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Abstract: In this paper, we deal with the time-fractional Navier-Stokes equations with
damping in a bounded domain Ω in R3. First, we establish the existence of weak solutions
by Galerkin approximation for β ≥ 1. We have also shown the uniqueness of weak solution
for β ≥ 4. Further, we prove the regularity of the solution for β ≥ 3 and 4βµ > 1.
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1. INTRODUCTION

Let us consider the following system of time-fractional Navier-Stokes equations with
sufficiently smooth boundary in a simply connected bounded domain Ω of R3

∂α
t u + ϑ|u|β−1u + u ·∇u +∇p− µ∆u = g in Ω× (0, T ), (1.1)

div u = 0 in Ω× (0, T ), (1.2)

u = u0 in Ω× {0}, (1.3)

u = 0 on ∂Ω× (0, T ), (1.4)

where ∂α
t is the Caputo fractional derivative of order α ∈ (0, 1). Here the unknown func-

tion u corresponds to the velocity of the flow and p is used to denote the pressure. ϑ|u|β−1u
is the damping term and ϑ > 0 and β ≥ 1 are the scalars appeared in the expression. Here
u0 is the initial velocity, g represents the external force.

The Navier-Stokes equations describe the motion of the fluid flows ranging from lu-
brication of ball bearings to large-scale atmospheric motions and reflect the conservation
of mass as well as momentum. The integer-order Navier-Stokes equations have been ad-
dressed in detailed by many authors [3, 4, 6, 10, 14, 15, 17, 16, 24] due to their essential role
in turbulence problems and fluid mechanics over the last decades. On the flip side, Frac-
tional calculus has gained much attention due to its demonstrated applications to model
many vital phenomena in different fields of science and engineering, including mechanics,
mathematical biology, control theory of dynamical systems, and many others. Fractional
calculus [11, 12] has been known as one of the most useful tools to model anomalous
diffusion and to describe the long memory processes. In comparison to the literature of
integer-order Navier-Stokes equations, research on fractional Navier-Stokes equations is
still in the early stages of development. Recently, some significant development has been
done by Salem et al. [8], Ganji et al. [9], and Zaid [19] in direction of time-fractional
Navier-Stokes equations. Zhou and He in [32] studied the well-posedness and regularity
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of mild solutions for a class of time fractional damped wave equations. In [31], Zhou et
al. studied a backward problem for an inhomogeneous fractional diffusion equation in a
bounded domain. The existence of solutions for nonlinear Rayleigh-Stokes problem for
a generalized second grade fluid with Riemann-Liouville fractional derivative has been
proved by Zhou et al. [33]. In [30] Zhou et al. established the existence and regularity of
weak solutions to the time-fractional Navier-Stokes equations. The existence and unique-
ness of mild solutions to the time-fractional Navier-Stokes equation has been proved by de
Carvalho-Neto et al. [7]. The system (1.1) represents the flow with the obstruction to the
motion. (1.1) is the adaptation of the classical time-fractional Navier-Stokes equation with
the regularizing term ϑ|u|β−1u. Many authors [5, 20, 21, 22, 25, 27] studied the system
(1.1)–(1.4) with α = 1. Cai in [5] proves that, if β ≥ 1, then weak solutions of the damped
Navier-Stokes equations exists; if β ≥ 7/2, then a strong solution ensured. Further, they
restrict 5 ≥ β ≥ 7/2 to show the uniqueness of the strong solution. Later, Zhang et al.
[25] improved the result and showed that a global strong solution exist when β > 3 and
this strong solution becomes unique when 5 ≥ β > 3.

