MONOTONICITY RESULTS FOR FUNCTIONS INVOLVING THE
¢-POLYGAMMA FUNCTIONS

ZHEN-HANG YANG AND JING-FENG TIAN*

ABSTRACT. Let tgn = (—1)""! ;bé") for n € N, where ;bém are the ¢-
polygamma functions. In this paper, by the monotonicity rules for the ratio
of two power series, it is proved that, for ¢ € (0,1) and n € N, the function

g“t —14gn+1 (2)

Ing Ygn ()
is decreasing (increasing) on (0, c0) if and only if o < log, (2"/ (g + 1)) (a >
0). The conditions for which several relevant functions are monotonic or com-
pletely monotonic on (0, 0o) are obtained. Moreover, several relations involving
the ¢g-polygamma functions are established.

x— Fyn(z;0) =

1. INTRODUCTION

The classical Euler’'s gamma function I' is defined by

(1.1) I'(z) = /Oootwletdt

for > 0, and its logarithmic derivative ¢ () = IV (z) /T () is known as the psi
or digamma function, while ¢/, ¥”, ..., %™ are called polygamma functions. As
usual, we denote by 1, = (—1)" "' 4™ for n € N.

The ¢-gamma function [I} 2] is defined for > 0 and ¢ # 1 by

1—x 7 1- qn+1 .
(12)  Ty(x) = (1-gq) HW’ if0<q<1,
n=0
x 1 —q —(n+1)
(13) Ty = (@-1'" ﬂxnﬂlll—q7wm,ﬂq>L

n=0

It is easy to see that lim, o'y () = o0 and lim,_oo I'y (2) = oo. From (1.2) and
(1.3) we have that, for all ¢ > 0,

(1.4) L, (z) = q(zfl)(zfz)ﬂf‘l/q (), x>0.

Analogously, the logarithmic derivative of the q—gamma function ¢, (z) = I'}, (z) /T (x)
(n)

q, ..., g ’ are called ¢g-polygamma

is known as ¢-psi or g-digamma function, and 1/)
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2 ZHEN-HANG YANG AND JING-FENG TIAN*

functions. The g-digamma function v, (z) has a series representation:

©  k+x
¢"lng
(1.5) Yg(x) = —1n(1—Q)+ZW
k=0
0 qk:w
(1.6) = —ln(l—q)—l—(lnq)zl_qk for 0 < ¢ < 1.
k=1
Then
n—1_(n) ni1 & KM
(1.7) (=D)" " (x) = (—1Ing) ;:31 T ifo0<g<1

for x > 0 and n € N. It is worth mentioning that Ismail and Muldoon [3] found
that the ¢-psi function has the following Stieltjes integral representation:

1—et

(18) o (2) = —In(1—q) — / T ),
where

v (t) = —lan(5(t+klnq), 0<g<l,
k=1

is a discrete measure with positive masses —Inq at the positive points —klIng,

k = 1,2,.... This offered a new and simple way to investigate the g-gamma and
g-polygamma functions (see []).

For convenience, we denote by ., = (—1)" " 9{" for n € Ny = NU{0}, where
g0 = —1q. It is readily seen from (1.6) and (1.7, for n € N and ¢ € (0,1),

lim 1y (z) = —o0, hln Vg (z) =—In(1-q),

x—04
(1.9) _ _
i g (1) =00, I () =0,

The close relation between the ordinary gamma function I' and the g-gamma
function T'y is given by limg_y1 Iy () = T'(z),2 > 0 (see [2], [5]). Likewise, the
ordinary digamma function ¢ and g¢-digamma function ), satisfy the following
limit relation: limg 1 9, (z) = ¥ (x),z > 0 (see [6]). We claim that the ordinary

(n)
q

polygamma function ¥ and g¢-polygamma function ;" also satisfy a similar

limit relation.

Claim 1. Let n € N. We have

(1.10) lim ¢{" (z) = lim ¥ (2) =™ (z), z > 0.
q—1— q—1+t

Sketch of proof. The first equality of ((1.10) follows from the relation (1.4]). It was
proved in [7, Eq. (2.5)] that

d* (q¢'lng Ingq et ‘ ¢
dtn(l_qt = 1_qt qPﬂ—l(q)7n€N?
where P, (z) is a polynomial of degree n satisfying

P,(z)=(2—2*) P,

n—1

(2)+ (nz+1) P11 (2), Po(z)=1,n> 1
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MONOTONICITY INVOLVING THE ¢-POLYGAMMA FUNCTIONS 3

The above relation implies that P, (1) = (n+ 1) P,—1 (1) with Py (1) = 1, and
therefore, P, (1) = (n+ 1)!. From these it follows that

d (qt 1nq> ()Ml

go1din \1— qt gn+l

Now, using (|1.5)) and differentiating yield

n k'“”lnq
den (1_qk+m> 6(071)

n € N.

