MONOTONICITY RESULTS FOR FUNCTIONS INVOLVING THE q-POLYGAMMA FUNCTIONS

ZHEN-HANG YANG AND JING-FENG TIAN*

Abstract

Let $\psi_{q, n}=(-1)^{n-1} \psi_{q}^{(n)}$ for $n \in \mathbb{N}$, where $\psi_{q}^{(n)}$ are the q polygamma functions. In this paper, by the monotonicity rules for the ratio of two power series, it is proved that, for $q \in(0,1)$ and $n \in \mathbb{N}$, the function $$
x \mapsto F_{q, n}(x ; \alpha)=\frac{q^{x+\alpha}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)},
$$ is decreasing (increasing) on $(0, \infty)$ if and only if $\alpha \leq \log _{q}\left(2^{n} /(q+1)\right)(\alpha \geq$ $0)$. The conditions for which several relevant functions are monotonic or completely monotonic on $(0, \infty)$ are obtained. Moreover, several relations involving the q-polygamma functions are established.

1. Introduction

The classical Euler's gamma function Γ is defined by

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \tag{1.1}
\end{equation*}
$$

for $x>0$, and its logarithmic derivative $\psi(x)=\Gamma^{\prime}(x) / \Gamma(x)$ is known as the psi or digamma function, while $\psi^{\prime}, \psi^{\prime \prime}, \ldots, \psi^{(n)}$ are called polygamma functions. As usual, we denote by $\psi_{n}=(-1)^{n-1} \psi^{(n)}$ for $n \in \mathbb{N}$.

The q-gamma function [1, 2] is defined for $x>0$ and $q \neq 1$ by

$$
\begin{array}{ll}
\Gamma_{q}(x)=(1-q)^{1-x} \prod_{n=0}^{\infty} \frac{1-q^{n+1}}{1-q^{n+x}}, & \text { if } 0<q<1 \\
\Gamma_{q}(x)=(q-1)^{1-x} q^{x(x-1) / 2} \prod_{n=0}^{\infty} \frac{1-q^{-(n+1)}}{1-q^{-(n+x)}}, & \text { if } q>1 \tag{1.3}
\end{array}
$$

It is easy to see that $\lim _{x \rightarrow 0} \Gamma_{q}(x)=\infty$ and $\lim _{x \rightarrow \infty} \Gamma_{q}(x)=\infty$. From 1.2) and (1.3) we have that, for all $q>0$,

$$
\begin{equation*}
\Gamma_{q}(x)=q^{(x-1)(x-2) / 2} \Gamma_{1 / q}(x), \quad x>0 . \tag{1.4}
\end{equation*}
$$

Analogously, the logarithmic derivative of the q-gamma function $\psi_{q}(x)=\Gamma_{q}^{\prime}(x) / \Gamma_{q}(x)$ is known as q-psi or q-digamma function, and $\psi_{q}^{\prime}, \psi_{q}^{\prime \prime}, \ldots, \psi_{q}^{(n)}$ are called q-polygamma

[^0]functions. The q-digamma function $\psi_{q}(x)$ has a series representation:
\[

$$
\begin{align*}
\psi_{q}(x) & =-\ln (1-q)+\sum_{k=0}^{\infty} \frac{q^{k+x} \ln q}{1-q^{k+x}} \tag{1.5}\\
& =-\ln (1-q)+(\ln q) \sum_{k=1}^{\infty} \frac{q^{k x}}{1-q^{k}} \quad \text { for } 0<q<1 \tag{1.6}
\end{align*}
$$
\]

Then

$$
\begin{equation*}
(-1)^{n-1} \psi_{q}^{(n)}(x)=(-\ln q)^{n+1} \sum_{k=1}^{\infty} \frac{k^{n} q^{k x}}{1-q^{k}} \quad \text { if } 0<q<1 \tag{1.7}
\end{equation*}
$$

for $x>0$ and $n \in \mathbb{N}$. It is worth mentioning that Ismail and Muldoon 3] found that the q-psi function has the following Stieltjes integral representation:

$$
\begin{equation*}
\psi_{q}(x)=-\ln (1-q)-\int_{0}^{\infty} \frac{e^{-x t}}{1-e^{-t}} d \gamma_{q}(t) \tag{1.8}
\end{equation*}
$$

where

$$
\gamma_{q}(t)=-\ln q \sum_{k=1}^{\infty} \delta(t+k \ln q), \quad 0<q<1
$$

is a discrete measure with positive masses $-\ln q$ at the positive points $-k \ln q$, $k=1,2, \ldots$. This offered a new and simple way to investigate the q-gamma and q-polygamma functions (see 4]).

For convenience, we denote by $\psi_{q, n}=(-1)^{n-1} \psi_{q}^{(n)}$ for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, where $\psi_{q, 0}=-\psi_{q}$. It is readily seen from 1.6 and 1.7 , for $n \in \mathbb{N}$ and $q \in(0,1)$,

$$
\begin{align*}
& \lim _{x \rightarrow 0+} \psi_{q}(x)=-\infty, \quad \lim _{x \rightarrow \infty} \psi_{q}(x)=-\ln (1-q) \tag{1.9}\\
& \lim _{x \rightarrow 0+} \psi_{q, n}(x)=\infty, \quad \lim _{x \rightarrow \infty} \psi_{q, n}(x)=0
\end{align*}
$$

The close relation between the ordinary gamma function Γ and the q-gamma function Γ_{q} is given by $\lim _{q \rightarrow 1} \Gamma_{q}(x)=\Gamma(x), x>0$ (see [2], [5]). Likewise, the ordinary digamma function ψ and q-digamma function ψ_{q} satisfy the following limit relation: $\lim _{q \rightarrow 1} \psi_{q}(x)=\psi(x), x>0$ (see [6]). We claim that the ordinary polygamma function $\psi^{(n)}$ and q-polygamma function $\psi_{q}^{(n)}$ also satisfy a similar limit relation.

Claim 1. Let $n \in \mathbb{N}$. We have

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} \psi_{q}^{(n)}(x)=\lim _{q \rightarrow 1^{+}} \psi_{q}^{(n)}(x)=\psi^{(n)}(x), x>0 \tag{1.10}
\end{equation*}
$$

Sketch of proof. The first equality of 1.10 follows from the relation 1.4. It was proved in [7, Eq. (2.5)] that

$$
\frac{d^{n}}{d t^{n}}\left(\frac{q^{t} \ln q}{1-q^{t}}\right)=\left(\frac{\ln q}{1-q^{t}}\right)^{n+1} q^{t} P_{n-1}\left(q^{t}\right), \quad n \in \mathbb{N}
$$

where $P_{n}(z)$ is a polynomial of degree n satisfying

$$
P_{n}(z)=\left(z-z^{2}\right) P_{n-1}^{\prime}(z)+(n z+1) P_{n-1}(z), \quad P_{0}(z)=1, n \geq 1
$$

The above relation implies that $P_{n}(1)=(n+1) P_{n-1}(1)$ with $P_{0}(1)=1$, and therefore, $P_{n}(1)=(n+1)$!. From these it follows that

$$
\lim _{q \rightarrow 1} \frac{d^{n}}{d t^{n}}\left(\frac{q^{t} \ln q}{1-q^{t}}\right)=\frac{(-1)^{n+1} n!}{t^{n+1}}, n \in \mathbb{N}
$$

Now, using 1.5 and differentiating yield

$$
\psi_{q}^{(n)}(x)=\sum_{k=0}^{\infty} \frac{d^{n}}{d x^{n}}\left(\frac{q^{k+x} \ln q}{1-q^{k+x}}\right), q \in(0,1)
$$

Then

$$
\lim _{q \rightarrow 1^{-}} \psi_{q}^{(n)}(x)=\sum_{k=0}^{\infty} \lim _{q \rightarrow 1^{-}} \frac{d^{n}}{d x^{n}}\left(\frac{q^{k+x} \ln q}{1-q^{k+x}}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{n+1} n!}{(k+x)^{n+1}}=\psi^{(n)}(x)
$$

In 2001, Alzer [8, Lemma 2] (see also [9, Lemma 2.1]) proved that the function $x \mapsto x \psi_{n+1}(x) / \psi_{n}(x)$ is strictly decreasing from $(0, \infty)$ onto $(n, n+1)$. Yang [10, Corollary 2] proved that the function $x \mapsto(x+r) \psi_{n+1}(x) / \psi_{n}(x)$ is strictly decreasing (increasing) on $(0, \infty)$ if and only if $r \geq 0(r \leq-1 / 2)$. For the q polygamma functions, it is natural to ask the following problem.

