IDEAL FACTORIZATION IN STRONGLY DISCRETE
INDEPENDENT RINGS OF KRULL TYPE, II

GYU WHAN CHANG AND HYUN SEUNG CHOI

ABSTRACT. A ZPUI domain D is an integral domain with property (#): every
nonzero proper ideal I of D can be written as I = JP; --- Py, where J is an
invertible ideal of D and {Pi1,...,Pn} is a nonempty collection of pairwise
comaximal prime ideals of D. In this paper, among other things, we study two
types of natural generalizations of ZPUI domains: (i) the J in the property
(#) is principal and (ii) the property (#) holds for all nonzero principal ideals
of D. For example, we show that (1) D satisfies (i) if and only if D is a ZPUI
domain whose invertible ideals are principal and (2) D satisfies (ii) if and only
if D is an h-local domain in which each maximal ideal is invertible. We also
study the w-operation analogs of these two properties.

1. INTRODUCTION

This is a continuation of our work [16] on ideal factorization in strongly discrete
independent rings of Krull type. For an easy understanding of the introduction, we
first review the notion of d-, v-, t-, and w-operation. Let D be an integral domain
with quotient field K. A D-submodule A of K is called a fractional ideal of D if
dA C D for some 0 # d € D. An (integral) ideal I of D is a fractional ideal of D
with I C D. Let F(D) (resp., f(D)) be the set of nonzero fractional (resp., nonzero
finitely generated fractional) ideals of D. For A € F(D),let A~ ={z € K |zAC
D}; then A=! € F(D). Hence, if we set

o A=A,

° A’U:(A—l)—l’

o At={I"|ICAand e f(D)}, and

o A" ={x € K |zJ C A for some J € f(D) with J* = D},

then the d-, v-, t-, and w-operation are well defined. It is easy to see that I C I C
It C 1V for all I € F(D). Let * = d,v, t, or w. An I € F(D) is called a *-ideal
if I* = 1. A x-ideal is a mazimal *-ideal if it is maximal among proper integral
s-ideals. An A € F(D) is said to be x-invertible if (II=')* = D. Two ideals I, J
of D are said to be pairwise *-comazimal if (I + J)* = D. An ideal I of D is
x-unidirectional if I is contained in a unique maximal *-ideal of D. We usually
omit the d-operation, e.g., a d-ideal is just called an ideal.

In [34], Olberding introduced the notion of ZPUI domains which is a general-
ization of the ring of integers. We recall that D is a ZPUI domain if and only if
every nonzero proper ideal I of D can be written as I = JP; --- P,, where J is
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2 G.W. CHANG AND H.S. CHOI

an invertible ideal of D and {P,...,P,} is a nonempty collection of pairwise co-
maximal prime ideals of D by [34, Theorem 2.3] and [33, Theorem 5.2]. In [16], we
used the w-operation to define a w-ZPUI domain, which is a generalization of ZPUI
domains, that D is a w-ZPUI domain if every nonzero proper w-ideal I of D can
be written as I = (JPy - -+ P,)" for some w-invertible ideal J of D and a nonempty
collection {Py,..., P,} of pairwise w-comaximal prime w-ideals of D. Then D is a
ZPUI domain if and only if D is a w-ZPUI domain whose maximal ideals are ¢t-ideals
[16, Corollary 3.8]. In this paper, we continue to study the (w-)ZPUI domains and
three new classes of generalizations.

A Dedekind domain is an integral domain in which each (nonzero) ideal is a finite
product of prime ideals. A 7-domain is an integral domain each of whose (nonzero)
principal ideals is a finite product of prime ideals. Clearly, a Dedekind domain
is a m-domain. However, a m-domain need not be a Dedekind domain (e.g., the
polynomial ring over a Dedekind domain that is not a field). It is known that D is
a Krull domain if and only if each nonzero principal ideal of D is a finite w-product
of prime ideals (cf. [31, Theorem 3.9]). Note that a Dedekind domain (resp., Krull
domain) is a ZPUI domain (resp., w-ZPUI domain). A nonzero principal ideal is
invertible. Hence, we have the following natural questions.

Question 1.1. Let D be an integral domain and x = d or w.

(1) What if every nonzero proper x-ideal I of D can be written as I = (aPy --- P,)*,
where 0 # a € D and {Py,...,P,} is a nonempty collection of pairwise *-
comazximal prime *-ideals of D?

(2) What if every nonzero proper principal ideal I of D can be written as I =
(JPy---P,)*, where J is a x-invertible ideal of D and {Py,...,P,} is a
nonempty collection of pairwise *-comaximal prime *-ideals of D ?

(3) What if every nonzero proper principal ideal I of D can be written as I =
(aPy--- P,)*, where 0 £ a € D and {Py,...,P,} is a nonempty collection
of pairwise x-comaximal prime x-ideals of D?

Note that a d-ZPUI domain is just the ZPUI domain. It is clear that “D satisfies
the property of Question 1.1(1)” = “D is a *-ZPUI domain” = “D satisfies the
property of Question 1.1(2)”. In this paper, we are going to answer Question 1.1.

In section 2, we answer Question 1.1(1). Among other things, we show that D is
a Bézout ZPUI domain (resp., GCD w-ZPUI domain) if and only if D satisfies the
property stated in Question 1.1(1) for * = d (resp., * = w). Section 3 is devoted
to the study of integral domains satisfying the condition of Question 1.1(2). For
example, we show that D is a weakly Matlis domain whose maximal t-ideals are
t-invertible if and only if D satisfies the condition of Question 1.1(2) for x = w.
We also study integral domains satisfying the statements of Question 1.1(3) with
additional conditions.

Finally, in section 4, we raise questions of how integral domains possessing a
property similar to m-domains behave and provide an answer to one of them our-
selves. We end this paper with a diagram that shows the relationships between
several kinds of integral domains with some ideal factorization properties which are
studied in this paper.

For easy reference of the reader, we end the introduction with a couple of already
well-known results on the d-, t-, and w-operation. Let * = d, ¢, or w and *-Max (D)
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be the set of maximal *-ideals of D. Then *Max(D) # 0 if and only if D is not
a field; each maximal *-ideal of D is a prime ideal; each proper x-ideal of D is
contained in a maximal *-ideal; each prime ideal of D minimal over a x-ideal is
a *-ideal, whence each height-one prime ideal is a *-ideal; D = ﬂPE*_MaX(D) Dp;
I' = Npepmax(py IDp for all I € F(D); and t-Max(D) = w-Max(D) (see, for
example, [4]). An integral domain D is said to be of finite x-character if each
nonzero nonunit of D is contained in only finitely many maximal *-ideals. We say
that D is x-independent if no two elements of x-Max(D) contain a common nonzero
prime x-ideal. Hence, D is an h-local domain (resp., a weakly Matlis domain) if
D is of finite d-character and d-independent (resp., of finite ¢-character and ¢-
independent).

We say that D is a Prifer v-multiplication domain (PvMD) if each nonzero
finitely generated ideal of D is t-invertible. A PvMD is said to be a ring of Krull
type (resp., an independent ring of Krull type) if it is of finite t-character (resp.,
weakly Matlis). It is known that D is a PvMD if and only if Dp is a valuation
domain for all maximal t-ideals P of D, if and only if D[X], the polynomial ring
over D, is a PuMD [30]; and a Priifer domain is a PoMD whose maximal ideals
are t-ideals. We mean by ¢-dim(D) = 0 (resp., t-dim(D) = 1) that D is a field
(resp., D is not a field and each prime t-ideal of D is a maximal t-ideal). The
class of integral domains D with ¢-dim(D) = 1 includes Krull domains and integral
domains of (Krull) dimension one.

