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Abstract. A ZPUI domain D is an integral domain with property (#): every

nonzero proper ideal I of D can be written as I = JP1 · · ·Pn, where J is an

invertible ideal of D and {P1, . . . , Pn} is a nonempty collection of pairwise

comaximal prime ideals of D. In this paper, among other things, we study two

types of natural generalizations of ZPUI domains: (i) the J in the property

(#) is principal and (ii) the property (#) holds for all nonzero principal ideals

of D. For example, we show that (1) D satisfies (i) if and only if D is a ZPUI

domain whose invertible ideals are principal and (2) D satisfies (ii) if and only

if D is an h-local domain in which each maximal ideal is invertible. We also

study the w-operation analogs of these two properties.

1. Introduction

This is a continuation of our work [16] on ideal factorization in strongly discrete

independent rings of Krull type. For an easy understanding of the introduction, we

first review the notion of d-, v-, t-, and w-operation. Let D be an integral domain

with quotient field K. A D-submodule A of K is called a fractional ideal of D if

dA ⊆ D for some 0 ̸= d ∈ D. An (integral) ideal I of D is a fractional ideal of D

with I ⊆ D. Let F (D) (resp., f(D)) be the set of nonzero fractional (resp., nonzero

finitely generated fractional) ideals of D. For A ∈ F (D), let A−1 = {x ∈ K | xA ⊆
D}; then A−1 ∈ F (D). Hence, if we set

• Ad = A,

• Av = (A−1)−1,

• At =
⋃
{Iv | I ⊆ A and I ∈ f(D)}, and

• Aw = {x ∈ K | xJ ⊆ A for some J ∈ f(D) with Jv = D},

then the d-, v-, t-, and w-operation are well defined. It is easy to see that I ⊆ Iw ⊆
It ⊆ Iv for all I ∈ F (D). Let ∗ = d, v, t, or w. An I ∈ F (D) is called a ∗-ideal
if I∗ = I. A ∗-ideal is a maximal ∗-ideal if it is maximal among proper integral

∗-ideals. An A ∈ F (D) is said to be ∗-invertible if (II−1)∗ = D. Two ideals I, J

of D are said to be pairwise ∗-comaximal if (I + J)∗ = D. An ideal I of D is

∗-unidirectional if I is contained in a unique maximal ∗-ideal of D. We usually

omit the d-operation, e.g., a d-ideal is just called an ideal.

In [34], Olberding introduced the notion of ZPUI domains which is a general-

ization of the ring of integers. We recall that D is a ZPUI domain if and only if

every nonzero proper ideal I of D can be written as I = JP1 · · ·Pn, where J is

Date: November 14, 2022.
2000 Mathematics Subject Classification: 13A15, 13F05.

Key Words and Phrases: weakly ZPUI domain, Bézout domain, weakly Matlis, π-domain.
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an invertible ideal of D and {P1, . . . , Pn} is a nonempty collection of pairwise co-

maximal prime ideals of D by [34, Theorem 2.3] and [33, Theorem 5.2]. In [16], we

used the w-operation to define a w-ZPUI domain, which is a generalization of ZPUI

domains, that D is a w-ZPUI domain if every nonzero proper w-ideal I of D can

be written as I = (JP1 · · ·Pn)
w for some w-invertible ideal J of D and a nonempty

collection {P1, . . . , Pn} of pairwise w-comaximal prime w-ideals of D. Then D is a

ZPUI domain if and only ifD is a w-ZPUI domain whose maximal ideals are t-ideals

[16, Corollary 3.8]. In this paper, we continue to study the (w-)ZPUI domains and

three new classes of generalizations.

A Dedekind domain is an integral domain in which each (nonzero) ideal is a finite

product of prime ideals. A π-domain is an integral domain each of whose (nonzero)

principal ideals is a finite product of prime ideals. Clearly, a Dedekind domain

is a π-domain. However, a π-domain need not be a Dedekind domain (e.g., the

polynomial ring over a Dedekind domain that is not a field). It is known that D is

a Krull domain if and only if each nonzero principal ideal of D is a finite w-product

of prime ideals (cf. [31, Theorem 3.9]). Note that a Dedekind domain (resp., Krull

domain) is a ZPUI domain (resp., w-ZPUI domain). A nonzero principal ideal is

invertible. Hence, we have the following natural questions.

Question 1.1. Let D be an integral domain and ∗ = d or w.

(1) What if every nonzero proper ∗-ideal I of D can be written as I = (aP1 · · ·Pn)
∗,

where 0 ̸= a ∈ D and {P1, . . . , Pn} is a nonempty collection of pairwise ∗-
comaximal prime ∗-ideals of D?

(2) What if every nonzero proper principal ideal I of D can be written as I =

(JP1 · · ·Pn)
∗, where J is a ∗-invertible ideal of D and {P1, . . . , Pn} is a

nonempty collection of pairwise ∗-comaximal prime ∗-ideals of D?

(3) What if every nonzero proper principal ideal I of D can be written as I =

(aP1 · · ·Pn)
∗, where 0 ̸= a ∈ D and {P1, . . . , Pn} is a nonempty collection

of pairwise ∗-comaximal prime ∗-ideals of D?

Note that a d-ZPUI domain is just the ZPUI domain. It is clear that “D satisfies

the property of Question 1.1(1)” ⇒ “D is a ∗-ZPUI domain” ⇒ “D satisfies the

property of Question 1.1(2)”. In this paper, we are going to answer Question 1.1.

In section 2, we answer Question 1.1(1). Among other things, we show that D is

a Bézout ZPUI domain (resp., GCD w-ZPUI domain) if and only if D satisfies the

property stated in Question 1.1(1) for ∗ = d (resp., ∗ = w). Section 3 is devoted

to the study of integral domains satisfying the condition of Question 1.1(2). For

example, we show that D is a weakly Matlis domain whose maximal t-ideals are

t-invertible if and only if D satisfies the condition of Question 1.1(2) for ∗ = w.

We also study integral domains satisfying the statements of Question 1.1(3) with

additional conditions.

Finally, in section 4, we raise questions of how integral domains possessing a

property similar to π-domains behave and provide an answer to one of them our-

selves. We end this paper with a diagram that shows the relationships between

several kinds of integral domains with some ideal factorization properties which are

studied in this paper.

For easy reference of the reader, we end the introduction with a couple of already

well-known results on the d-, t-, and w-operation. Let ∗ = d, t, or w and ∗-Max(D)
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be the set of maximal ∗-ideals of D. Then ∗-Max(D) ̸= ∅ if and only if D is not

a field; each maximal ∗-ideal of D is a prime ideal; each proper ∗-ideal of D is

contained in a maximal ∗-ideal; each prime ideal of D minimal over a ∗-ideal is
a ∗-ideal, whence each height-one prime ideal is a ∗-ideal; D =

⋂
P∈∗-Max(D) DP ;

Iw =
⋂

P∈t-Max(D) IDP for all I ∈ F (D); and t-Max(D) = w-Max(D) (see, for

example, [4]). An integral domain D is said to be of finite ∗-character if each

nonzero nonunit of D is contained in only finitely many maximal ∗-ideals. We say

that D is ∗-independent if no two elements of ∗-Max(D) contain a common nonzero

prime ∗-ideal. Hence, D is an h-local domain (resp., a weakly Matlis domain) if

D is of finite d-character and d-independent (resp., of finite t-character and t-

independent).

We say that D is a Prüfer v-multiplication domain (PvMD) if each nonzero

finitely generated ideal of D is t-invertible. A PvMD is said to be a ring of Krull

type (resp., an independent ring of Krull type) if it is of finite t-character (resp.,

weakly Matlis). It is known that D is a PvMD if and only if DP is a valuation

domain for all maximal t-ideals P of D, if and only if D[X], the polynomial ring

over D, is a PvMD [30]; and a Prüfer domain is a PvMD whose maximal ideals

are t-ideals. We mean by t-dim(D) = 0 (resp., t-dim(D) = 1) that D is a field

(resp., D is not a field and each prime t-ideal of D is a maximal t-ideal). The

class of integral domains D with t-dim(D) = 1 includes Krull domains and integral

domains of (Krull) dimension one.

