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Abstract. Let ψq,n = (−1)n−1 ψ
(n)
q for n ∈ N, where ψ

(n)
q are the q-

polygamma functions. In this paper, by the monotonicity rules for the ratio
of two power series, it is proved that, for q ∈ (0, 1) and n ∈ N, the function

x 7→ Fq,n (x;α) =
qx+α − 1

ln q

ψq,n+1 (x)

ψq,n (x)
,

is decreasing (increasing) on (0,∞) if and only if α ≤ logq (2n/ (q + 1)) (α ≥
0). The conditions for which several relevant functions are monotonic or com-

pletely monotonic on (0,∞) are obtained. Moreover, several relations involving

the q-polygamma functions are established.

1. Introduction

The classical Euler’s gamma function Γ is defined by

(1.1) Γ (x) =

∫ ∞
0

tx−1e−tdt

for x > 0, and its logarithmic derivative ψ (x) = Γ′ (x) /Γ (x) is known as the psi
or digamma function, while ψ′, ψ′′, ..., ψ(n) are called polygamma functions. As
usual, we denote by ψn = (−1)

n−1
ψ(n) for n ∈ N.

The q-gamma function [1, 2] is defined for x > 0 and q 6= 1 by

Γq (x) = (1− q)1−x
∞∏
n=0

1− qn+1

1− qn+x
, if 0 < q < 1,(1.2)

Γq (x) = (q − 1)
1−x

qx(x−1)/2
∞∏
n=0

1− q−(n+1)

1− q−(n+x)
, if q > 1.(1.3)

It is easy to see that limx→0 Γq (x) = ∞ and limx→∞ Γq (x) = ∞. From (1.2) and
(1.3) we have that, for all q > 0,

(1.4) Γq (x) = q(x−1)(x−2)/2Γ1/q (x) , x > 0.

Analogously, the logarithmic derivative of the q-gamma function ψq (x) = Γ′q (x) /Γq (x)

is known as q-psi or q-digamma function, and ψ′q, ψ
′′
q , ..., ψ

(n)
q are called q-polygamma
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2 ZHEN-HANG YANG AND JING-FENG TIAN*

functions. The q-digamma function ψq (x) has a series representation:

ψq (x) = − ln (1− q) +

∞∑
k=0

qk+x ln q

1− qk+x
(1.5)

= − ln (1− q) + (ln q)

∞∑
k=1

qkx

1− qk
for 0 < q < 1.(1.6)

Then

(1.7) (−1)
n−1

ψ(n)
q (x) = (− ln q)

n+1
∞∑
k=1

knqkx

1− qk
if 0 < q < 1

for x > 0 and n ∈ N. It is worth mentioning that Ismail and Muldoon [3] found
that the q-psi function has the following Stieltjes integral representation:

(1.8) ψq (x) = − ln (1− q)−
∫ ∞
0

e−xt

1− e−t
dγq (t) ,

where

γq (t) = − ln q

∞∑
k=1

δ (t+ k ln q) , 0 < q < 1,

is a discrete measure with positive masses − ln q at the positive points −k ln q,
k = 1, 2, .... This offered a new and simple way to investigate the q-gamma and
q-polygamma functions (see [4]).

For convenience, we denote by ψq,n = (−1)
n−1

ψ
(n)
q for n ∈ N0 = N∪{0}, where

ψq,0 = −ψq. It is readily seen from (1.6) and (1.7), for n ∈ N and q ∈ (0, 1),

(1.9)

lim
x→0+

ψq (x) = −∞, lim
x→∞

ψq (x) = − ln (1− q) ,

lim
x→0+

ψq,n (x) =∞, lim
x→∞

ψq,n (x) = 0.

The close relation between the ordinary gamma function Γ and the q-gamma
function Γq is given by limq→1 Γq (x) = Γ (x) , x > 0 (see [2], [5]). Likewise, the
ordinary digamma function ψ and q-digamma function ψq satisfy the following
limit relation: limq→1 ψq (x) = ψ (x) , x > 0 (see [6]). We claim that the ordinary

polygamma function ψ(n) and q-polygamma function ψ
(n)
q also satisfy a similar

limit relation.

Claim 1. Let n ∈ N. We have

(1.10) lim
q→1−

ψ(n)
q (x) = lim

q→1+
ψ(n)
q (x) = ψ(n) (x) , x > 0.

Sketch of proof. The first equality of (1.10) follows from the relation (1.4). It was
proved in [7, Eq. (2.5)] that

dn

dtn

(
qt ln q

1− qt

)
=

(
ln q

1− qt

)n+1

qtPn−1
(
qt
)

, n ∈ N,

where Pn (z) is a polynomial of degree n satisfying

Pn (z) =
(
z − z2

)
P ′n−1 (z) + (nz + 1)Pn−1 (z) , P0 (z) = 1, n ≥ 1.
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MONOTONICITY INVOLVING THE q-POLYGAMMA FUNCTIONS 3

The above relation implies that Pn (1) = (n+ 1)Pn−1 (1) with P0 (1) = 1, and
therefore, Pn (1) = (n+ 1)!. From these it follows that

lim
q→1

dn

dtn

(
qt ln q

1− qt

)
=

(−1)
n+1

n!

tn+1
, n ∈ N.

Now, using (1.5) and differentiating yield

ψ(n)
q (x) =

∞∑
k=0

dn

dxn

(
qk+x ln q

1− qk+x

)
, q ∈ (0, 1) .

Then

lim
q→1−

ψ(n)
q (x) =

∞∑
k=0

lim
q→1−

dn

dxn

(
qk+x ln q

1− qk+x

)
=

∞∑
k=0

(−1)
n+1

n!