Let Inv*(D) (resp., Inv(D), Prin(D)) be the set of ¢-invertible fractional t-ideals
(resp., invertible fractional ideals, nonzero principal fractional ideals) of an integral
domain D. Then Inv'(D) forms a group under the t-product I *.J = (IJ)*; Inv(D)
and Prin(D) become subgroups of Inv'(D); and Prin(D) C Inv(D). The t-class
group Cl;(D) (resp., Picard group Pic(D)) is the factor group Inv'(D)/Prin(D)
(resp., Inv(D)/Prin(D)). It is clear that Pic(D) is a subgroup of Cl;(D) and
Pic(D) = Cl;(D) when each maximal ideal of D is a t-ideal (e.g., D is a Priifer
domain or one-dimensional). It is well known and easy to see that D is a Bézout
domain (resp., GCD domain) if and only if D is a Priifer domain (resp., PvMD)
with Cl;(D) = {0}.

2. (w-)ZPUI DOMAINS WITH TRIVIAL CLASS GROUP

Let D be an integral domain and * = d or w on D. In this section, we are going
to give an answer to Question 1.1(1). That is, we study some ideal factorization
properties of D with the property that every nonzero proper x-ideal of D can be
written as a *-product of a nonzero principal ideal and a nonempty collection of
pairwise x-comaximal prime *-ideals.

Recall that D is a ZPUI domain (resp., w-ZPUI domain) if and only if D is a
strongly discrete h-local Priifer domain (resp., a strongly discrete independent ring
of Krull type) [36, Theorem 1.1] (resp., [16, Theorem 2.5]) and that both an h-local
Priifer domain and an independent ring of Krull type are weakly Matlis domains.

Lemma 2.1. Let D be a %-ZPUI domain for x = d or w. Then the following hold.

(1) If P is a prime x-ideal of D, then there exists a two-generated ideal I of D
such that P = /I and IDp = PDp.
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(2) A prime x-ideal of D is x-invertible if and only if it is a mazimal x-ideal of
D.

(3) Let I be a proper *x-invertible xideal of D. Then I is contained in only
finitely many mazimal *-ideals My, ..., M, of D and I = (JMy--- M,)*
for some ideal J of D that is a product of *-invertible *-unidirectional ideals
of D.

Proof. Note that d =t on a Priifer domain and w = ¢ on a PvMD. Note also that
D is a strongly discrete independent ring of Krull type [16, Theorem 2.5]. Hence,
* =t on a *ZPUI domain.

(1) Let P be a prime t-ideal of D. Then PDp = aDp for some a € P [16,
Proposition 2.2]. Now let My, ..., M, be the set of maximal ¢-ideals of D containing
a. Note that exactly one of M;, say M;, contains P. Then by the prime avoidance
lemma, we can choose b € P\ (M U---M,) and let I = (a,b). Then VI = P and
IDp = PDp.

(2) Each maximal ¢-ideal of D is t-invertible by [16, Theorem 2.5] and [19,
Lemma 3.1 and Theorem 3.5]. For the converse, let P be a prime t-ideal of D that
is t-invertible. Thus, P is a maximal ¢-ideal [28, Proposition 1.3].

(3) Since D is weakly Matlis, I is contained in only finitely many maximal ¢-ideals
of D, say, My,..., M,. Note that each M; is t-invertible by (2) and (M - -- M,,)t =
M;N---N M, [6, Lemma 2.5], so [ = (JM; --- M,)" for some ideal J of D. Now,
let I, = JDp, N D for i = 1,...,n. Then I, is a t-unidirectional t-ideal of D [6,
Lemma 2.3 and Lemma 2.5],

J'= () JDu=Ln--nI, =L 1,)"
M et-Max(D)
Moreover, since I is t-invertible, J is t-invertible, and thus Iy,...,I, are all ¢-
invertible. U

A nonzero nonunit x of an integral domain D is said to be homogeneous if D is
t-unidirectional. As in [15], we call D a homogenous factorization domain (HoFD) if
each nonzero nonunit of D is a finite product of pairwise t-comaximal homogeneous
elements of D. Then D is an HoFD if and only if D is a weakly Matlis domain
with Cl;(D) = {0} [5, Theorem 3.4].

Theorem 2.2. Let D be an integral domain. Then the following are equivalent.

(1) Ewvery nonzero proper ideal of D can be written as a product of a principal
tdeal and a nonempty collection of distinct prime ideals.

(2) D is a Bézout ZPUI domain.

(3) D is a ZPUI domain and every invertible ideal of D is principal.

(4) Ewery nonzero proper ideal of D can be written as a product of a principal
ideal and a nonempty collection of pairwise comazximal prime ideals.

In this case, D is an HoFD. Moreover, if a € D is a nonzero nonunit, then there
a
is an element b € D such that aD C bD and 3 18 a finite product of distinct prime

elements each of which generates a maximal ideal.

Proof. (1)=(2) Suppose that (1) holds. Then D is a ZPUI domain by definition.
Next, choose a maximal ideal M of D. Then M? = aP;--- P, for some a € D
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and distinct prime ideals P --- P,. Note that M is a maximal ideal, so n = 1
and P; = M, and since M is invertible by Lemma 2.1.(2), M = aD. Thus, every
maximal ideal of D is principal.

Now let I be a proper invertible ideal of D. Then I = aP;--- P, for some
a € D and distinct prime ideals Pj,..., P, of D. Since I is invertible, so are
Pi,...,P,. Therefore P,..., P, are maximal ideals of D by Lemma 2.1.(2), and
by the argument preceding this paragraph, they are principal ideals. So I, being
a product of finitely many principal ideals of D, is a principal ideal of D. Hence,
every invertible ideal of D is principal. Since D is a Priifer domain, it means that
every finitely generated ideal of D is principal, so D is a Bézout domain.

(2)=(3) This follows from the fact that every invertible ideal is finitely generated.

(3) = (4) =(1) Clear.

In this case, D is an h-local Bézout domain, and hence D is a weakly Matlis
domain with Cl;(D) = {0}. Thus, D is an HoFD. Moreover, aD = JQ1---Qy
for some ideal J of D and distinct maximal ideals Q1,...,Q, of D. Note that J
and Q; are invertible, so by (3), J = bD and Q; = p; D for some b,p; € D. Thus,

a
aD C bD, p1,...,p, are distinct, each p; D is a maximal ideal, and — = up;y -+ pn,

b
for some unit v € D. O

It is worth noting that (i) every maximal ideal of a Bézout ZPUI domain is prin-
cipal and (ii) the condition “distinct” of Theorem 2.2(1) is necessary (for example,
if D is a Dedekind domain that is not a PID, then every nonzero proper ideal of D
can be written as a principal ideal and a nonempty collection of prime ideals but
D is not a Bézout domain).

Let D[X] be the polynomial ring over an integral domain D. For f € D[X], let
¢(f) denote the ideal of D generated by the coefficients of f. Then S = {f € D[X] |
¢(f) = D} is a saturated multiplicative subset of D[X] and D(X) := D[X]g, called
the Nagata ring of D, is an overring of D[X].

Corollary 2.3. An integral domain D is a ZPUI domain if and only if every
nonzero proper ideal of D(X), the Nagata ring of D, can be written as a product of
a principal ideal and a nonempty collection of distinct prime ideals.

Proof. Tt is known that D is a ZPUI domain if and only if D(X) is a ZPUI domain,
a ZPUI domain is a Priifer domain, and D is a Priifer domain if and only if D(X)
is a Bézout domain [1, Theorem 8]. Thus, the result is from Theorem 2.2. O

Let D[X] be the polynomial ring over an integral domain D and N, = {f €
D[X] | f # 0 and ¢(f), = D}. Then N, is a saturated multiplicative subset of
D[X], and hence D[X]y,, called the t-Nagata ring of D, is an overring of D[X],
D(X) C D[X]n,, and Cly(D[X]n,) = {0} [30, Propositions 2.1, 2.2, and Theorem
2.14].