Let Invt(D) (resp., Inv(D), Prin(D)) be the set of t-invertible fractional t-ideals

(resp., invertible fractional ideals, nonzero principal fractional ideals) of an integral

domain D. Then Invt(D) forms a group under the t-product I ∗ J = (IJ)t; Inv(D)

and Prin(D) become subgroups of Invt(D); and Prin(D) ⊆ Inv(D). The t-class

group Clt(D) (resp., Picard group Pic(D)) is the factor group Invt(D)/Prin(D)

(resp., Inv(D)/Prin(D)). It is clear that Pic(D) is a subgroup of Clt(D) and

Pic(D) = Clt(D) when each maximal ideal of D is a t-ideal (e.g., D is a Prüfer

domain or one-dimensional). It is well known and easy to see that D is a Bézout

domain (resp., GCD domain) if and only if D is a Prüfer domain (resp., PvMD)

with Clt(D) = {0}.

2. (w-)ZPUI domains with trivial class group

Let D be an integral domain and ∗ = d or w on D. In this section, we are going

to give an answer to Question 1.1(1). That is, we study some ideal factorization

properties of D with the property that every nonzero proper ∗-ideal of D can be

written as a ∗-product of a nonzero principal ideal and a nonempty collection of

pairwise ∗-comaximal prime ∗-ideals.
Recall that D is a ZPUI domain (resp., w-ZPUI domain) if and only if D is a

strongly discrete h-local Prüfer domain (resp., a strongly discrete independent ring

of Krull type) [36, Theorem 1.1] (resp., [16, Theorem 2.5]) and that both an h-local

Prüfer domain and an independent ring of Krull type are weakly Matlis domains.

Lemma 2.1. Let D be a ∗-ZPUI domain for ∗ = d or w. Then the following hold.

(1) If P is a prime ∗-ideal of D, then there exists a two-generated ideal I of D

such that P =
√
I and IDP = PDP .
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(2) A prime ∗-ideal of D is ∗-invertible if and only if it is a maximal ∗-ideal of
D.

(3) Let I be a proper ∗-invertible ∗ideal of D. Then I is contained in only

finitely many maximal ∗-ideals M1, . . . ,Mn of D and I = (JM1 · · ·Mn)
∗

for some ideal J of D that is a product of ∗-invertible ∗-unidirectional ideals
of D.

Proof. Note that d = t on a Prüfer domain and w = t on a PvMD. Note also that

D is a strongly discrete independent ring of Krull type [16, Theorem 2.5]. Hence,

∗ = t on a ∗-ZPUI domain.

(1) Let P be a prime t-ideal of D. Then PDP = aDP for some a ∈ P [16,

Proposition 2.2]. Now letM1, . . . ,Mn be the set of maximal t-ideals ofD containing

a. Note that exactly one of Mi, say M1, contains P . Then by the prime avoidance

lemma, we can choose b ∈ P \ (M2 ∪ · · ·Mn) and let I = (a, b). Then
√
I = P and

IDP = PDP .

(2) Each maximal t-ideal of D is t-invertible by [16, Theorem 2.5] and [19,

Lemma 3.1 and Theorem 3.5]. For the converse, let P be a prime t-ideal of D that

is t-invertible. Thus, P is a maximal t-ideal [28, Proposition 1.3].

(3) SinceD is weakly Matlis, I is contained in only finitely many maximal t-ideals

of D, say, M1, . . . ,Mn. Note that each Mi is t-invertible by (2) and (M1 · · ·Mn)
t =

M1 ∩ · · · ∩Mn [6, Lemma 2.5], so I = (JM1 · · ·Mn)
t for some ideal J of D. Now,

let In = JDMi ∩D for i = 1, . . . , n. Then In is a t-unidirectional t-ideal of D [6,

Lemma 2.3 and Lemma 2.5],

J t =
⋂

M∈t-Max(D)

JDM = I1 ∩ · · · ∩ In = (I1 · · · In)t.

Moreover, since I is t-invertible, J is t-invertible, and thus I1, . . . , In are all t-

invertible. □

A nonzero nonunit x of an integral domain D is said to be homogeneous if xD is

t-unidirectional. As in [15], we callD a homogenous factorization domain (HoFD) if

each nonzero nonunit of D is a finite product of pairwise t-comaximal homogeneous

elements of D. Then D is an HoFD if and only if D is a weakly Matlis domain

with Clt(D) = {0} [5, Theorem 3.4].

Theorem 2.2. Let D be an integral domain. Then the following are equivalent.

(1) Every nonzero proper ideal of D can be written as a product of a principal

ideal and a nonempty collection of distinct prime ideals.

(2) D is a Bézout ZPUI domain.

(3) D is a ZPUI domain and every invertible ideal of D is principal.

(4) Every nonzero proper ideal of D can be written as a product of a principal

ideal and a nonempty collection of pairwise comaximal prime ideals.

In this case, D is an HoFD. Moreover, if a ∈ D is a nonzero nonunit, then there

is an element b ∈ D such that aD ⊊ bD and
a

b
is a finite product of distinct prime

elements each of which generates a maximal ideal.

Proof. (1)⇒(2) Suppose that (1) holds. Then D is a ZPUI domain by definition.

Next, choose a maximal ideal M of D. Then M2 = aP1 · · ·Pn for some a ∈ D
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and distinct prime ideals P1 · · ·Pn. Note that M is a maximal ideal, so n = 1

and P1 = M , and since M is invertible by Lemma 2.1.(2), M = aD. Thus, every

maximal ideal of D is principal.

Now let I be a proper invertible ideal of D. Then I = aP1 · · ·Pn for some

a ∈ D and distinct prime ideals P1, . . . , Pn of D. Since I is invertible, so are

P1, . . . , Pn. Therefore P1, . . . , Pn are maximal ideals of D by Lemma 2.1.(2), and

by the argument preceding this paragraph, they are principal ideals. So I, being

a product of finitely many principal ideals of D, is a principal ideal of D. Hence,

every invertible ideal of D is principal. Since D is a Prüfer domain, it means that

every finitely generated ideal of D is principal, so D is a Bézout domain.

(2)⇒(3) This follows from the fact that every invertible ideal is finitely generated.

(3) ⇒ (4) ⇒(1) Clear.

In this case, D is an h-local Bézout domain, and hence D is a weakly Matlis

domain with Clt(D) = {0}. Thus, D is an HoFD. Moreover, aD = JQ1 · · ·Qn

for some ideal J of D and distinct maximal ideals Q1, . . . , Qn of D. Note that J

and Qi are invertible, so by (3), J = bD and Qi = piD for some b, pi ∈ D. Thus,

aD ⊊ bD, p1, . . . , pn are distinct, each piD is a maximal ideal, and
a

b
= up1 · · · pn

for some unit u ∈ D. □

It is worth noting that (i) every maximal ideal of a Bézout ZPUI domain is prin-

cipal and (ii) the condition “distinct” of Theorem 2.2(1) is necessary (for example,

if D is a Dedekind domain that is not a PID, then every nonzero proper ideal of D

can be written as a principal ideal and a nonempty collection of prime ideals but

D is not a Bézout domain).

Let D[X] be the polynomial ring over an integral domain D. For f ∈ D[X], let

c(f) denote the ideal of D generated by the coefficients of f . Then S = {f ∈ D[X] |
c(f) = D} is a saturated multiplicative subset of D[X] and D(X) := D[X]S , called

the Nagata ring of D, is an overring of D[X].

Corollary 2.3. An integral domain D is a ZPUI domain if and only if every

nonzero proper ideal of D(X), the Nagata ring of D, can be written as a product of

a principal ideal and a nonempty collection of distinct prime ideals.