(k + x)
n+1 = ψ(n) (x) .

�

In 2001, Alzer [8, Lemma 2] (see also [9, Lemma 2.1]) proved that the function
x 7→ xψn+1 (x) /ψn (x) is strictly decreasing from (0,∞) onto (n, n+ 1). Yang
[10, Corollary 2] proved that the function x 7→ (x + r)ψn+1 (x) /ψn (x) is strictly
decreasing (increasing) on (0,∞) if and only if r ≥ 0 (r ≤ −1/2). For the q-
polygamma functions, it is natural to ask the following problem.

Problem 1. What are the conditions for which the function

(1.11) x 7→ Fq,n (x;α) =
qx+α − 1

ln q

ψq,n+1 (x)

ψq,n (x)
,

is increasing or decreasing on (0,∞) for n ∈ N and q > 0 with q 6= 1?

The aim of this paper is to give an answer to the problem for q ∈ (0, 1). Our
main result is contained in the following theorem.

Theorem 1. Let q ∈ (0, 1) and n ∈ N. The following statements are valid:
(i) If α ≤ α0 = logq (2n/ (q + 1)), then the function x 7→ Fq,n (x;α) is increasing

on (0,∞). In particular, for α = α0, the inequality

qx+α0 − 1

ln q
<

ψq,n (x)

ψq,n+1 (x)

holds for x > 0.
(ii) If α ≥ 0 then the function x 7→ Fq,n (x;α) is decreasing on (0,∞). In

particular, for α = 0, the double inequality

(1.12)
ln q

qx − 1
<
ψq,n+1 (x)

ψq,n (x)
<

(n+ 1) ln q

qx − 1

holds for x > 0. The lower and upper bounds are sharp.
(iii) If logq (2n/ (q + 1)) < α < 0, then there is an x0 > 0 such that the function

is increasing on (0, x0) and decreasing on (x0,∞).

2. Tools

To prove our results, we need several tools: the monotonicity rules for the ratio
of two power series, the signs rule for the NP (PN)-type power series, and an
important limit formula.
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4 ZHEN-HANG YANG AND JING-FENG TIAN*

2.1. Monotonicity rules for the ratio of two power series. The following
lemma is due to Biernacki and Krzyz [11], which play an important role in dealing
with the monotonicity of the ratio of power series.

Lemma 1. Let A (t) =
∑∞
n=0 ant

n and B (t) =
∑∞
n=0 bnt

n be two real power series
converging on (−r, r) (r > 0) with bn > 0 for all n. If the sequence {an/bn}n≥0 is
increasing (decreasing), then so is the ratio A (t) /B (t) on (0, r).

Another monotonicity rule in the case when the sequence {an/bn}n≥0 is piecewise
monotonic was established by Yang, Chu and Wang in [12, Theorem 2.1], which is
efficient to study for certain special functions, see [13], [14], [15], [16], [17].

Before stating this monotonicity rule, we introduce an auxiliary function Hf,g

given first in [18], which was called Yang’s H-function in [19] by Tian et. al. For
−∞ ≤ a < b ≤ ∞, let f and g be differentiable on (a, b) and g′ 6= 0 on (a, b). Then
the function Hf,g is defined by

(2.1) Hf,g :=
f ′

g′
g − f.

The following lemma is a modified version of [12, Theorem 2.1] and appeared in
[20].

Lemma 2. [20] Let A (t) =
∑∞
k=0 akt

k and B (t) =
∑∞
k=0 bkt

k be two real power
series converging on (−r, r) and bk > 0 for all k. Suppose that for certain m ∈ N,
the sequences {ak/bk}0≤k≤m and {ak/bk}k≥m are both non-constant, and they are

increasing (decreasing) and decreasing (increasing), respectively. Then the function
A/B is strictly increasing (decreasing) on (0, r) if and only if HA,B (r−) ≥ (≤) 0.
If HA,B (r−) < (>) 0, then there exists t0 ∈ (0, r) such that the function A/B
is strictly increasing (decreasing) on (0, t0) and strictly decreasing (increasing) on
(t0, r).

2.2. Signs rule for the NP (PN)-type power series. We begin with introduc-
ing certain special sequences containing positive (negative) sequence, NP and PN-
type sequences. If every term of a real sequence is nonnegative (nonpositive) and at
least one is non-zero, then this sequence is called a positive (negative) sequence. Let
m ∈ N. A real sequence {an}n≥0 is called an negative-positive-type sequence, NP-

type sequence for short, if the subsequences {an}0≤n≤m and {an}n>m are negative

and positive sequences, respectively. {−an}n≥0 is called a positive-negative-type
sequence, PN-type sequence for short. The NP or PN-type power series is defined
as follows.

Definition 1 ([21]). The power series S (t) =
∑∞
k=0 akt

k is called an NP-type
power series if the sequence {an}n≥0 is an NP-type sequence. −S (t) is called a
PN-type power series.

For the NP or PN-type power series, a simple but efficient criterion to determine
their signs has been proven in [22], which is a revised version of the electronic
preprint [23], and proven differently in [24].

Lemma 3. Let S (t) be an NP-type power series converging on the interval (0, r)
(r > 0). (i) If S (r−) ≤ 0, then S (t) < 0 for all t ∈ (0, r). (ii) If S (r−) > 0, then
there is a unique t0 ∈ (0, r) such that S (t) < 0 for t ∈ (0, t0) and S (t) > 0 for
t ∈ (t0, r).