Corollary 2.4. An integral domain D is a w-ZPUI domain if and only if every
nonzero proper ideal of D[ X|n, can be written as a product of a principal ideal and
a nonempty collection of distinct prime ideals.
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Proof. Tt is known that D is a w-ZPUI domain if and only if D[X]y, is a ZPUI
domain [16, Theorem 3.5] and Cl;(D[X]|n,) = {0}. Thus, the result follows from
Theorem 2.2. (]

The next result is a w-ZPUI domain analog of Theorem 2.2.

Corollary 2.5. Let D be an integral domain. Then the following are equivalent.

(1) Ewvery proper w-ideal of D can be written as a w-product of a principal ideal
and a nonempty collection of pairwise w-comazximal prime ideals.
(2) D is a w-ZPUI domain with Cl,(D) = {0}.
(3) D is a w-ZPUI and a GCD domain.
(4) Every proper w-ideal of D can be written as a w-product of a principal ideal
and a nonempty collection of distinct prime w-ideals.
(5) D[X] is a w-ZPUI domain with Cl,(D) = {0}.
In this case, D is an HoFD. Moreover, if a € D is a nonzero nonunit, then there
a

is an element b € D such that aD C bD and 5

elements.

Proof. (1) = (4) Clear.

(4) = (2) D is a w-ZPUI domain [16, Theorem 3.5]. Moreover, every w-invertible
w-ideal of D is principal by the argument of the proof of (1) = (2) in Theorem 2.2.
Thus, Cly(D) = {0}.

(2) = (1) Let I be a proper w-ideal of D. Then I = (JP;---P,)" for some
w-invertible ideal J of D and Py,..., P, are pairwise w-comaximal prime w-ideals
of D. Note that J* = aD for some a € D by (2). Thus, I = (aPy --- P,)".

(2) & (3) This follows from the fact that a w-ZPUI domain is a PvMD [16,
Theorem 3.5] and a GCD domain is just a PvMD with trivial class group.

(2) < (5) This follows from [16, Theorem 3.5] that D is a w-ZPUI domain if and
only if D[X] is a w-ZPUI domain.

In this case, D is a weakly Matlis domain with Cl;(D) = {0}. Thus, D is an
HoFD. Moreover, aD = (JQ1 - -+ Q)" for some ideal J of D and distinct maximal
w-ideals Q1, ..., Q, of D. Note that J and Q; are w-invertible, so by (3), J* = bD
and Q; = p; D for some b,p; € D. Thus, a € bD, p4,...,p, are distinct, and

aD = (bDpyD---pnD)* = ((bp1 -+ pn)D)* = (bp1 -+ pu) D-

18 a finite product of distinct prime

a
Thus, 7= upy - - - py, for some unit v € D. (]

Let S be a multiplicative subset of an integral domain D. We say that S is
splitting if, for each 0 # d € D, there is an s € S such that d = sa for some a € D
with (a,s’)! = D for all s € S. A multiplicative subset of a Noetherian domain
generated by a set of (nonzero) prime elements is an easy example of splitting sets.
Splitting sets were introduced by Anderson et al. [3].

Proposition 2.6. Let A C B be an extension of integral domains, X be an inde-
terminate over B, and D = A+ XB[X], i.e., D = {f € B[X]| f(0) € A}.

(1) The following statements are equivalent.
(a) D is a ZPUI domain.
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(b) A is a strongly discrete valuation domain and B is the quotient field
of A.
(¢) D is a Bézout ZPUI domain.
(2) D is a GCD w-ZPUI domain if and only if A is a GCD w-ZPUI domain,
B = Ag for a splitting set S of A, and |{P € t-Max(D) | PN S # 0}] < 1.

Proof. (1) (a) < (b) [16, Theorem 4.1]. (b) = (c) A valuation domain is a Bézout
domain, so D is a Bézout domain [18, Corollary 4.13]. (c) = (a) Clear.

(2) This follows from the following two observations: (i) D is a GCD domain
if and only if A is a GCD domain and B = Ag for some splitting set S of A [8,
Theorem 2.10] and (ii) if S is a splitting set of A, then A + X Ag[X] is a w-ZPUI
domain if and only if A is a w-ZPUI domain and |[{P € t-Max(D) | PNS # 0} <1
[16, Theorem 4.2]. O

Recall that D is a Dedekind domain (resp., Krull domain) if and only if D is a
ZPUI domain (resp., w-ZPUI domain) with dim(D) < 1 (resp., t-dim(D) < 1) and
that a Krull domain (resp., Dedekind domain) is a UFD (resp., PID) if and only
if its divisor class group is trivial. Hence, a UFD (resp., PID) is a GCD w-ZPUI
domain (resp., Bézout ZPUI domain).

Example 2.7. (1) There exists a Bézout ZPUI domain of whose Krull dimension
and number of maximal ideals are both arbitrarily large [35, Example 3.5].

(2) A ZPUI domain (resp., w-ZPUI domain) is a Priifer domain (resp. PoMD),
so it is a Bézout domain (resp. GCD domain) if and only if its class group is
trivial. Thus, by [16, Corollary 3.9], there exists a Bézout ZPUI domain (resp.,
GCD w-ZPUI domain) that is not a PID (resp., UFD).

As shown in [36, Theorem 1.1], an integral domain D is a ZPUI domain if and
only if every nonzero proper ideal I of D can be written as I = JP; - - - P,,, where J
is an invertible ideal of D and {P4,..., P,} is a nonempty collection of prime ideals
of D: the condition that “Py,..., P, are pairwise comaximal” can be dropped. The
situation is a little different for domains described in Question 1.1. For instance,
a Dedekind domain D has the property (#) that every nonzero proper ideal of D
can be written as a product of a principal ideal and a nonempty collection of prime
ideals. However, D is not a Bézout domain in general, so the property (#) is a
weaker condition than the condition of Theorem 2.2. We next state some properties
of integral domains with property (#) and their w-operation analog.

Proposition 2.8. Let D be an integral domain in which every nonzero proper w-
ideal I can be written as a w-product of a principal ideal and a nonempty collection
of prime w-ideals. Then

(1) D is a w-ZPUI domain.

(2) If P is a prime w-ideal of D that is not a mazimal w-ideal, then there exists
an element a € D such that P is the unique minimal prime ideal of aD and
aDp = PDP

(3) Let M be a mazimal w-ideal of D that properly contains a nonzero prime
w-ideal. Then (MY)" is a principal ideal for some integer | > 1.

Proof. (1) This follows from [16, Theorem 3.5].
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(2) and (3) Now choose a maximal w-ideal M of D that properly contains a
nonzero prime w-ideal P of D. Then by Lemma 2.1.(1), there exists a finitely
generated ideal I of D such that P = VI and IRp = PRp. By assumption,
I = (aMy - -- My,)™ for some a € D and (invertible) prime w-ideals My, ..., M,.
By Lemma 2.1.(2), M, ..., M, are maximal w-ideals of D containing I. In fact,
since D is an independent ring of Krull type and P = v/I¥ = vVaDNM;N---NM,,
we have P = vaD and M = M; for each i. In particular, I* = (aM™)* and
PDp = IDp = aDp. Now, by a similar reasoning, aD = (bM"')¥ for some b € D
and integer [ > 1. Thus, (M")" is a principal ideal. |

Corollary 2.9. Let D be an integral domain in which every nonzero proper ideal

can be written as a product of a principal ideal and a nonempty collection of prime
ideals. Then the following hold.