Proof. It is known that D is a ZPUI domain if and only if D(X) is a ZPUI domain,

a ZPUI domain is a Prüfer domain, and D is a Prüfer domain if and only if D(X)

is a Bézout domain [1, Theorem 8]. Thus, the result is from Theorem 2.2. □

Let D[X] be the polynomial ring over an integral domain D and Nv = {f ∈
D[X] | f ̸= 0 and c(f)v = D}. Then Nv is a saturated multiplicative subset of

D[X], and hence D[X]Nv
, called the t-Nagata ring of D, is an overring of D[X],

D(X) ⊆ D[X]Nv
, and Clt(D[X]Nv

) = {0} [30, Propositions 2.1, 2.2, and Theorem

2.14].

Corollary 2.4. An integral domain D is a w-ZPUI domain if and only if every

nonzero proper ideal of D[X]Nv
can be written as a product of a principal ideal and

a nonempty collection of distinct prime ideals.
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Proof. It is known that D is a w-ZPUI domain if and only if D[X]Nv
is a ZPUI

domain [16, Theorem 3.5] and Clt(D[X]Nv ) = {0}. Thus, the result follows from

Theorem 2.2. □

The next result is a w-ZPUI domain analog of Theorem 2.2.

Corollary 2.5. Let D be an integral domain. Then the following are equivalent.

(1) Every proper w-ideal of D can be written as a w-product of a principal ideal

and a nonempty collection of pairwise w-comaximal prime ideals.

(2) D is a w-ZPUI domain with Clt(D) = {0}.
(3) D is a w-ZPUI and a GCD domain.

(4) Every proper w-ideal of D can be written as a w-product of a principal ideal

and a nonempty collection of distinct prime w-ideals.

(5) D[X] is a w-ZPUI domain with Clt(D) = {0}.
In this case, D is an HoFD. Moreover, if a ∈ D is a nonzero nonunit, then there

is an element b ∈ D such that aD ⊊ bD and
a

b
is a finite product of distinct prime

elements.

Proof. (1) ⇒ (4) Clear.

(4)⇒ (2)D is a w-ZPUI domain [16, Theorem 3.5]. Moreover, every w-invertible

w-ideal of D is principal by the argument of the proof of (1) ⇒ (2) in Theorem 2.2.

Thus, Clt(D) = {0}.
(2) ⇒ (1) Let I be a proper w-ideal of D. Then I = (JP1 · · ·Pn)

w for some

w-invertible ideal J of D and P1, . . . , Pn are pairwise w-comaximal prime w-ideals

of D. Note that Jw = aD for some a ∈ D by (2). Thus, I = (aP1 · · ·Pn)
w.

(2) ⇔ (3) This follows from the fact that a w-ZPUI domain is a PvMD [16,

Theorem 3.5] and a GCD domain is just a PvMD with trivial class group.

(2) ⇔ (5) This follows from [16, Theorem 3.5] that D is a w-ZPUI domain if and

only if D[X] is a w-ZPUI domain.

In this case, D is a weakly Matlis domain with Clt(D) = {0}. Thus, D is an

HoFD. Moreover, aD = (JQ1 · · ·Qn)
w for some ideal J of D and distinct maximal

w-ideals Q1, . . . , Qn of D. Note that J and Qi are w-invertible, so by (3), Jw = bD

and Qi = piD for some b, pi ∈ D. Thus, a ∈ bD, p1, . . . , pn are distinct, and

aD = (bDp1D · · · pnD)w = ((bp1 · · · pn)D)w = (bp1 · · · pn)D.

Thus,
a

b
= up1 · · · pn for some unit u ∈ D. □

Let S be a multiplicative subset of an integral domain D. We say that S is

splitting if, for each 0 ̸= d ∈ D, there is an s ∈ S such that d = sa for some a ∈ D

with (a, s′)t = D for all s′ ∈ S. A multiplicative subset of a Noetherian domain

generated by a set of (nonzero) prime elements is an easy example of splitting sets.

Splitting sets were introduced by Anderson et al. [3].

Proposition 2.6. Let A ⊆ B be an extension of integral domains, X be an inde-

terminate over B, and D = A+XB[X], i.e., D = {f ∈ B[X] | f(0) ∈ A}.
(1) The following statements are equivalent.

(a) D is a ZPUI domain.
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(b) A is a strongly discrete valuation domain and B is the quotient field

of A.

(c) D is a Bézout ZPUI domain.

(2) D is a GCD w-ZPUI domain if and only if A is a GCD w-ZPUI domain,

B = AS for a splitting set S of A, and |{P ∈ t-Max(D) | P ∩ S ̸= ∅}| ≤ 1.

Proof. (1) (a) ⇔ (b) [16, Theorem 4.1]. (b) ⇒ (c) A valuation domain is a Bézout

domain, so D is a Bézout domain [18, Corollary 4.13]. (c) ⇒ (a) Clear.

(2) This follows from the following two observations: (i) D is a GCD domain

if and only if A is a GCD domain and B = AS for some splitting set S of A [8,

Theorem 2.10] and (ii) if S is a splitting set of A, then A +XAS [X] is a w-ZPUI

domain if and only if A is a w-ZPUI domain and |{P ∈ t-Max(D) | P ∩S ̸= ∅}| ≤ 1

[16, Theorem 4.2]. □

Recall that D is a Dedekind domain (resp., Krull domain) if and only if D is a

ZPUI domain (resp., w-ZPUI domain) with dim(D) ≤ 1 (resp., t-dim(D) ≤ 1) and

that a Krull domain (resp., Dedekind domain) is a UFD (resp., PID) if and only

if its divisor class group is trivial. Hence, a UFD (resp., PID) is a GCD w-ZPUI

domain (resp., Bézout ZPUI domain).

Example 2.7. (1) There exists a Bézout ZPUI domain of whose Krull dimension

and number of maximal ideals are both arbitrarily large [35, Example 3.5].

(2) A ZPUI domain (resp., w-ZPUI domain) is a Prüfer domain (resp. PvMD),

so it is a Bézout domain (resp. GCD domain) if and only if its class group is

trivial. Thus, by [16, Corollary 3.9], there exists a Bézout ZPUI domain (resp.,

GCD w-ZPUI domain) that is not a PID (resp., UFD).

As shown in [36, Theorem 1.1], an integral domain D is a ZPUI domain if and

only if every nonzero proper ideal I of D can be written as I = JP1 · · ·Pn, where J

is an invertible ideal of D and {P1, . . . , Pn} is a nonempty collection of prime ideals

of D: the condition that “P1, . . . , Pn are pairwise comaximal” can be dropped. The

situation is a little different for domains described in Question 1.1. For instance,

a Dedekind domain D has the property (#) that every nonzero proper ideal of D

can be written as a product of a principal ideal and a nonempty collection of prime

ideals. However, D is not a Bézout domain in general, so the property (#) is a

weaker condition than the condition of Theorem 2.2. We next state some properties

of integral domains with property (#) and their w-operation analog.

Proposition 2.8. Let D be an integral domain in which every nonzero proper w-

ideal I can be written as a w-product of a principal ideal and a nonempty collection

of prime w-ideals. Then

(1) D is a w-ZPUI domain.

(2) If P is a prime w-ideal of D that is not a maximal w-ideal, then there exists

an element a ∈ D such that P is the unique minimal prime ideal of aD and

aDP = PDP .

(3) Let M be a maximal w-ideal of D that properly contains a nonzero prime

w-ideal. Then (M l)w is a principal ideal for some integer l ≥ 1.

Proof. (1) This follows from [16, Theorem 3.5].
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(2) and (3) Now choose a maximal w-ideal M of D that properly contains a

nonzero prime w-ideal P of D. Then by Lemma 2.1.(1), there exists a finitely

generated ideal I of D such that P =
√
I and IRP = PRP . By assumption,

Iw = (aM1 · · ·Mn)
w for some a ∈ D and (invertible) prime w-ideals M1, . . . ,Mn.

