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Abstract. We focus on the nonlinear Lane-Emden type delay problems con-
nected with g-Caputo fractional derivatives. Here, we investigate the problems

under the assumption that the source functions have time-singular coefficients.

Via the Bielecki type norm, we derive the existence and uniqueness of mild so-
lutions for the problem. In a special case, by subdividing the interval of time,

we obtain a unique mild solution for the problem under a weaker condition

than the previous one. Besides, we propose and discuss a new Ulam-Hyers type
stability for the main equation. Meanwhile, a new inequality is established to

prove the main results of the paper. Some examples are provided to illustrate

the theoretical results.

1. Introduction

1.1. Statement of the problem. To state the problem, let us set up some nota-
tions. For a, b ∈ R with a < b, we denote

Mc1+ = {g : g ∈ C[a, b] and g′(t) > 0 on (a, b)} .

Let 0 < α, β ≤ 1, and let ℓ, η be real numbers with ℓ < a < b. Let ϱ ∈
C([a, b], [ℓ, b]) such that ϱ(t) ≤ t, φ ∈ C([ℓ, a],R), and let ϑ ∈ C(Mc1+ × (a, b],R)
and limt→a+ ϑ(g, t) = ∞ (singular at t = a). We examine nonlinear fractional
Lane-Emden type delay equation as follows

(1.1) CDβ,g
a+

(
CDα,g

a+ + ϑ(g, t)
)
u(t) = f(t, g, u(t), u(ρ(t))), t ∈ (a, b]

subject to the initial conditions

(1.2) u(t) = φ(t), ℓ ≤ t ≤ a, lim
t→a+

(
CDα,g

a+ + ϑ(g, t)
)
u(t) = η,

where CDα,g
a+ (·), CDβ,g

a+ (·) are g-Caputo fractional derivatives. It is worth noting
that if ϑ(g, t) is a continuous function on [a, b], the equation (1.1) become Langevin
equation and then condition

lim
t→a+

(
CDα,g

a+ + ϑ(g, t)
)
u(t) = η

can be replaced with condition Dα,g
a+ u(a) = η.
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1.2. Relevant works and motivations. The classical Lane-Emden equation has
the following form

x′′(t) +
a

t
x′(t) = f(x, t), t ∈ (0, 1]

subject to the initial conditions

x(0) = A, x′(0) = B,

where A,B are constants, and f is a continuous function. The problem has at-
tracted the great attention of many scientists because it can be used to describe
various phenomena in physics and astrophysics, such as the thermal history of a
spherical cloud of gas, isothermal gas spheres and thermionic currents, and aspects
of stellar structure and so on (see [5]). One of the most difficult things in solving
Lane-Emden problems is the appearance of the singularity at t = 0. However,
there are some suggested methods to deal with them. For instance, to find exact
solutions of these types of problems, one may use the variational iteration methods
as in [27]. To solve numerical solutions, one can use the methods as in [1, 13, 18]
and some references therein.

Fractional Lane-Emden problems, in recent years, have been studied by many
authors. Indeed, in [14], the authors obtained the existence and uniqueness results
for a nonlinear singular integro-differential equation of Lane-Emden type with non-
local multi-point integral conditions. Tablennehas et al [24, 25] studied some types
of Ulam stability for a nonlinear fractional differential equation of Lane-Emden
type with anti-periodic conditions. Gouari and Dahmani [15] considered a system
of Lane-Emden type equations involves Caputo derivatives and Riemann-Liouville
integral, obtained some existence and uniqueness results. In [3, 23], the authors
investigated the existence and uniqueness as well as the Ulam-Hyers stability for
some systems of Lane-Emden type equations. Sabir et al [21] considered numerical
solutions for a fractional order pantograph differential model of the Lane-Emden
type. Gupta and Kumar [16] investigated numerical methods for a variable-order
fractional differential equation of nonlinear Lane-Emden type appearing in astro-
physics. Very recently, Rufai and Ramos [19, 20] proposed one-step hybrid block
techniques and a variable stepsize formulation of a pair of block methods to solve
Lane-Emden-Fowler type equations.

Fractional differential equations with time-singular coefficients have recently
been considered in many works. In fact, Webb [26] looked at some differential
equations with Riemann-Liouville where the sources are singular, derived existence
and uniqueness results. Recently, we considered differential equations with Hil-
fer fractional derivative [8], Langevin equations with generalized Caputo fractional
derivatives [7, 9], and differential equations with sequential Hilfer fractional deriva-
tives [12]. In these works, we discussed many aspects such as Lyapunov inequality,
existence and uniqueness, and stability of solutions to problems where the source
functions have singularities. These types of sources were also considered for frac-
tional parabolic equations [10, 11]. However, fractional differential time-delay equa-
tions with time-singular coefficients are still not studied.