(1) D is a ZPUI domain.

(2) Let P be a nonmazimal prime ideal of D. Then there exists an element
a € D such that P = vaD and aDp = PDp.

(3) Let M be a mazimal ideal of D whose height is greater than 1. Then M' is
a principal ideal for some integer [ > 1.

Proof. Since w = d on a ZPUI domain, the conclusion follows from Proposition
2.8. O

As we noted in the remark before Proposition 2.8, a Dedekind domain satisfies
the statements of Proposition 2.8 and Corollary 2.9, while the ideal class group
of a Dedekind domain need not be trivial. It is clear that if D is a ZPUI domain
(resp., w-ZPUI domain) with Cl,(D) = {0}, then every nonzero proper ideal (resp.,
w-ideal) of D can be written as a product (resp., w-product) of a principal ideal
and a nonempty collection of prime ideals (resp., prime w-ideals).

3. WEAKLY #*-ZPUI DOMAINS

An integral domain D is a m-domain if each nonzero principal ideal of D can
be written as a finite product of prime ideals of D. Hence, a m-domain is a weak
version of a Dedekind domain. In this section, we study a weak version of ZPUI
domains and w-ZPUI domains. Motivated by Lemma 2.1, we define weakly ZPUI
domains (resp., weakly w-ZPUI domains) as follows, so that a ZPUI domain (resp.,
w-ZPUI domain) is a weakly ZPUI domain (resp., weakly w-ZPUI domain).

Definition 3.1. Let D be an integral domain and * be one of d-, w- and t-operation
on D. We say that D is a weakly x-ZPUI domain if every nonzero proper principal
ideal aD of D can be written as aD = (JPy - P,)*, where {Py,...,P,} is the set
of mazimal x-ideals of D containing a and J is either D or a product of *-invertible
x-unidirectional ideals.

It is clear that a weakly ZPUI domain is both a weakly ¢-ZPUI domain and a
weakly w-ZPUI domain. Hence, by Lemma 3.2 below, weakly ZPUI domain =
weakly t-ZPUI domain < weakly w-ZPUI domain.

Lemma 3.2. An integral domain D is a weakly t-ZPUI domain if and only if it is
a weakly w-ZPUI domain.
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Proof. Assume that D is a weakly ¢-ZPUI domain, and let @ € D be a nonzero
nonunit. Then aD = (JP;---P,)!, where {P,...,P,} is the set of maximal ¢-
ideals of D containing a and J is either D or a product of t-invertible ¢-unidirectional
ideals. Recall that t-Max(D) = w-Max(D), so a t-invertible ¢-ideal is w-invertible.
Hence, JP - P, is w-invertible, and thus aD = (JP;---P,)”. Thus, D is a
weakly w-ZPUI domain. The converse can be proved by the same argument. [

Theorem 3.3. The following are equivalent for an integral domain D.

(1) D is a weakly t-ZPUI domain.
(2) D is a weakly Matlis domain and each mazimal w-ideal of D is w-invertible.
(3) D is a weakly Matlis domain and each mazimal t-ideal of D is t-invertible.
(4) D is a weakly w-ZPUI domain.

Proof. (1) < (4) Lemma 3.2.

(2) < (3) This follows from [4, Theorem 2.16] by which t-Max(D) = w-Max(D).
(2)=(4) Suppose that (2) holds. Choose a nonzero nonunit ¢ of D, and let
Py, ..., P, be the set of maximal t-ideals of D containing a. For each i € {1,...,n},
P, Dp, is a principal ideal since P; is w-invertible ideal of D, so aDp, = a;P;Dp,
for some a; € D. Set J; =a,Dp,ND, J=J,---J,and [ = JP;--- P,. Then J, is
either D or a w-invertible t-unidirectional ideal for every ¢ € {1,...,n} [6, Theorem
3.3]. Hence (aD)Dp = IDp for every maximal t-ideal P of D, so aD = I".

(4)=(2) Assume that (4) is true. It is clear that every nonzero proper principal
ideal of D is a finite w-product of w-unidirectional w-ideals of D. Hence, D is
a weakly Matlis domain [6, Theorem 2.1]. Next, let Py € t-Max(D), and choose
a nonzero a € Py. Then aD = (JPyP;---P,)", where Py, P,..., P, are the
maximal t-ideals of D containing a, and J is either D or a product of w-invertible
t-unidirectional ideals. Since aD is w-invertible, so is Fy. Hence every maximal
w-ideal of D is w-invertible. d

Let D be an integral domain, X be an indeterminate over D, and D[X] be the
polynomial ring over D. Then a nonzero prime ideal @ of D[X] is called an upper
to zero in D[X]if QN D = (0), and D is a UMT-domain if every upper to zero in
D[X] is a maximal t-ideal of D[X]. It is known that D is a PuMD if and only if D
is an integrally closed UMT-domain [28, Proposition 3.2].

Corollary 3.4. Let D be a UMT-domain and D[X] be the polynomial ring over
D. Then D is a weakly w-ZPUI domain if and only if D[X] is a weakly w-ZPUI
domain.

Proof. By [22, Proposition 2.2], D is weakly Matlis if and only if D[X] is weakly
Matlis. Moreover, if @ is an upper to zero in D[X], then @ is t-invertible [28,
Theorem 1.4]. On the other hand, if @ is a prime ideal of D[X] that is not upper
to zero, then @ is a maximal t-ideal of D[X] if and only if @ = (Q N D)[X] and
Q N D is a maximal t-ideal of D ([28, Proposition 1.1] and [30, Proposition 2.2]).
Note also that (Q N D)[X] is t-invertible in D[X] if and only if QN D is t-invertible
in D [30, Proposition 2.2]. Thus, the result follows from Theorem 3.3. ([l

It is easy to see that if D[X] is a weakly Matlis domain, then D is weakly Matlis
[22, Proposition 2.2] and if D is a weakly Matlis domain that is also a UMT-domain,
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then D[X] is a weakly Matlis domain [22, Proposition 2.2]. However, in general, D
being weakly Matlis does not imply that D[X] is weakly Matlis [22, Example 2.5].

Corollary 3.5. Let D[X] be the polynomial ring over an integral domain D. Then
D[X] is a weakly w-ZPUI domain if and only if D is a weakly w-ZPUI domain and
DI[X] is a weakly Matlis domain.

Proof. (=) By Theorem 3.3, D[X] is weakly Matlis, so D is weakly Matlis. Next,
let P be a maximal t-ideal of D. Then P[X] is a maximal t¢-ideal of D[X] [28,
Proposition 1.1], and hence P[X] is t-invertible by Theorem 3.3, so P is t-invertible.
Thus, D is a weakly w-ZPUI domain by Theorem 3.3.

(<) Let Q be a maximal t-ideal of D[X]. If QN D # (0), then QN D is a maximal
t-ideal of D and @ = (Q N D)[X]. Hence, QN D is t-invertible by Theorem 3.3, and
thus @ is t-invertible. Next, assume that @ N'D = (0). Then Q is t-invertible ([28,
Proposition 1.1], [30, Proposition 2.2]). Thus, D[X] is a weakly w-ZPUI domain
by Theorem 3.3. (]

The next example shows that (i) the localization of a weakly w-ZPUI domain
need not be a weakly w-ZPUI domain and (ii) D[X] a weakly w-ZPUI domain does
not implies that D is a UMT-domain.