By Lemma 2.1.(2), M1, . . . ,Mn are maximal w-ideals of D containing I. In fact,

since D is an independent ring of Krull type and P =
√
Iw =

√
aD∩M1∩· · ·∩Mn,

we have P =
√
aD and M = Mi for each i. In particular, Iw = (aMn)w and

PDP = IDP = aDP . Now, by a similar reasoning, aD = (bM l)w for some b ∈ D

and integer l ≥ 1. Thus, (M l)w is a principal ideal. □

Corollary 2.9. Let D be an integral domain in which every nonzero proper ideal

can be written as a product of a principal ideal and a nonempty collection of prime

ideals. Then the following hold.

(1) D is a ZPUI domain.

(2) Let P be a nonmaximal prime ideal of D. Then there exists an element

a ∈ D such that P =
√
aD and aDP = PDP .

(3) Let M be a maximal ideal of D whose height is greater than 1. Then M l is

a principal ideal for some integer l ≥ 1.

Proof. Since w = d on a ZPUI domain, the conclusion follows from Proposition

2.8. □

As we noted in the remark before Proposition 2.8, a Dedekind domain satisfies

the statements of Proposition 2.8 and Corollary 2.9, while the ideal class group

of a Dedekind domain need not be trivial. It is clear that if D is a ZPUI domain

(resp., w-ZPUI domain) with Clt(D) = {0}, then every nonzero proper ideal (resp.,

w-ideal) of D can be written as a product (resp., w-product) of a principal ideal

and a nonempty collection of prime ideals (resp., prime w-ideals).

3. Weakly ∗-ZPUI domains

An integral domain D is a π-domain if each nonzero principal ideal of D can

be written as a finite product of prime ideals of D. Hence, a π-domain is a weak

version of a Dedekind domain. In this section, we study a weak version of ZPUI

domains and w-ZPUI domains. Motivated by Lemma 2.1, we define weakly ZPUI

domains (resp., weakly w-ZPUI domains) as follows, so that a ZPUI domain (resp.,

w-ZPUI domain) is a weakly ZPUI domain (resp., weakly w-ZPUI domain).

Definition 3.1. Let D be an integral domain and ∗ be one of d-, w- and t-operation

on D. We say that D is a weakly ∗-ZPUI domain if every nonzero proper principal

ideal aD of D can be written as aD = (JP1 · · ·Pn)
∗, where {P1, . . . , Pn} is the set

of maximal ∗-ideals of D containing a and J is either D or a product of ∗-invertible
∗-unidirectional ideals.

It is clear that a weakly ZPUI domain is both a weakly t-ZPUI domain and a

weakly w-ZPUI domain. Hence, by Lemma 3.2 below, weakly ZPUI domain ⇒
weakly t-ZPUI domain ⇔ weakly w-ZPUI domain.

Lemma 3.2. An integral domain D is a weakly t-ZPUI domain if and only if it is

a weakly w-ZPUI domain.
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Proof. Assume that D is a weakly t-ZPUI domain, and let a ∈ D be a nonzero

nonunit. Then aD = (JP1 · · ·Pn)
t, where {P1, . . . , Pn} is the set of maximal t-

ideals ofD containing a and J is eitherD or a product of t-invertible t-unidirectional

ideals. Recall that t-Max(D) = w-Max(D), so a t-invertible t-ideal is w-invertible.

Hence, JP1 · · ·Pn is w-invertible, and thus aD = (JP1 · · ·Pn)
w. Thus, D is a

weakly w-ZPUI domain. The converse can be proved by the same argument. □

Theorem 3.3. The following are equivalent for an integral domain D.

(1) D is a weakly t-ZPUI domain.

(2) D is a weakly Matlis domain and each maximal w-ideal of D is w-invertible.

(3) D is a weakly Matlis domain and each maximal t-ideal of D is t-invertible.

(4) D is a weakly w-ZPUI domain.

Proof. (1) ⇔ (4) Lemma 3.2.

(2) ⇔ (3) This follows from [4, Theorem 2.16] by which t-Max(D) = w-Max(D).

(2)⇒(4) Suppose that (2) holds. Choose a nonzero nonunit a of D, and let

P1, . . . , Pn be the set of maximal t-ideals of D containing a. For each i ∈ {1, . . . , n},
PiDPi

is a principal ideal since Pi is w-invertible ideal of D, so aDPi
= aiPiDPi

for some ai ∈ D. Set Ji = aiDPi
∩D, J = J1 · · · Jn and I = JP1 · · ·Pn. Then Ji is

either D or a w-invertible t-unidirectional ideal for every i ∈ {1, . . . , n} [6, Theorem

3.3]. Hence (aD)DP = IDP for every maximal t-ideal P of D, so aD = Iw.

(4)⇒(2) Assume that (4) is true. It is clear that every nonzero proper principal

ideal of D is a finite w-product of w-unidirectional w-ideals of D. Hence, D is

a weakly Matlis domain [6, Theorem 2.1]. Next, let P0 ∈ t-Max(D), and choose

a nonzero a ∈ P0. Then aD = (JP0P1 · · ·Pn)
w, where P0, P1, . . . , Pn are the

maximal t-ideals of D containing a, and J is either D or a product of w-invertible

t-unidirectional ideals. Since aD is w-invertible, so is P0. Hence every maximal

w-ideal of D is w-invertible. □

Let D be an integral domain, X be an indeterminate over D, and D[X] be the

polynomial ring over D. Then a nonzero prime ideal Q of D[X] is called an upper

to zero in D[X] if Q ∩D = (0), and D is a UMT-domain if every upper to zero in

D[X] is a maximal t-ideal of D[X]. It is known that D is a PvMD if and only if D

is an integrally closed UMT-domain [28, Proposition 3.2].

Corollary 3.4. Let D be a UMT-domain and D[X] be the polynomial ring over

D. Then D is a weakly w-ZPUI domain if and only if D[X] is a weakly w-ZPUI

domain.

Proof. By [22, Proposition 2.2], D is weakly Matlis if and only if D[X] is weakly

Matlis. Moreover, if Q is an upper to zero in D[X], then Q is t-invertible [28,

Theorem 1.4]. On the other hand, if Q is a prime ideal of D[X] that is not upper

to zero, then Q is a maximal t-ideal of D[X] if and only if Q = (Q ∩ D)[X] and

Q ∩ D is a maximal t-ideal of D ([28, Proposition 1.1] and [30, Proposition 2.2]).

Note also that (Q∩D)[X] is t-invertible in D[X] if and only if Q∩D is t-invertible

in D [30, Proposition 2.2]. Thus, the result follows from Theorem 3.3. □

It is easy to see that if D[X] is a weakly Matlis domain, then D is weakly Matlis

[22, Proposition 2.2] and if D is a weakly Matlis domain that is also a UMT-domain,
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then D[X] is a weakly Matlis domain [22, Proposition 2.2]. However, in general, D

being weakly Matlis does not imply that D[X] is weakly Matlis [22, Example 2.5].

Corollary 3.5. Let D[X] be the polynomial ring over an integral domain D. Then

D[X] is a weakly w-ZPUI domain if and only if D is a weakly w-ZPUI domain and

D[X] is a weakly Matlis domain.

Proof. (⇒) By Theorem 3.3, D[X] is weakly Matlis, so D is weakly Matlis. Next,

let P be a maximal t-ideal of D. Then P [X] is a maximal t-ideal of D[X] [28,

Proposition 1.1], and hence P [X] is t-invertible by Theorem 3.3, so P is t-invertible.

Thus, D is a weakly w-ZPUI domain by Theorem 3.3.

(⇐) Let Q be a maximal t-ideal of D[X]. If Q∩D ̸= (0), then Q∩D is a maximal

t-ideal of D and Q = (Q∩D)[X]. Hence, Q∩D is t-invertible by Theorem 3.3, and

thus Q is t-invertible. Next, assume that Q ∩D = (0). Then Q is t-invertible ([28,

Proposition 1.1], [30, Proposition 2.2]). Thus, D[X] is a weakly w-ZPUI domain

by Theorem 3.3. □

The next example shows that (i) the localization of a weakly w-ZPUI domain

need not be a weakly w-ZPUI domain and (ii) D[X] a weakly w-ZPUI domain does

not implies that D is a UMT-domain.