Remark 1. If r =∞, then Lemma 3 is changed to [25, Lemma 6.3].
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MONOTONICITY INVOLVING THE q-POLYGAMMA FUNCTIONS 5

2.3. An important limit formula. The following lemma was listed in [26, Prob-
lems 85].

Lemma 4. If two given infinite sequences {an}n≥0 and {bn}n≥0 satisfy the condi-

tions: (i) bn > 0 for all n ≥ 0; (ii)
∞∑
n=0

bnt
n is convergent for |t| < 1 and divergent

for t = 1; (iii) lim
n→∞

an
bn

= s. Then
∑∞
n=0 ant

n converges for |t| < 1 and

lim
t→1−

∑∞
n=0 ant

n∑∞
n=0 bnt

n
= s.

3. Proof of Theorem 1

The one parameter mean of two distinct positive numbers a and b is defined by

Jp (a, b) =
p

p+ 1

ap+1 − bp+1

ap − bp
if p 6= −1, 0

and

J−1 (a, b) = lim
p→−1

Jp (a, b) = ab
ln a− ln b

a− b
=
G2 (a, b)

L (a, b)
,

J0 (a, b) = lim
p→0

Jp (a, b) =
a− b

ln a− ln b
= L (a, b) .

It was proved in [27, Theorem 1] that the function p 7→ Jp (a, b) is increasing on
(−∞,∞), and is log-convex on (−∞,−1/2) and log-concave on (−1/2,∞). The
following lemma provides a new property of the function p 7→ Jp (a, b), which will
be directly used to prove our main result.

Lemma 5. Let a > b > 0. The function

p 7→Wθ (a, b; p) =
pθ

(p+ 1)
θ−1 Jp (a, b)

is convex on (0,∞) if and only if θ ≥ 1.

Proof. Making a change of variable t = ln
√
a/b, Jp (a, b) can be expressed as

Jp (a, b)√
ab

=
p

p+ 1

(ab)
(p+1)/2

√
ab (ab)

p/2

a(p+1)/2/b(p+1)/2 − b(p+1)/2/a(p+1)/2

ap/2/bp/2 − bp/2/ap/2

=
p

p+ 1

(√
a/b
)p+1

−
(√

a/b
)−(p+1)

(√
a/b
)p
−
(√

a/b
)−p =

p

p+ 1

sinh (pt+ t)

sinh (pt)
,

and then, Wθ (a, b; p) can be represented as

Wθ (a, b; p)√
ab

=
pθ+1

(p+ 1)
θ

sinh (pt+ t)

sinh (pt)
:= wθ (t, p) .

Differentiation yields

∂wθ
∂p

=
(θ + p+ 1) pθ

(p+ 1)
θ+1

sinh (pt+ t)

sinh (pt)
− pθ+1

(p+ 1)
θ

t sinh t

sinh2 (pt)
,
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6 ZHEN-HANG YANG AND JING-FENG TIAN*

∂2wθ
∂p2

=
θ (θ + 1) pθ−1

(p+ 1)
θ+2

sinh (pt+ t)

sinh (pt)
− 2

(θ + p+ 1) pθ

(p+ 1)
θ+1

t sinh t

sinh2 (pt)

+
pθ+1

(p+ 1)
θ

2t2 sinh t cosh (pt)

sinh3 (pt)
:=

pθ−1

(p+ 1)
θ+2

sinh3 (pt)
Vθ (t, p) ,

where

(3.1)

Vθ (t, p) = θ (θ + 1) sinh2 (pt) sinh (pt+ t)

−2p (p+ 1) (θ + p+ 1) t sinh t sinh (pt)

+2p2 (p+ 1)
2
t2 sinh t cosh (pt) .

If p 7→Wθ (a, b; p) is convex on (0,∞) for a > b > 0, then for all p, t > 0,

lim
t→0

Vθ (t, p)

t3
≥ 0.

Expanding in power series of t yields

Vθ (t, p) = p2 (p+ 1) θ (θ − 1) t3 +O
(
t5
)
,

which implies that

lim
t→0

Vθ (t, p)

t3
= p2 (p+ 1) θ (θ − 1) .

Therefore, the necessary condition for Vθ (t, p) ≥ 0 for all t, p > 0 is that: θ ≥ 1.
It remains to prove that Vθ (t, p) > 0 for all t, p > 0 if θ ≥ 1. Applying the

known inequality x coshx > sinhx for x > 0, the sum of the second and third of
the expression of Vθ (t, p) is greater than

−2p (p+ 1) (θ + p+ 1) t sinh t sinh (pt) + 2p (p+ 1)
2
t sinh t sinh (pt)

= −2θp (p+ 1) t sinh t sinh (pt) ,

then

Vθ (t, p) > θ (θ + 1) sinh2 (pt) sinh (pt+ t)− 2θp (p+ 1) t sinh t sinh (pt)

= 2θp (p+ 1) t sinh t sinh (pt)

[
θ + 1

2

sinh (pt)

pt

sinh (pt+ t)

(p+ 1) sinh t
− 1

]
> 0,

where the last inequality holds due to θ ≥ 1, sinh (pt) > pt and sinh (pt+ t) >
(p+ 1) sinh t for p, t > 0. This completes the proof. �

Lemma 6. Let q ∈ (0, 1) and n ∈ N. Then the function ψq,n/ψq,n+1 is increasing
from (0,∞) onto (0,−1/ ln q). Consequently, for x > 0 we have the inequality

(3.2) ψq,n (x)ψq,n+2 (x)− ψ2
q,n+1 (x) > 0.