Problem 1. What are the conditions for which the function

$$
\begin{equation*}
x \mapsto F_{q, n}(x ; \alpha)=\frac{q^{x+\alpha}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)} \tag{1.11}
\end{equation*}
$$

is increasing or decreasing on $(0, \infty)$ for $n \in \mathbb{N}$ and $q>0$ with $q \neq 1$?
The aim of this paper is to give an answer to the problem for $q \in(0,1)$. Our main result is contained in the following theorem.
Theorem 1. Let $q \in(0,1)$ and $n \in \mathbb{N}$. The following statements are valid:
(i) If $\alpha \leq \alpha_{0}=\log _{q}\left(2^{n} /(q+1)\right)$, then the function $x \mapsto F_{q, n}(x ; \alpha)$ is increasing on $(0, \infty)$. In particular, for $\alpha=\alpha_{0}$, the inequality

$$
\frac{q^{x+\alpha_{0}}-1}{\ln q}<\frac{\psi_{q, n}(x)}{\psi_{q, n+1}(x)}
$$

holds for $x>0$.
(ii) If $\alpha \geq 0$ then the function $x \mapsto F_{q, n}(x ; \alpha)$ is decreasing on $(0, \infty)$. In particular, for $\alpha=0$, the double inequality

$$
\begin{equation*}
\frac{\ln q}{q^{x}-1}<\frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}<\frac{(n+1) \ln q}{q^{x}-1} \tag{1.12}
\end{equation*}
$$

holds for $x>0$. The lower and upper bounds are sharp.
(iii) If $\log _{q}\left(2^{n} /(q+1)\right)<\alpha<0$, then there is an $x_{0}>0$ such that the function is increasing on $\left(0, x_{0}\right)$ and decreasing on $\left(x_{0}, \infty\right)$.

2. TOOLS

To prove our results, we need several tools: the monotonicity rules for the ratio of two power series, the signs rule for the NP (PN)-type power series, and an important limit formula.
2.1. Monotonicity rules for the ratio of two power series. The following lemma is due to Biernacki and Krzyz [11], which play an important role in dealing with the monotonicity of the ratio of power series.
Lemma 1. Let $A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and $B(t)=\sum_{n=0}^{\infty} b_{n} t^{n}$ be two real power series converging on $(-r, r)(r>0)$ with $b_{n}>0$ for all n. If the sequence $\left\{a_{n} / b_{n}\right\}_{n \geq 0}$ is increasing (decreasing), then so is the ratio $A(t) / B(t)$ on $(0, r)$.

Another monotonicity rule in the case when the sequence $\left\{a_{n} / b_{n}\right\}_{n \geq 0}$ is piecewise monotonic was established by Yang, Chu and Wang in [12, Theorem 2.1], which is efficient to study for certain special functions, see [13, [14, [15], [16], [17].

Before stating this monotonicity rule, we introduce an auxiliary function $H_{f, g}$ given first in [18], which was called Yang's H-function in [19] by Tian et. al. For $-\infty \leq a<b \leq \infty$, let f and g be differentiable on (a, b) and $g^{\prime} \neq 0$ on (a, b). Then the function $H_{f, g}$ is defined by

$$
\begin{equation*}
H_{f, g}:=\frac{f^{\prime}}{g^{\prime}} g-f . \tag{2.1}
\end{equation*}
$$

The following lemma is a modified version of [12, Theorem 2.1] and appeared in 20.

Lemma 2. 20] Let $A(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ and $B(t)=\sum_{k=0}^{\infty} b_{k} t^{k}$ be two real power series converging on $(-r, r)$ and $b_{k}>0$ for all k. Suppose that for certain $m \in \mathbb{N}$, the sequences $\left\{a_{k} / b_{k}\right\}_{0 \leq k \leq m}$ and $\left\{a_{k} / b_{k}\right\}_{k \geq m}$ are both non-constant, and they are increasing (decreasing) and decreasing (increasing), respectively. Then the function A / B is strictly increasing (decreasing) on $(0, r)$ if and only if $H_{A, B}\left(r^{-}\right) \geq(\leq) 0$. If $H_{A, B}\left(r^{-}\right)<(>) 0$, then there exists $t_{0} \in(0, r)$ such that the function A / B is strictly increasing (decreasing) on ($0, t_{0}$) and strictly decreasing (increasing) on $\left(t_{0}, r\right)$.
2.2. Signs rule for the NP (PN)-type power series. We begin with introducing certain special sequences containing positive (negative) sequence, NP and PNtype sequences. If every term of a real sequence is nonnegative (nonpositive) and at least one is non-zero, then this sequence is called a positive (negative) sequence. Let $m \in \mathbb{N}$. A real sequence $\left\{a_{n}\right\}_{n \geq 0}$ is called an negative-positive-type sequence, NPtype sequence for short, if the subsequences $\left\{a_{n}\right\}_{0 \leq n \leq m}$ and $\left\{a_{n}\right\}_{n>m}$ are negative and positive sequences, respectively. $\left\{-a_{n}\right\}_{n \geq 0}$ is called a positive-negative-type sequence, PN-type sequence for short. The NP or PN-type power series is defined as follows.

Definition 1 ([21]). The power series $S(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ is called an NP-type power series if the sequence $\left\{a_{n}\right\}_{n \geq 0}$ is an NP-type sequence. $-S(t)$ is called a $P N$-type power series.

For the NP or PN-type power series, a simple but efficient criterion to determine their signs has been proven in [22], which is a revised version of the electronic preprint [23], and proven differently in [24].

Lemma 3. Let $S(t)$ be an $N P$-type power series converging on the interval $(0, r)$ $(r>0)$. (i) If $S\left(r^{-}\right) \leq 0$, then $S(t)<0$ for all $t \in(0, r)$. (ii) If $S\left(r^{-}\right)>0$, then there is a unique $t_{0} \in(0, r)$ such that $S(t)<0$ for $t \in\left(0, t_{0}\right)$ and $S(t)>0$ for $t \in\left(t_{0}, r\right)$.
Remark 1. If $r=\infty$, then Lemma 3 is changed to [25, Lemma 6.3].
2.3. An important limit formula. The following lemma was listed in 26, Problems 85].

Lemma 4. If two given infinite sequences $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ satisfy the conditions: (i) $b_{n}>0$ for all $n \geq 0$; (ii) $\sum_{n=0}^{\infty} b_{n} t^{n}$ is convergent for $|t|<1$ and divergent for $t=1$; (iii) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=s$. Then $\sum_{n=0}^{\infty} a_{n} t^{n}$ converges for $|t|<1$ and

$$
\lim _{t \rightarrow 1^{-}} \frac{\sum_{n=0}^{\infty} a_{n} t^{n}}{\sum_{n=0}^{\infty} b_{n} t^{n}}=s
$$

3. Proof of Theorem 1

The one parameter mean of two distinct positive numbers a and b is defined by

$$
J_{p}(a, b)=\frac{p}{p+1} \frac{a^{p+1}-b^{p+1}}{a^{p}-b^{p}} \text { if } p \neq-1,0
$$

and

$$
\begin{aligned}
J_{-1}(a, b) & =\lim _{p \rightarrow-1} J_{p}(a, b)=a b \frac{\ln a-\ln b}{a-b}=\frac{G^{2}(a, b)}{L(a, b)} \\
J_{0}(a, b) & =\lim _{p \rightarrow 0} J_{p}(a, b)=\frac{a-b}{\ln a-\ln b}=L(a, b) .
\end{aligned}
$$

It was proved in [27, Theorem 1] that the function $p \mapsto J_{p}(a, b)$ is increasing on $(-\infty, \infty)$, and is log-convex on $(-\infty,-1 / 2)$ and log-concave on $(-1 / 2, \infty)$. The following lemma provides a new property of the function $p \mapsto J_{p}(a, b)$, which will be directly used to prove our main result.