To show the existence of the solutions to the time-fractional Navier-Stokes equations
with damping, we will use the Galerkin approximation method. It is worth mentioning
that, in comparison to the integer case, the solutions of the time-fractional Navier-Stokes
equation with damping are not yet fully explored. So, it is vital to investigate the solu-
tions to time-fractional Navier-Stokes equations. To best of our knowledge, the existence,
uniqueness and regularity of solutions to the the time-fractional Navier-Stokes equation
with damping has not been researched. We organize the article in the following way. The
assumptions and preliminaries are discussed in Section 2. In Section 3, we discuss the
existence of weak solutions of (1.1). In Section 4, we discuss the uniqueness of solutions.
Also, We have addressed the regularity of the solutions in Section 5.

2. PRELIMINARIES AND ASSUMPTIONS

In this section we accumulate the solution spaces, Lemmas and notations. We refer
to Zhou [28] and Temam [23] for further details. Let Ω be a simply connected bounded
domain in R3 having smooth boundary. Let X be a Banach space. Let α ∈ (0, 1]. Let
w : R → X . Let us define the Caputo fractional derivative and the Liouville-Weyl integral
on real axis by

C
−∞Dt

αw(t) =

󰁝 t

−∞
h1−α(t− s)

d

ds
w(s)ds, −∞It

αw(t) =

󰁝 t

−∞
hα(t− s)w(s)ds

respectively, where hα represents the Riemann-Liouville kernel and hα(t) =
tα−1

Γ(α) . Let us
define left and right Riemann-Liouville integrals of w as follows

0It
αw(t) =

󰁝 t

0

hα(t− s)w(s)ds, tIT
αw(t) =

󰁝 T

t

hα(s− t)w(s)ds,

where w : [0, T ] → X . Further, we define the left Caputo and right Riemann-Liouville
fractional derivatives of order α by

C
0Dt

αw(t) =

󰁝 t

0

h1−α(t− s)
d

ds
w(s)ds tDT

αw(t) = − d

dt

󰁝 T

t

h1−α(s− t)w(s)ds.
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Let v : R3 × [0,∞) → R3, the left Caputo fractional derivative with respect to time of the
function v is denoted by

∂α
t v(x, t) =

󰁝 t

0

h1−α(t− s)
δ

δs
v(x, s)ds, t > 0.

We will use the following fractional integral by parts formula [1]
󰁝 T

0

(∂α
t v(t),ψ(t))dt = (v(t), tIT

1−αψ(t))|T0 +

󰁝 T

0

(v(t), tDT
αψ(t))dt.

If ψ ∈ C∞
0 ([0, T ], X), then limt→T tIT

1−αψ(t) = 0 and
󰁝 T

0

(∂α
t v(t),ψ(t))dt = −(v(0), 0IT

1−αψ(t)) +

󰁝 T

0

(v(t), tDT
αψ(t))dt.

We recall the following Lemmas from [30, Lemma 2.3, Lemma 2.4].

Lemma 2.1. Let X is a real Hilbert space and w : [0, T ] → X have derivative, then
(w(t), ∂α

t w(t)) ≥ 1
2∂

α
t |w(t)|2.

Lemma 2.2. Suppose the function w(t) ≥ 0 satisfies ∂α
t w(t)+k1w(t) ≤ k2(t) for almost

all t ∈ [0, T ], where k1 > 0 and k2(t) is nonnegative and integrable function in [0, T ].
Then

w(t) ≤ w(0) +
1

Γ(α)

󰁝 t

0

(t− s)α−1k2(s)ds.

Let Lp(Ω) and Hr(Ω) be the Lebesgue space and the Sobolev space respectively. Let
Z = {u ∈ (C∞

0 (Ω))3, div u = 0}. H is the closure of Z in L2(Ω)3 and V is the closure
of Z in H1(Ω)3. (·, ·) represents inner product in L2 and

((u, v)) =

3󰁛

j=1

󰁝

Ω

∂uj

∂xi

∂vj
∂xi

.

Let P be the orthogonal projection from (L2(Ω))3 to H . We define the Stokes operator A
by A = −P∆, with D(A) = H2(Ω) ∩ V . Then

(Au1, u2) = ((u1, u2)) ∀u1, u2 ∈ D(A).