Motivated from the problems having time-singular coefficients in [7, 9, 26], the
concept of generalized Caputo fractional derivative [2], and the above analyses,
we investigate the problem (1.1)-(1.2) and make some new features as follows: (i)
prove the existence and uniqueness of mild solutions of the problem (ii) relax the
condition to problem possesses a mild solution uniquely (iii) propose and discuss
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a new type of Ulam-Hyers stability. It should be emphasized that our problem is
more difficult to solve than the usual cases because the source has a singularity.

1.3. Organization of the paper. The structure of the remainder of the paper is
as follows. In Section 2, we introduce concepts of fractional integral and fractional
derivative of a function with respect to an appropriate function. Besides, some
auxiliary lemmas are introduced. Section 3 presents the results of the existence and
uniqueness of mild solutions to the problem. A new type of Ulam-Hyes stability is
also proven. In Section 4, we provide some examples to show the applicability of
the obtained results. Conclusions of the paper are given in section 5.

2. Definitions and Lemmas

We present the definitions of the Gamma and Beta functions, recalling the def-
initions of fractional integral and fractional derivative of a function with respect
to another function. The definition of new Ulam-Hyers type stability and some
preliminary lemmas are also introduced in this section.

We first recall the definitions of the Gamma and Beta functions

Γ(α) =

∫ ∞

0

tα−1e−t dt, B(α, β) =

∫ 1

0

(1− t)α−1tβ−1 dt, α, β > 0.

We list here two identities related to the Gamma and Beta functions

Γ(α+ 1) = αΓ(α), B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
for all α, β > 0.

Definition 2.1 (see [2, 17]). Let α > 0, a, b ∈ R with a < b, and g ∈ Mc1+.
(i). The fractional integral of a function f ∈ L1(a, b) with respect to the function

g is defined as follows

Iα,ga+ f(t) =
1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1f(τ) dτ.

(ii). The Caputo fractional derivative of a function f ∈ Cn[a, b] with respect to
the function g is defined as follows

CDα,g
a+ f(t) = In−α,g

a+

(
1

g′(t)

d

dt

)n

f(t),

where n = [α] + 1 for n ̸= N and n = α for α ∈ N.

Next, we introduce some properties of the Caputo derivative that we will use in
the subsequent sections of this paper.

Lemma 2.2 (see [2]). Let α, β > 0, n = [α] + 1 ∈ N, and g ∈ Mc1+.

(i). CDα,g
a+ (g(t)− g(a))p = p!

Γ(p+1−α) (g(t)− g(a))p−α for all p ∈ N and p ≥ α.

(ii). Iα,ga+ Iβ,ga+ f(t) = Iα+β,g
a+ f(t).

(iii). If f ∈ C1[a, b] then CDα,g
a+ Iα,ga+ f(t) = f(t).

(iv). If f ∈ Cn[a, b] then Iα,ga+
CDα,g

a+ f(t) = f(t) +
∑n−1

k=0 ck(g(t)− g(a))k.

Continuously, we present the concept of the new Ulam-Hyers type stable.
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Definition 2.3. Equation (1.1) is called Ulam-Hyers ω-type stable if there exist
C > 0 and 0 < ω < min{1, α + β} such that for each ϵ > 0 and for each solution
v ∈ C([ℓ, b],R) of the following inequality
(2.1)∣∣∣CDβ,g

a+

(
CDα,g

a+ + ϑ(g, t)
)
v(t)− f(t, g, v(t), v(ρ(t)))

∣∣∣ ≤ ϵ(g(t)− g(a))−ω t ∈ (a, b],

and v(t) = φ(t) for t ∈ [ℓ, a], there exists a solution u ∈ C([ℓ, b],R) of Equation
(1.1) such that

|u(t)− v(t)| ≤ Cϵ, t ∈ [ℓ, b].

Remark 2.4. From the concept of Ulam-Hyers ω-type stable, we have
(i). If an equation is of the Ulam-Hyers ω-type stable then it is Ulam-Hyers stable

in common sense as defined in [22], but the converse is not true. Furthermore, in
this work, the source f has time-singular coefficients at t = a and then the left-side
of (2.1) may be unbounded as t → a+, so this inequality seems suitable for this type
of the problem.