Lemma 5. Let $a>b>0$. The function

$$
p \mapsto W_{\theta}(a, b ; p)=\frac{p^{\theta}}{(p+1)^{\theta-1}} J_{p}(a, b)
$$

is convex on $(0, \infty)$ if and only if $\theta \geq 1$.
Proof. Making a change of variable $t=\ln \sqrt{a / b}, J_{p}(a, b)$ can be expressed as

$$
\begin{aligned}
\frac{J_{p}(a, b)}{\sqrt{a b}} & =\frac{p}{p+1} \frac{(a b)^{(p+1) / 2}}{\sqrt{a b}(a b)^{p / 2}} \frac{a^{(p+1) / 2} / b^{(p+1) / 2}-b^{(p+1) / 2} / a^{(p+1) / 2}}{a^{p / 2} / b^{p / 2}-b^{p / 2} / a^{p / 2}} \\
& =\frac{p}{p+1} \frac{(\sqrt{a / b})^{p+1}-(\sqrt{a / b})^{-(p+1)}}{(\sqrt{a / b})^{p}-(\sqrt{a / b})^{-p}}=\frac{p}{p+1} \frac{\sinh (p t+t)}{\sinh (p t)}
\end{aligned}
$$

and then, $W_{\theta}(a, b ; p)$ can be represented as

$$
\frac{W_{\theta}(a, b ; p)}{\sqrt{a b}}=\frac{p^{\theta+1}}{(p+1)^{\theta}} \frac{\sinh (p t+t)}{\sinh (p t)}:=\mathrm{w}_{\theta}(t, p)
$$

Differentiation yields

$$
\frac{\partial \mathrm{w}_{\theta}}{\partial p}=\frac{(\theta+p+1) p^{\theta}}{(p+1)^{\theta+1}} \frac{\sinh (p t+t)}{\sinh (p t)}-\frac{p^{\theta+1}}{(p+1)^{\theta}} \frac{t \sinh t}{\sinh ^{2}(p t)}
$$

$$
\begin{aligned}
\frac{\partial^{2} \mathbf{w}_{\theta}}{\partial p^{2}}= & \frac{\theta(\theta+1) p^{\theta-1}}{(p+1)^{\theta+2}} \frac{\sinh (p t+t)}{\sinh (p t)}-2 \frac{(\theta+p+1) p^{\theta}}{(p+1)^{\theta+1}} \frac{t \sinh t}{\sinh ^{2}(p t)} \\
& +\frac{p^{\theta+1}}{(p+1)^{\theta}} \frac{2 t^{2} \sinh t \cosh (p t)}{\sinh ^{3}(p t)}:=\frac{p^{\theta-1}}{(p+1)^{\theta+2} \sinh ^{3}(p t)} V_{\theta}(t, p)
\end{aligned}
$$

where

$$
\begin{align*}
V_{\theta}(t, p)= & \theta(\theta+1) \sinh ^{2}(p t) \sinh (p t+t) \\
& -2 p(p+1)(\theta+p+1) t \sinh t \sinh (p t) \tag{3.1}\\
& +2 p^{2}(p+1)^{2} t^{2} \sinh t \cosh (p t)
\end{align*}
$$

If $p \mapsto W_{\theta}(a, b ; p)$ is convex on $(0, \infty)$ for $a>b>0$, then for all $p, t>0$,

$$
\lim _{t \rightarrow 0} \frac{V_{\theta}(t, p)}{t^{3}} \geq 0
$$

Expanding in power series of t yields

$$
V_{\theta}(t, p)=p^{2}(p+1) \theta(\theta-1) t^{3}+O\left(t^{5}\right)
$$

which implies that

$$
\lim _{t \rightarrow 0} \frac{V_{\theta}(t, p)}{t^{3}}=p^{2}(p+1) \theta(\theta-1) .
$$

Therefore, the necessary condition for $V_{\theta}(t, p) \geq 0$ for all $t, p>0$ is that: $\theta \geq 1$.
It remains to prove that $V_{\theta}(t, p)>0$ for all $t, p>0$ if $\theta \geq 1$. Applying the known inequality $x \cosh x>\sinh x$ for $x>0$, the sum of the second and third of the expression of $V_{\theta}(t, p)$ is greater than

$$
\begin{aligned}
& -2 p(p+1)(\theta+p+1) t \sinh t \sinh (p t)+2 p(p+1)^{2} t \sinh t \sinh (p t) \\
= & -2 \theta p(p+1) t \sinh t \sinh (p t)
\end{aligned}
$$

then

$$
\begin{aligned}
V_{\theta}(t, p) & >\theta(\theta+1) \sinh ^{2}(p t) \sinh (p t+t)-2 \theta p(p+1) t \sinh t \sinh (p t) \\
& =2 \theta p(p+1) t \sinh t \sinh (p t)\left[\frac{\theta+1}{2} \frac{\sinh (p t)}{p t} \frac{\sinh (p t+t)}{(p+1) \sinh t}-1\right]>0
\end{aligned}
$$

where the last inequality holds due to $\theta \geq 1, \sinh (p t)>p t$ and $\sinh (p t+t)>$ $(p+1) \sinh t$ for $p, t>0$. This completes the proof.

Lemma 6. Let $q \in(0,1)$ and $n \in \mathbb{N}$. Then the function $\psi_{q, n} / \psi_{q, n+1}$ is increasing from $(0, \infty)$ onto $(0,-1 / \ln q)$. Consequently, for $x>0$ we have the inequality

$$
\begin{equation*}
\psi_{q, n}(x) \psi_{q, n+2}(x)-\psi_{q, n+1}^{2}(x)>0 \tag{3.2}
\end{equation*}
$$

Proof. Using the representation (1.7) yields

$$
\begin{equation*}
\frac{\psi_{q, n}(x)}{\psi_{q, n+1}(x)}=\frac{(-\ln q)^{n+1} \sum_{k=1}^{\infty} b_{k} t^{k}}{(-\ln q)^{n+2} \sum_{k=1}^{\infty} k b_{k} t^{k}}=\frac{1}{-\ln q} \frac{\sum_{k=1}^{\infty} b_{k+1} t^{k}}{\sum_{k=1}^{\infty}(k+1) b_{k+1} t^{k}} \tag{3.3}
\end{equation*}
$$

where $t=q^{x}$ and

$$
\begin{equation*}
b_{k}=\frac{k^{n}}{1-q^{k}} \tag{3.4}
\end{equation*}
$$

Since the ratio of those coefficients of power series in 3.3) is clearly decreasing, by Lemma 1 the ratio of power series in 3.3 is so with respect to t, which implies that the function $\psi_{q, n} / \psi_{q, n+1}$ is increasing on $(0, \infty)$ with

$$
\lim _{x \rightarrow \infty} \frac{\psi_{q, n}(x)}{\psi_{q, n+1}(x)}=\frac{1}{-\ln q} \lim _{t \rightarrow 0} \frac{\sum_{k=0}^{\infty} b_{k+1} t^{k}}{\sum_{k=0}^{\infty}(k+1) b_{k+1} t^{k}}=\frac{1}{-\ln q}
$$

and by Lemma 4 ,

$$
\lim _{x \rightarrow 0} \frac{\psi_{q, n}(x)}{\psi_{q, n+1}(x)}=\frac{1}{-\ln q} \lim _{t \rightarrow 1} \frac{\sum_{k=0}^{\infty} b_{k+1} t^{k}}{\sum_{k=0}^{\infty}(k+1) b_{k+1} t^{k}}=\frac{1}{-\ln q} \lim _{t \rightarrow 1} \frac{b_{k+1}}{(k+1) b_{k+1}}=0
$$