We define the trilinear form b as

b(u1, u2, u3) =

󰁝

Ω

(u1 ·∇u2) · u3, ∀u1, u2, u3 ∈ V. (2.5)

For u1, u2 ∈ V , we define B(u1, u2) by

(B(u1, u2), u3) = b(u1, u2, u3), ∀u3 ∈ V,

and we set B(u1) = B(u1, u1) ∈ V ′ , ∀u1 ∈ V . So,

(Bu1, u2) =

󰁝

Ω

(u1 ·∇u1) · u2. (2.6)

We recall the following Lemma from Temam [23].

Lemma 2.3. If u ∈ L2(0, T ;V ), then Bu ∈ L1(0, T ;V ′). Further, we have 󰀂Bu󰀂V ′ ≤
C󰀂u󰀂2H1 .

We recall the following Lemma from Cai[5].
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Lemma 2.4. Let 0 < γ ≤ 1 and Y0, Y be Hilbert space having compact imbedding
Y0 ↩−→ Y . If (zj)∞j=1 be a sequence in L2(R, Y0) and fulfilling the following condition

sup
j

󰀕󰁝 +∞

−∞
󰀂zj󰀂2Y0

dt

󰀖
< ∞, sup

j

󰀕󰁝 +∞

−∞
|η|2γ󰀂v̂j󰀂2Y dη

󰀖
< ∞,

where

ẑj(η) =

󰁝 ∞

−∞
zj(t) exp(−2πiηt)dt

represent the Fourier transformation on the time variable of zj(t). Then there is a subse-
quence of (zj)j=1 which strongly converge to some z ∈ L2(R;Y ).

3. EXISTENCE THEOREM

In the following section, we will established the existence of weak solutions to the time-
fractional damped Navier-Stokes system. The idea of the proof is inspired from [23]. First,
we give the definition of weak solutions for (1.1)–(1.4).

Definition 3.1. If u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ Lβ+1(0, T ;Lβ+1(Ω)) and for any
z ∈ V , u satisfies

(∂α
t u, z) + (ϑ|u|β−1u, z) + b(u, u, z) + µ((u, z)) = (g, z). (3.7)

Then, we called u is a weak solutions of the time fractional Navier-Stokes equations.

Theorem 3.2. Let u0 ∈ H , g ∈ L
2

α1 (0, T ;H) where α1 ∈ (0,α) and, β ≥ 1. Then for
positive T , there exists a weak solutions u(x,t) of (1.1)–(1.4) where u ∈ L∞(0, T ;H) ∩
L2(0, T ;V ) ∩ Lβ+1(0, T ;Lβ+1(Ω)) and u(x,t) will fulfill (3.7).

Proof. The Galerkin approximations will be used to prove the theorem. We choose a
sequence of elements z1, z2, ..., zm from Z, where Z = {u ∈ (C∞

0 (Ω))3, div u = 0}.
Since Z is separable and dense in V , elements zi are free and total in V . We consider the
approximate of the solution um by um(t) =

󰁓m
i=1 fim(t)zi,m > 0. We put um in (3.7),

we obtain

(∂α
t um(t), zj) + (ϑ|um|β−1um(t), zj) + b(um(t), um(t), zj) + µ((um(t), zj))

= (g(t), zj), (3.8)

um(0) =

m󰁛

j=1

(u0, zj)zj = u0m, j = 1, ...,m. (3.9)

We can write (3.8) –(3.9) as follows
m󰁛

i=1

(zi, zj)∂α
t fim(t) +

m󰁛

i=1

ϑ|um|β−1(zi, zj)fim(t) +

m󰁛

i,l=1

b(zi, zl, zj)fim(t)flm(t)

+ µ

m󰁛

i=1

((zi, zj))fim(t) = (g(t), zj), (3.10)

um(0) =

m󰁛

j=1

(u0, zj)zj = u0m j = 1, ...,m. (3.11)

