||ﬂm — fLH 2k
moo

2k 21
LE=1(0,T;L7-

. (]RJ)) — O, 1;102 ||Vﬂm — Va||Lk(07T;Ll(R3)) — 0 (41)

ELIE.I.} ||Ufn — u9||L4(07T;L4(R3) — 0, }}ZI;} HVum — VUHLQ(O,T;LQ(RS) —0 (42)
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Taking ¢ = us, fo Je(s — T)up, d7 in (3.1]), where j. is an even, non-negative, infinitely
differentiable function with support in (—e, €), and f s)ds = 1. We have

t
/ / (u-Osuy, — Vu-Vu,, —u-Vu-u,)dedr = / u(t) - ug, (t)de — / up - uy, (0)dx
s JR3 R3 R3

1 Following [3, [§], we have

1
lim lim u(t) - us, (t)de = —||U(t)||%2 (R3) »
e—0 m—o0 R3
lim lim uo us, (0)dx = HUOHL2 (R3) »
e—0m—o0

(4.3)

lim lim / / u - Osus,drds =0,
e—0 m—o0 R3
. . € 1 2
11_{% n}l_rgo . Vu(s) - Vus, (s)dxds = §||vu||L2(O,T;L2(R3))

. t . .
> For the nonlinear term [, [os u - Vu - ug,dzds, we can rewrite it as follows:

t
/ / u-Vu - u;, drds
0 JR3
t t
://u-Vu-(ufn—ue)dxdst//u-Vu-(ue—u)dxds
0 JR3 0 JR3
t t
+ / / u - Vu - udzrds + / / - Vg, - updrds (4.4)
o Jrs o Jrs
t ¢
—//u-Vw(ufn—ue)dxds—i-//u'Vu-(uE—u)dxds
0 JR3 0 JRr3
t t
+//u-V(u—um)-udxds+//u-Vum-(u—um)d:pds.
0 JR3 0 JR3

3 where we have used the relation

t
//u~Vum-umdxd5:O,
0 JR3

+ which is due to the integration by parts and divergence-free condition. To estimate the

5 term fot Jgs v - Vu - (uf, — u)dads, we use the following equation:

u-Vu - (us, —u) =t - Vu- (u;, —u (4.5)
=i Vi (itg, — @) + (@ Va') (a5, — @), |
7
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. where we used the fact u -V = @ - V since u is independent of 6. Thus one can rewrite it

> as follows:

¢
/ / u-Vu- (uf, —u)drds
0 JR3

t t
:/ / - Vi - (s, — ﬂe)dazder/ / (- Vul) (s, — ) dads .
0 R3 0 R3

3 Using the integration by parts and divergence-free condition, one derives that

t
/ / u-Vu - (us, —u)dzds
o Jr?
¢
:/ / - Vi - (a6, — u)drds — // ) ?uldrds
0 JRr3
¢
://&@ﬁ(& d:z:ds—// )dxds
o Jr3
t
—/ / wu’0, (uf, — u)’dxds .
o Jrs

+ By using the Holder inequality and Lemma |3.2] we have

- Vi - (S, — u°)drds

RB
< ||U||Lk 2 oo wy) IVall ooy 1, — @l 2 25 o010 @)
5 and
u’ O, (us, — ue)edxds
0o Jm3
t [e’s) [e’s)
= 27r/ / / uu?0, (uf, — u)’rdrdzds
0 —00 J O
u € e\0 0
< ||7”L2(0,T;L2(R3))Har(um — 1)’ || 20, 22®3)) || 767 || Loo (R x (0,1
< ||VU||L2(O,T;L2(]R3))||V(U:n - U6)||L2(0,T;L2(R3))||7’U9||L<>O(Rx(0,T)) )
s and
u)drds
R3
€ e\0 [%
< ||U ||Lk 1(0TL127(]R3))||8Z(um —u) ||L,;4—f2(O’T;L¢—12(R3))||U ||L4(0,T;L4(R3)),
7 Or
“0,u )Pdxds
RS
< HU H (OTL‘*T H@ (U, G)GHLk’(O,T;Ll(H@))HUGHL“(O,T;L‘*(R%)-
8
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1 According to the assumptions of Theorem [I.2] we can pass the limit to obtain

¢
lim lim / / u-Vu- (ug, —u)drds = 0.
e—0 m—oo 0o JR3

> Similarly, we can obtain that

t
lim lim / / u-Vu- (u°—u)drds =0,
e—0 m—o0 0 R3

t
lim lim//u-V(u—um)-udxds:O,
R3

e—0 m—o0 0

t
lim lim / / U Vg, - (4 — uy)deds = 0.
R3

e—0 m—oo 0

s Thus, we have

t
lim lim / / u-Vu-uy,drds = 0.
e—0 m—o0 0 R3

6 Therefore, we have

t 1
= |u(s,t)|2dzv—|—/ \Vu(x, 7)|*dvdr = —/ luo () |*dx . (4.12)
R3 0 R3 2 R3

: 5 Proof of Corollary

o Proof. (1) is due to the Shinbrot condition, Lemmas [3.3] and [3.5

10 (2) is due to [2, Theorem 1.1], Lemm and

u To prove (3), it follows from Theorem |1.2|that it is enough to prove @ € La (0,7 L (R3)).
12 By means of the GagliardoNirenberg inequality, we obtain

5p—9 5p—9
Il < Nl |V 5y <l I s,
13 Hence, we have
5p—9

| ||Lj(0TLj(R3) CHUHEZOESOTL? R3 )HWQHEZ STLP(]R3))

14 For (4), similarly, we have

2p—3

I, ) <CUNEH VTGS

2p—3 2p—3
<C|Vau HE;Q(R‘Q IV Hif(u{s? < Clw QHE%QH{J o GHELQH{J),

9
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which implies

9-5p 2p—3
o - < C||w9H2<zzopT ;L2(R3)) ||w6Hz<qupT .LP(R3)) *

Lq it OTLP 1(R3))

Thus, (4) follows from Theorem [I.2]
To prove (5), it is enough to check if @ € L#+2(0,T; L7+2(R?)) since we have @ €
L%(O, T; L%(RP))) following the proof of (3). When 2 < p < 4, it is easy to obtain that
[all s < C||u||L27 ||u||5 zp :

LP+2(R3) P—1 (R3)

which derives that
g ~ % d < C ( p)qATQ g ~ (%71)%dt
||U| LR t H ||Loo(0TL2(R3)) HUH 2p .
0 0 -

From the assumptions in (5), one can easily check that

(Q _ 1) = < i
2 q+2  qg—1°
Therefore, @ € La2 (0, T; L2 (R?)), which implies (5). O
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