Using the increasing property of $\psi_{q, n} / \psi_{q, n+1}$ on $(0, \infty)$, we have

$$
\left(\frac{\psi_{q, n}}{\psi_{q, n+1}}\right)^{\prime}=\frac{\psi_{q, n}^{\prime}}{\psi_{q, n+1}}+\psi_{q, n}\left(-\frac{\psi_{q, n+1}^{\prime}}{\psi_{q, n+1}^{2}}\right)=\frac{\psi_{q, n} \psi_{q, n+2}}{\psi_{q, n+1}^{2}}-1>0
$$

which implies (3.2), and the proof is completed.
We are now in a position to prove our main result.
Proof of Theorem 1. Using the representation (1.7) yields

$$
\begin{equation*}
(-\ln q) \psi_{q, n}(x)=(-\ln q)^{n+2} \sum_{k=1}^{\infty} \frac{k^{n} q^{k x}}{1-q^{k}}=(-\ln q)^{n+2} \sum_{k=1}^{\infty} b_{k} t^{k}:=g(t) \tag{3.5}
\end{equation*}
$$

where $t=q^{x}$ and b_{k} is given by (3.4;

$$
\begin{align*}
\left(1-q^{x+\alpha}\right) \psi_{q, n+1}(x) & =\left(1-t q^{\alpha}\right)(-\ln q)^{n+2} \sum_{k=1}^{\infty} k b_{k} t^{k} \\
& =(-\ln q)^{n+2}\left[b_{1} t+\sum_{k=2}^{\infty}\left(k b_{k}-q^{\alpha}(k-1) b_{k-1}\right) t^{k}\right] \\
& =(-\ln q)^{n+2} \sum_{k=1}^{\infty} a_{k} t^{k}:=f(t) \tag{3.6}
\end{align*}
$$

where

$$
\begin{equation*}
a_{1}=b_{1} \quad \text { and } \quad a_{k}=k b_{k}-q^{\alpha}(k-1) b_{k-1} \text { for } k \geq 2 . \tag{3.7}
\end{equation*}
$$

Then $F_{q, n}(x ; \alpha)$ can be expressed as

$$
F_{q, n}(x ; \alpha)=\frac{f(t)}{g(t)}=\frac{1}{-\ln q} \frac{(-\ln q)^{n+2} \sum_{k=1}^{\infty} a_{k} t^{k}}{(-\ln q)^{n+1} \sum_{k=1}^{\infty} b_{k} t^{k}}=\frac{\sum_{k=1}^{\infty} a_{k} t^{k}}{\sum_{k=1}^{\infty} b_{k} t^{k}}
$$

To prove the monotonicity of the function $F_{q, n}(x)$, we have to observe the monotonicity of the sequence $\left\{a_{k} / b_{k}\right\}_{k \geq 1}$. A simple computation leads to $a_{1} / b_{1}=1$ and for $k \geq 2$,

$$
\frac{a_{k}}{b_{k}}=k-q^{\alpha}(k-1) \frac{b_{k-1}}{b_{k}}=k-q^{\alpha} \frac{(k-1)^{n+1}}{k^{n}} \frac{1-q^{k}}{1-q^{k-1}} .
$$

Then

$$
d_{1}:=\frac{a_{2}}{b_{2}}-\frac{a_{1}}{b_{1}}=1-q^{\alpha} \frac{1+q}{2^{n}}:=1-q^{\alpha} u_{1}
$$

and for $k \geq 2$,

$$
\begin{equation*}
d_{k}:=\frac{a_{k+1}}{b_{k+1}}-\frac{a_{k}}{b_{k}}=1-q^{\alpha} k \frac{b_{k}}{b_{k+1}}+q^{\alpha}(k-1) \frac{b_{k-1}}{b_{k}}:=1-q^{\alpha} u_{k} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
u_{k}=\frac{k^{n+1}}{(k+1)^{n}} \frac{1-q^{k+1}}{1-q^{k}}-\frac{(k-1)^{n+1}}{k^{n}} \frac{1-q^{k}}{1-q^{k-1}} \tag{3.9}
\end{equation*}
$$

Since

$$
\lim _{k \rightarrow 1} d_{k}=1-q^{\alpha} \frac{1+q}{2^{n}}=d_{1}
$$

the formula 3.8 is valid for all $k \geq 1$.
Using the notation of the one parameter mean $J_{p}(a, b), u_{k}$ can be written as

$$
u_{k}=\frac{k^{n}}{(k+1)^{n-1}} J_{k}(1, q)-\frac{(k-1)^{n}}{k^{n-1}} J_{k-1}(1, q)
$$

for $k \geq 1$. By Lemma 5 we see that the sequence $\left\{(k+1)^{1-n} k^{n} J_{k}(1, q)\right\}_{k \geq 1}$ is convex for $k \geq 1$, and then, the sequence $\left\{u_{k}\right\}_{k \geq 1}$ is increasing. Moreover, we have $u_{\infty}=\lim _{k \rightarrow \infty} u_{k}=1$. In fact, u_{k} can be written as

$$
\begin{aligned}
u_{k}= & \left(\frac{k-1}{k}\right)^{n} \frac{1-q^{k}}{1-q^{k-1}}-\frac{1}{k} \frac{\left(1-k^{-2}\right)^{n}-1}{k^{-2}}\left(\frac{k}{k+1}\right)^{n} \frac{1-q^{k}}{1-q^{k-1}} \\
& -\left(\frac{k}{k+1}\right)^{n} \frac{k(q-1)^{2} q^{k-1}}{\left(1-q^{k}\right)\left(1-q^{k-1}\right)}
\end{aligned}
$$

which clearly tends to 1 as $k \rightarrow \infty$ for fixed $q \in(0,1)$ and $n \geq 1$.
(i) If $q^{-\alpha} \leq \min _{k \geq 1}\left\{u_{k}\right\}=u_{1}$, that is, $\alpha \leq-\log _{q} u_{1}=\log _{q}\left(2^{n} /(q+1)\right)$, then $d_{k}=1-q^{\alpha} u_{k} \leq 0$ for all $k \geq 1$, which indicates that the sequence $\left\{a_{k} / b_{k}\right\}_{k \geq 1}$ is decreasing. It follows from Lemma 1 that the ratio $f(t) / g(t)$ is decreasing with respect to t on $(0,1)$, and so the function $x \mapsto F_{q, n}(x ; \alpha)$ is increasing on $(0, \infty)$.
(ii) If $q^{-\alpha} \geq \lim _{k \rightarrow \infty} u_{k}=1$, that is, $\alpha \geq 0$, then $d_{k}=1-q^{\alpha} u_{k} \geq 0$ for all $k \geq 1$, which implies that the sequence $\left\{a_{k} / b_{k}\right\}_{k \geq 1}$ is increasing. It follows from Lemma 1 that the ratio $f(t) / g(t)$ is increasing with respect to t on $(0,1)$, and so the function $x \mapsto F_{q, n}(x ; \alpha)$ is decreasing on $(0, \infty)$.
(iii) When $(q+1) / 2^{n}=u_{1}<q^{-\alpha}<u_{\infty}=1$, that is, $\log _{q}\left(2^{n} /(q+1)\right)<\alpha<0$, since the sequence $d_{k}=1-q^{\alpha} u_{k}$ is decreasing for $k \geq 1$ with

$$
d_{1}=1-q^{\alpha} u_{1}>0 \text { and } d_{\infty}=1-q^{\alpha} u_{\infty}<0
$$

there is a positive integer $k_{0}>1$ such that $d_{k}>0$ for $1 \leq k<k_{0}$ and $d_{k}<0$ for $k>k_{0}$, namely, the sequence $\left\{a_{k} / b_{k}\right\}_{k \geq 1}$ is increasing for $1 \leq k \leq k_{0}$ and decreasing for $k>k_{0}$. If we prove that

$$
\lim _{t \rightarrow 1^{-}} H_{f, g}(t)=\lim _{t \rightarrow 1^{-}}\left(\frac{f^{\prime}(t)}{g^{\prime}(t)} g(t)-f(t)\right)<0
$$

then by Lemma 2 we deduce that there is a $t_{0} \in(0,1)$ such that $f(t) / g(t)$ is increasing on $\left(0, t_{0}\right)$ and decreasing on $\left(t_{0}, 1\right)$, which, due to $t=q^{x}$, shows that $x \mapsto F_{q, n}(x ; \alpha)$ is decreasing on $\left(x_{0}, \infty\right)$ and increasing on $\left(0, x_{0}\right)$, where $x_{0}=$
$\left(\ln t_{0}\right) / \ln q$, the third assertion then follows. Now, since

$$
\begin{aligned}
f^{\prime}(t) & =\left[\left(1-q^{x+\alpha}\right) \psi_{q, n+1}(x)\right]^{\prime} \frac{d}{d t} \frac{\ln t}{\ln q} \\
& =\frac{\left(-q^{x+\alpha} \ln q\right) \psi_{q, n+1}(x)-\left(1-q^{x+\alpha}\right) \psi_{q, n+2}(x)}{t \ln q} \\
& g^{\prime}(t)=(-\ln q) \psi_{q, n}^{\prime}(x) \frac{d}{d t} \frac{\ln t}{\ln q}=\frac{1}{t} \psi_{q, n+1}(x)
\end{aligned}
$$

we derive that

$$
\begin{aligned}
H_{f, g}(t)= & \frac{\left[\left(-q^{x+\alpha} \ln q\right) \psi_{q, n+1}(x)-\left(1-q^{x+\alpha}\right) \psi_{q, n+2}(x)\right] /(t \ln q)}{\psi_{q, n+1}(x) / t} \\
& \times(-\ln q) \psi_{q, n}(x)-\left(1-q^{x+\alpha}\right) \psi_{q, n+1}(x) \\
= & \left(q^{x+\alpha} \ln q\right) \psi_{q, n}(x)+\left(1-q^{x+\alpha}\right) \frac{\psi_{q, n+2}(x) \psi_{q, n}(x)-\psi_{q, n+1}(x)^{2}}{\psi_{q, n+1}(x)}
\end{aligned}
$$