By using Picard’s Theorem we can conclude that nonlinear differential equations (3.10)–
(3.11) has a maximal solutions in [0, Tm] contained in [0, T ]. The priori estimate for the
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approximate solutions um has been deduced in the following way. Multiplying (3.8) by
fjm(t) and adding all for j = 1, ...,m. We get

1

2
∂α
t 󰀂um(t)󰀂2L2 + ϑ󰀂um󰀂β+1

Lβ+1 + µ󰀂um(t)󰀂2H1 ≤ |(g(t), um(t))|

≤ µ

2
󰀂um(t)󰀂2H1 +

1

2µ
󰀂g(t)󰀂2V ′ . (3.12)

After integrating (3.12) and using Young inequality, we get

󰀂um(t)󰀂2L2 + 2ϑ

󰁝 t

0

(t− s)α−1󰀂um󰀂β+1
Lβ+1ds+ µ

󰁝 t

0

(t− s)α−1󰀂um󰀂2H1ds

≤ 󰀂u0󰀂2L2 +
1

µ

󰁝 t

0

(t− s)α−1󰀂g󰀂2H

≤ 󰀂u0󰀂2L2 +
1

µ

󰁝 t

0

󰀂g󰀂
2

α1

H ds+
1

µ

󰁝 t

0

(t− s)
α−1
1−α1 ds

≤ 󰀂u0󰀂2L2 +
1

µ

󰁝 T

0

󰀂g󰀂
2

α1

H ds+
T 1+b

µ(1 + b)
(3.13)

where α1 ∈ (0,α), b = α−α1

1−α1
. Also,

Tα−1

󰁝 t

0

󰀂um󰀂2H1ds ≤
󰁝 t

0

(t− s)α−1󰀂um󰀂2H1ds

≤ 󰀂u0󰀂2L2 +
1

µ

󰁝 T

0

󰀂g󰀂
2

α1

H ds+
T 1+b

µ(1 + b)
. (3.14)

From (3.13) and (3.14), we achieve that the sequence {um} in a bounded set L∞(0, T ;H)
∩ L2(0, T ;V ) ∩ Lβ+1(0, T ;Lβ+1(Ω)). Now, we will show the strong convergence of um

in L2 ∩ Lβ([0, T ] × Ω) by using Lemma 2.4. Let ũm the function from R to V , which is
equal to um on [0, T ] and to 0 otherwise. In the same way, we construct f̃im(t), fim(t) to
R by assigning f̃im(t) = fim on [0, T ] and 0 otherwise. We use ˆ̃um and ˆ̃gim to represent
the Fourier transformations on time variable of ũm and g̃im. We will prove for any positive
constant C 󰁝 +∞

−∞
|η|2γ󰀂ˆ̃um(η)󰀂2L2dη ≤ C, for some γ > 0 (3.15)

We have for j = 1, ...,m,

(∂α
t ũm(t), zj) = (u0m, zj)−∞It

1−αδ0 − (um(T ), zj)−∞It
1−αδT + (g̃m(t), zj)

+ (ϑ|ũm|β−1ũm(t), zj) (3.16)

where δ0 is the Dirac distributions at 0 and δT is the Dirac distributions at T . Let gm =
g−µAum −Bum, ĝm = gm on [0, T ], 0 otherwise. Note that ũm has two discontinues at
T and 0.

c
−∞Dt

αũm = −∞It
1−α

󰀕
d

dt
ũm

󰀖

= −∞It
1−α

󰀕
d

dt
um + um(0)δ0 − um(T )δT

󰀖

= c
0Dt

αum + −∞It
1−α(um(0)δ0 − um(T )δT ).
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From (3.16), we get

(2πiη)α(ˆ̃um(η), zj) = (ˆ̃gm(η), zj) + ϑ(|ũm
ˆ|β−1ũm(η), zj) + (u0m, zj)(2πiη)α−1

− (um(T ), zj)(2πiη)α−1 exp(−2πiTη), (3.17)

where Fourier transformation have been applied on the time variable. We multiply (3.17)
by ˆ̃gjm(η) and adding all the equations, we get