) (n) n k:Jra: hlq oo n+1 nl )
fim vy Z o (1_qk+l> Z o V@

—1— —1-
q q 0
|:|

In 2001, Alzer [8, Lemma 2] (see also [9, Lemma 2.1]) proved that the function
T = TPpt1 (x) /1, (z) is strictly decreasing from (0,00) onto (n,n+1). Yang
[10, Corollary 2] proved that the function z — (z + r)¢p41 (2) /1, (z) is strictly
decreasing (increasing) on (0,00) if and only if » > 0 (r < —1/2). For the ¢-
polygamma functions, it is natural to ask the following problem.

Problem 1. What are the conditions for which the function

qm'a —1 ¢q,n+1 (33)
Ing  Pgn ()’

is increasing or decreasing on (0,00) forn € N and ¢ > 0 with ¢ #£1°¢

(1.11) z— Fyp(za)=

The aim of this paper is to give an answer to the problem for ¢ € (0,1). Our
main result is contained in the following theorem.

Theorem 1. Let g € (0,1) and n € N. The following statements are valid:
(i) If @« < ag =log, (2"/ (g + 1)), then the function x — Fy, (z; ) is increasing
n (0,00). In particular, for a = ag, the inequality

=1 Yy (@)

lnq ¢q,n+1 (J?)

holds for x > 0.
(it) If o« > 0 then the function x — Fy, (z;a) is decreasing on (0,00). In
particular, for a =0, the double inequality
Ing Ygm+1(x)  (n+1)Ing
< <
q*—1 ¢q,n (x) q* —1
holds for x > 0. The lower and upper bounds are sharp.

(i) Iflog, (2"/ (q+ 1)) < a <0, then there is an xo > 0 such that the function
is increasing on (0,xz¢) and decreasing on (xg,00).

(1.12)

2. TooLs

To prove our results, we need several tools: the monotonicity rules for the ratio
of two power series, the signs rule for the NP (PN)-type power series, and an
important limit formula.
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4 ZHEN-HANG YANG AND JING-FENG TIAN*

2.1. Monotonicity rules for the ratio of two power series. The following
lemma is due to Biernacki and Krzyz [I1], which play an important role in dealing
with the monotonicity of the ratio of power series.

Lemma 1. Let A(t) =Y ° g ant™ and B (t) = 3" byt™ be two real power series
converging on (—r,r) (r > 0) with by, > 0 for all n. If the sequence {ay /by }n>0 is
increasing (decreasing), then so is the ratio A (t) /B (t) on (0,r).

Another monotonicity rule in the case when the sequence {a,, /by, }n>0 is piecewise
monotonic was established by Yang, Chu and Wang in [12, Theorem 2.1], which is
efficient to study for certain special functions, see [13], [14], [15], [16], [17].

Before stating this monotonicity rule, we introduce an auxiliary function Hy 4
given first in [18], which was called Yang’s H-function in [19] by Tian et. al. For
—00 < a<b< oo, let fand g be differentiable on (a,b) and ¢’ # 0 on (a,b). Then
the function Hy 4 is defined by

!

(2.1) Hyg =G0~

The following lemma is a modified version of [I2, Theorem 2.1] and appeared in
[20].

Lemma 2. 20] Let A(t) = > pe o artt and B (t) = Y 5, bit* be two real power
series converging on (—r,r) and by, > 0 for all k. Suppose that for certain m € N,
the sequences {ar/by}ocp<m ond {ak/bi}ys,, are both non-constant, and they are
increasing (decreasing) ‘and decreasing ( inc;easing), respectively. Then the function
A/B is strictly increasing (decreasing) on (0,7) if and only if Ha g (r~) > (<)0.
If Hag(r~) < (>)0, then there exists tg € (0,r) such that the function A/B
is strictly increasing (decreasing) on (0,t9) and strictly decreasing (increasing) on
(to, 7") .

2.2. Signs rule for the NP (PN)-type power series. We begin with introduc-
ing certain special sequences containing positive (negative) sequence, NP and PN-
type sequences. If every term of a real sequence is nonnegative (nonpositive) and at
least one is non-zero, then this sequence is called a positive (negative) sequence. Let
m € N. A real sequence {ay},~, is called an negative-positive-type sequence, NP-
type sequence for short, if the subsequences {an}ocp<m and {an},,, are negative
and positive sequences, respectively. {—an},,~q is called a positive-negative-type
sequence, PN-type sequence for short. The NP or PN-type power series is defined
as follows.