Example 3.6. (cf. [7, Example 2b]) Let Q be the field of rational numbers, Y, Z
be indeterminates over Q, QI[[Y, Z]] be the power series ring over Q, p be a prime
number, and D = Z,z+ (Y, Z)Q[[Y, Z]]. Then D is a quasilocal ring whose maximal
ideal is principal. Let K be the quotient field of D, T be an indeterminate over K,
and R = D+TK][[T]]. Then R is a quasilocal ring whose maximal ideal is principal.
Hence, R is a weakly Matlis domain whose maximal ¢t-ideals are t-invertible. Thus,
by Theorem 3.3, R is a weakly w-ZPUI domain.

(1) However, if N = {p™ | n > 0}, then Ry = Q[[Y, Z]] + TK|[T]] is not weakly
Matlis, and thus Ry is not a weakly w-ZPUI domain.

(2) Note that R is integrally closed by [11, Theorem 2.1(b)], and R is quasilocal
whose maximal ideal is principal, but R is not a valuation domain. Moreover, R[X],
the polynomial ring over R, is a weakly Matlis domain by [22, Corollary 2.3]. Thus,
R[X] is a weakly w-ZPUI domain by Theorem 3.3.

The following corollaries are immediate consequences of Theorem 3.3.

Corollary 3.7. The following statements are equivalent for an integral domain D.

(1) D is a weakly ZPUI domain.
(2) D is an h-local domain in which each mazimal ideal is invertible.
(3) D is a weakly w-ZPUI domain in which each maximal ideal is a t-ideal.

Proof. (1) = (3) Clearly, D is a weakly w-ZPUI domain. Moreover, if M is a
maximal ideal of D, then M is invertible by the same argument as in the proof of
(4) = (2) of Theorem 3.3. Thus, M is a t-ideal.

(3) = (2) D is weakly Matlis by Theorem 3.3, and since each maximal ideal of
D is a t-ideal, D is h-local. Moreover, each maximal ideal is invertible by Theorem
3.3 again.

(2) = (1) An invertible ideal is a t-ideal, so d = w on D and an h-local domain
is weakly Matlis. Thus, by the proof of (2) = (4) in Theorem 3.3, D is a weakly
Matlis ZPUI domain. (]
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It is known that D is a Krull domain if and only if every nonzero principal ideal
of D can be written as a finite w-product of prime ideals ([31, Theorem 3.9] and
the fact that ¢ = w on a Krull domain). Hence, a Krull domain D is a field or a
weakly w-ZPUI domain with ¢-dim(D) = 1.

Corollary 3.8. An integral domain D is a Krull domain if and only if D is a
weakly w-ZPUI domain and t-dim(D) < 1.

Proof. (=) Clear. (<) If t-dim(D) = 0, then D is a field, and hence D is a
Krull domain. Next, assume that ¢-dim(D) = 1. Then every prime ¢-ideal of D is
t-invertible by Theorem 3.3. Thus, D is a Krull domain [31, Theorem 3.6]. (I

Corollary 3.9. Let D be an integral domain with dim(D) = 1. Then the following
statements are equivalent.

(1) D is a Dedekind domain.

(2) D is a weakly ZPUI domain.
(3) D is a ZPUI domain.

(4) D is a weakly w-ZPUI domain.
(5) D is a w-ZPUI domain.

Proof. (1) = (3) = (2) = (4) Clear.

(4) = (1) By Corollary 3.8, D is a Krull domain. Thus, dim(D) = 1 implies
that D is a Dedekind domain.

(3) = (5) = (4) Clear. O

A ZPUI domain is a Priifer domain, and hence integrally closed. The next
example shows that (i) a weakly ZPUI domain need not be integrally closed and
(ii) a weakly ZPUI domain that is also a valuation domain need not be a ZPUI
domain.

Example 3.10. (1) Let D = Zyz + XQ(+v/2)[[X]]. Then D is quasilocal with
principal maximal ideal M = 2D. Clearly, Spec(D) is linearly ordered. Thus, D is
a weakly ZPUI domain by Corollary 3.7. Moreover, D is not integrally closed, and
hence D is not a ZPUI domain.

(2) Let V be a valuation domain with principal maximal ideal and idempotent
nonzero nonmaximal prime ideal. Then V is a weakly ZPUI domain by Corollary
3.7 but not a ZPUI domain because V is not strongly discrete. Moreover, V' is an
h-local Priifer domain.

Hence, to discuss the weakly ZPUI domains along with ZPUI domains, we need
to consider a strongly discrete Priifer domain.

Corollary 3.11. Let D be a strongly discrete Prifer domain (resp., strongly dis-
crete PuMD). Then D is a ZPUI domain (resp., w-ZPUI domain) if and only if D
is a weakly ZPUI domain (resp., weakly w-ZPUI domain).

Proof. (1) A ZPUI domain case: If D is a weakly ZPUI domain, then, by Corollary
3.7, D is a strongly discrete h-local Priifer domain. Thus, D is a ZPUI domain [34,
Theorem 2.3]. The converse is clear by definition.

(2) A w-ZPUI domain case: Let D be a weakly w-ZPUI domain. Then D is
weakly Matlis by Theorem 3.3 and D is a strongly discrete PvMD by assumption.
Thus, D is a w-ZPUI domain [16, Corollary 3.10]. The converse is clear. g
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12 G.W. CHANG AND H.S. CHOI

Recall from [27, Theorem 3.1] that D is a PuMD on which ¢t = v if and only if
D is an independent ring of Krull type whose maximal ¢-ideals are t-invertible.

Corollary 3.12. Let D be a PuMD, D[X] be the polynomial ring over D, and
N, ={f € DIX]| f # 0 and c(f), = D}. Then the following statements are
equivalent.

(1) D is a weakly w-ZPUI domain.

D is an independent ring of Krull type whose mazximal t-ideals are t-invertible.
FEach nonzero ideal of D[X]n, is divisorial.

DI[X] is a weakly w-ZPUI domain.

DI[X]n, is an h-local Prifer domain whose mazimal ideals are principal.
D[X]n, is a weakly ZPUI domain.

v

Proof. (1) & (2) & (3) These follow from Theorem 3.3 and [27, Theorem 3.1].

(2) & (4) [29, Theorem 2.10].

(2) & (5) Note that D[X] is a PoMD since D is a PvMD, so t = v on D if and
only if t = v on D[X] by [29, Corollary 3.6]. Thus, ¢ = v on D if and only if D[X]
is a weakly w-ZPUI domain by the equivalence of (1) and (2).

(3) & (6) This follows from [16, Lemma 2.1 and Lemma 2.2].

(6) < (7) Recall that D[X]y, is a Priifer domain and each invertible ideal of
D[X]y, is principal [30, Theorems 2.14 and 3.7]. Thus, the result follows from

v

Corollary 3.7. (]

Let D be an integral domain. Then D is a PoMD if and only if D is integrally
closed and w = ¢ [30, Theorem 3.5]. Hence, by Corollary 3.12, D is an independent
ring of Krull type whose maximal ¢-ideals are ¢-invertible if and only if D is an
integrally closed and w = v on D (see [19, Theorem 3.3]).

Corollary 3.13. The following are equivalent for a Prifer domain D.

(1) D is a weakly ZPUI domain.

(2) Ewery nonzro ideal of D is divisorial.

(3) D is an h-local Prifer domain whose maximal ideals are invertible.
(4) Each nonzero ideal of D(X) is divisorial.

Proof. A Priifer domain is a PoMD whose maximal ideals are t-ideals, sod = w =t
on a Priifer domain. Thus the result follows from Corollary 3.12. (]

Let D be an almost Dedekind domain. Then D), is a weakly ZPUI domain for
all maximal ideals M of D, while D is a weakly ZPUI domain if and only if D is of
finite character. The next result shows that this is true of a weakly *-ZPUI domain
for x = d or w.