Example 3.6. (cf. [7, Example 2b]) Let Q be the field of rational numbers, Y, Z

be indeterminates over Q, Q[[Y,Z]] be the power series ring over Q, p be a prime

number, and D = ZpZ+(Y,Z)Q[[Y,Z]]. Then D is a quasilocal ring whose maximal

ideal is principal. Let K be the quotient field of D, T be an indeterminate over K,

and R = D+TK[[T ]]. Then R is a quasilocal ring whose maximal ideal is principal.

Hence, R is a weakly Matlis domain whose maximal t-ideals are t-invertible. Thus,

by Theorem 3.3, R is a weakly w-ZPUI domain.

(1) However, if N = {pn | n ≥ 0}, then RN = Q[[Y, Z]] + TK[[T ]] is not weakly

Matlis, and thus RN is not a weakly w-ZPUI domain.

(2) Note that R is integrally closed by [11, Theorem 2.1(b)], and R is quasilocal

whose maximal ideal is principal, but R is not a valuation domain. Moreover, R[X],

the polynomial ring over R, is a weakly Matlis domain by [22, Corollary 2.3]. Thus,

R[X] is a weakly w-ZPUI domain by Theorem 3.3.

The following corollaries are immediate consequences of Theorem 3.3.

Corollary 3.7. The following statements are equivalent for an integral domain D.

(1) D is a weakly ZPUI domain.

(2) D is an h-local domain in which each maximal ideal is invertible.

(3) D is a weakly w-ZPUI domain in which each maximal ideal is a t-ideal.

Proof. (1) ⇒ (3) Clearly, D is a weakly w-ZPUI domain. Moreover, if M is a

maximal ideal of D, then M is invertible by the same argument as in the proof of

(4) ⇒ (2) of Theorem 3.3. Thus, M is a t-ideal.

(3) ⇒ (2) D is weakly Matlis by Theorem 3.3, and since each maximal ideal of

D is a t-ideal, D is h-local. Moreover, each maximal ideal is invertible by Theorem

3.3 again.

(2) ⇒ (1) An invertible ideal is a t-ideal, so d = w on D and an h-local domain

is weakly Matlis. Thus, by the proof of (2) ⇒ (4) in Theorem 3.3, D is a weakly

Matlis ZPUI domain. □
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It is known that D is a Krull domain if and only if every nonzero principal ideal

of D can be written as a finite w-product of prime ideals ([31, Theorem 3.9] and

the fact that t = w on a Krull domain). Hence, a Krull domain D is a field or a

weakly w-ZPUI domain with t-dim(D) = 1.

Corollary 3.8. An integral domain D is a Krull domain if and only if D is a

weakly w-ZPUI domain and t-dim(D) ≤ 1.

Proof. (⇒) Clear. (⇐) If t-dim(D) = 0, then D is a field, and hence D is a

Krull domain. Next, assume that t-dim(D) = 1. Then every prime t-ideal of D is

t-invertible by Theorem 3.3. Thus, D is a Krull domain [31, Theorem 3.6]. □

Corollary 3.9. Let D be an integral domain with dim(D) = 1. Then the following

statements are equivalent.

(1) D is a Dedekind domain.

(2) D is a weakly ZPUI domain.

(3) D is a ZPUI domain.

(4) D is a weakly w-ZPUI domain.

(5) D is a w-ZPUI domain.

Proof. (1) ⇒ (3) ⇒ (2) ⇒ (4) Clear.

(4) ⇒ (1) By Corollary 3.8, D is a Krull domain. Thus, dim(D) = 1 implies

that D is a Dedekind domain.

(3) ⇒ (5) ⇒ (4) Clear. □

A ZPUI domain is a Prüfer domain, and hence integrally closed. The next

example shows that (i) a weakly ZPUI domain need not be integrally closed and

(ii) a weakly ZPUI domain that is also a valuation domain need not be a ZPUI

domain.

Example 3.10. (1) Let D = Z2Z + XQ(
√
2)[[X]]. Then D is quasilocal with

principal maximal ideal M = 2D. Clearly, Spec(D) is linearly ordered. Thus, D is

a weakly ZPUI domain by Corollary 3.7. Moreover, D is not integrally closed, and

hence D is not a ZPUI domain.

(2) Let V be a valuation domain with principal maximal ideal and idempotent

nonzero nonmaximal prime ideal. Then V is a weakly ZPUI domain by Corollary

3.7 but not a ZPUI domain because V is not strongly discrete. Moreover, V is an

h-local Prüfer domain.

Hence, to discuss the weakly ZPUI domains along with ZPUI domains, we need

to consider a strongly discrete Prüfer domain.

Corollary 3.11. Let D be a strongly discrete Prüfer domain (resp., strongly dis-

crete PvMD). Then D is a ZPUI domain (resp., w-ZPUI domain) if and only if D

is a weakly ZPUI domain (resp., weakly w-ZPUI domain).

Proof. (1) A ZPUI domain case: If D is a weakly ZPUI domain, then, by Corollary

3.7, D is a strongly discrete h-local Prüfer domain. Thus, D is a ZPUI domain [34,

Theorem 2.3]. The converse is clear by definition.

(2) A w-ZPUI domain case: Let D be a weakly w-ZPUI domain. Then D is

weakly Matlis by Theorem 3.3 and D is a strongly discrete PvMD by assumption.

Thus, D is a w-ZPUI domain [16, Corollary 3.10]. The converse is clear. □
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Recall from [27, Theorem 3.1] that D is a PvMD on which t = v if and only if

D is an independent ring of Krull type whose maximal t-ideals are t-invertible.

Corollary 3.12. Let D be a PvMD, D[X] be the polynomial ring over D, and

Nv = {f ∈ D[X] | f ̸= 0 and c(f)v = D}. Then the following statements are

equivalent.

(1) D is a weakly w-ZPUI domain.

(2) t = v on D.

(3) D is an independent ring of Krull type whose maximal t-ideals are t-invertible.

(4) Each nonzero ideal of D[X]Nv is divisorial.

(5) D[X] is a weakly w-ZPUI domain.

(6) D[X]Nv
is an h-local Prüfer domain whose maximal ideals are principal.

(7) D[X]Nv
is a weakly ZPUI domain.

Proof. (1) ⇔ (2) ⇔ (3) These follow from Theorem 3.3 and [27, Theorem 3.1].

(2) ⇔ (4) [29, Theorem 2.10].

(2) ⇔ (5) Note that D[X] is a PvMD since D is a PvMD, so t = v on D if and

only if t = v on D[X] by [29, Corollary 3.6]. Thus, t = v on D if and only if D[X]

is a weakly w-ZPUI domain by the equivalence of (1) and (2).

(3) ⇔ (6) This follows from [16, Lemma 2.1 and Lemma 2.2].

(6) ⇔ (7) Recall that D[X]Nv is a Prüfer domain and each invertible ideal of

D[X]Nv is principal [30, Theorems 2.14 and 3.7]. Thus, the result follows from

Corollary 3.7. □

Let D be an integral domain. Then D is a PvMD if and only if D is integrally

closed and w = t [30, Theorem 3.5]. Hence, by Corollary 3.12, D is an independent

ring of Krull type whose maximal t-ideals are t-invertible if and only if D is an

integrally closed and w = v on D (see [19, Theorem 3.3]).

Corollary 3.13. The following are equivalent for a Prüfer domain D.

(1) D is a weakly ZPUI domain.

(2) Every nonzro ideal of D is divisorial.

(3) D is an h-local Prüfer domain whose maximal ideals are invertible.

(4) Each nonzero ideal of D(X) is divisorial.

Proof. A Prüfer domain is a PvMD whose maximal ideals are t-ideals, so d = w = t

on a Prüfer domain. Thus the result follows from Corollary 3.12. □

Let D be an almost Dedekind domain. Then DM is a weakly ZPUI domain for

all maximal ideals M of D, while D is a weakly ZPUI domain if and only if D is of

finite character. The next result shows that this is true of a weakly ∗-ZPUI domain

for ∗ = d or w.