Definition 1 ([2I]). The power series S(t) = > pooart® is called an NP-type
power series if the sequence {an},~, is an NP-type sequence. —S (t) is called a
PN-type power series. a

For the NP or PN-type power series, a simple but efficient criterion to determine
their signs has been proven in [22], which is a revised version of the electronic
preprint [23], and proven differently in [24].

Lemma 3. Let S (t) be an NP-type power series converging on the interval (0,r)
(r>0). (i) If S(r=) <0, then S(t) <0 for allt € (0,7). (ii) If S(r=) > 0, then
there is a unique to € (0,7) such that S(t) < 0 fort € (0,%9) and S(t) > 0 for
t e (t07 ’I’).

Remark 1. If r = oo, then Lemma[3 is changed to [25, Lemma 6.3].
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MONOTONICITY INVOLVING THE ¢-POLYGAMMA FUNCTIONS 5

2.3. An important limit formula. The following lemma was listed in [26, Prob-
lems 85].

Lemma 4. If two given infinite sequences {an }n>0 and {bn}n>0 satisfy the condi-
o0

tions: (i) by, > 0 for alln > 0; () 3 byt™ is convergent for |t| < 1 and divergent
n=0

a
fort=1; (#i) lim b—n =s. Then Y, a,t™ converges for |t| < 1 and
n—oo n

3. PrROOF oF THEOREM [1]

The one parameter mean of two distinct positive numbers a and b is defined by

D qPt1 — pptl

J](,(a,b):p_F1 T iftp#-1,0
and
Ina—Inb  G?(a,b)
_ = 1. = = ?
J 1(a7b) pi}{ll Jp (a7b) ab a_b L(a)b)’
. a—>b
J()((Lb) = ;%Jp(a,b)—m—lz(a,b)

It was proved in [27, Theorem 1] that the function p — J, (a,b) is increasing on
(—00,00), and is log-convex on (—oo, —1/2) and log-concave on (—1/2,00). The
following lemma provides a new property of the function p — J, (a,b), which will
be directly used to prove our main result.

Lemma 5. Let a > b > 0. The function

p0

WJP (a,b)

p = Wo (a,b;p) =
is convex on (0,00) if and only if 6 > 1.
Proof. Making a change of variable ¢ = In m, Jp (a,b) can be expressed as
p (ab)PTV/2 q0+1)/2 jp(+1)/2 _ p(p+1)/2 /g (p+1)/2

Jp (a,b)
Vab p+1 \/%(ab)pﬂ ar/2 /bp/2 — pp/2 [qp/2
—(p+1)

P ( a/b)p+1 - (M) R Sinh(thrt)
p+1 (\/m)pi< a/b)_p ~ p+1 sinh(pt)

and then, Wy (a,b; p) can be represented as
Wo (a, b; 041 ginh (pt +t
o(a,bip) _ p ! h (p ):ng(typ).
Vab (p+1)" sinh(pt)
Differentiation yields

owg (0 +p-+1)p? sinh (pt +t) p’*tl  tsinht

)

Op (p+ 1) sinh(pt)  (p+1)7 sinh? (pt)’
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6 ZHEN-HANG YANG AND JING-FENG TIAN*

OPwg  0(0+1)p°sinh(pt + 1) B (@+p+1)p? tsinht
o*  (p+1)’T*  sinh(pt) (p+1)°T sinh? (pt)
0+1 2 0—1
P 2t* sinh t cosh (pt) P
* G inh3 = 0+2 . 13 Vo (t.p),
(p+1) sinh” (pt) (p+1)"""sinh” (pt)
where

Vo (t,p) = 6 (0 + 1)sinh? (pt)sinh (pt + )

(3.1) —2p(p+1) (@ +p—+1)tsinhtsinh (pt)

2

+2p% (p+1)" t?sinh t cosh (pt) .

)
If p — Wy (a,b; p) is convex on (0,00) for a > b > 0, then for all p,t > 0,
m Ve (hp)
f—>0

Expanding in power series of ¢ yields
Vo (t.p) =p*(p+1)0(0 - 1)t°+0(¥),

which implies that

. V9 (tvp) _ 2
g%—?;——p(p+UHW—ly

Therefore, the necessary condition for Vy (¢,p) > 0 for all ¢,p > 0 is that: 6 > 1.