(2πiη)α󰀂ˆ̃um(η)󰀂2L2 = (ˆ̃gm(η),ˆ̃um(η)) + ϑ(|ũm
ˆ|β−1ũm(η), ˆ̃um(η)) + (u0m, ˆ̃um(η))(2πiη)α−1

+ (um(T ), ˆ̃um(η))(2πiη)α−1 exp(−2πiTη). (3.18)

When z ∈ Lβ+1(0, T ;Lβ+1) ∩ L2(0, T ;V ) we have

(gm(t), z) ≤ C

󰀕
c1󰀂um(t)󰀂2H1 + µ󰀂um(t)󰀂H1 + 󰀂g(t)󰀂V ′

󰀖
󰀂z󰀂H1 .

So for any positive T ,

sup
η∈R

󰀂ˆ̃gm(η)󰀂V ′ ≤
󰁝 T

0

󰀂gm(t)󰀂V ′dt

≤
󰁝 T

0

C

󰀕
d1󰀂um(t)󰀂2H1 + µ󰀂um(t)󰀂H1 + 󰀂g(t)󰀂V ′

󰀖

≤ C.( Where d1 is arbitrary constant) (3.19)

From (3.13), we get
󰁝 T

0

󰀂|um|β−1um(t)󰀂 β+1
β

dt ≤
󰁝 T

0

󰀂um(t)󰀂ββ+1dt ≤ C.

⇒ sup
η∈R

󰀂|um
ˆ|β−1u(η)󰀂 β+1

β
≤ C. (3.20)

Further from (3.13), we get

󰀂um(T )󰀂L2 ≤ C1, 󰀂um(0)󰀂L2 ≤ C1. (3.21)

From (3.18)–(3.21), we have

|η|α󰀂ˆ̃um(η)󰀂2L2 ≤ C2󰀂ˆ̃um(η)󰀂H1 + C3|η|α−1󰀂ˆ̃um(η)󰀂β+1.

Note that when 0 < γ < α
4 , we have

|η|2γ ≤ C4(γ)
1 + |η|α

1 + |η|α−2γ
, ∀η ∈ R.

Thus
󰁝 +∞

−∞
|η|2γ󰀂ˆ̃um(η)󰀂2L2dη ≤ C4(γ)

󰁝 +∞

−∞

1 + |η|α
1 + |η|α−2γ

󰀂ˆ̃um(η)󰀂2L2dη

≤ C5(γ)

󰁝 +∞

−∞
󰀂ˆ̃um(η)󰀂2L2dη + C6(γ)

󰁝 +∞

−∞

󰀂ˆ̃um(η)󰀂H1

1 + |η|α−2γ
dη

+ C7(γ)

󰁝 +∞

−∞

|η|α−1󰀂ˆ̃um(η)󰀂β+1

1 + |η|α−2γ
dη. (3.22)
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Using the Parseval equality and (3.13), the first integral on the right hand side of (3.22) is
bounded whenever m → ∞. By the Parseval equality, Schwartz inequality, and (3.13), we
get

󰁝 +∞

−∞

󰀂ˆ̃um(η)󰀂H1

1 + |η|α−2γ
dη ≤

󰀣󰁝 +∞

−∞

dη

(1 + |η|α−2γ)2

󰀤 1
2
󰀣󰁝 +∞

−∞
󰀂um(η)󰀂2H1dη

󰀤 1
2

≤ C8 (3.23)

Similarly, for 0 < γ < α
2(β+1) , we have

󰁝 +∞

−∞

|η|α−1󰀂ˆ̃um(η)󰀂β+1

1 + |η|α−2γ
dη

≤
󰀣󰁝 +∞

−∞

dη

(1 + |η|α−2γ)
β+1
β

󰀤 β
β+1

󰀣󰁝 +∞

−∞
|η|(α−1)(β+1)󰀂ˆ̃um(η)󰀂β+1

β+1dη

󰀤 1
β+1

≤ C

󰀣
T 1−α

Γ(2− α)