(ii). A function v is a solution of inequality (2.1) if there exists a function
χ ∈ C((a, b],R) such that

|χ(t)| ≤ ϵ(g(t)− g(a))−ω

for all t ∈ (a, b] and satisfying the following equation

CDβ,g
a+

(
CDα,g

a+ + ϑ(g, t)
)
v(t) = f(t, g, v(t), v(ρ(t))) + χ(t), t ∈ (a, b].

To end this section, we present a new inequality that plays an important role in
proving the main results of the paper.

Lemma 2.5. Let α > 0, 0 ≤ β < min{1, α}, and θ > 0. Let a, b ∈ R with a < b
and g ∈ Mc1+. Then there exists a positive D independent of θ such that∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ ≤ D
eθg(t)

min {θ1−β , θα−β}
for all a < t ≤ b.

Proof. First, we recall the following equality (see [8, 9])

(2.2)

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−β dτ = B(α, 1− β)(g(t)− g(a))α−β .

Based on the above inequality, we will prove the result of Lemma. The proof is
divided into two cases.
The first case: g(t)− g(a) ≤ 1/θ for any t ∈ (a, b). Using (2.2), we get∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ

≤ eθg(t)
∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−β dτ

= eθg(t)B(α, 1− β)(g(t)− g(a))α−β

≤ B(α, 1− β)
eθg(t)

θα−β
.

The second case: there exists t0 ∈ (a, b) such that g(t0)− g(a) = 1/θ. In this case,
we note that 0 ≤ g(t)− g(a) ≤ 1/θ for any t ∈ [a, t0] and g(t)− g(a) > 1/θ for all
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t > t0.
If t ∈ [a, t0], applying (2.2) and directly computes, we have

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ

≤ eθg(t)
∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−β dτ

= eθg(t)B(α, 1− β)(g(t)− g(a))α−β

≤ B(α, 1− β)
eθg(t)

θα−β
.(2.3)

If t > t0, we have

(2.4)

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ = I1(t, t0) + I2(t, t0),

where

I1(t, t0) =

∫ t0

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ,

I2(t, t0) =

∫ t

t0

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ.

Estimate for I1(t, t0). If 0 < α ≤ 1, we have (g(t) − g(τ))α−1 ≤ (g(t0) − g(τ))α−1

for any t0 < τ ≤ t. So, similarly the first case, we get

I1(t, t0) ≤ eθg(t)
∫ t0

a

g′(τ)(g(t0)− g(τ))α−1(g(τ)− g(a))−β dτ

≤ B(α, 1− β)
eθg(t)

θα−β
.(2.5)

If α > 1, we have (g(t)− g(τ))α−1 ≤ (g(b)− g(a))α−1 for any t0 < τ ≤ t. It follows

I1(t, t0) ≤ eθg(t)(g(b)− g(a))α−1

∫ t0

a

g′(τ)(g(τ)− g(a))−β dτ

= eθg(t)(g(b)− g(a))α−1 1

1− β
(g(t0)− g(a))1−β

=
1

1− β
(g(b)− g(a))α−1 e

θg(t)

θ1−β
.(2.6)

Combining (2.5) and (2.6), we get

(2.7) I1(t, t0) ≤ max

{
B(α, 1− β),

1

1− β
(g(b)− g(a))α−1

}
eθg(t)

min {θ1−β , θα−β}
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Estimate for I2(t, t0). Using the fact that (g(τ)− g(a))−β ≤ (g(t0)− g(a))−β = θβ ,
we obtain

I2(t, t0) ≤ θβ
∫ t

t0

g′(τ)(g(t)− g(τ))α−1eθg(τ) dτ

≤ θβ
∫ t

a

g′(τ)(g(t)− g(τ))α−1eθg(τ) dτ

= θβeθg(t)
∫ g(t)−g(a)

0

yα−1e−θy dy

=
eθg(t)

θα−β

∫ θ(g(t)−g(a))

0

zα−1e−z dz

≤ eθg(t)

θα−β

∫ +∞

0

zα−1e−z dz

= Γ(α)
eθg(t)

θα−β
.(2.8)

Pushing (2.7) and (2.8) into (2.4), we infer that

(2.9)

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ ≤ D
eθg(t)

min {θ1−β , θα−β}

for any t > t0, where D = Γ(α) + max
{
B(α, 1− β), 1

1−β (g(b)− g(a))α−1
}
. Com-

bining (2.3) and (2.9), we conclude that∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−βeθg(τ) dτ ≤ D
eθg(t)

min {θ1−β , θα−β}
for all a < t ≤ b. This completes the proof of Lemma. 2 □

3. Fundamental results

In this section, we establish the formula solution of the problem. We also in-
vestigate the unique mild solution of the problem and Ulam-Hyers ω-type stability
for the main equation. We begin by presenting a solution formula for the problem.
Precisely, we have the following Lemma.