It remains to prove that Vp (¢,p) > 0 for all ¢,p > 0 if § > 1. Applying the
known inequality x coshz > sinhx for > 0, the sum of the second and third of
the expression of Vjp (t,p) is greater than

—2p(p+1) (0 + p+ 1) tsinh¢sinh (pt) + 2p (p + 1) t sinh ¢ sinh (pt)
= —20p(p+1)tsinhtsinh (pt),
then
Vo (t,p) > 0(0+1)sinh?® (pt)sinh (pt 4+ t) — 20p (p + 1) tsinh ¢ sinh (pt)

0 + 1 sinh (pt) sinh (pt + 1)

= 20p(p+1)tsinhtsinh (pt) 5 ot (pt Lsiohi

> 0,

where the last inequality holds due to 6 > 1, sinh (pt) > pt and sinh (pt +¢) >
(p+ 1)sinht for p,t > 0. This completes the proof. a

Lemma 6. Let g € (0,1) and n € N. Then the function g n/Wgnt1 is increasing
from (0,00) onto (0,—1/1Ingq). Consequently, for x > 0 we have the inequality

(3'2) Ygn (x) wq,n-‘rQ (1‘) - ¢3,n+1 (x) > 0.
Proof. Using the representation ([1.7)) yields
(33) w%” (I) o (_ In q)"""l Ezozl bktk — 1 ZZOII bk+1tk

n+1 () (=Ing)" 2320 kbt —Ing YT (k4 1) byatk”

where t = ¢ and

(3.4) by =
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MONOTONICITY INVOLVING THE ¢-POLYGAMMA FUNCTIONS 7

Since the ratio of those coefficients of power series in (3.3]) is clearly decreasing, by
Lemma (1| the ratio of power series in (3.3]) is so with respect to ¢, which implies
that the function ¢4, /1g n+1 is increasing on (0, c0) with

lim wqyn ((ﬁ) _ 1 lim Zk 0 bk-i-lt _ 1
T—00 wq,n-i-l (Z‘) - lnq t—0 Zk 0 (k + 1) bk+1tk — hlq’
and by Lemma [4
wq,n (.T) _ 1 . Zk obk+1t 1 . b/ﬁ.l

li = 1 =
50 Ygni1(z)  —Ing i Soneo (k+1)bgiath —Ing i (k+ 1) brs1

Using the increasing property of ¢g /¥4 n+1 on (0,00), we have

!/ / !/
( q/}qm > _ q,mn +'¢)q,n < g,n+l> _ wq,n2¢q,n+2 1> 0’

wq,n+1 wq,nJrl q,n+1 q,n+1

which implies (3.2)), and the proof is completed. O
We are now in a position to prove our main result.

Proof of Theorem [l Using the representation (1.7) yields

(35) (7 lnq) ¢q,n (SC) — (_ n+22 k™ q o 71 ng n+22b tk

where t = ¢” and by, is given by (3.4 ;

(1= ") Ygns1 (@) = (1—tq%) (~Ing)" "> kbytF
k=1

= (=Ing)"" byt + ) (kbp — ¢* (k — 1) bp_1)t"

k=2
o0
(3.6) = ()" at* = (1),
k=1
where
(3.7) ap =by and ap = kb, — ¢ (k—1)bg—q1 for k > 2.

Then Fj, ,, (z;a) can be expressed as
() _ 1 (—hHQ)nJr2 Dy at” _ Dy akt”
g(t) —Ing(—lng)"™! >y bitk >y bit

To prove the monotonicity of the function Fy , (z), we have to observe the mono-
tonicity of the sequence {ay/by},~,. A simple computation leads to a;/b; = 1 and

Fyn(z;a) =

for k > 2,
br_1 (k—1)""" 1 ¢k
b k- k—1)— =k —q“ )
bk q” ( ) ™ q P S
Then
as ai 1+g¢
dy=——-——=1—¢“ =1-q°
1 b2 bl q on q ui,
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8 ZHEN-HANG YANG AND JING-FENG TIAN*

and for k > 2,
b br—
(3.8) dy, = Qk+1 _%zl—qak k —l—qo‘(k—l)g::l—qauk,
bry1 b brt1 by,
where
(5.9) I T o B U Vi S
(k+1)" 1—gF kn 1— gkt
Since

1+g¢
on

limd, =1—¢q® =d
k1—>Inl k q 1
the formula (3.8]) is valid for all £ > 1.
Using the notation of the one parameter mean J, (a,b), uj can be written as
k" (k—1)"
up = ————=Jk (L,q) — ————Jk-1(1,¢
(k‘ + 1) 1 ( ) kn—1 1 ( )
for k > 1. By Lemma [5| we sce that the sequence {(k+ 1)'"" k"Jj, (1,9)}r>1 is
convex for k > 1, and then, the sequence {uy},~, is increasing. Moreover, we have
Uso = limy_y00 ux, = 1. In fact, uy can be written as

o (k=1\" 1-¢" 1(1-k)"—1/ k \" 1-¢*
e = ( k ) I—g1 & k2 (k+1) 1—gh 1
EO\'_k(@—1)7¢""
- (k+ 1) (1=¢") (1 =g 1)’
which clearly tends to 1 as k — oo for fixed ¢ € (0,1) and n > 1.