󰀤β+1 󰁝 T

0

󰀂ˆ̃um(t)󰀂β+1
β+1, (3.24)

since

󰁝 +∞

−∞
|η|(α−1)(β+1)󰀂ˆ̃um(η)󰀂β+1

β+1dη =

󰁝 +∞

−∞

󰀣
󰀂−∞It

1−α ˆ̃um(t)󰀂β+1

󰀤β+1

dt

=

󰁝 T

0

󰀂 0It
1−α ˆ̃um(t)󰀂β+1

β+1dt

≤
󰀣

T 1−α

Γ(2− α)

󰀤β+1 󰁝 T

0

󰀂ˆ̃um(t)󰀂β+1
β+1dt.

From (3.22), we can conclude that
󰁝 +∞

−∞
|η|2γ󰀂ˆ̃um(η)󰀂2L2dη ≤ C.

Using (3.13), we can deduce that u ∈ L∞(0, T ;H)∩L2(0, T ;V )∩Lβ+1(0, T ;Lβ+1(Ω))
and there is a subsequence {um}∞m=1, such that um → u in weak-∗ topology in L∞(0, T ;H),
um → u weakly in L2(0, T ;V ), and um → u weakly in Lβ+1(0, T ;Lβ+1(Ω)). Fur-
ther, we take Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ · · · having smooth boundary and fulfilling ∪∞

i=1Ωi =
Ω. We consider Y0 = V, Y = L2(Ωi) in Lemma 2.4 for fixed i = 1, 2, ...,. From
(3.13), (3.15), and Lemma 2.4 we get that um converges to u strongly in L2(0, T ;L2(Ωi)).
For 2 ≤ p < β + 1 we have umj converges to u strongly in Lp(0, T ;Lp

loc(Ω)), Since󰁕 T

0

󰁕
Ω
|um|β+1dx dt ≤ C. We integrating (3.8) (with order α) and we get,

(um(t), zj) +
1

Γ(α)

󰁝 t

0

(t− s)α−1

󰀕
(ϑ|um|β−1um(t), zj) + b(um(t), um(t), zj)

+ µ((um(t), zj))− (g(t), zj)
󰀖
ds = (u0m, zj) j = 1, ...m. (3.25)

7
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Due to Lebesgue’s dominated convergence theorem and using (3.13) , we get

(u(t), z) +
1

Γ(α)

󰁝 t

0

(t− s)α−1

󰀕
(ϑ|u|β−1u(t), z) + b(u(t), u(t), z)

+ µ((u(t), z))− (g(t), z)
󰀖
ds = (u0, z)

holds for z = z1, z2, · · · . So, we get the weak solution u(x,t) for the time fractional damped
Navier-Stokes system. □

4. UNIQUENESS THEOREM

Theorem 4.1. Let u0 ∈ H , g ∈ L
2

α1 (0, T ;H) and, β ≥ 4. Then for any positive T , there
exists a unique weak solutions u(x,t) of (1.1)–(1.4) satisfying

u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∩ Lβ+1(0, T ;Lβ+1(Ω)).

Proof. Let us choose u and v are two solutions, and consider y(t) = u(t) − v(t) and it
satisfies

∂α
t y + µAy + ϑ|u|β−1u − ϑ|v|β−1v = −Bu +Bv, (4.26)

y(0) = 0.

Multiplying (4.26) with y(t), we get

1

2
∂α
t 󰀂y(t)󰀂2L2 + µ󰀂y(t)󰀂2H1 +

󰁝

Ω

󰀕
|u|β−1u(t)− |v|β−1v(t)

󰀖
(u(t)− v(t))dx

≤ b(v(t), v(t), y(t))− b(u(t), u(t), y(t)). (4.27)

Note that
󰁝

Ω

󰀕
|u|β−1u(t)− |v|β−1v(t)

󰀖
(u(t)− v(t))dx

≥
󰁝

Ω

󰀕
|u|β+1 − |v|β |u|− |u|β |v|+ |v|β+1

󰀖
dx

=

󰁝

Ω

(|u|β − |v|β)(|u|− |v|)dx ≥ 0 ∀u, v ∈ Lβ+1(Ω).