Proof. Using the representation (1.7) yields

(3.3)
ψq,n (x)

ψq,n+1 (x)
=

(− ln q)
n+1∑∞

k=1 bkt
k

(− ln q)
n+2∑∞

k=1 kbkt
k

=
1

− ln q

∑∞
k=1 bk+1t

k∑∞
k=1 (k + 1) bk+1tk

,

where t = qx and

(3.4) bk =
kn

1− qk
.
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MONOTONICITY INVOLVING THE q-POLYGAMMA FUNCTIONS 7

Since the ratio of those coefficients of power series in (3.3) is clearly decreasing, by
Lemma 1 the ratio of power series in (3.3) is so with respect to t, which implies
that the function ψq,n/ψq,n+1 is increasing on (0,∞) with

lim
x→∞

ψq,n (x)

ψq,n+1 (x)
=

1

− ln q
lim
t→0

∑∞
k=0 bk+1t

k∑∞
k=0 (k + 1) bk+1tk

=
1

− ln q
,

and by Lemma 4,

lim
x→0

ψq,n (x)

ψq,n+1 (x)
=

1

− ln q
lim
t→1

∑∞
k=0 bk+1t

k∑∞
k=0 (k + 1) bk+1tk

=
1

− ln q
lim
t→1

bk+1

(k + 1) bk+1
= 0.

Using the increasing property of ψq,n/ψq,n+1 on (0,∞), we have(
ψq,n
ψq,n+1

)′
=

ψ′q,n
ψq,n+1

+ ψq,n

(
−
ψ′q,n+1

ψ2
q,n+1

)
=
ψq,nψq,n+2

ψ2
q,n+1

− 1 > 0,

which implies (3.2), and the proof is completed. �

We are now in a position to prove our main result.

Proof of Theorem 1. Using the representation (1.7) yields

(3.5) (− ln q)ψq,n (x) = (− ln q)
n+2

∞∑
k=1

knqkx

1− qk
= (− ln q)

n+2
∞∑
k=1

bkt
k := g (t) ,

where t = qx and bk is given by (3.4);(
1− qx+α

)
ψq,n+1 (x) = (1− tqα) (− ln q)

n+2
∞∑
k=1

kbkt
k

= (− ln q)
n+2

[
b1t+

∞∑
k=2

(kbk − qα (k − 1) bk−1) tk

]

= (− ln q)
n+2

∞∑
k=1

akt
k := f (t) ,(3.6)

where

(3.7) a1 = b1 and ak = kbk − qα (k − 1) bk−1 for k ≥ 2.

Then Fq,n (x;α) can be expressed as

Fq,n (x;α) =
f (t)

g (t)
=

1

− ln q

(− ln q)
n+2∑∞

k=1 akt
k

(− ln q)
n+1∑∞

k=1 bkt
k

=

∑∞
k=1 akt

k∑∞
k=1 bkt

k
.

To prove the monotonicity of the function Fq,n (x), we have to observe the mono-
tonicity of the sequence {ak/bk}k≥1. A simple computation leads to a1/b1 = 1 and
for k ≥ 2,

ak
bk

= k − qα (k − 1)
bk−1
bk

= k − qα (k − 1)
n+1

kn
1− qk

1− qk−1
.

Then

d1 :=
a2
b2
− a1
b1

= 1− qα 1 + q

2n
:= 1− qαu1,
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and for k ≥ 2,

(3.8) dk :=
ak+1

bk+1
− ak
bk

= 1− qαk bk
bk+1

+ qα (k − 1)
bk−1
bk

:= 1− qαuk,

where

(3.9) uk =
kn+1

(k + 1)
n

1− qk+1

1− qk
− (k − 1)

n+1

kn
1− qk

1− qk−1
.

Since

lim
k→1

dk = 1− qα 1 + q

2n
= d1,

the formula (3.8) is valid for all k ≥ 1.
Using the notation of the one parameter mean Jp (a, b), uk can be written as

uk =
kn

(k + 1)
n−1 Jk (1, q)− (k − 1)

n

kn−1
Jk−1 (1, q)

for k ≥ 1. By Lemma 5 we see that the sequence {(k + 1)
1−n

knJk (1, q)}k≥1 is
convex for k ≥ 1, and then, the sequence {uk}k≥1 is increasing. Moreover, we have
u∞ = limk→∞ uk = 1. In fact, uk can be written as

uk =

(
k − 1

k

)n
1− qk

1− qk−1
− 1

k

(
1− k−2

)n − 1

k−2

(
k

k + 1

)n
1− qk

1− qk−1

−
(

k

k + 1

)n
k (q − 1)

2
qk−1

(1− qk) (1− qk−1)
,

which clearly tends to 1 as k →∞ for fixed q ∈ (0, 1) and n ≥ 1.
(i) If q−α ≤ mink≥1 {uk} = u1, that is, α ≤ − logq u1 = logq (2n/ (q + 1)), then

dk = 1 − qαuk ≤ 0 for all k ≥ 1, which indicates that the sequence {ak/bk}k≥1 is

decreasing. It follows from Lemma 1 that the ratio f (t) /g (t) is decreasing with
respect to t on (0, 1), and so the function x 7→ Fq,n (x;α) is increasing on (0,∞).

(ii) If q−α ≥ limk→∞ uk = 1, that is, α ≥ 0, then dk = 1 − qαuk ≥ 0 for all
k ≥ 1, which implies that the sequence {ak/bk}k≥1 is increasing. It follows from

Lemma 1 that the ratio f (t) /g (t) is increasing with respect to t on (0, 1), and so
the function x 7→ Fq,n (x;α) is decreasing on (0,∞).