Lemma 3.1. Let u be a solution of the problem (1.1)-(1.2). Then u is a solution
of the following integral equation

u(t) = φ(0) + η(g(t)− g(a))α +
1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)u(τ) dτ

+
1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1f(τ, g, u(τ), u(ρ(τ))) dτ(3.1)

for t ∈ (a, b] and u(t) = φ(t) for t ∈ [ℓ, a].

Proof. Since
(
CDα,g

a+ + ϑ(g, ·)
)
u(·) ∈ C1[a, b], applying Lemma 2.2, we have

(3.2)
(
CDα,g

a+ + ϑ(g, t)
)
u(t) = c+ Iβ,ga+ f(t, g, u(t), u(ρ(t))).

Letting t → a and using the condition (1.2), we get c = η. Again, apply Lemma
2.2 for Eq. (3.2), we have

(3.3) u(t) = d+ c(g(t)− g(a))α + Iα,ga+ ϑ(g, t)u(t) + Iα+β,g
a+ f(t, g, u(t), u(ρ(t)))
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due to Iα,ga+ c(t) = c
Γ(α)

∫ t

a
g′(τ)(g(t) − g(τ))α−1 dτ = c

Γ(α+1) (g(t) − g(a))α. Using

the condition u(0) = φ(0), we get d = φ(0). Pushing the obtained coefficients c
and d into (3.3), we obtain the desired result of Lemma. □

Definition 3.2. A function u ∈ C([ℓ, b],R) satisfies the integral equation (3.1) is
called mild solution of the problem (1.1)-(1.2).

To prepare for the presentation of the main results of the paper, we will make
some hypotheses.

� Hypothesis (H1). g ∈ Mc1+[a, b], ρ ∈ C([a, b], [ℓ, b]) with ρ(t) ≤ t for any
t ∈ [a, b], and φ ∈ C([ℓ, a],R).

� Hypothesis (H2). ϑ ∈ C(Mc1+ × (a, b],R) and there exist L > 0 and
0 < γ < α such that

|ϑ(g, t)| ≤ L(g(t)− g(a))−γ .

� Hypothesis (H3). f ∈ C((a, b]×Mc1+ ×R×R,R), and there exist K > 0
and 0 ≤ κ < min{1, α+ β} such that

|f(t, g, u1, v1)− f(t, g, u2, v2)| ≤ K(g(t)− g(a))−κ (|u1 − u2|+ |v1 − v2|)

for every u1, u2, v1, v2 ∈ R and for any t > a.
� Hypothesis (H4). f ∈ C((a, b]×Mc1+ ×R×R,R), and there exist K > 0
and 0 ≤ κ < min{1, α+ β} such that

|f(t, g, u1, v)− f(t, g, u2, v)| ≤ K(g(t)− g(a))−κ|u1 − u2|

for all u1, u2, v ∈ R and for any t > a.
� Hypothesis (H5). There exists a constant 0 < r ≤ a − ℓ such that
ρ(t) ≤ t− r for any t ∈ (a, b].

Throughout this paper, we use the Bielecki type norm given by

(3.4) ||u||θ,b = max {Θ(θ, t)|u(t)| : ℓ ≤ t ≤ b} ,

where θ > 0, and Θ is defined as follows

Θ(θ, t) =

{
e−θg(t) for t ∈ [a, b]

e−θg(a) for t ∈ [ℓ, a).

Remark 3.3. Remark that in some case the function g may not be defined for every
t ∈ [ℓ, a), for instance, g(t) = ln t (Hadamard fractional derivative) and ℓ = 0. Here
is the reason why we introduce the weighted norm associated to the function Θ as
above.

Theorem 3.4. Assume that the hypotheses (H1) − (H3) are valid. Then, the
problem (1.1)-(1.2) possesses a mild solution uniquely in C([ℓ, b],R).