Due to $q^{x}(\ln q) \psi_{q, n}(x)<0, \psi_{q, n+2}(x) \psi_{q, n}(x)-\psi_{q, n+1}(x)^{2}>0$ (due to 3.2) and $\lim _{x \rightarrow 0^{+}}\left(1-q^{x+\alpha}\right)=1-q^{\alpha}<0$, we arrive at $\lim _{t \rightarrow 1^{-}} H_{f, g}(t)<0$.

Finally, we find the limit values of $f(t) / g(t)$ as $t \rightarrow 0$, 1. Clearly, $\lim _{t \rightarrow 0^{+}}[f(t) / g(t)]=$ $a_{1} / b_{1}=1$. To compute $\lim _{t \rightarrow 1^{-}}[f(t) / g(t)]$, we note that $b_{k}>0$ for all $k \geq 1$, $g(t)=(-\ln q)^{n+2} \sum_{k=1}^{\infty} b_{k} t^{k}$ is convergent for all $t \in(0,1)$ and $g(t)$ is divergent for $t=1$; moreover, since

$$
k-\frac{(k-1)^{n+1}}{k^{n}} \frac{1-q^{k}}{1-q^{k-1}}=\frac{1-(1-1 / k)^{n+1}}{1 / k} \frac{1-q^{k}}{1-q^{k-1}}-\frac{k q^{k-1}(1-q)}{1-q^{k-1}} \rightarrow n+1
$$

as $k \rightarrow \infty$, we have

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=\lim _{k \rightarrow \infty}\left[k-q^{\alpha} \frac{(k-1)^{n+1}}{k^{n}} \frac{1-q^{k}}{1-q^{k-1}}\right]= \begin{cases}n+1 & \text { if } \alpha=0 \\ \operatorname{sgn}(\alpha) \infty & \text { if } \alpha \neq 0\end{cases}
$$

From Lemma 4 it follows that

$$
\lim _{x \rightarrow 0^{+}} F_{q, n}(x ; \alpha)=\lim _{t \rightarrow 1^{-}} \frac{f(t)}{g(t)}=\lim _{t \rightarrow 1^{-}} \frac{\sum_{k=1}^{\infty} a_{k} t^{k}}{\sum_{k=1}^{\infty} b_{k} t^{k}}= \begin{cases}n+1 & \text { if } \alpha=0 \\ \operatorname{sgn}(\alpha) \infty & \text { if } \alpha \neq 0\end{cases}
$$

Using the monotonicity of the function $f(t) / g(t)$ on $(0,1)$, the required inequalities follow. This completes the proof.

Remark 2. From the end of the proof of Theorem 1 we see that, for $q \in(0,1)$,

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} F_{q, n}(x ; 0)=\lim _{x \rightarrow 0^{+}}\left(\frac{q^{x}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}\right)=n+1 \tag{3.10}
\end{equation*}
$$

Remark 3. For $m, n \in \mathbb{N}$ with $n>m$, since

$$
\prod_{j=m}^{n-1}\left(\frac{q^{x}-1}{\ln q} \frac{\psi_{q, j+1}(x)}{\psi_{q, j}(x)}\right)=\left(\frac{q^{x}-1}{\ln q}\right)^{n-m} \frac{\psi_{q, n}(x)}{\psi_{q, m}(x)}
$$

we find that the function

$$
x \mapsto \frac{q^{x}-1}{\ln q}\left(\frac{\psi_{q, n}(x)}{\psi_{q, m}(x)}\right)^{1 /(n-m)}
$$

is also decreasing from $(0, \infty)$ onto $\left(1,(n!/ m!)^{1 /(n-m)}\right)$.

4. Several Relevant Results

Letting $p \rightarrow q=0$ in [28, Theorem 2] yields that the function $x \mapsto n \psi_{n}(x) / \psi_{n+1}(x)-$ x is decreasing from $(0, \infty)$ onto $(-1 / 2,0)$. Further, using the monotonicity rules for the ratio of two Laplace transforms given in [29], 30], we can prove that the function $x \mapsto \lambda \psi_{n}(x) / \psi_{n+1}(x)-x$ is decreasing (increasing) on $(0, \infty)$ if and only if $\lambda \leq n(\lambda \geq n+1)$. This reminds us to guess that the function

$$
\begin{equation*}
x \mapsto f_{q, n}(x ; \beta)=\frac{\beta \psi_{q, n}(x)}{\psi_{q, n+1}(x)}-\frac{q^{x}-1}{\ln q} \tag{4.1}
\end{equation*}
$$

has a similar monotonicity result on $(0, \infty)$. But we find that it is difficult to deal with this problem. Fortunately, we can prove the increasing property of $x \mapsto$ $f_{q, n}(x ; \beta)$ for $\beta=n+1$ using Theorem 1 and Lemma 6 .

Proposition 1. Let $q \in(0,1)$ and $n \in \mathbb{N}$. The function $x \mapsto f_{q, n}(x ; n+1)$ is increasing from $(0, \infty)$ onto $(0,-n / \ln q)$. Consequently, the double inequality

$$
\begin{equation*}
\frac{(n+1) \ln q}{q^{x}-1-n}<\frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}<\frac{(n+1) \ln q}{q^{x}-1} \tag{4.2}
\end{equation*}
$$

holds for $x>0$. The lower and upper bounds are sharp.
Proof. By Theorem 1 (ii) we see that the function

$$
x \mapsto n+1-\frac{q^{x}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}
$$

is positive and increasing on $(0, \infty)$; while the function $x \mapsto \psi_{q, n}(x) / \psi_{q, n+1}(x)$ is also positive and increasing on $(0, \infty)$ due to Lemma 6. Then so is the function

$$
x \mapsto\left(n+1-\frac{q^{x}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}\right) \frac{\psi_{q, n}(x)}{\psi_{q, n+1}(x)}=\frac{(n+1) \psi_{q, n}(x)}{\psi_{q, n+1}(x)}-\frac{q^{x}-1}{\ln q}
$$

on $(0, \infty)$. Employing those computed results shown in Lemma 6, we obtain

$$
\lim _{x \rightarrow 0} f_{q, n}(x ; n+1)=0 \text { and } \lim _{x \rightarrow \infty} f_{q, n}(x ; n+1)=\frac{n+1}{-\ln q}-\frac{1}{-\ln q}=\frac{n}{-\ln q}
$$

Then the required double inequality follows from the increasing property of $f_{q, n}(x ; n+1)$ on $(0, \infty)$, which completes the proof.

Remark 4. Clearly, the lower bound in (4.2) is weaker than the one in 1.12) due to

$$
\frac{\ln q}{q^{x}-1}-\frac{(n+1) \ln q}{q^{x}-1-n}=\frac{n q^{x} \ln q}{\left(q^{x}-1\right)\left(n+1-q^{x}\right)}>0
$$

for $q \in(0,1)$.
Since $(\ln q) /\left(q^{x}-1\right)>1 / x$ for $q \in(0,1)$ and $x>0$, by the left hand side inequality of 1.12 we have

$$
\frac{1}{x}<\frac{\ln q}{q^{x}-1}<\frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}
$$

for $x>0$. This yields the following corollary.