(iii) When (q + 1) /2n = u1 < q−α < u∞ = 1, that is, logq (2n/ (q + 1)) < α < 0,
since the sequence dk = 1− qαuk is decreasing for k ≥ 1 with

d1 = 1− qαu1 > 0 and d∞ = 1− qαu∞ < 0,

there is a positive integer k0 > 1 such that dk > 0 for 1 ≤ k < k0 and dk < 0
for k > k0, namely, the sequence {ak/bk}k≥1 is increasing for 1 ≤ k ≤ k0 and
decreasing for k > k0. If we prove that

lim
t→1−

Hf,g (t) = lim
t→1−

(
f ′ (t)

g′ (t)
g (t)− f (t)

)
< 0,

then by Lemma 2 we deduce that there is a t0 ∈ (0, 1) such that f (t) /g (t) is
increasing on (0, t0) and decreasing on (t0, 1), which, due to t = qx, shows that
x 7→ Fq,n (x;α) is decreasing on (x0,∞) and increasing on (0, x0), where x0 =
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MONOTONICITY INVOLVING THE q-POLYGAMMA FUNCTIONS 9

(ln t0) / ln q, the third assertion then follows. Now, since

f ′ (t) =
[(

1− qx+α
)
ψq,n+1 (x)

]′ d
dt

ln t

ln q

=
(−qx+α ln q)ψq,n+1 (x)− (1− qx+α)ψq,n+2 (x)

t ln q
,

g′ (t) = (− ln q)ψ′q,n (x)
d

dt

ln t

ln q
=

1

t
ψq,n+1 (x) ,

we derive that

Hf,g (t) =
[(−qx+α ln q)ψq,n+1 (x)− (1− qx+α)ψq,n+2 (x)] / (t ln q)

ψq,n+1 (x) /t

× (− ln q)ψq,n (x)−
(
1− qx+α

)
ψq,n+1 (x)

=
(
qx+α ln q

)
ψq,n (x) +

(
1− qx+α

) ψq,n+2 (x)ψq,n (x)− ψq,n+1 (x)
2

ψq,n+1 (x)
.

Due to qx (ln q)ψq,n (x) < 0, ψq,n+2 (x)ψq,n (x)−ψq,n+1 (x)
2
> 0 (due to (3.2)) and

limx→0+ (1− qx+α) = 1− qα < 0, we arrive at limt→1− Hf,g (t) < 0.
Finally, we find the limit values of f (t) /g (t) as t→ 0, 1. Clearly, limt→0+ [f (t) /g (t)] =

a1/b1 = 1. To compute limt→1− [f (t) /g (t)], we note that bk > 0 for all k ≥ 1,

g (t) = (− ln q)
n+2∑∞

k=1 bkt
k is convergent for all t ∈ (0, 1) and g (t) is divergent

for t = 1; moreover, since

k − (k − 1)
n+1

kn
1− qk

1− qk−1
=

1− (1− 1/k)
n+1

1/k

1− qk

1− qk−1
− kqk−1 (1− q)

1− qk−1
→ n+ 1

as k →∞, we have

lim
k→∞

ak
bk

= lim
k→∞

[
k − qα (k − 1)

n+1

kn
1− qk

1− qk−1

]
=

{
n+ 1 if α = 0,
sgn (α)∞ if α 6= 0.

From Lemma 4 it follows that

lim
x→0+

Fq,n (x;α) = lim
t→1−

f (t)

g (t)
= lim
t→1−

∑∞
k=1 akt

k∑∞
k=1 bkt

k
=

{
n+ 1 if α = 0,
sgn (α)∞ if α 6= 0.

Using the monotonicity of the function f (t) /g (t) on (0, 1), the required inequalities
follow. This completes the proof. �

Remark 2. From the end of the proof of Theorem 1 we see that, for q ∈ (0, 1),

(3.10) lim
x→0+

Fq,n (x; 0) = lim
x→0+

(
qx − 1

ln q

ψq,n+1 (x)

ψq,n (x)

)
= n+ 1.

Remark 3. For m,n ∈ N with n > m, since

n−1∏
j=m

(
qx − 1

ln q

ψq,j+1 (x)

ψq,j (x)

)
=

(
qx − 1

ln q

)n−m
ψq,n (x)

ψq,m (x)
,

we find that the function

x 7→ qx − 1

ln q

(
ψq,n (x)

ψq,m (x)

)1/(n−m)

is also decreasing from (0,∞) onto (1, (n!/m!)
1/(n−m)

).
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10 ZHEN-HANG YANG AND JING-FENG TIAN*

4. Several relevant results

Letting p→ q = 0 in [28, Theorem 2] yields that the function x 7→ nψn (x) /ψn+1 (x)−
x is decreasing from (0,∞) onto (−1/2, 0). Further, using the monotonicity rules
for the ratio of two Laplace transforms given in [29], [30], we can prove that the
function x 7→ λψn (x) /ψn+1 (x)− x is decreasing (increasing) on (0,∞) if and only
if λ ≤ n (λ ≥ n+ 1). This reminds us to guess that the function

(4.1) x 7→ fq,n (x;β) =
βψq,n (x)

ψq,n+1 (x)
− qx − 1

ln q

has a similar monotonicity result on (0,∞). But we find that it is difficult to
deal with this problem. Fortunately, we can prove the increasing property of x 7→
fq,n (x;β) for β = n+ 1 using Theorem 1 and Lemma 6.