Proposition 3.14. Let D be an integral domain and ∗ = d or w. Then D is a

weakly ∗-ZPUI domain if and only if D is of ∗-finite character and DM is a weakly

ZPUI domain for each maximal ∗-ideal M of D.

Proof. Let D be a weakly ∗-ZPUI domain. Then D is of ∗-finite character by

Theorem 3.3 and Corollary 3.7. Furthermore, if M is a maximal ∗-ideal of D, then

DM is a weakly ZPUI domain by the definition of a weakly ∗-ZPUI domain.
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Conversely, assume that D is of ∗-finite character and DM is a weakly ZPUI

domain for each maximal ∗-ideal M of D. Let a be a nonzero nonunit of D, and

let M1, . . . ,Mn be the set of maximal ∗-ideals of D containing a. Then aDMi =

IiMiDMi
for some ideal Ii of D for each i ∈ {1, . . . , n}. Let I =

n∏
i=1

(IiDMi
∩D)Mi.

Then the maximal ∗-ideals of D containing I are M1, . . . ,Mn. Moreover, IiDMi∩D
is either equal to D or a ∗-unidirectional ideal of D [6, Lemma 2.3]. Since aDMi

=

IDMi
for each i ∈ {1, . . . , n}, we conclude that aD = I∗. Hence, D is a weakly

∗-ZPUI domain. □

Motivated by Theorem 2.2 and Corollary 2.5, we next give some characterizations

of the weakly ZPUI domain (resp., weakly w-ZPUI domain) which is also a Bézout

domain (resp., GCD domain).

Theorem 3.15. The following statements are equivalent for a GCD domain D.

(1) D is a weakly w-ZPUI domain.

(2) D is a weakly w-ZPUI domain that is also a HoFD.

(3) D is a weakly Matlis domain whose maximal ideals are principal.

(4) D is an HoFD and for each nonzero nonunit a ∈ D, there is an element

b ∈ D such that aD ⊊ bD and
a

b
D is a finite product of distinct principal

maximal w-ideals of D.

Proof. We first note that Clt(D) = {0} because D is a GCD domain.

(1) ⇒ (2) Note that the product of two homogenous elements contained in the

same maximal t-ideal M is a homogeneous element contained in M . Now choose a

nonzero nonunit a of D. Then aD = (IP1 · · ·Pn)
w for some ideal I that is either

D or a w-product of w-unidirectional w-invertible w-ideals and maximal w-ideals

P1, . . . , Pn of D containing a. Since D is a GCD domain, I, P1, . . . , Pn are all

principal, and hence a is a product of w-unidirectional elements of D. Thus, D is

an HoFD.

(2) ⇒ (3) ⇒ (1) These follow from Theorem 3.3 because a nonzero principal

ideal is t-invertible and Clt(D) = {0}.
(2) ⇒ (4) Clt(D) = {0}, so the result follows directly from the definition of a

weakly w-ZPUI domain.

(4) ⇒ (3) Let D be a weakly Matlis domain whose maximal ideals are principal.

Then D is a weakly w-ZPUI domain by Theorem 3.3. Thus D is a weakly ZPUI

domain by Corollary 3.7.

(5) ⇒ (1) Let a be a nonzero nonunit of D. Then a = a1 · · · an for some

homogeneous elements a1, . . . , an of D such that Mi is the unique maximal t-ideal

of D containing ai for each i ∈ {1, . . . , n}. Hence, D is weakly Matlis. Now, let

P be a maximal t-ideal of D. Then P contains a homogeneous element, say, a,

and there is an element b ∈ D such that aD ⊊ bD and
a

b
D is a finite product of

principal maximal t-ideals. Note that a is homogeneous, so
a

b
D = P . □

The next result is a weakly ZPUI domain analog of Theorem 3.15.

Corollary 3.16. The following statements are equivalent for a Bézout domain D.
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(1) D is a weakly ZPUI domain.

(2) D is a weakly ZPUI domain that is also a HoFD.

(3) D is an h-local domain whose maximal ideals are principal.

(4) D is a weakly Matlis domain whose maximal ideals are principal.

(5) D is an HoFD and for each nonzero nonunit a ∈ D, there is an element

b ∈ D such that aD ⊊ bD and
a

b
D is a finite product of distinct maximal

principal ideals of D.

Proof. A Bézout domain is a GCD domain whose maximal ideals are t-ideals, so d =

w. Moreover, an h-local domain is a weakly Matlis domain whose maximal ideals

are t-idels. Thus, the result is an immediate consequence of Theorem 3.15. □

Example 3.17. The assumption thatD is an HoFD cannot be dropped in Theorem

3.15.(5). Let D = Z + XQ[X]. Note that D is a Bézout domain whose maximal

ideals are principal, so for each nonzero nonunit a ∈ D, there is an element b ∈ D

such that a ∈ bD and
a

b
D is a finite product of distinct maximal principal ideals of

D. But since D is not an h-local domain, D cannot be a weakly ZPUI domain by

Corollary 3.7.

A nonzero nonunit a ∈ D is said to be a pseudo-irreducible element if it is

impossible to factor a as a = bc with b and c comaximal nonunits. Following

[32], we say that D is a comaximal factorization domain (CFD) if every nonzero

nonunit of D can be written as a product of pairwise comaximal pseudo-irreducible

elements. A CFD D is called a unique comaximal factorization domain (UCFD) if

the products of pairwise comaximal pseudo-irreducible elements are unique (up to

order and units).

Proposition 3.18. A weakly ZPUI domain D with Clt(D) = {0} is a UCFD.

Hence, a Bézout ZPUI domain is a UCFD.

Proof. Let a, b ∈ D be nonzero nonunits such that aD and bD are both unidirec-

tional. It is clear that a and b are pseudo-irreducible. Moreover, if (a, b) ⊊ D, then

ab is pseudo-irreducible. Note that every nonzero proper principal ideal of D can be

written as a finite product of pairwise comaximal unidirectional principal ideals, so

every nonzero nonunit of D can be written uniquely as a finite product of pseudo-

irreducible elements of D. Thus, D is a UCFD. Moreover, a Bézout ZPUI domain

is a weakly ZPUI domain with trivial t-class group, and hence it is a UCFD. □

In [12], Brewer and Heinzer studied integral domains for which (i) each nonzero

ideal ((ii) each nonzero principal ideal) can be written as a product Q1 · · ·Qn, where

the Qi are pairwise comaximal and each Qi has prime radical. Clearly, (i) implies

(ii), but (ii) does not imply (i) [12, Example 7]. Moreover, if D satisfies (ii), then

D is treed, i.e., Spec(DM ) is linearly ordered under inclusion for all maximal ideals

M of D [12, Theorem 1]. It is easy to see that if D is a ZPUI domain (resp., weakly

ZPUI domain that is treed), then each unidirectional ideal of D has a prime radical,

and thus D satisfies (i) (resp., (ii)).
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4. Weak and w-weak π-domains

Let D be a π-domain that is not a Dedekind domain. Then (i) every nonzero

proper principal ideal of D can be written as a product of an invertible ideal and

a nonempty collection of prime ideals and (ii) D is a weakly w-ZPUI domain by

Theorem 3.3, but D is not a weakly ZPUI domain by Corollary 3.7. We next list

four ideal factorization properties which are generalizations of π-domains, Krull

domains, and (w-)ZPUI domains.

Question 4.1. Let D be an integral domain. What could be said of integral

domains with the following ideal factorization properties?