We have
1

2
∂α
t 󰀂y(t)󰀂2L2 + µ󰀂y(t)󰀂2H1 ≤ b(v(t), v(t), y(t))− b(u(t), u(t), y(t))

= b(y, y, v)

≤ 󰀂v󰀂L5󰀂y󰀂H1󰀂y󰀂
2
5

L2󰀂y󰀂
3
5

L6

≤ C󰀂v󰀂L5󰀂y󰀂
8
5

H1󰀂y󰀂
2
5

L2

≤ µ󰀂y(t)󰀂2H1 + C󰀂v󰀂5L5󰀂y󰀂2L2

which implies
1

2
∂α
t 󰀂y(t)󰀂2L2 ≤ C󰀂v󰀂5L5󰀂y󰀂2L2 . (4.28)

Integrating (4.28) between the limit 0 to t, we get

󰀂y(t)󰀂2L2 ≤ 󰀂y(0)󰀂2L2 +
C

Γ(α)

󰁝 t

0

(t− s)α−1󰀂v󰀂5L5󰀂y󰀂2L2 . (4.29)
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Since y ∈ L5(0, T ;L5(Ω)), and applying Gronwall’s inequality we can conclude that
󰀂y(t)󰀂 = 0. Thus u(t) = v(t).

□

5. REGULARITY THEOREM

Theorem 5.1. Suppose u0 ∈ V , g ∈ L
2

α1 (0, T ;L2), β ≥ 3, and 4βµ > 1, then

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)).

Proof. First, we take the inner product of (1.1) with Au and integrating by parts we get,

∂α
t 󰀂u󰀂2H1 + 2µ󰀂Au󰀂2L2 + 2(u ·∇u, Au) + 2(∇(|u|β−1u),∇u) ≤ 2(g, Au). (5.30)

For any κ1,κ2 > 0, we can deduce that

∂α
t 󰀂u󰀂2H1 + 2µ󰀂Au󰀂2L2 + 2β󰀂|u|

β−1
2 ∇u󰀂2L2 ≤ κ1󰀂Au󰀂2L2 +

1

κ1
󰀂g󰀂2L2 + 2|(u ·∇u, Au)|

≤ (κ1 + κ2)󰀂Au󰀂2L2 +
1

κ1
󰀂g󰀂2L2 +

1

κ2
󰀂u ·∇u󰀂2L2 . (5.31)

We have the following estimates from [27]

󰀂u ·∇u󰀂2L2 =

󰁝
|∇u|2(|u|β−1 + 1)

|u|2
|u|β−1 + 1

dx

≤ 󰀂 |u|2
|u|β−1 + 1

󰀂L∞

󰀕
󰀂u󰀂2H1 + 󰀂|u|

β−1
2 ∇u󰀂2L2

󰀖

≤ 󰀂u󰀂2H1 + 󰀂|u|
β−1
2 ∇u󰀂2L2 for β ≥ 3. (5.32)

Now we put (5.32) in (5.31) and choosing κ1,κ2 > 0 such that 2β > 1
κ2

, κ1 + κ2 < 2µ
hold provided 4βµ > 1, then we get

∂α
t 󰀂u󰀂2H1 + (2µ− κ1 − κ2)󰀂Au󰀂2L2 + (2β − 1

κ2
)󰀂|u|

β−1
2 ∇u󰀂2L2

≤ C(󰀂g󰀂2L2 + 󰀂u󰀂2H1). (5.33)

Integrating (5.33) (with order α) and applying Gronwall’s inequality, we complete the
proof.

□
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