Proposition 1. Let q ∈ (0, 1) and n ∈ N. The function x 7→ fq,n (x;n+ 1) is
increasing from (0,∞) onto (0,−n/ ln q). Consequently, the double inequality

(4.2)
(n+ 1) ln q

qx − 1− n
<
ψq,n+1 (x)

ψq,n (x)
<

(n+ 1) ln q

qx − 1

holds for x > 0. The lower and upper bounds are sharp.

Proof. By Theorem 1 (ii) we see that the function

x 7→ n+ 1− qx − 1

ln q

ψq,n+1 (x)

ψq,n (x)

is positive and increasing on (0,∞); while the function x 7→ ψq,n (x) /ψq,n+1 (x) is
also positive and increasing on (0,∞) due to Lemma 6. Then so is the function

x 7→
(
n+ 1− qx − 1

ln q

ψq,n+1 (x)

ψq,n (x)

)
ψq,n (x)

ψq,n+1 (x)
=

(n+ 1)ψq,n (x)

ψq,n+1 (x)
− qx − 1

ln q

on (0,∞). Employing those computed results shown in Lemma 6, we obtain

lim
x→0

fq,n (x;n+ 1) = 0 and lim
x→∞

fq,n (x;n+ 1) =
n+ 1

− ln q
− 1

− ln q
=

n

− ln q
.

Then the required double inequality follows from the increasing property of fq,n (x;n+ 1)
on (0,∞), which completes the proof. �

Remark 4. Clearly, the lower bound in (4.2) is weaker than the one in (1.12) due
to

ln q

qx − 1
− (n+ 1) ln q

qx − 1− n
=

nqx ln q

(qx − 1) (n+ 1− qx)
> 0

for q ∈ (0, 1).

Since (ln q) / (qx − 1) > 1/x for q ∈ (0, 1) and x > 0, by the left hand side
inequality of (1.12) we have

1

x
<

ln q

qx − 1
<
ψq,n+1 (x)

ψq,n (x)

for x > 0. This yields the following corollary.
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MONOTONICITY INVOLVING THE q-POLYGAMMA FUNCTIONS 11

Corollary 1. Let q ∈ (0, 1) and n ∈ N. The inequality

ψq,n (x)− xψq,n+1 (x) < 0,

or equivalently,

(−1)
n−1

[
ψ(n)
q (x) + xψ(n+1)

q (x)
]
< 0

holds for x > 0, In particular, when n = 1 we have

(4.3) ψ′q (x) + xψ′′q (x) < 0

for x > 0.

Remark 5. The differential inequality (4.3) was recently proved by Alzer and Salem
in [31, Theorem 3.1], which plays a central role in the proofs of those main results
in [31].

Let us return to Proposition 1. Since the function x 7→ fq,n (x;n+ 1) is increas-
ing on (0,∞), we have

∂

∂x
fq,n (x;n+ 1) = (n+ 1)

ψq,n (x)ψq,n+2 (x)

ψq,n+1 (x)
2 − (n+ 1)− qx > 0

for x > 0. We thus obtain the following corollary.

Corollary 2. Let q ∈ (0, 1) and n ∈ N. Then for x > 0, we have

(4.4)
ψq,n (x)ψq,n+2 (x)

ψq,n+1 (x)
2 > 1 +

qx

n+ 1
.

Remark 6. Clearly, the inequality (4.4) is better than (3.2).

Alzer [8, Lemmas 1 and 2] (see also [32]) proved that the function x 7→ xcψn (x)
for n ∈ N is strictly decreasing (increasing) on (0,∞) if and only if c ≤ n (c ≥ n+1).
Similarly, we can determine the best r ∈ R such that the function

(4.5) x 7→ gq,n (x; r) =

(
1− q−x

ln q

)r
ψq,n (x)

is increasing or decreasing on (0,∞), which reads as follows.

Proposition 2. Let q ∈ (0, 1) and n ∈ N. The function x 7→ gq,n (x; r) is increasing
(decreasing) on (0,∞) if and only if r ≥ n + 1 (r ≤ 1). While if 1 < r < n + 1,
there is an x0 > 0 such that x 7→ gq,n (x; r) is decreasing on (0, x0) and increasing
on (x0,∞).

Proof. Differentiation yields

∂gq,n
∂x

= r

(
1− q−x

ln q

)r−1
q−xψq,n (x)−

(
1− q−x

ln q

)r
ψq,n+1 (x)

=

(
1− q−x

ln q

)r−1
q−xψq,n (x) [r − Fq,n (x; 0)] ,

where

Fq,n (x; 0) =
qx − 1

ln q

ψq,n+1 (x)

ψq,n (x)

is as in (1.11). Using Theorem 1 we deduce that ∂gq,n/∂x ≥ (≤) 0 if and only if

r ≥ sup
x>0

Fq,n (x; 0) = n+ 1 or r ≤ inf
x>0

Fq,n (x; 0) = 1.
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12 ZHEN-HANG YANG AND JING-FENG TIAN*

While 1 < r < n+ 1, since x 7→ r − Fq,n (x; 0) is increasing on (0,∞) with

lim
x→0

(r − Fq,n (x; 0)) = r − (n+ 1) < 0,

lim
x→∞

(r − Fq,n (x; 0)) = r − 1 > 0,

there is an x0 > 0 such that r−Fq,n (x; 0) < 0 for x ∈ (0, x0) and r−Fq,n (x; 0) > 0
for x ∈ (x0,∞). That is, ∂gq,n/∂x < 0 for x ∈ (0, x0) and ∂gq,n/∂x > 0 for
x ∈ (x0,∞), which completes the proof. �

Note that
d

dx

x ln q

1− q−x
= − q−x ln q

(1− q−x)
2 (1 + ln qx − qx) < 0

for x > 0 and q ∈ (0, 1). By Proposition 2 we find that the function

x ln q

1− q−x
gq,n (x; 1) =

x ln q

1− q−x
1− q−x

ln q
ψq,n (x) = xψq,n (x)

is also decreasing with respect to x on (0,∞).