Proposition 3.14. Let D be an integral domain and x = d or w. Then D is a
weakly x-ZPUI domain if and only if D is of x-finite character and Dy is a weakly
ZPUI domain for each mazximal x-ideal M of D.

Proof. Let D be a weakly #-ZPUI domain. Then D is of x-finite character by
Theorem 3.3 and Corollary 3.7. Furthermore, if M is a maximal *-ideal of D, then
Dy is a weakly ZPUI domain by the definition of a weakly x-ZPUI domain.
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Conversely, assume that D is of x-finite character and D, is a weakly ZPUI
domain for each maximal x-ideal M of D. Let a be a nonzero nonunit of D, and

let M;,..., M, be the set of maximal *-ideals of D containing a. Then aD;, =

I;M; D)y, for some ideal I; of D for each i € {1,...,n}. Let I = [ (I; Dy, N D) M.
i=1

Then the maximal *-ideals of D containing I are My, ..., M,. Moreover, I;Dys, N D
is either equal to D or a x-unidirectional ideal of D [6, Lemma 2.3]. Since aD,;, =
IDy,, for each i € {1,...,n}, we conclude that aD = I*. Hence, D is a weakly
x-ZPUI domain. O

Motivated by Theorem 2.2 and Corollary 2.5, we next give some characterizations
of the weakly ZPUI domain (resp., weakly w-ZPUI domain) which is also a Bézout
domain (resp., GCD domain).

Theorem 3.15. The following statements are equivalent for a GCD domain D.

(1) D is a weakly w-ZPUI domain.

(2) D is a weakly w-ZPUI domain that is also a HoFD.

(3) D is a weakly Matlis domain whose mazimal ideals are principal.

(4) D is an HoFD and for each nonzero nonunit a € D, there is an element

a
b € D such that aD C bD and ED 18 a finite product of distinct principal

mazimal w-ideals of D.

Proof. We first note that Cl;(D) = {0} because D is a GCD domain.

(1) = (2) Note that the product of two homogenous elements contained in the
same maximal t-ideal M is a homogeneous element contained in M. Now choose a
nonzero nonunit a of D. Then aD = (IP; --- P,)" for some ideal I that is either
D or a w-product of w-unidirectional w-invertible w-ideals and maximal w-ideals
Py,...,P, of D containing a. Since D is a GCD domain, I, P,,..., P, are all
principal, and hence a is a product of w-unidirectional elements of D. Thus, D is
an HoFD.

(2) = (3) = (1) These follow from Theorem 3.3 because a nonzero principal
ideal is t-invertible and Cl;(D) = {0}.

(2) = (4) Cl,(D) = {0}, so the result follows directly from the definition of a
weakly w-ZPUI domain.

(4) = (3) Let D be a weakly Matlis domain whose maximal ideals are principal.
Then D is a weakly w-ZPUI domain by Theorem 3.3. Thus D is a weakly ZPUI
domain by Corollary 3.7.

(5) = (1) Let @ be a nonzero nonunit of D. Then ¢ = ay---a, for some
homogeneous elements aq, ..., a, of D such that M; is the unique maximal t-ideal
of D containing a; for each ¢ € {1,...,n}. Hence, D is weakly Matlis. Now, let
P be a maximal t-ideal of D. Then P contains a homogeneous element, say, a,

a
and there is an element b € D such that aD C bD and BD is a finite product of

a
principal maximal ¢-ideals. Note that a is homogeneous, so ED = P. O

The next result is a weakly ZPUI domain analog of Theorem 3.15.

Corollary 3.16. The following statements are equivalent for a Bézout domain D.
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14 G.W. CHANG AND H.S. CHOI

(1) D is a weakly ZPUI domain.

(2) D is a weakly ZPUI domain that is also a HoFD.

(3) D is an h-local domain whose mazximal ideals are principal.

(4) D is a weakly Matlis domain whose mazimal ideals are principal.

(5) D is an HoFD and for each nonzero nonunit a € D, there is an element

a
b € D such that aD C bD and ZD is a finite product of distinct mazimal
principal ideals of D.

Proof. A Bézout domain is a GCD domain whose maximal ideals are t-ideals, so d =
w. Moreover, an h-local domain is a weakly Matlis domain whose maximal ideals
are t-idels. Thus, the result is an immediate consequence of Theorem 3.15. (]

Example 3.17. The assumption that D is an HoFD cannot be dropped in Theorem
3.15.(5). Let D = Z + XQ[X]. Note that D is a Bézout domain whose maximal
ideals are principal, so for each nonzero nonunit a € D, there is an element b € D

a
such that @ € bD and —D is a finite product of distinct maximal principal ideals of

D. But since D is not an h-local domain, D cannot be a weakly ZPUI domain by
Corollary 3.7.

A nonzero nonunit ¢ € D is said to be a pseudo-irreducible element if it is
impossible to factor a as a = bc with b and ¢ comaximal nonunits. Following
[32], we say that D is a comazimal factorization domain (CFD) if every nonzero
nonunit of D can be written as a product of pairwise comaximal pseudo-irreducible
elements. A CFD D is called a unique comazimal factorization domain (UCFD) if
the products of pairwise comaximal pseudo-irreducible elements are unique (up to
order and units).

Proposition 3.18. A weakly ZPUI domain D with Cly(D) = {0} is a UCFD.
Hence, a Bézout ZPUI domain is a UCFD.

Proof. Let a,b € D be nonzero nonunits such that aD and bD are both unidirec-
tional. It is clear that a and b are pseudo-irreducible. Moreover, if (a,b) C D, then
ab is pseudo-irreducible. Note that every nonzero proper principal ideal of D can be
written as a finite product of pairwise comaximal unidirectional principal ideals, so
every nonzero nonunit of D can be written uniquely as a finite product of pseudo-
irreducible elements of D. Thus, D is a UCFD. Moreover, a Bézout ZPUI domain
is a weakly ZPUI domain with trivial ¢-class group, and hence it is a UCFD. O

In [12], Brewer and Heinzer studied integral domains for which (i) each nonzero
ideal ((ii) each nonzero principal ideal) can be written as a product Q1 - - - Q,,, where
the @; are pairwise comaximal and each Q; has prime radical. Clearly, (i) implies
(ii), but (ii) does not imply (i) [12, Example 7]. Moreover, if D satisfies (ii), then
D is treed, i.e., Spec(Dyy) is linearly ordered under inclusion for all maximal ideals
M of D [12, Theorem 1]. Tt is easy to see that if D is a ZPUI domain (resp., weakly
ZPUI domain that is treed), then each unidirectional ideal of D has a prime radical,
and thus D satisfies (i) (resp., (ii)).

13 Nov 2022 23:40:44 PST
221113-Choi Version 1 - Submitted to Rocky Mountain J. Math.



INDEPENDENT RINGS OF KRULL TYPE 15

4. WEAK AND w-WEAK T-DOMAINS

Let D be a m-domain that is not a Dedekind domain. Then (i) every nonzero
proper principal ideal of D can be written as a product of an invertible ideal and
a nonempty collection of prime ideals and (ii) D is a weakly w-ZPUI domain by
Theorem 3.3, but D is not a weakly ZPUI domain by Corollary 3.7. We next list
four ideal factorization properties which are generalizations of 7w-domains, Krull
domains, and (w-)ZPUTI domains.

Question 4.1. Let D be an integral domain. What could be said of integral
domains with the following ideal factorization properties?