Remark 3.5. Unlike previous results in literature, in Theorem 3.4, we obtained
the existence and uniqueness results for the problem where the source function may
have time-singular coefficients.
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Proof. Consider the operator Φ : C([ℓ, b],R) → C([ℓ, b],R) defined as follows

Φu(t) =



φ(0) + η(g(t)− g(a))α

+
1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)u(τ) dτ

+
1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1

×f(τ, g, u(τ), u(ρ(τ))) dτ for t ∈ (a, b],

φ(t) for t ∈ [ℓ, a].

Using the Bielecki type norm given by (3.4), we intend to prove that Φ is a con-
traction mapping with θ large enough. Observe that |Φu(t)− Φv(t)| = 0 for any
t ∈ [ℓ, a], hence, the next step is to evaluate for t ∈ (a, b].

Using the hypotheses (H2)− (H3) and direct computation, we have

|Φu(t)− Φv(t)| ≤ 1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1|ϑ(g, τ)||u(τ)− v(τ)| dτ

+
1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1

× |f(τ, g, u(τ), u(ρ(τ)))− f(τ, g, v(τ), v(ρ(τ)))| dτ

≤ L

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−γ |u(τ)− v(τ)| dτ

+
K

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1(g(τ)− g(a))−κ

× (|u(τ)− v(τ)|+ |u(ρ(τ))− v(ρ(τ))|) dτ.(3.5)

On the other hand, it is clear that Θ is a non-increasing function (with respect to
the second variable). Therefore, for any τ ∈ [a, b], we have

e−ωg(τ)|u(ρ(τ))− v(ρ(τ))| = Θ(g, τ)|u(ρ(τ))− v(ρ(τ))|
≤ max

a≤τ≤b
Θ(g, ρ(τ))|u(ρ(τ))− v(ρ(τ))|

≤ max
ℓ≤z≤b

Θ(g, z)|u(z)− v(z)| = ||u− v||θ,b,

due to ℓ ≤ ρ(τ) ≤ τ ≤ b. Thus, pushing the results just obtained into (3.5) and
using Lemma 2.5, we obtain

|Φu(t)− Φv(t)|

≤ L

Γ(α)
||u− v||θ,b

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−γeθg(τ) dτ

+
2K

Γ(α+ β)
||u− v||θ,b

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1(g(τ)− g(a))−κeθg(τ) dτ

≤
(

LD1

Γ(α)min{θ1−γ , θα−γ}
+

2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
eθg(t)||u− v||θ,b,
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where D1, D2 is independent of θ. This leads to

e−θg(t)|Φu(t)− Φv(t)|

≤
(

LD1

Γ(α)min{θ1−γ , θα−γ}
+

2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
||u− v||θ,b.

It follows

||Φu− Φv||θ,b

≤
(

LD1

Γ(α)min{θ1−γ , θα−γ}
+

2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
||u− v||θ,b.

Since (
LD1

Γ(α)min{θ1−γ , θα−γ}
+

2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
= 0,

we conclude from the latter inequality that Φ is contraction with θ large enough.
As a consequence, Φ possesses a solution uniquely in C([ℓ, b],R). This finishes the
proof of Theorem. □

In the next theorem, we show that if hypothesis (H5) is valid, then we can
replace hypothesis (H3) in Theorem 3.4 with hypothesis (H4). It is clear that the
hypothesis (H4) is weaker than the hypothesis (H3). More precisely, we have the
following theorem.

Theorem 3.6. Suppose that the hypotheses (H1), (H2), (H4) and (H5) are satis-
fied. Then the problem (1.1)-(1.2) possesses a mild solution uniquely in C([ℓ, b],R).

Remark 3.7. The result of Theorem 3.6 seems to be new and still not consider
for Lane-Emden in literature. Besides, considering the problem with the source
function having time-singular coefficients is also a new aspect of our result.

Proof. We divide the interval [a, b] into parts by a = A0 < A1 < .. < An = b with
Ai − Ai−1 = δ (i = 1, n), where δ ≤ r (related to this idea, we can refer to [4, 6]).
The proof of Theorem is separated into 3 steps.

Step 1. We denote by V1 the Banach space of all continuous functions on [ℓ, A1]
such that u(t) = φ(t) for all u ∈ V1 and ℓ ≤ t ≤ a with the Bielecki type norm
||·||θ,A1

. Define the operator Φ1 : V1 → V1 by

Φ1u(t) =



φ(0) + η(g(t)− g(a))α

+
1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)u(τ) dτ

+
1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1

×f(τ, g, u(τ), u(ρ(τ))) dτ for t ∈ (a,A1]

φ(t) for t ∈ [ℓ, a].