Corollary 3. Let q ∈ (0, 1) and n ∈ N. The function x 7→ ξq,n (x) = xψq,n (x) is
decreasing on (0,∞).

Remark 7. Recently, several mean inequalities for the q-gamma and q-digamma
functions were obtained in [33], [34]. Using the decreasing property of the function
x 7→ xψq,n (x) on (0,∞), we can prove the following mean inequality

ψq,n (x) + ψq,n (1/x)

2
≥ ψq,n (1)

for x > 0, q ∈ (0, 1) and n ∈ N0. In fact, by a differentiation we have[
ψq,n (x) + ψq,n

(
1

x

)]′
= ψ′q,n (x)− 1

x2
ψ′q,n

(
1

x

)
= − 1

x

[
xψq,n+1 (x)− 1

x
ψq,n+1

(
1

x

)]
= − 1

x

[
ξq,n+1 (x)− ξq,n+1

(
1

x

)]
,

which, by Corollary 3, is positive if x > 1 and negative if 0 < x < 1. It then follows
that

ψq,n (x) + ψq,n

(
1

x

)
≥ ψq,n (1) + ψq,n (1) = 2ψq,n (1)

for x > 0.

Recall that a function f is called completely monotonic on an interval I, if f has
the derivative of any order on I and satisfies

(−1)
k
f (k) (x) ≥ 0

for all k ∈ N0 on I, see [35, 36]. As early as in 1986, Ismail [37] began to investigate
the complete monotonicity of the q-gamma function. Using the Stieltjes integral
representation (1.8) he and coauthors in [3], [4] effectively dealt with some problems
on the complete monotonicity of q-gamma and q-polygamma functions. In 2013,
Salem [38, Theorem 3.1] proved a nice result, which states that the remainder
of the asymptotic expansion of ln Γq (x) is completely monotonic on (0,∞), and
generalized Alzer’s result in [39, Theorem 8]. More completely monotonic functions
involving the q-gamma and q-polygamma functions can be found in [40], [41], [42],
[43], [44], [45], and references therein.
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MONOTONICITY INVOLVING THE q-POLYGAMMA FUNCTIONS 13

Now, by Lemma 5 and Lemma 3, we shall prove that the function

(4.6) x 7→ hq,n (x; η) = q−x
[
ηψq,n (x)− qx − 1

ln q
ψq,n+1 (x)

]
is completely monotonic on (0,∞).

Proposition 3. Let q ∈ (0, 1) and n ∈ N. The following statements are valid:
(i) The function x 7→ hq,n (x; η) is completely monotonic on (0,∞) if and only

if η ≥ n+ 1.
(ii) The function x 7→ −hq,n (x; η) is completely monotonic on (0,∞) if and only

if η ≤ 1.
(iii) If 1 < η < n + 1, then for every m ∈ N0, there is an xm > 0 such that

(−1)
m
h
(m)
q,n (x; η) > 0 for (xm,∞) and (−1)

m
h
(m)
q,n (x; η) < 0 for (0, xm).

Proof. Let qx = t. Using the representation (1.7) we obtain

hq,n (x; η) = (− ln q)
n+1

(
η

∞∑
k=1

knq(k−1)x

1− qk
−
(

1− 1

qx

) ∞∑
k=1

kn+1qkx

1− qk

)

= (− ln q)
n+1

∞∑
k=0

(η − vk)
(k + 1)

n

1− qk+1
qkx,

where v0 = 1 and for k ≥ 1,

vk = k + 1− kn+1

(k + 1)
n

1− qk+1

1− qk
= k + 1− kn

(k + 1)
n−1 Jk (1, q) .

Then, for m ∈ N0,

(−1)
m
h(m)
q,n (x; η) = (− ln q)

m+n+1
∞∑
k=0

(η − vk)
km (k + 1)

n

1− qk+1
qkx := H (qx) .

By Lemma 5 it is seen that the sequence

vk − vk−1 =
(k − 1)

n

kn−1
Jk−1 (1, q)− kn

(k + 1)
n−1 Jk (1, q) + 1

is decreasing for k ≥ 2, and we have

vk − vk−1 > lim
k→∞

(vk − vk−1) = 0 for k ≥ 2,

and

v1 − v0 = 2− q + 1

2n
− 1 =

2n − (q + 1)

2n
≥ 0,

which indicates that the sequence {vk}k≥0 is increasing.
Case 1: η ≥ limk→∞ vk = n + 1. Then η − vk > 0 for all k ≥ 0, and then

(−1)
m
h
(m)
q,n (x; η) > 0 for x > 0. That is, the function x 7→ hq,n (x; η) is completely

monotonic on (0,∞).