(1) For each nonzero nonunit ¢ € D, there is an element b € D such that

a
aD C bD and ED is a (i) finite product (resp., (ii) w-product) of prime
ideals of D. (e.g., m-domains (resp., Krull domains))

(2) For each nonzero nonunit a € D, there is an element b € D such that

aD C bD and %D is a (i) finite product (resp., (ii) w-product) of pairwise
comaximal prime ideals (resp., w-comaximal prime w-ideals) of D. (e.g.,
PIDs (resp., UFDs))

(3) For each nonzero proper ideal (principal ideal) I of D, there is an invert-
ible ideal J of D such that I € J and IJ~! is a finite product of prime
ideals (resp., pairwise comaximal prime ideals) of D. (e.g., ZPUI domains,
Dedekind domains (resp., ZPUI Bézout domains))

(4) For each nonzero proper ideal (principal ideal) I of D, there is a w-invertible
ideal J of D such that I C J¥ and (IJ~1)¥ is a finite w-product of prime
ideals (resp., pairwise w-comaximal prime ideals) of D. (e.g., w-ZPUI do-
mains, Krull domains (resp., w-ZPUI GCD domains)

In this section, we briefly study integral domains satisfying the property described
in Question 4.1.(1).

Definition 4.2. Let D be an integral domain and * = d or w. We will say that
D is a x-weak w-domain if, for each nonzero nonunit a € D, there is an element

a
b € D such that a € bD and ED is a finite x-product of prime *-ideals of D.

Recall that a nonzero nonunit a of an integral domain D is irreducible if for each
b,c € D such that a = bc, one of b and ¢ is a unit of D. An integral domain in
which each nonzero nonunit is a finite product of irreducible elements is said to be
atomic. An integral domain D is said to be Furstenberg if each nonzero nonunit
of D is divided by an irreducible element of D [17]. It is clear that every atomic
domain is Furstenberg, but the converse does not hold in general. For instance, the
domain D in Example 3.17 is Furstenberg, but it is not atomic. Our next result
is that every x-weak m-domain is Furstenberg. First, consider the following simple
lemma.

Lemma 4.3. Let Py,..., P, be nonzero prime x-ideals of an integral domain D

and I - - -, I, be nonzero proper x-invertible x-ideals of D such that (Py--- P,)* =
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(Iy-+-Ip,)*. Then there exists a partition {A;}7™, of {1,...,n} such that I, =
(Il Pj)* for eachic {1,...,m}.
JEA;
Proof. We use induction on n. Notice that Py, ..., P, are x-invertible ideals, since
Iy -+ I, is a x-invertible ideal. When n = 1, it follows that without loss of generality
I; C P,s0l; = (P I)* for some ideal I of D. If m > 1, then D = (I1s---I,)*,
a contradiction. Hence m = 1 and Iy = P, and the statement holds for n = 1.
To initiate the induction process, suppose that there exists £ € N such that the
statement holds when n = k. If n = k + 1, then without loss of generality I,, C
Pi11, 80 I, = (Pgy1J)* for some #-invertible ideal J of D. Hence (P;--- P)* =
(Iy -+ - I;m—1J)*, and there exists a partition {4;}7, of {1,...,k} such that I, =
(Il Pj)*foreachie{l,...,m—1}and J=( [[ P;)*. Adjoining k+ 1 to A,,,
JEA; JEA,
we have the desired partition of {1,...,n}. O
It is clear that a d-weak m-domain is a w-weak m-domain but not vice versa. For
convenience, we call a d-weak m-domain a weak m-domain.

Proposition 4.4. An integral domain D is a weak w-domain (resp., w-weak -
domain) if and only if it is Furstenberg and each principal ideal generated by an
irreducible element is a product of prime ideals (resp., w-product of mazimal w-
ideals) of D.

Proof. We only need to show the necessity of the statement. In fact, it suffices
to show that D is Furstenberg, for every w-invertible prime w-ideal is a maximal
w-ideal ([28, Proposition 1.3], [14, Proposition 2.5]). Let D be a weak m-domain
and a be a nonzero nonunit of D. Then there exists an element b of D, distinct

a
prime ideals Py, ..., P, of D, and r1,...,7, € N such that ZD = (P Pmy* If

a
3 is an irreducible element of D, then a is divided by an irreducible element, so we

a a
have nothing to prove. Suppose that 7 is not irreducible. Then 7= c1dy for some
nonzero nonunits ¢y, d; of D. Hence by Lemma 4.3, there exist integers a11, ..., a1,

n n
such that 0 < ay; < a; for j=1,...,n, 1D = (H1 pj‘_’lﬂ)*7 diD = (H1 P;-l’ @Iy
j= i=

n n

and ) ai; < Y, a;. If ¢; is irreducible, then we are done. Otherwise, ¢; = cads
j=1 j=1

for some nonzero nonnuits co,ds of D. Again by Lemma 4.3, there exist integers

n
@21, ..., a2, such that 0 < agj < ay; for j =1,...,n, ;D = ([] p;‘?j)*7 diD =
j=1

(11 PJ‘,“J @y and Y agy < a1j. Iterating, we conclude that 3 is divided by
j=1 j =1

j=1 J
an irreducible element. (I

Corollary 4.5. An integral domain is a w-domain (resp., Krull domain) if and
only if it is an atomic weak w-domain (resp., w-weak T-domain).

Proof. This follows because D is an atomic #-weak m-domain if and only if each
principal ideal of D is a finite x-product of prime *-ideals by Proposition 4.4. [

13 Nov 2022 23:40:44 PST
221113-Choi Version 1 - Submitted to Rocky Mountain J. Math.



INDEPENDENT RINGS OF KRULL TYPE 17

Corollary 4.6. Let D be an integral domain. If D[X] is a w-weak w-domain, then
sois D.

Proof. D[X] is Furstenberg by Proposition 4.4, and so is D [25, Proposition 4.7].

Now let d be an irreducible element of D. Then it is also an irreducible element

of D[X], and dD[X] = (Q{* --- Q%)™ for some a; € N and distinct maximal w-

ideals Q1,...,Q, of D[X] by Proposition 4.4. Note that ({Q7'})" are @Q;-primary

w-ideals of R [37, Theorem 3.1], so we have dD[X] = (Q]")* N--- N (Q%)™ [6,

Lemma 2.5]. Therefore, none of Q; is upper to zero in D[X], and hence dD[X] =
n

n

[1U(Q; n D)*)*[X] [28, Proposition 1.1]. Hence dD = [[((Q; N D)*)*. Note

i=1 i=1

that Q; N D is a prime ¢-ideal [14, Lemma 2.8|, that is also t-invertible for each
i € {1,...,n}. Therefore D must be a w-weak m-domain by Proposition 4.4 and
[28, Proposition 1.3]. O

An integral domain D is divided if for each prime ideal P of D and an element a
of D, either a € P or P C aD. If D)y is divided for each maximal ideal (resp., each
maximal t-ideal) M of D, we say that D is locally divided (resp., t-locally divided)
(see, for example, [10] and [13]). Note that one-dimensional domains and Priifer
domains are locally divided, PvMDs are t-locally divided, and D is locally divided
if and only if D is t-locally divided whose maximal ideals are ¢-ideals.

Proposition 4.7. Let D be an integral domain. Then we have the following.

(1) If D is locally divided, then each invertible prime ideal of D is mazimal.
(2) If Cly(D) = {0}, then D is a w-weak w-domain if and only if every nonzero
nonunit of D is contained in a principal prime ideal of D.

Proof. (1) If P is an invertible prime ideal of a locally divided domain D, then let
M be a maximal ideal of D that contains P. It follows that PDj; is an invertible
prime ideal of a divided domain Ry;. Now let a € Dy \ PDyps. Then PDyr C aDyy,
so PDy; = al Dy for some ideal I of D contained in M. Since a ¢ PD);, we must
have IDy; C PDy;. Hence PDy; = aPDyy, and since P is invertible, a is a unit
of Ry;. Hence PDyy = M Dy, and P = PDyND =MDy N D= M. Thus, P is
a maximal ideal.