(1) For each nonzero nonunit a ∈ D, there is an element b ∈ D such that

aD ⊊ bD and
a

b
D is a (i) finite product (resp., (ii) w-product) of prime

ideals of D. (e.g., π-domains (resp., Krull domains))

(2) For each nonzero nonunit a ∈ D, there is an element b ∈ D such that

aD ⊊ bD and
a

b
D is a (i) finite product (resp., (ii) w-product) of pairwise

comaximal prime ideals (resp., w-comaximal prime w-ideals) of D. (e.g.,

PIDs (resp., UFDs))

(3) For each nonzero proper ideal (principal ideal) I of D, there is an invert-

ible ideal J of D such that I ⊊ J and IJ−1 is a finite product of prime

ideals (resp., pairwise comaximal prime ideals) of D. (e.g., ZPUI domains,

Dedekind domains (resp., ZPUI Bézout domains))

(4) For each nonzero proper ideal (principal ideal) I ofD, there is a w-invertible

ideal J of D such that I ⊊ Jw and (IJ−1)w is a finite w-product of prime

ideals (resp., pairwise w-comaximal prime ideals) of D. (e.g., w-ZPUI do-

mains, Krull domains (resp., w-ZPUI GCD domains)

In this section, we briefly study integral domains satisfying the property described

in Question 4.1.(1).

Definition 4.2. Let D be an integral domain and ∗ = d or w. We will say that

D is a ∗-weak π-domain if, for each nonzero nonunit a ∈ D, there is an element

b ∈ D such that a ∈ bD and
a

b
D is a finite ∗-product of prime ∗-ideals of D.

Recall that a nonzero nonunit a of an integral domain D is irreducible if for each

b, c ∈ D such that a = bc, one of b and c is a unit of D. An integral domain in

which each nonzero nonunit is a finite product of irreducible elements is said to be

atomic. An integral domain D is said to be Furstenberg if each nonzero nonunit

of D is divided by an irreducible element of D [17]. It is clear that every atomic

domain is Furstenberg, but the converse does not hold in general. For instance, the

domain D in Example 3.17 is Furstenberg, but it is not atomic. Our next result

is that every ∗-weak π-domain is Furstenberg. First, consider the following simple

lemma.

Lemma 4.3. Let P1, . . . , Pn be nonzero prime ∗-ideals of an integral domain D

and I1 · · · , Im be nonzero proper ∗-invertible ∗-ideals of D such that (P1 · · ·Pn)
∗ =
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(I1 · · · Im)∗. Then there exists a partition {Ai}mi=1 of {1, . . . , n} such that Ii =

(
∏

j∈Ai

Pj)
∗ for each i ∈ {1, . . . ,m}.

Proof. We use induction on n. Notice that P1, . . . , Pn are ∗-invertible ideals, since

I1 · · · Im is a ∗-invertible ideal. When n = 1, it follows that without loss of generality

I1 ⊆ P1, so I1 = (P1I)
∗ for some ideal I of D. If m > 1, then D = (II2 · · · Im)∗,

a contradiction. Hence m = 1 and I1 = P1, and the statement holds for n = 1.

To initiate the induction process, suppose that there exists k ∈ N such that the

statement holds when n = k. If n = k + 1, then without loss of generality Im ⊆
Pk+1, so Im = (Pk+1J)

∗ for some ∗-invertible ideal J of D. Hence (P1 · · ·Pk)
∗ =

(I1 · · · Im−1J)
∗, and there exists a partition {Ai}mi=1 of {1, . . . , k} such that Ii =

(
∏

j∈Ai

Pj)
∗ for each i ∈ {1, . . . ,m− 1} and J = (

∏
j∈Am

Pj)
∗. Adjoining k + 1 to Am,

we have the desired partition of {1, . . . , n}. □

It is clear that a d-weak π-domain is a w-weak π-domain but not vice versa. For

convenience, we call a d-weak π-domain a weak π-domain.

Proposition 4.4. An integral domain D is a weak π-domain (resp., w-weak π-

domain) if and only if it is Furstenberg and each principal ideal generated by an

irreducible element is a product of prime ideals (resp., w-product of maximal w-

ideals) of D.

Proof. We only need to show the necessity of the statement. In fact, it suffices

to show that D is Furstenberg, for every w-invertible prime w-ideal is a maximal

w-ideal ([28, Proposition 1.3], [14, Proposition 2.5]). Let D be a weak π-domain

and a be a nonzero nonunit of D. Then there exists an element b of D, distinct

prime ideals P1, . . . , Pn of D, and r1, . . . , rn ∈ N such that
a

b
D = (P r1

1 · · ·P rn
n )∗. If

a

b
is an irreducible element of D, then a is divided by an irreducible element, so we

have nothing to prove. Suppose that
a

b
is not irreducible. Then

a

b
= c1d1 for some

nonzero nonunits c1, d1 of D. Hence by Lemma 4.3, there exist integers a11, . . . , a1n

such that 0 ≤ a1j ≤ aj for j = 1, . . . , n, c1D = (
n∏

j=1

P
a1j

j )∗, d1D = (
n∏

j=1

P
aj−a1j

j )∗,

and
n∑

j=1

a1j <
n∑

j=1

aj . If c1 is irreducible, then we are done. Otherwise, c1 = c2d2

for some nonzero nonnuits c2, d2 of D. Again by Lemma 4.3, there exist integers

a21, . . . , a2n such that 0 ≤ a2j ≤ a1j for j = 1, . . . , n, c1D = (
n∏

j=1

P
a2j

j )∗, d1D =

(
n∏

j=1

P
a1j−a2j

j )∗, and
n∑

j=1

a2j <
n∑

j=1

a1j . Iterating, we conclude that
a

b
is divided by

an irreducible element. □

Corollary 4.5. An integral domain is a π-domain (resp., Krull domain) if and

only if it is an atomic weak π-domain (resp., w-weak π-domain).

Proof. This follows because D is an atomic ∗-weak π-domain if and only if each

principal ideal of D is a finite ∗-product of prime ∗-ideals by Proposition 4.4. □
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Corollary 4.6. Let D be an integral domain. If D[X] is a w-weak π-domain, then

so is D.

Proof. D[X] is Furstenberg by Proposition 4.4, and so is D [25, Proposition 4.7].

Now let d be an irreducible element of D. Then it is also an irreducible element

of D[X], and dD[X] = (Qa1
1 · · ·Qan

n )w for some ai ∈ N and distinct maximal w-

ideals Q1, . . . , Qn of D[X] by Proposition 4.4. Note that ({Qai
i })w are Qi-primary

w-ideals of R [37, Theorem 3.1], so we have dD[X] = (Qa1
1 )w ∩ · · · ∩ (Qan

n )w [6,

Lemma 2.5]. Therefore, none of Qi is upper to zero in D[X], and hence dD[X] =
n∏

i=1

((Qi ∩ D)ai)w[X] [28, Proposition 1.1]. Hence dD =
n∏

i=1

((Qi ∩ D)ai)w. Note

that Qi ∩ D is a prime t-ideal [14, Lemma 2.8], that is also t-invertible for each

i ∈ {1, . . . , n}. Therefore D must be a w-weak π-domain by Proposition 4.4 and

[28, Proposition 1.3]. □

An integral domain D is divided if for each prime ideal P of D and an element a

of D, either a ∈ P or P ⊆ aD. If DM is divided for each maximal ideal (resp., each

maximal t-ideal) M of D, we say that D is locally divided (resp., t-locally divided)

(see, for example, [10] and [13]). Note that one-dimensional domains and Prüfer

domains are locally divided, PvMDs are t-locally divided, and D is locally divided

if and only if D is t-locally divided whose maximal ideals are t-ideals.

Proposition 4.7. Let D be an integral domain. Then we have the following.

(1) If D is locally divided, then each invertible prime ideal of D is maximal.

(2) If Clt(D) = {0}, then D is a w-weak π-domain if and only if every nonzero

nonunit of D is contained in a principal prime ideal of D.

Proof. (1) If P is an invertible prime ideal of a locally divided domain D, then let

M be a maximal ideal of D that contains P . It follows that PDM is an invertible

prime ideal of a divided domain RM . Now let a ∈ DM \PDM . Then PDM ⊊ aDM ,

so PDM = aIDM for some ideal I of D contained in M . Since a ̸∈ PDM , we must

have IDM ⊆ PDM . Hence PDM = aPDM , and since P is invertible, a is a unit

of RM . Hence PDM = MDM , and P = PDM ∩D = MDM ∩D = M . Thus, P is

a maximal ideal.