Corollary 1. Let $q \in(0,1)$ and $n \in \mathbb{N}$. The inequality

$$
\psi_{q, n}(x)-x \psi_{q, n+1}(x)<0
$$

or equivalently,

$$
(-1)^{n-1}\left[\psi_{q}^{(n)}(x)+x \psi_{q}^{(n+1)}(x)\right]<0
$$

holds for $x>0$, In particular, when $n=1$ we have

$$
\begin{equation*}
\psi_{q}^{\prime}(x)+x \psi_{q}^{\prime \prime}(x)<0 \tag{4.3}
\end{equation*}
$$

for $x>0$.
Remark 5. The differential inequality (4.3) was recently proved by Alzer and Salem in [31, Theorem 3.1], which plays a central role in the proofs of those main results in 31].

Let us return to Proposition 1. Since the function $x \mapsto f_{q, n}(x ; n+1)$ is increasing on $(0, \infty)$, we have

$$
\frac{\partial}{\partial x} f_{q, n}(x ; n+1)=(n+1) \frac{\psi_{q, n}(x) \psi_{q, n+2}(x)}{\psi_{q, n+1}(x)^{2}}-(n+1)-q^{x}>0
$$

for $x>0$. We thus obtain the following corollary.
Corollary 2. Let $q \in(0,1)$ and $n \in \mathbb{N}$. Then for $x>0$, we have

$$
\begin{equation*}
\frac{\psi_{q, n}(x) \psi_{q, n+2}(x)}{\psi_{q, n+1}(x)^{2}}>1+\frac{q^{x}}{n+1} \tag{4.4}
\end{equation*}
$$

Remark 6. Clearly, the inequality (4.4) is better than (3.2).
Alzer [8, Lemmas 1 and 2] (see also [32]) proved that the function $x \mapsto x^{c} \psi_{n}(x)$ for $n \in \mathbb{N}$ is strictly decreasing (increasing) on $(0, \infty)$ if and only if $c \leq n(c \geq n+1)$. Similarly, we can determine the best $r \in \mathbb{R}$ such that the function

$$
\begin{equation*}
x \mapsto g_{q, n}(x ; r)=\left(\frac{1-q^{-x}}{\ln q}\right)^{r} \psi_{q, n}(x) \tag{4.5}
\end{equation*}
$$

is increasing or decreasing on $(0, \infty)$, which reads as follows.
Proposition 2. Let $q \in(0,1)$ and $n \in \mathbb{N}$. The function $x \mapsto g_{q, n}(x ; r)$ is increasing (decreasing) on $(0, \infty)$ if and only if $r \geq n+1(r \leq 1)$. While if $1<r<n+1$, there is an $x_{0}>0$ such that $x \mapsto g_{q, n}(x ; r)$ is decreasing on $\left(0, x_{0}\right)$ and increasing on $\left(x_{0}, \infty\right)$.

Proof. Differentiation yields

$$
\begin{aligned}
\frac{\partial g_{q, n}}{\partial x} & =r\left(\frac{1-q^{-x}}{\ln q}\right)^{r-1} q^{-x} \psi_{q, n}(x)-\left(\frac{1-q^{-x}}{\ln q}\right)^{r} \psi_{q, n+1}(x) \\
& =\left(\frac{1-q^{-x}}{\ln q}\right)^{r-1} q^{-x} \psi_{q, n}(x)\left[r-F_{q, n}(x ; 0)\right]
\end{aligned}
$$

where

$$
F_{q, n}(x ; 0)=\frac{q^{x}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}
$$

is as in 1.11. Using Theorem 1 we deduce that $\partial g_{q, n} / \partial x \geq(\leq) 0$ if and only if

$$
r \geq \sup _{x>0} F_{q, n}(x ; 0)=n+1 \text { or } r \leq \inf _{x>0} F_{q, n}(x ; 0)=1
$$

While $1<r<n+1$, since $x \mapsto r-F_{q, n}(x ; 0)$ is increasing on $(0, \infty)$ with

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(r-F_{q, n}(x ; 0)\right) & =r-(n+1)<0 \\
\lim _{x \rightarrow \infty}\left(r-F_{q, n}(x ; 0)\right) & =r-1>0
\end{aligned}
$$

there is an $x_{0}>0$ such that $r-F_{q, n}(x ; 0)<0$ for $x \in\left(0, x_{0}\right)$ and $r-F_{q, n}(x ; 0)>0$ for $x \in\left(x_{0}, \infty\right)$. That is, $\partial g_{q, n} / \partial x<0$ for $x \in\left(0, x_{0}\right)$ and $\partial g_{q, n} / \partial x>0$ for $x \in\left(x_{0}, \infty\right)$, which completes the proof.

Note that

$$
\frac{d}{d x} \frac{x \ln q}{1-q^{-x}}=-\frac{q^{-x} \ln q}{\left(1-q^{-x}\right)^{2}}\left(1+\ln q^{x}-q^{x}\right)<0
$$

for $x>0$ and $q \in(0,1)$. By Proposition 2 we find that the function

$$
\frac{x \ln q}{1-q^{-x}} g_{q, n}(x ; 1)=\frac{x \ln q}{1-q^{-x}} \frac{1-q^{-x}}{\ln q} \psi_{q, n}(x)=x \psi_{q, n}(x)
$$

is also decreasing with respect to x on $(0, \infty)$.
Corollary 3. Let $q \in(0,1)$ and $n \in \mathbb{N}$. The function $x \mapsto \xi_{q, n}(x)=x \psi_{q, n}(x)$ is decreasing on $(0, \infty)$.

Remark 7. Recently, several mean inequalities for the q-gamma and q-digamma functions were obtained in [33], [34]. Using the decreasing property of the function $x \mapsto x \psi_{q, n}(x)$ on $(0, \infty)$, we can prove the following mean inequality

$$
\frac{\psi_{q, n}(x)+\psi_{q, n}(1 / x)}{2} \geq \psi_{q, n}(1)
$$

for $x>0, q \in(0,1)$ and $n \in \mathbb{N}_{0}$. In fact, by a differentiation we have

$$
\begin{aligned}
& {\left[\psi_{q, n}(x)+\psi_{q, n}\left(\frac{1}{x}\right)\right]^{\prime}=\psi_{q, n}^{\prime}(x)-\frac{1}{x^{2}} \psi_{q, n}^{\prime}\left(\frac{1}{x}\right) } \\
= & -\frac{1}{x}\left[x \psi_{q, n+1}(x)-\frac{1}{x} \psi_{q, n+1}\left(\frac{1}{x}\right)\right]=-\frac{1}{x}\left[\xi_{q, n+1}(x)-\xi_{q, n+1}\left(\frac{1}{x}\right)\right]
\end{aligned}
$$

which, by Corollary 3, is positive if $x>1$ and negative if $0<x<1$. It then follows that

$$
\psi_{q, n}(x)+\psi_{q, n}\left(\frac{1}{x}\right) \geq \psi_{q, n}(1)+\psi_{q, n}(1)=2 \psi_{q, n}(1)
$$

for $x>0$.
Recall that a function f is called completely monotonic on an interval I, if f has the derivative of any order on I and satisfies

$$
(-1)^{k} f^{(k)}(x) \geq 0
$$

for all $k \in \mathbb{N}_{0}$ on I, see 35, 36]. As early as in 1986, Ismail 37] began to investigate the complete monotonicity of the q-gamma function. Using the Stieltjes integral representation (1.8) he and coauthors in [3], 4] effectively dealt with some problems on the complete monotonicity of q-gamma and q-polygamma functions. In 2013, Salem [38, Theorem 3.1] proved a nice result, which states that the remainder of the asymptotic expansion of $\ln \Gamma_{q}(x)$ is completely monotonic on $(0, \infty)$, and generalized Alzer's result in [39, Theorem 8]. More completely monotonic functions involving the q-gamma and q-polygamma functions can be found in [40, 41, 42], [43, 44, [45, and references therein.