(2) Suppose that Cly(D) = {0}. If D is a w-weak w-domain, then for each
nonzero nonunit r € D, rD is a w-product of a principal ideal and a nonempty
collection of finitely many prime w-ideals. Each of such prime w-ideals must be
t-invertible since rD is invertible. Since Cl;(D) = {0}, every t-invertible ideal is
principal. Hence r is contained in a principal prime ideal of D. Conversely, assume
that every nonzero nonunit of D is contained in a principal prime ideal of D. If
a € D is a nonzero nonunit, then a € pD for some principal prime pD, so a = pd

for some d € D. Clearly, aD C dD and g = p. Thus, D is a w-weak m-domain. [J

The following is an immediate corollary of Proposition 4.7.

Corollary 4.8. Let D be an integral domain with Cl,(D) = {0}.

(1) Let D be a t-locally divided domain (e.g., a GCD domain). Then D is a
w-weak w-domain if and only if every mazimal w-ideal of D is principal.
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(2) Let D be a locally divided domain (e.g., a Bézout domain). Then the fol-
lowing are equivalent.
(a) D is a weak w-domain.
(b) D is a w-weak w-domain.
(¢) Every mazimal ideal of D is a principal ideal.

It is not difficult to see that if D is a GCD w-weak m-domain, then D[X] is a w-
weak m-domain by Corollary 4.8. In the remainder of this section, we focus on how
a new x-weak m-domain can be obtained from the old ones via D + M construction
and localization.

Proposition 4.9. Let T be a quasilocal domain such that T = K + M for some
field K and a mazximal ideal M of T. Let D be a proper subdomain of K, and let
R=D+ M.

(1) If D is not a field, then R is a weak w-domain if and only if D is a weak
m-domain.
(2) If T is an atomic domain and D is a field, then R is not a weak m-domain.

Proof. (1) Note first that every irreducible element of R is of the form a+m, where
a is an irreducible element of D and m is an element of M. Indeed, let a € D and
m € M so a+m is an irreducible element of D+ M. If a = 0, then for any nonzero

m m
nonunit b of D, we have a +m = b(b) and neither b nor > is a unit of R (note

m
that > € Km C M C R), a contradiction. Hence a is nonzero. If a = be for some

m
b,c € D, then a+m = b(ch b)’ so either b or ¢ is a unit of D [9, Lemma 4.17(2)].

Hence a is an irreducible element of D. Note also that if d is an irreducible element
of D, then it is an irreducible element of R [9, Lemma 4.17(2)].

Suppose that R is a weak m-domain. Then D is Furstenberg. Indeed, if d is a
nonzero nonunit of D, then d is divided by an irreducible element of R, say a +m
for some a € D,m € M. As mentioned in the first paragraph of this proof, a is
an irreducible element of D that divides d. Hence D is Furstenberg. On the other
hand, let ¢ be an irreducible element of D. Then c is also an irreducible element
of R, so ¢cR= Q7 ---Q, for some prime ideals Q1,...,Q, of R by Proposition 4.4.
Since ¢cR = ¢D + M, we must have M C Q; for all i € {1,...,n}. Hence for each
i, there exists a prime ideal P; of D such that Q; = P, + M [20, Lemma 1.1.4].
It follows that ¢cD + M = P;--- P, + M, so ¢cD = P, ---P,. Hence D is a weak
m-domain by Proposition 4.4.

Conversely, suppose that D is a weak m-domain. Then for each nonzero nonunit
element r € R, r = a+ m for some a € D,m € M. If a = 0, then r is divided by
any irreducible element of D, which is also an irreducible element of R. If a # 0,
then a is divided by an irreducible element b of D, and r = b 4 + m) Hence

b b
R is Furstenberg. On the other hand, choose an irreducible element of R. Then

such an element is of the form a + m for some irreducible element a of D. Then

m
(a+m)R = aR since 1+ — is a unit of R [9, Lemma 4.17(2)]. Then by Proposition
a
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4.4, ¢cD = Py - - - P, for some prime ideals P;,..., P, of D. Hence cR = Q1 ---Q,
where @Q; = P; + M is a prime ideal of R for each i € {1,...,n}. Thus R is a weak
m-domain by Proposition 4.4.

(2) Since T is atomic and D is a field, R must be atomic [2, Proposition 1.2(a)].
On the other hand, R and T have the same complete integral closure since they
share a nonzero proper ideal M. Hence R is not completely integrally closed, so R
cannot be a Krull domain. Thus R is not a weak m-domain by Corollary 4.5. [

Note that localization of a weak m-domain may not be a weak m-domain. Indeed,
let V be as in Example 3.10.(2). Then since V is a divided domain, Corollary 4.8
tells us that V is a weak m-domain, while the localization of V' with respect to its
idempotent nonzero prime ideal cannot be a weak m-domain. We next show that
if S is a splitting set of a weak m-domain D, then so is Dg. We first list some
properties of splitting sets.

Lemma 4.10. Let D be an integral domain and S be a multiplicative subset of D.
Then we have the following.

(1) Let S be a splitting set and x be an element of D, so x = as for some
a € D and s € S such that aD NtD = atD for eacht € S. Then x is an
irreducible element of Dg if and only if a is an irreducible element of D.

(2) Let S be a multiplicative set generated by prime elements of D, i.e., there
exists a set T that consists of prime elements of D such that each element of
S is of the form upy - - - p, where u is a unit of D and p1,...,p, € T. Then
S is a splitting set if and only if (| p™D = (0) for each prime element

neN
p €S, and () pnD = (0) for each sequence {p,} of nonassociative prime
neN
elements of S.
Proof. These are part of [3, Lemma 1.2, Corollary 1.4, Proposition 1.6]. (]

Using the notion of splitting sets, we can answer the question concerning local-
ization of weak m-domains.

Proposition 4.11. Let S be a splitting set of an integral domain D generated by
prime elements of D. If D is a weak w-domain, then so is Dg.

x
Proof. Let — be an irreducible element of Dg for some x € D,s € S. Then =z = as

s
for some a € D and s € S such that aRNs’'D = as’D for each s’ € S, and a is an
irreducible element of D by Lemma 4.10.(1). By Proposition 4.4, aD = P{"* - -- P%n
for some prime ideals Pi,...,P, of D and ai,...,a, € N. Then the ideal of

x
Dg generated by — is a product of prime ideals of Dg. On the other hand, D
S

is Furstenberg by Proposition 4.4. Applying the proof of [25, Proposition 6.4],
it follows that Dg is Furstenberg. Hence by Proposition 4.4, Dg is a weak 7-
domain. (]

We next give an example which shows that Proposition 4.11 fails in general if S
is merely a multiplicative subset S of R generated by primes.
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Example 4.12. Let R = Zoz + XC[[X]]. Then R is a weak m-domain by Proposi-
tion 4.9. On the other hand, let S be the multiplicative subset of R generated by
2. Then Rg = Q + XC[[X]] is not a weak m-domain by Proposition 4.9. Note that

since X € () 2"R, S is not a splitting set of R by Lemma 4.10.(2) as mentioned
neN
in [25, Example 6.5].

We end this paper with a diagram showing the implications between various
classes of domains dealt with in this work.

Dedekind — mw-domain » weak m-domain

l

——————————————————————— » w-weak m-domain

» weakly ZPUI

—————————————————————— --+ weakly w-ZPUI

Bézout weakly ZPUI

GCD w-ZPUI

GCD weakly w-ZPUI
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