(i) If ¢ < ming>1 {ux} = ua, that is, a < —log, uy = log, (2"/ (¢ + 1)), then
dip =1 —¢q%uy <0 for all &k > 1, which indicates that the sequence {a/by},~, is
decreasing. Tt follows from Lemma [I] that the ratio f (t) /g (t) is decreasing with
respect to t on (0,1), and so the function x — Fy,, (z; @) is increasing on (0, 00).

(i) If ¢~ > limgoo ux = 1, that is, @ > 0, then dy = 1 — ¢%uy, > 0 for all
k > 1, which implies that the sequence {aj/bi},~, is increasing. It follows from
Lemma [T] that the ratio f (t) /g (t) is increasing with respect to ¢ on (0, 1), and so
the function x — F, , (x; «) is decreasing on (0, 00).

(iii) When (g +1) /2" = u1 < ¢”% < u = 1, that is, log, (2"/ (¢ + 1)) < a <0,
since the sequence dy = 1 — ¢“uy, is decreasing for k > 1 with

di=1—q¢%u1 >0 and doo =1 — q%us <0,

there is a positive integer kg > 1 such that d > 0 for 1 < k < kg and di, < 0
for k > ko, namely, the sequence {aj/bi},~, is increasing for 1 < k < ko and
decreasing for k > kq. If we prove that B

t—1- t—1- \ ¢’ (1)

then by Lemma [2| we deduce that there is a to € (0,1) such that f(¢) /g (¢) is
increasing on (0,tg) and decreasing on (to, 1), which, due to t = ¢%, shows that
z — Fy, (x;0) is decreasing on (xg,00) and increasing on (0,zg), where zy =

lim Hy, (f) = lim (f gy - f(t)) <o,
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MONOTONICITY INVOLVING THE ¢-POLYGAMMA FUNCTIONS 9

(Intg) /Ing, the third assertion then follows. Now, since

rd 1
f’ (t) = [(1 - qura) %,n+1 (33)] %%
(_q$+o‘ Ingq) Vg n+1 (z) — (1 - qx+a) Yg,n+2 (z)
tlng

dInt

1
q (t) = (—1Ingq) %m () %m = ¥7/1q,n+1 (z),

)

we derive that

Hpg(t) = (=g Ing) Ygni1 (x) = (1 = ¢""*) Yy nya (2)] / (tIng)

'l/}q.,nJrl (x) /t
X (—1Ingq) (L (33) - (1 - qI—HX) Ygn+1 (x)

_ T+ L ata wq,n+2 (J?) '(/)q,n (l‘) — wq,n-ﬁ-l (x)Q
B (q n q) Yan (@) + (1 1 ) Vg1 () .

Due to ¢° (Inq) ¥g,n (z) <0, Ygnt2 () Ygn (T) = Vg1 (I)2 > 0 (due to " and
lim, ,o+ (1 —¢**t*) =1—¢* <0, we arrive at lim; ;- Hy 4 (t) <O0.
Finally, we find the limit values of f (¢) /g () ast — 0, 1. Clearly, lim;_,o+ [f (¢) /g (t)] =

a1/by = 1. To compute lim; ,;- [f (¢) /g (¢)], we note that by > 0 for all & > 1,
g(t) = (=Ing)" "> S22 | bytk is convergent for all ¢ € (0,1) and g (¢) is divergent
for t = 1; moreover, since

_1\ntl _ k - o n+1 _ k k—1 o

P g S Y C V1 g S LY VYRt B
kn 1— qk—l 1/k 1— qk—l 1— qk—l

as k — oo, we have

lim £ — lim k—qa(

k— o0 bk k—o0 kn 1-— qk_l

E-1)"" 1—¢* | [ n+1 if a =0,
| sgn(a)oo ifa#0.

From Lemma [ it follows that

v, agt” if o =
lim F,, (r;0) = limﬂz lim z:k;i: ntl }fa 0,
=0+ t1- g (t)  t=1- Yo btk sgn (a)oo if a # 0.