We have Φ1u(t) = Φ1v(t) = φ(t) for any t ∈ [ℓ, a]. We next consider t ∈ [a,A1].
Since ρ(t) ≤ t− r ≤ t− δ ≤ a for any t ≤ A1, it follows u(ρ(t)) = v(ρ(t)) = φ(t) for
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any t ≤ T1. Using the hypothesis (H4), we get

|Φ1u(t)− Φ1v(t)|

≤ L

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−γ |u(τ)− v(τ)| dτ

+
K

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1(g(τ)− g(a))−κ|u(τ)− v(τ)| dτ.

Similarly the process of the proof of Step 1, we obtain

|Φ1u(t)− Φ1v(t)|

≤ L

Γ(α)
||u− v||θ,A1

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−γeθg(τ) dτ

+
K

Γ(α+ β)
||u− v||θ,A1

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1(g(τ)− g(a))−κeθg(τ) dτ

≤
(

LD1

Γ(α)min{θ1−γ , θα−γ}
+

KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
eθg(t)||u− v||θ,A1

,

where D1, D2 is independent of θ. From the latter inequality, we deduce that

||Φ1u− Φ1v||θ,A1

≤
(

LD1

Γ(α)min{θ1−γ , θα−γ}
+

KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
||u− v||θ,A1

.

For θ large enough, we find that Φ1 is a contraction mapping on V1 and Φ1 admits a
unique solution in V1. As a result, the problem (1.1)-(1.2) possesses a mild solution
uniquely on [ℓ, A1].

Step 2. Next, we extend the existence and uniqueness of solutions of the problem
on [ℓ, A2]. We denote by V2 the Banach space of all continuous functions on [a,A2]
such that u(t) = u1(t) for any u ∈ V2 and ℓ ≤ t ≤ A1 with the Bielecki type norm
||·||θ,A2

. Define the operator Φ2 : V2 → V2 by

Φ2u(t) =



φ(0) + η(g(t)− g(a))α

+
1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)u(τ) dτ

+
1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1

×f(τ, g, u(τ), u(ρ(τ))) dτ for t ∈ (A1, A2]

u1(t) for t ∈ [ℓ, A1].

It is clear that Φ2u(t) = Φ2v(t) = u1(t) for t ∈ [ℓ, A1]. For t ∈ (A1, A2], we find
that ρ(t) ≤ t−r ≤ t−δ ≤ A1 for any t ≤ A2. This implies u(ρ(t)) = v(ρ(t)) = u1(t)
for t ≤ A2. By using the same method used to prove Step 1, we conclude that

||Φ2u− Φ2v||θ,A2

≤
(

LD1

Γ(α)min{θ1−γ , θα−γ}
+

KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
||u− v||θ,A2

.

This leads to the existence and unique of mild solutions of the problem (1.1)-(1.2)
on [ℓ, A2].
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Step 3. By continuing this process to nth Step, we obtain a unique continuous
function un := u on [ℓ, An] = [ℓ, b], which is a mild solution of the problem (1.1)-
(1.2). The proof of the theorem is complete. □

Finally, we give a results on the Ulam-Hyers ω-type stability for the main equa-
tion.

Theorem 3.8. Assume that the hypotheses (H1) − (H3) hold. Then, Equation
(1.1) is Ulam-Hyers ω-type stable for some 0 < ω < min{1, α+ β}.

Remark 3.9. It should be noted that the functions ϑ and f are singular at t = a,
so, for fixed v ∈ C([ℓ, b],R), we may have∣∣∣CDβ,g

a+

(
CDα,g

a+ + ϑ(g, t)
)
v(t)− f(t, g, v(t), v(ρ(t)))

∣∣∣ → ∞ as t → a+.

This shows that it seems justified to consider the condition∣∣∣CDβ,g
a+

(
CDα,g

a+ + ϑ(g, t)
)
v(t)− f(t, g, v(t), v(ρ(t)))

∣∣∣ ≤ ϵ(g(t)− g(a))−ω, t ∈ (a, b]

for problems with time-singular coefficients. Here is the main reason why the Ulam-
Hyers ω-type stable is proposed and studied in this paper. To the best of our knowl-
edge, it is the first time in the literature the concept Ulam-Hyers ω-type stability
has been proposed and investigated. Furthermore, as we mentioned in Remark 2.4,
the obtained result is stronger than the previous ones.