Case 2: η ≤ 1. Then η−vk ≤ 1−v0 = 0 for k ≥ 0, and then (−1)
m
h
(m)
q,n (x; η) < 0

for x > 0. Hence, the function x 7→ −hq,n (x; η) is completely monotonic on (0,∞).
Case 3: 1 = v0 < η < v∞ = n + 1. Since (η − vk) = v∗k is decreasing for k ≥ 0

with v∗1 = η − v0 > 0 and v∗∞ = η − v∞ < 0, there is an integer k0 such that
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14 ZHEN-HANG YANG AND JING-FENG TIAN*

v∗k = (η − vk) > 0 for 1 ≤ k < k0 and v∗k = (η − vk) < 0 for k > k0. This indicates
that H (t) is a PN-type power series. Because

lim
t→1

H (t)

(− ln q)
n+1

q−xψq,n (x)
= lim

x→0

hq,n (x; η)

q−xψq,n (x)

= η − lim
x→0

(
qx − 1

ln q

ψq,n+1 (x)

ψq,n (x)

)
= η − n− 1 < 0,

by Lemma 3 we find that there is a tm ∈ (0, 1) such that H (t) > 0 for t ∈
(0, tm) and H (t) < 0 for t ∈ (tm, 1). Therefore, there is a xm > 0 such that

(−1)
m
h
(m)
q,n (x; η) > 0 for (xm,∞) and (−1)

m
h
(m)
q,n (x; η) < 0 for (0, xm), where

xm = logq tm. This completes the proof. �

5. Conclusions

In this paper, we proved that, for q ∈ (0, 1) and n ∈ N, the function x 7→
Fq,n (x;α) defined by (1.11) is increasing (decreasing) on (0,∞) if and only if α ≤
α0 = logq (2n/ (q + 1)), and is decreasing on (0,∞) if and only if α ≥ 0. This
is similar to the monotonicity of the function x 7→ (x+ r)ψn+1 (x) /ψn (x). As a
direct consequence, the function x 7→ (n+ 1)ψq,n (x) /ψq,n+1 (x)− (qx − 1) / ln q is
increasing on (0,∞) for q ∈ (0, 1) and n ∈ N, which yields the inequality (4.4). By
means of the monotonicity of the Fq,n (x; 0) on (0,∞), we showed that the function
x 7→ gq,n (x; r) defined by (4.5) is increasing (decreasing) on (0,∞) if and only if
r ≥ n (r ≤ 1). Moreover, we found that the function x 7→ ±hq,n (x; η) is completely
monotonic on (0,∞) if and only if η ≥ n+ 1 (η ≤ 1).

Finally, we list a problem and several remarks.

Remark 8. It is difficult to compute the limit values involving q-gamma and q-
polygamma functions when the independent variable tends to zero. Therefore, the
limit relation (3.10) is significant. Moreover, it is checked that this limit relation is
valid for all q > 0 and n ∈ N0 by employing the relation (1.4), L’Hospital rule and
Lemma 4.

Remark 9. Noting that

ψq,n (x)ψq,n+2 (x)

ψq,n+1 (x)
2 =

(
qx − 1

ln q

ψq,n+2 (x)

ψq,n+1 (x)

)/(
qx − 1

ln q

ψq,n+1 (x)

ψq,n (x)

)
,

then utilizing the limit relation (3.10) gives

lim
x→0

ψq,n (x)ψq,n+2 (x)

ψq,n+1 (x)
2 =

n+ 2

n+ 1
.

This together with inequality 4.4 inspires us to consider the following problem which
is similar to the inequality

n+ 1

n
>
ψn (x)ψn+2 (x)

ψn+1 (x)
2 >

n+ 2

n+ 1

for x > 0 and n ∈ N (see [46, Theorem 2.1], [10, Corollary 2]).

Problem 2. Let q > 0 with q 6= 1 and n ∈ N. What are the conditions such that
the inequalities

ψq,n (x)ψq,n+2 (x)

ψq,n+1 (x)
2 > (<)

n+ 2

n+ 1
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hold for all x > 0?
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balanced generalized complete elliptic integrals, Comput. Methods Funct. Theory 21 (2021),

413–426. MR4299906
[17] R. E. Gaunt, Functional Inequalities and Monotonicity Results for Modified Lommel Func-

tions of the First Kind, Results Math. 77 (2022), Art. 1, 16 pages. MR4334292

[18] Z.-H. Yang, A new way to prove L’Hospital monotone rules with applications, arX-
iv:1409.6408, 2014.

[19] J.-F. Tian, M.-H. Ha, H.-J. Xing, Properties of the power-mean and their applications, AIMS

Math. 5 (2020), no. 6, 7285–7300. MR4161095
[20] Z.-H. Yang, J. Tian, Sharp inequalities for the generalized elliptic integrals of the first kind,

Ramanujan J. 48 (2019), 91–116. MR3902497
[21] Z.-H. Yang, J.-F. Tian, Y.-R. Zhu, A sharp lower bound for the complete elliptic integrals of

the first kind, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM 115 (2021):

8, 17 pages. MR4165731
[22] Z.-H. Yang, J. Tian, Convexity and monotonicity for elliptic integrals of the first kind and

applications, Appl. Anal. Discrete Math. 13 (2019), 240–260. MR3948054
[23] Z.-H. Yang, J. Tian, Convexity and monotonicity for the elliptic integrals of the first kind

and applications, arXiv:1705.05703 [math.CA]. https://doi.org/10.48550/arXiv.1705.05703
[24] Z.-H. Yang, W.-M. Qian, Y.-M. Chu, W. Zhang, On approximating the arithmetic-geometric

mean and complete elliptic integral of the first kind, J. Math. Anal. Appl. 462 (2018), 1714–
1726. MR3774313

[25] F. Belzunce, E. Ortega, J. M. Ruiz, On non-monotonic ageing properties from the Laplace

transform, with actuarial applications, Insurance Math. Econom. 40 (2007), 1–14. M-
R2286650

26 Mar 2023 07:18:02 PDT
221015-Tian Version 2 - Submitted to Rocky Mountain J. Math.



16 ZHEN-HANG YANG AND JING-FENG TIAN*
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