Using the monotonicity of the function f (¢) /g (t) on (0, 1), the required inequalities
follow. This completes the proof. O

Remark 2. From the end of the proof of Theorem we see that, for q € (0,1),

. . q° — 1Ygnt1 ()
1 lim F,, (z;0)= 1 : = 1.
(3.10) Jm, Fon (2;0) Iﬁsu( g Gonfm) ) "7

Remark 3. For m,n € N with n > m, since

’ﬁ (qx —1 g 51 (m)) _ (qw - 1)”'” Yo (@)
j=m Ing wq,j (.Z‘) Ing Yg,m (.13) 7
we find that the function

¢ =1 (ban @) )
o Ing (¢q,m($))

1/(n—m))

is also decreasing from (0,00) onto (1, (n!/m!)
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10 ZHEN-HANG YANG AND JING-FENG TIAN*

4. SEVERAL RELEVANT RESULTS

Letting p — ¢ = 0in [28, Theorem 2] yields that the function  — nyy, () /141 (2)—
x is decreasing from (0,00) onto (—1/2,0). Further, using the monotonicity rules
for the ratio of two Laplace transforms given in [29], [30], we can prove that the
function x — My, () /tPn+1 () — x is decreasing (increasing) on (0, c0) if and only
if A <n (A>n+1). This reminds us to guess that the function
_ /Bd)q,n (1‘) q* —1

(4.1) T fon (z;8) = Vamir (@) - g

has a similar monotonicity result on (0,00). But we find that it is difficult to
deal with this problem. Fortunately, we can prove the increasing property of = —
fqn (z; B) for B =n+ 1 using Theorem [1| and Lemma@

Proposition 1. Let ¢ € (0,1) and n € N. The function x — fqn (z;n+1) is
increasing from (0,00) onto (0, —n/Inq). Consequently, the double inequality

(n+1)Ing  WYgnyi1(x)  (n+1)lng
< <
qw_l_n wq,n(x) qx_l

holds for x > 0. The lower and upper bounds are sharp.

(4.2)

Proof. By Theorem 1| (ii) we see that the function

q° —1 wq,nJrl (l‘)
lnq wq,n (-T)

is positive and increasing on (0, 00); while the function x — 9., () /¥gnt1 () is
also positive and increasing on (0, 00) due to Lemma @ Then so is the function

q" = 19Ygnt1 (55)> Vg (2) _ (n =4 1) Ygn (x) _ g -1
Ing g, (x)

wq,n+1 (:E) B ¢q,n+1 (x) Ing
on (0,00). Employing those computed results shown in Lemma |§|, we obtain

r—n+1-—

x»—)(n—i—l—

n+1 1 n
m fon(z;n+1)=

ilg%fq,n(x;n—i—l):() and xh_mo —lnq_—lnq:—lnq'

Then the required double inequality follows from the increasing property of f, , (z;n + 1)
on (0, 00), which completes the proof. O

Remark 4. Clearly, the lower bound in is weaker than the one in due

to
Ing (n+1)Ing ng®Ingq
— = >0
-1 ¢—-1-n (¢*-1)(m+1-q)

for q € (0,1).
Since (Ing)/(¢* —1) > 1/x for ¢ € (0,1) and = > 0, by the left hand side
inequality of (1.12) we have

1 Ing "/’q,n-‘rl (JL‘)

x  ¢¢—1 Yan (T)
for z > 0. This yields the following corollary.
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MONOTONICITY INVOLVING THE ¢-POLYGAMMA FUNCTIONS 11

Corollary 1. Let g € (0,1) and n € N. The inequality

7J’q,n (x) — TPg 1 (‘T) <0,
or equivalently,

(=1)" [0 (@) + 2p{ ) ()] <0

holds for x > 0, In particular, when n = 1 we have
(4.3) Uy (@) + 2y (x) <0
for x > 0.
Remark 5. The differential inequality was recently proved by Alzer and Salem

in [31, Theorem 3.1], which plays a central role in the proofs of those main results
in [31].
Let us return to Proposition (1} Since the function z — f,,, (x;n + 1) is increas-
ing on (0, 00), we have
Ygn (z) Ygnt2 ()
2
Vgn+1 (2)

for > 0. We thus obtain the following corollary.

%fqm(a:;n—kl):(n—kl) —(n+1)—¢">0

Corollary 2. Let g € (0,1) and n € N. Then for x > 0, we have

i @) Va2 (@) | 0"
Yot (@) el

Remark 6. Clearly, the inequality 1s better than .

Alzer [8, Lemmas 1 and 2] (see also [32]) proved that the function z — x%,, (x)
for n € N is strictly decreasing (increasing) on (0, 00) if and only if ¢ < n (¢ > n+1).
Similarly, we can determine the best r € R such that the function

(145) 2 g0 i) = (525 v @)

Ing
is increasing or decreasing on (0, 00), which reads as follows.