Proof. Note that the hypotheses (H1)−(H3) ensures that the problem (1.1)-(1.2)
possesses a mild solution uniquely u on [ℓ, b], i.e., it satisfies the following integral
equation

u(t) = φ(0) + η(g(t)− g(a))α +
1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)u(τ) dτ

+
1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1f(τ, g, u(τ), u(ρ(τ))) dτ

for t ∈ (a, b].
We now consider a solution v of the following inequality∣∣∣CDβ,g

a+

(
CDα,g

a+ + ϑ(g, t)
)
v(t)− f(t, g, v(t), v(ρ(t)))

∣∣∣ ≤ ϵ(g(t)− g(a))−ω, t ∈ (a, b]

and v(t) = φ(t) for t ∈ [ℓ, a]. This implies from Remark 2.4 that for each ϵ > 0
there exists a function χ ∈ C((a, b],R) with |χ(t)| ≤ ϵ(g(t) − g(a))−ω for some
0 < ω < min{1, α+ β} such that

v(t) = φ(0) + η(g(t)− g(a))α +
1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)v(τ) dτ

+
1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1(f(τ, g, v(τ), v(ρ(τ))) + χ(τ)) dτ.
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This gives

|v(t)− u(t)| ≤
∣∣∣v(t)− φ(0)− η(g(t)− g(a))α

− 1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)u(τ) dτ

− 1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1f(τ, g, u(τ), u(ρ(τ))) dτ
∣∣∣

≤ I1(t) + I2(t) + I3(t),(3.6)

where

I1(t) =
∣∣∣v(t)− φ(0)− η(g(t)− g(a))α

− 1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)v(τ) dτ

− 1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1f(τ, g, v(τ), v(ρ(τ))) dτ
∣∣∣

I2(t) =

∫ t

a

g′(τ)(g(t)− g(τ))α−1|ϑ(g, τ)||v(τ)− u(τ)| dτ

I3(t) =

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1|f(τ, g, v(τ), v(ρ(τ)))− f(τ, g, u(τ), u(ρ(τ)))| dτ.

To obtain the desired result, we estimate for three terms in the right-hand side of
(3.6). For the first term, thank to equality (2.2), we have

I1(t) =
∣∣∣φ(0)− η(g(t)− g(a))α − 1

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1ϑ(g, t)v(τ) dτ

− 1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1f(τ, g, v(τ), v(ρ(τ))) dτ
∣∣∣

≤ 1

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1|χ(τ)| dτ

≤ ϵ

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1(g(τ)− g(a))−ω dτ

=
B(α+ β, 1− ω)

Γ(α+ β)
(g(t)− g(a))α+β−ωϵ

≤ Γ(1− ω)

Γ(α+ β + 1− ω)
(g(b)− g(a))α+β−ωϵ.(3.7)

For the second term, using the hypothesis (H2), equality (2.2) and Lemma 2.5, we
get

I2(t) ≤
L

Γ(α)

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−γ |v(τ)− u(τ)| dτ

≤ L

Γ(α)
||u− v||θ,b

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−γeθg(τ) dτ

≤ LD1

Γ(α)min{θ1−γ , θα−γ}
eθg(t)||u− v||θ,b.(3.8)
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For the third term, using the hypothesis (H3) and equality (2.2) together with
Lemma 2.5, we also have

I3(t) ≤
K

Γ(α+ β)

∫ t

a

g′(τ)(g(t)− g(τ))α+β−1(g(τ)− g(a))−κ

× (|v(τ)− u(τ)|+ |v(ρ(τ))− u(ρ(τ))|) dτ

≤ 2K

Γ(α+ β)
||u− v||θ,b

∫ t

a

g′(τ)(g(t)− g(τ))α−1(g(τ)− g(a))−κeθg(τ) dτ

≤ 2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}
eθg(t)||u− v||θ,b.(3.9)

Substituting (3.7), (3.8) and (3.9) into (3.6), we obtain

|v(t)− u(t)| ≤ Γ(1− ω)

Γ(α+ β + 1− ω)
(g(b)− g(a))α+β−ωϵ

+

(
LD1

Γ(α)min{θ1−γ , θα−γ}
+

2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
eθg(t)||u− v||θ,b.

This deduces that

||u− v||θ,b ≤
Γ(1− ω)

Γ(α+ β + 1− ω)
(g(b)− g(a))α+β−ωϵ

+

(
LD1

Γ(α)min{θ1−γ , θα−γ}
+

2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
||u− v||θ,b.