Now, by Lemma 5 and Lemma 3, we shall prove that the function

$$
\begin{equation*}
x \mapsto h_{q, n}(x ; \eta)=q^{-x}\left[\eta \psi_{q, n}(x)-\frac{q^{x}-1}{\ln q} \psi_{q, n+1}(x)\right] \tag{4.6}
\end{equation*}
$$

is completely monotonic on $(0, \infty)$.
Proposition 3. Let $q \in(0,1)$ and $n \in \mathbb{N}$. The following statements are valid:
(i) The function $x \mapsto h_{q, n}(x ; \eta)$ is completely monotonic on $(0, \infty)$ if and only if $\eta \geq n+1$.
(ii) The function $x \mapsto-h_{q, n}(x ; \eta)$ is completely monotonic on $(0, \infty)$ if and only if $\eta \leq 1$.
(iii) If $1<\eta<n+1$, then for every $m \in \mathbb{N}_{0}$, there is an $x_{m}>0$ such that $(-1)^{m} h_{q, n}^{(m)}(x ; \eta)>0$ for $\left(x_{m}, \infty\right)$ and $(-1)^{m} h_{q, n}^{(m)}(x ; \eta)<0$ for $\left(0, x_{m}\right)$.
Proof. Let $q^{x}=t$. Using the representation 1.7 we obtain

$$
\begin{aligned}
h_{q, n}(x ; \eta) & =(-\ln q)^{n+1}\left(\eta \sum_{k=1}^{\infty} \frac{k^{n} q^{(k-1) x}}{1-q^{k}}-\left(1-\frac{1}{q^{x}}\right) \sum_{k=1}^{\infty} \frac{k^{n+1} q^{k x}}{1-q^{k}}\right) \\
& =(-\ln q)^{n+1} \sum_{k=0}^{\infty}\left(\eta-v_{k}\right) \frac{(k+1)^{n}}{1-q^{k+1}} q^{k x}
\end{aligned}
$$

where $v_{0}=1$ and for $k \geq 1$,

$$
v_{k}=k+1-\frac{k^{n+1}}{(k+1)^{n}} \frac{1-q^{k+1}}{1-q^{k}}=k+1-\frac{k^{n}}{(k+1)^{n-1}} J_{k}(1, q)
$$

Then, for $m \in \mathbb{N}_{0}$,

$$
(-1)^{m} h_{q, n}^{(m)}(x ; \eta)=(-\ln q)^{m+n+1} \sum_{k=0}^{\infty}\left(\eta-v_{k}\right) \frac{k^{m}(k+1)^{n}}{1-q^{k+1}} q^{k x}:=\mathcal{H}\left(q^{x}\right)
$$

By Lemma 5 it is seen that the sequence

$$
v_{k}-v_{k-1}=\frac{(k-1)^{n}}{k^{n-1}} J_{k-1}(1, q)-\frac{k^{n}}{(k+1)^{n-1}} J_{k}(1, q)+1
$$

is decreasing for $k \geq 2$, and we have

$$
v_{k}-v_{k-1}>\lim _{k \rightarrow \infty}\left(v_{k}-v_{k-1}\right)=0 \text { for } k \geq 2
$$

and

$$
v_{1}-v_{0}=2-\frac{q+1}{2^{n}}-1=\frac{2^{n}-(q+1)}{2^{n}} \geq 0
$$

which indicates that the sequence $\left\{v_{k}\right\}_{k \geq 0}$ is increasing.
Case 1: $\eta \geq \lim _{k \rightarrow \infty} v_{k}=n+1$. Then $\eta-v_{k}>0$ for all $k \geq 0$, and then $(-1)^{m} h_{q, n}^{(m)}(x ; \eta)>0$ for $x>0$. That is, the function $x \mapsto h_{q, n}(x ; \eta)$ is completely monotonic on $(0, \infty)$.

Case 2: $\eta \leq 1$. Then $\eta-v_{k} \leq 1-v_{0}=0$ for $k \geq 0$, and then $(-1)^{m} h_{q, n}^{(m)}(x ; \eta)<0$ for $x>0$. Hence, the function $x \mapsto-h_{q, n}(x ; \eta)$ is completely monotonic on $(0, \infty)$.

Case 3: $1=v_{0}<\eta<v_{\infty}=n+1$. Since $\left(\eta-v_{k}\right)=v_{k}^{*}$ is decreasing for $k \geq 0$ with $v_{1}^{*}=\eta-v_{0}>0$ and $v_{\infty}^{*}=\eta-v_{\infty}<0$, there is an integer k_{0} such that
$v_{k}^{*}=\left(\eta-v_{k}\right)>0$ for $1 \leq k<k_{0}$ and $v_{k}^{*}=\left(\eta-v_{k}\right)<0$ for $k>k_{0}$. This indicates that $\mathcal{H}(t)$ is a PN-type power series. Because

$$
\begin{aligned}
\lim _{t \rightarrow 1} \frac{\mathcal{H}(t)}{(-\ln q)^{n+1} q^{-x} \psi_{q, n}(x)} & =\lim _{x \rightarrow 0} \frac{h_{q, n}(x ; \eta)}{q^{-x} \psi_{q, n}(x)} \\
& =\eta-\lim _{x \rightarrow 0}\left(\frac{q^{x}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}\right)=\eta-n-1<0
\end{aligned}
$$

by Lemma 3 we find that there is a $t_{m} \in(0,1)$ such that $\mathcal{H}(t)>0$ for $t \in$ $\left(0, t_{m}\right)$ and $\mathcal{H}(t)<0$ for $t \in\left(t_{m}, 1\right)$. Therefore, there is a $x_{m}>0$ such that $(-1)^{m} h_{q, n}^{(m)}(x ; \eta)>0$ for $\left(x_{m}, \infty\right)$ and $(-1)^{m} h_{q, n}^{(m)}(x ; \eta)<0$ for $\left(0, x_{m}\right)$, where $x_{m}=\log _{q} t_{m}$. This completes the proof.

5. Conclusions

In this paper, we proved that, for $q \in(0,1)$ and $n \in \mathbb{N}$, the function $x \mapsto$ $F_{q, n}(x ; \alpha)$ defined by 1.11$)$ is increasing (decreasing) on $(0, \infty)$ if and only if $\alpha \leq$ $\alpha_{0}=\log _{q}\left(2^{n} /(q+1)\right)$, and is decreasing on $(0, \infty)$ if and only if $\alpha \geq 0$. This is similar to the monotonicity of the function $x \mapsto(x+r) \psi_{n+1}(x) / \psi_{n}(x)$. As a direct consequence, the function $x \mapsto(n+1) \psi_{q, n}(x) / \psi_{q, n+1}(x)-\left(q^{x}-1\right) / \ln q$ is increasing on $(0, \infty)$ for $q \in(0,1)$ and $n \in \mathbb{N}$, which yields the inequality (4.4). By means of the monotonicity of the $F_{q, n}(x ; 0)$ on $(0, \infty)$, we showed that the function $x \mapsto g_{q, n}(x ; r)$ defined by 4.5 is increasing (decreasing) on $(0, \infty)$ if and only if $r \geq n(r \leq 1)$. Moreover, we found that the function $x \mapsto \pm h_{q, n}(x ; \eta)$ is completely monotonic on $(0, \infty)$ if and only if $\eta \geq n+1(\eta \leq 1)$.

Finally, we list a problem and several remarks.
Remark 8. It is difficult to compute the limit values involving q-gamma and q polygamma functions when the independent variable tends to zero. Therefore, the limit relation 3.10 is significant. Moreover, it is checked that this limit relation is valid for all $q>0$ and $n \in \mathbb{N}_{0}$ by employing the relation (1.4), L'Hospital rule and Lemma 4.

Remark 9. Noting that

$$
\frac{\psi_{q, n}(x) \psi_{q, n+2}(x)}{\psi_{q, n+1}(x)^{2}}=\left(\frac{q^{x}-1}{\ln q} \frac{\psi_{q, n+2}(x)}{\psi_{q, n+1}(x)}\right) /\left(\frac{q^{x}-1}{\ln q} \frac{\psi_{q, n+1}(x)}{\psi_{q, n}(x)}\right)
$$

then utilizing the limit relation (3.10) gives

$$
\lim _{x \rightarrow 0} \frac{\psi_{q, n}(x) \psi_{q, n+2}(x)}{\psi_{q, n+1}(x)^{2}}=\frac{n+2}{n+1}
$$

This together with inequality 4.4 inspires us to consider the following problem which is similar to the inequality

$$
\frac{n+1}{n}>\frac{\psi_{n}(x) \psi_{n+2}(x)}{\psi_{n+1}(x)^{2}}>\frac{n+2}{n+1}
$$

for $x>0$ and $n \in \mathbb{N}$ (see [46, Theorem 2.1], [10, Corollary 2]).
Problem 2. Let $q>0$ with $q \neq 1$ and $n \in \mathbb{N}$. What are the conditions such that the inequalities

$$
\frac{\psi_{q, n}(x) \psi_{q, n+2}(x)}{\psi_{q, n+1}(x)^{2}}>(<) \frac{n+2}{n+1}
$$

hold for all $x>0$?