(4.4)

x

Proposition 2. Let g € (0,1) andn € N. The function x — g4 (z;7) is increasing
(decreasing) on (0,00) if and only if r > n+1 (r <1). Whileif 1 <r <n+1,
there is an xo > 0 such that © — g4 (z;7) is decreasing on (0,x¢) and increasing
on (zg,00).

Proof. Differentiation yields

agq,n _ 1- q_z ot —z 1- q—m "
O = T ( lnq ) q wq,n (Z‘) - lnq '(/)q,n-i-l (m)

_ Cm@jpyx%mwhﬁﬂww,

where
¢ —1¢gni1 (z)
Ing  gn (z)
is as in ([1.11)). Using Theorem [l| we deduce that dg,,/0z > (<)0 if and only if

r>supF,, (x;0)=n+1orr<inf F,, (2;0) = 1.
x>0 x>0

Fyn(x;0) =
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12 ZHEN-HANG YANG AND JING-FENG TIAN*

While 1 < r < n+1, since & — r — Fy,, (z;0) is increasing on (0, c0) with

lir% (r—Fyn(xz;0)) = r—(n+1)<0,
r—
li_}rn (r—Fyn(x;0) = r—1>0,

there is an ¢ > 0 such that r — F}, ,, (2;0) < 0 for z € (0,z¢) and r— F, ,, (x;0) > 0
for x € (x9,00). That is, dgqn/0x < 0 for z € (0,z0) and 0gq,/0x > 0 for
x € (xg,00), which completes the proof. O

Note that p | |
rlng q *Ingqg
— = — 1+1Ing® —¢”" 0
del—q= (1_q_x)2( +1Ing q") <

for x > 0 and ¢ € (0,1). By Proposition 2 we find that the function

rlng rlng 1—q7"
1—g° Yo (231) = Vg (T) = TYgn (@)

1—¢* Ing
is also decreasing with respect to = on (0, c0).

Corollary 3. Let g € (0,1) and n € N. The function x — &g, (x) = xgn () is
decreasing on (0,00).

Remark 7. Recently, several mean inequalities for the q-gamma and q-digamma
functions were obtained in [33], [34]. Using the decreasing property of the function
= Pqn (z) on (0,00), we can prove the following mean inequality

Yo () * Y WD) 5 o ()

forxz>0,q€(0,1) and n € Ng. In fact, by a differentiation we have

1\ 1 1
@)+ (3)] = 0= 000 (3)
1 1 1 1 1
= *5 [qu,n+1 (I) - qu,n-%l (x)} = *5 {gq,n+1 (1‘) - fq,n-&-l (x>} )

which, by Corollary[3, is positive if x > 1 and negative if 0 < x < 1. It then follows
that

a0+ i (3 ) 2 W ()4 00 (1) = 20,0 1)
for x > 0.

Recall that a function f is called completely monotonic on an interval I, if f has
the derivative of any order on I and satisfies

(D" f® (@) 20
for all k € Ny on I, see [35,[36]. As early as in 1986, Ismail [37] began to investigate
the complete monotonicity of the ¢g-gamma function. Using the Stieltjes integral
representation he and coauthors in [3], [4] effectively dealt with some problems
on the complete monotonicity of g-gamma and ¢-polygamma functions. In 2013,
Salem [38, Theorem 3.1] proved a nice result, which states that the remainder
of the asymptotic expansion of InT'y (z) is completely monotonic on (0, c0), and
generalized Alzer’s result in [39, Theorem 8]. More completely monotonic functions

involving the g-gamma and ¢-polygamma functions can be found in [40], [41], [42],
[43), [44], [45], and references therein.
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MONOTONICITY INVOLVING THE ¢-POLYGAMMA FUNCTIONS 13

Now, by Lemma [5] and Lemma [3] we shall prove that the function

¢ —1

“‘g‘”ﬁmn+1($)

(4'6) T = hq,n (x§77) =q " an,n (1‘) T

is completely monotonic on (0, 00).

Proposition 3. Let g € (0,1) and n € N. The following statements are valid:

(1) The function =~ hgp (x;n) is completely monotonic on (0,00) if and only
ifn>n+1.

(i1) The function x — —hg  (x;7) is completely monotonic on (0, 00) if and only
ifn <1

(ii) If 1 < n < n+ 1, then for every m € Ny, there is an z,, > 0 such that
(=)™ h,(f,?b) (xz;m) > 0 for (T, 00) and (—1)™ h((;%) (x;m) <0 for (0,x,).