We choose θ large enough such that

E =

(
LD1

Γ(α)min{θ1−γ , θα−γ}
+

2KD2

Γ(α+ β)min{θ1−κ, θα+β−κ}

)
< 1

and we obtain

e−θg(t)|v(t)− u(t)|

≤ ||u− v||θ,b ≤
Γ(1− ω)

(1− E)Γ(α+ β + 1− ω)
(g(b)− g(a))α+β−ωϵe−θg(a)ϵ

or

|v(t)− u(t)| ≤ Γ(1− ω)

(1− E)Γ(α+ β + 1− ω)
(g(b)− g(a))α+β−ωeθ(g(t)−g(a))ϵ

≤ Γ(1− ω)

(1− E)Γ(α+ β + 1− ω)
(g(b)− g(a))α+β−ωeθ(g(b)−g(a))ϵ.

So, the main equation is Ulam-Hyers ω-type stable. The theorem is completely
proven. □

4. Applications

We present two examples to show the applicability of the obtained results of the
paper.
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Example 4.1. We consider the common Caputo fractional derivative, i.e., g(t) = t.
We examine the Lane-Emden problem in the following form

(4.1)


CD

t,2/3
0+

(
CD

t,9/10
0+ + t−1/2

)
u(t)

= t−2/5(u(t) + u3(t− (t+ 1)/(t+ 2))), t ∈ (0, 1]

u(t) = 1− cos t, t ∈ [−1, 0], limt→0+

(
t−1/2u(t) + CD

t,9/10
0+ u(t)

)
= 0,

where a = 0, b = 1, ℓ = −1, α = 9/10, β = 2/3, ϑ(g, t) = t−1/2, and f(t, g, u, v) =
t−2/5(u(t) + v3(t)) with ρ(t) = t − (t + 1)/(t + 2). It is clear that f ∈ C((0, 1] ×
Mc1+ × R× R,R), and

|f(t, u1, v)− f(t, u2, v)| ≤ t−2/5|u1 − u2|

for any u1, u2, v ∈ R and t ∈ (0, 1]. Since γ = 1/2 < α = 9/10, κ = 2/5 < α+ β =
47/30 and ρ(t) = t − (t + 1)/(t + 2) ≤ t − 1/2 for any t ∈ (0, 1], so, we can use
Theorem 3.6 to conclude that the problem (4.1) possesses a mild solution uniquely
on [−1, 1].

Example 4.2. In the second example, we consider the Hadamard fractional deriv-
ative, i.e., g(t) = ln t and examine the Lane-Emden problem as follows

(4.2)


CD

ln,1/2
1+

(
CD

ln,5/6
1+ + (ln t)−1/3

)
u(t)

= t−2/3 [2u(t) + 1/(|u(t− 0.1(t− 1))|+ 1)] , t ∈ (1, e]

u(t) = t+ t2 − 2, t ∈ [0, 1],

limt→1+

(
(ln t)−1/3u(t) + CD

ln,5/6
1+ u(t)

)
= 0,

where a = 1, b = e, ℓ = 0, α = 1/2, β = 4/6, ϑ(g, t) = (ln t)−1/3, and f(t, g, u, v) =
t−2/3 [2u(t) + 1/(|v|+ 1))] with ρ(t) = t−0.1(t−1). It is obvious that f ∈ C((1, e]×
Mc1+ × R× R,R), and

|f(t, u1, v1)− f(t, u2, v2)| ≤ 2t−2/3(|u1 − u2|+ |v1 − v2|)

for all u1, u2, v1, v2 ∈ R and t ∈ (1, e]. We can find that γ = 1/3 < α = 5/6 and
κ = 2/3 < α+β = 4/3. So, using Theorem 3.4, we conclude that the problem (4.2)
possesses a mild solution uniquely. Moreover, using Theorem 3.8, we also conclude
that the main equation is Ulam-Hyers ω-type stable for any ω ∈ (0, 1).

5. Conclusions

We studied the existence and uniqueness of mild solutions of nonlinear Lane-
Emden type delay problem with generalized Caputo fractional derivatives. In some
cases, we obtained a unique result with a condition that is weaker than the previous
one. We also proved that the main equation is Ulam-Hyers ω-type stable. In the fu-
ture work, we would like to study nonlinear Lane-Emden type delay equations with
Hilfer fractional derivatives and investigate the continuous dependence of solutions
of problems with respect to fractional orders and associated parameters.
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