(2) Suppose that Clt(D) = {0}. If D is a w-weak π-domain, then for each

nonzero nonunit r ∈ D, rD is a w-product of a principal ideal and a nonempty

collection of finitely many prime w-ideals. Each of such prime w-ideals must be

t-invertible since rD is invertible. Since Clt(D) = {0}, every t-invertible ideal is

principal. Hence r is contained in a principal prime ideal of D. Conversely, assume

that every nonzero nonunit of D is contained in a principal prime ideal of D. If

a ∈ D is a nonzero nonunit, then a ∈ pD for some principal prime pD, so a = pd

for some d ∈ D. Clearly, aD ⊊ dD and
a

d
= p. Thus, D is a w-weak π-domain. □

The following is an immediate corollary of Proposition 4.7.

Corollary 4.8. Let D be an integral domain with Clt(D) = {0}.
(1) Let D be a t-locally divided domain (e.g., a GCD domain). Then D is a

w-weak π-domain if and only if every maximal w-ideal of D is principal.
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(2) Let D be a locally divided domain (e.g., a Bézout domain). Then the fol-

lowing are equivalent.

(a) D is a weak π-domain.

(b) D is a w-weak π-domain.

(c) Every maximal ideal of D is a principal ideal.

It is not difficult to see that if D is a GCD w-weak π-domain, then D[X] is a w-

weak π-domain by Corollary 4.8. In the remainder of this section, we focus on how

a new ∗-weak π-domain can be obtained from the old ones via D+M construction

and localization.

Proposition 4.9. Let T be a quasilocal domain such that T = K + M for some

field K and a maximal ideal M of T . Let D be a proper subdomain of K, and let

R = D +M .

(1) If D is not a field, then R is a weak π-domain if and only if D is a weak

π-domain.

(2) If T is an atomic domain and D is a field, then R is not a weak π-domain.

Proof. (1) Note first that every irreducible element of R is of the form a+m, where

a is an irreducible element of D and m is an element of M . Indeed, let a ∈ D and

m ∈ M so a+m is an irreducible element of D+M . If a = 0, then for any nonzero

nonunit b of D, we have a+m = b

(
m

b

)
and neither b nor

m

b
is a unit of R (note

that
m

b
∈ Km ⊆ M ⊆ R), a contradiction. Hence a is nonzero. If a = bc for some

b, c ∈ D, then a+m = b

(
c+

m

b

)
, so either b or c is a unit of D [9, Lemma 4.17(2)].

Hence a is an irreducible element of D. Note also that if d is an irreducible element

of D, then it is an irreducible element of R [9, Lemma 4.17(2)].

Suppose that R is a weak π-domain. Then D is Furstenberg. Indeed, if d is a

nonzero nonunit of D, then d is divided by an irreducible element of R, say a+m

for some a ∈ D,m ∈ M . As mentioned in the first paragraph of this proof, a is

an irreducible element of D that divides d. Hence D is Furstenberg. On the other

hand, let c be an irreducible element of D. Then c is also an irreducible element

of R, so cR = Q1 · · ·Qn for some prime ideals Q1, . . . , Qn of R by Proposition 4.4.

Since cR = cD +M , we must have M ⊆ Qi for all i ∈ {1, . . . , n}. Hence for each

i, there exists a prime ideal Pi of D such that Qi = Pi + M [20, Lemma 1.1.4].

It follows that cD + M = P1 · · ·Pn + M , so cD = P1 · · ·Pn. Hence D is a weak

π-domain by Proposition 4.4.

Conversely, suppose that D is a weak π-domain. Then for each nonzero nonunit

element r ∈ R, r = a +m for some a ∈ D,m ∈ M . If a = 0, then r is divided by

any irreducible element of D, which is also an irreducible element of R. If a ̸= 0,

then a is divided by an irreducible element b of D, and r = b

(
a

b
+

m

b

)
. Hence

R is Furstenberg. On the other hand, choose an irreducible element of R. Then

such an element is of the form a + m for some irreducible element a of D. Then

(a+m)R = aR since 1+
m

a
is a unit of R [9, Lemma 4.17(2)]. Then by Proposition
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4.4, cD = P1 · · ·Pn for some prime ideals P1, . . . , Pn of D. Hence cR = Q1 · · ·Qn

where Qi = Pi +M is a prime ideal of R for each i ∈ {1, . . . , n}. Thus R is a weak

π-domain by Proposition 4.4.

(2) Since T is atomic and D is a field, R must be atomic [2, Proposition 1.2(a)].

On the other hand, R and T have the same complete integral closure since they

share a nonzero proper ideal M . Hence R is not completely integrally closed, so R

cannot be a Krull domain. Thus R is not a weak π-domain by Corollary 4.5. □

Note that localization of a weak π-domain may not be a weak π-domain. Indeed,

let V be as in Example 3.10.(2). Then since V is a divided domain, Corollary 4.8

tells us that V is a weak π-domain, while the localization of V with respect to its

idempotent nonzero prime ideal cannot be a weak π-domain. We next show that

if S is a splitting set of a weak π-domain D, then so is DS . We first list some

properties of splitting sets.

Lemma 4.10. Let D be an integral domain and S be a multiplicative subset of D.

Then we have the following.

(1) Let S be a splitting set and x be an element of D, so x = as for some

a ∈ D and s ∈ S such that aD ∩ tD = atD for each t ∈ S. Then x is an

irreducible element of DS if and only if a is an irreducible element of D.

(2) Let S be a multiplicative set generated by prime elements of D, i.e., there

exists a set T that consists of prime elements of D such that each element of

S is of the form up1 · · · pn where u is a unit of D and p1, . . . , pn ∈ T . Then

S is a splitting set if and only if
⋂

n∈N
pnD = (0) for each prime element

p ∈ S, and
⋂

n∈N
pnD = (0) for each sequence {pn} of nonassociative prime

elements of S.

Proof. These are part of [3, Lemma 1.2, Corollary 1.4, Proposition 1.6]. □

Using the notion of splitting sets, we can answer the question concerning local-

ization of weak π-domains.

Proposition 4.11. Let S be a splitting set of an integral domain D generated by

prime elements of D. If D is a weak π-domain, then so is DS.

Proof. Let
x

s
be an irreducible element of DS for some x ∈ D, s ∈ S. Then x = as

for some a ∈ D and s ∈ S such that aR ∩ s′D = as′D for each s′ ∈ S, and a is an

irreducible element of D by Lemma 4.10.(1). By Proposition 4.4, aD = P a1
1 · · ·P an

n

for some prime ideals P1, . . . , Pn of D and a1, . . . , an ∈ N. Then the ideal of

DS generated by
x

s
is a product of prime ideals of DS . On the other hand, D

is Furstenberg by Proposition 4.4. Applying the proof of [25, Proposition 6.4],

it follows that DS is Furstenberg. Hence by Proposition 4.4, DS is a weak π-

domain. □

We next give an example which shows that Proposition 4.11 fails in general if S

is merely a multiplicative subset S of R generated by primes.
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Example 4.12. Let R = Z2Z +XC[[X]]. Then R is a weak π-domain by Proposi-

tion 4.9. On the other hand, let S be the multiplicative subset of R generated by

2. Then RS = Q+XC[[X]] is not a weak π-domain by Proposition 4.9. Note that

since X ∈
⋂

n∈N
2nR, S is not a splitting set of R by Lemma 4.10.(2) as mentioned

in [25, Example 6.5].

We end this paper with a diagram showing the implications between various

classes of domains dealt with in this work.

Dedekind π-domain weak π-domain

Krull w-weak π-domain

PID ZPUI weakly ZPUI

UFD w-ZPUI weakly w-ZPUI

Bézout ZPUI Bézout weakly ZPUI

GCD w-ZPUI GCD weakly w-ZPUI
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