Proof. Let ¢® = t. Using the representation (|1.7) we obtain

e knq(k—l)x 1 e k7z+1qu
hon (x5m) = (—Ing)"™ e
q, (.Z', 77) ( nq) (nz 1 — qk q* kz 1— qk

k=1 =1

RS (E+1)" 1o
(=)™ > (= o) g d™
k=0 q

where vg = 1 and for k£ > 1,

k.n—H 1— k+1 n
T _ — k41—

v =k+1— . S
k (k+1)" 1—gF (k+1)""

Jk (LQ) .

Then, for m € Ny,

I e E™ (k+1)" N
(07 ) = (g™ Y - o) S ).
k=0

By Lemma [5] it is seen that the sequence

(k—1)" K

UV — Vp—1 = ij_l (1,q) - ij (1,¢) +1

is decreasing for k£ > 2, and we have

Vg — Ug—1 > lim (vg —vg—1) =0 for k > 2,
k—o0

and
q+1 2" —(g+1)

g 1= 20
which indicates that the sequence {vy},~, is increasing.

Case 1: 7 > limpoovr = n+ 1. Then n — v, > 0 for all £ > 0, and then
(=™ h,(:,i) (x;n) > 0 for > 0. That is, the function « — hy ., (z; 1) is completely
monotonic on (0, 00).

Case 2: n < 1. Then n—vy < 1—vy = 0 for k > 0, and then (—1)" h((;ffl) (x;m) <0
for z > 0. Hence, the function © — —hg,, (z;7) is completely monotonic on (0, co).

Case 3: 1 =vp <N < Voo = n+ 1. Since (n — vy) = v} is decreasing for k > 0
with v =7 —vy > 0 and v} = 1 — ve < 0, there is an integer ko such that

v — vy =2—
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14 ZHEN-HANG YANG AND JING-FENG TIAN*

vp = (n—wv,) >0for 1 <k<koand vy = (n—uvg) <0 for k> ko. This indicates
that H (¢) is a PN-type power series. Because

lim () i an @30)
=1 (—In q)”+1 G g n (1) =0 ¢ %y ()
. q° —1Ygnt1 ()
= -1 : =np—-n—-1<0
! i“( g W@ )T

by Lemma 3| we find that there is a ¢, € (0,1) such that H(¢) > 0 for ¢t €
(0,tm) and H(t) < O for t € (t;,1). Therefore, there is a z,,, > 0 such that
(-H)™ hé?fl) (x;m) > 0 for (zy,,00) and (—1)" hé?fl) (x;m) < 0 for (0,2,,), where
Ty = log, tmy. This completes the proof. [l

5. CONCLUSIONS

In this paper, we proved that, for ¢ € (0,1) and n € N, the function z —
F, . (x;a) defined by is increasing (decreasing) on (0, c0) if and only if o <
ag = log, (2"/(¢+1)), and is decreasing on (0,00) if and only if > 0. This
is similar to the monotonicity of the function z — (x + 1) ¢¥ny1 (z) /Pn (x). As a
direct consequence, the function z — (n + 1) ¥gn (z) /g nt1 (x) — (¢ — 1) /Ing is
increasing on (0,00) for ¢ € (0,1) and n € N, which yields the inequality . By
means of the monotonicity of the Fy ,, (z;0) on (0, 00), we showed that the function
T > ggn (x;7) defined by is increasing (decreasing) on (0,00) if and only if
r > n (r <1). Moreover, we found that the function x — +h, , (x;7) is completely
monotonic on (0,00) if and only if n >n+1 (n < 1).

Finally, we list a problem and several remarks.

Remark 8. [t is difficult to compute the limit values involving q-gamma and q-
polygamma functions when the independent variable tends to zero. Therefore, the
limit relation is significant. Moreover, it is checked that this limit relation is
valid for all ¢ > 0 and n € Ny by employing the relation , L’Hospital rule and
Lemmal[)

Remark 9. Noting that
Vg (2) Vg ni2 (2) _ (qac —19Ygn2 (2) )/ <qx — 1 g ni1 (x))
Yy n+1 (55)2 Ing vgni1(x) Ing  Ygn(x) )’
then utilizing the limit relation gives

i Y ()Yt (2) _ 02
z—0 Vg1 (T) n+1
This together with inequality[{.] inspires us to consider the following problem which
is similar to the inequality
Al (@) baia (@) 2
n Ui (2)° n+l

for x >0 and n € N (see [40, Theorem 2.1], [I0, Corollary 2]).

Problem 2. Let ¢ > 0 with ¢ # 1 and n € N. What are the conditions such that

the inequalities
wq,’ﬂ (‘T) wqﬂﬂrg (.’17) > (<) n+2
Ygnt1 (T) n+l
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hold for all x > 07
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