References

[1] F. H. Jackson, A generalization of the functions $\Gamma(n)$ and x^{n}, Proc. Roy. Soc. London 74 (1904), 64-72.
[2] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990. MR1052153
[3] M. E. H. Ismail, M. E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, https://doi.org/10.48550/arXiv.1301.1749, 2013.
[4] M. E. H. Ismail, M. E. Muldoon, Higher Monotonicity Properties of q-gamma and q-psi Functions, Adv. Dyn. Syst. Appl. 8 (2013), no. 2, 247-259.
[5] D. S. Moak, The q-gamma function for $q>1$, Aequationes Math. 20(1980), 278-288. MR0577493
[6] C. Krattenthaler and H. M. Srivastava, Summations for basic hypergeometric series involving a q-analogue of the digamma function, Comput. Math. Appl. 32 (1996), no, 3, 73-91. MR1398550
[7] D. S. Moak, The q-analogue of Stirling's formula, Rocky Mountain J. Math. 14 (1984), no. 2, 403-413. DOI: $10.1216 / \mathrm{RMJ}-1984-14-2-403$
[8] H. Alzer, Mean-value inequalities for the polygamma functions, Aequationes Math. 61 (2001), 151-161. MR1820816
[9] H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math. 16 (2004), 181-221. MR2039096
[10] Z.-H. Yang, Some properties of the divided difference of psi and polygamma functions, J. Math. Anal. Appl. 455 (2017), 761-777. MR3665131
[11] M. Biernacki, J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Annales Universitatis Mariae Curie-Sklodowska, 9 (1955), 135-147.
[12] Z.-H. Yang, Y.-M. Chu, M.-K. Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl. 428 (2015), 587-604. MR3327005
[13] L. Zhu, On Frame's inequalities, J. Inequal. Appl. 2018 (2018): 94, 14 pages. MR3788982
[14] M.-K. Wang, Y.-M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl. 22 (2019), no. 2, 601-617. MR3934505
[15] S.-L. Qiu, X.-Y. Ma, Y.-M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl. 474 (2019), no. 2, 1306-1337. MR3926168
[16] T.-H. Zhao, Z.-Y. He, Y.-M. Chu, Sharp bounds for the weighted Hölder mean of the zerobalanced generalized complete elliptic integrals, Comput. Methods Funct. Theory 21 (2021), 413-426. MR4299906
[17] R. E. Gaunt, Functional Inequalities and Monotonicity Results for Modified Lommel Functions of the First Kind, Results Math. 77 (2022), Art. 1, 16 pages. MR4334292
[18] Z.-H. Yang, A new way to prove L'Hospital monotone rules with applications, arXiv:1409.6408, 2014.
[19] J.-F. Tian, M.-H. Ha, H.-J. Xing, Properties of the power-mean and their applications, AIMS Math. 5 (2020), no. 6, 7285-7300. MR4161095
[20] Z.-H. Yang, J. Tian, Sharp inequalities for the generalized elliptic integrals of the first kind, Ramanujan J. 48 (2019), 91-116. MR3902497
[21] Z.-H. Yang, J.-F. Tian, Y.-R. Zhu, A sharp lower bound for the complete elliptic integrals of the first kind, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021): 8, 17 pages. MR4165731
[22] Z.-H. Yang, J. Tian, Convexity and monotonicity for elliptic integrals of the first kind and applications, Appl. Anal. Discrete Math. 13 (2019), 240-260. MR3948054
[23] Z.-H. Yang, J. Tian, Convexity and monotonicity for the elliptic integrals of the first kind and applications, arXiv:1705.05703 [math.CA]. https://doi.org/10.48550/arXiv.1705.05703
[24] Z.-H. Yang, W.-M. Qian, Y.-M. Chu, W. Zhang, On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind, J. Math. Anal. Appl. 462 (2018), 17141726. MR3774313
[25] F. Belzunce, E. Ortega, J. M. Ruiz, On non-monotonic ageing properties from the Laplace transform, with actuarial applications, Insurance Math. Econom. 40 (2007), 1-14. MR2286650
[26] G. Pólya, G. Szegö, Problems and Theorems in Analysis I: Series. Integral Calculus, Theory of Functions, Classics in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1998. MR0344042
[27] W.-S. Cheung, F. Qi, Logarithmic convexity of the one-parameter mean values, Taiwanese J. Math. 11 (2007), no. 1, 231-237. MR2304018
[28] J.-F. Tian, Z.-H. Yang, New properties of the divided difference of psi and polygamma functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (2021): 147, 23 pages. MR4274750
[29] Z.-H. Yang and J. Tian, Monotonicity and inequalities for the gamma function, J. Inequal. Appl. 2017 (2017): 317, 15 pages. MR3740576
[30] Z. Yang, J.-F. Tian, Monotonicity rules for the ratio of two Laplace transforms with applications, J. Math. Anal. Appl. 470 (2019), 821-845. MR3870591
[31] H. Alzer and A. Salem, Functional inequalities for the q-digamma function, Acta Math. Hungar. 167 (2022), 561-575. MR4487626
[32] F. Qi, S. Guo and B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), no. 9, 2149-2160. MR2577754
[33] M. Boualia, A harmonic mean inequality for the q-gamma and q-digamma functions, Filomat 35 (2021), no. 12, 4105-4119. MR4365522
[34] H. Alzer and A. Salem, A harmonic mean inequality for the q-gamma function, Ramanujan J. 58 (2022), 1025-1041. MR4451510
[35] S. N. Bernstein, Sur les fonctions absolument monotones. Acta Math. 52 (1929), 1-66. MR1555269
[36] D. V. Widder, The Laplace Transform. Princeton University Press, Princeton, 1946.
[37] M. E. H. Ismail, L. Lorch and M. E. Muldoon, Completely monotonic functions associated with the gamma function and its q-analogues, J. Math. Anal. Appl. 116 (1986), no. 1, 1-9. MR0837337
[38] A. Salem, An infinite class of completely monotonic functions involving the q-gamma function, J. Math. Anal. Appl. 406 (2013), 392-399. MR3062547
[39] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373-389. MR1388887
[40] A. Z. Grinshpan, M. E. H. Ismail, Completely monotonic functions involving the gamma and q-gamma functions, Proc. Amer. Math. Soc. 134 (2005), no. 4, 1153-1160. MR2196051
[41] A. Salem, A completely monotonic function involving q-gamma and q-digamma functions, J. Approx. Theory 164 (2012), no. 7, 971-980. MR2922625
[42] A. Salem and E. S. Kamel, Some completely monotonic functions associated with the q gamma and the q-polygamma functions, Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. $5,1214-1224$. MR3374054
[43] A. Salem and F. Alzahrani, Improvements of bounds for the q-gamma and the q-polygamma functions, J. Math. Inequal. 11 (2017), no. 3, 873-883. MR3732820
[44] A. Salem, F. Alzahrani, Complete Monotonicity property for two functions related to the q-digamma function, J. Math. Inequal. 13 (2019), no. 1, 37-52. MR3928268
[45] J.-F. Tian, Z. Yang, Logarithmically complete monotonicity of ratios of q-gamma functions, J. Math. Anal. Appl. 508 (2022): 125868, 13 pages. MR4345996
[46] H. Alzer and J. Wells, Inequalities for the polygamma functions, SIAM J. Math. Anal. 29 (1998), 1459-1466. MR1638062

Zhejiang Electric Power Company Research Institute, Hangzhou, Zhejiang, 310014, Hangzhou, P. R. China

E-mail address: yzhkm@163.com
Jing-Feng Tian, Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, 071003, Baoding, P. R. China

E-mail address: tianjf@ncepu.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary 33D05, 26A48; Secondary 26D15.
 Key words and phrases. q-polygamma function, monotonicity, complete monotonicity, inequality.
 *Corresponding author: Jing-Feng Tian, e-mail addresses, tianjf@ncepu.edu.cn.

