
DOUBLY WEIGHTED SHARP WIRTINGER INEQUALITIES ON R+
1

HUANG RONG, YU XIAOCHEN, MA MENGJIN and XU GUIQIAO

College of Mathematical Science, Tianjin Normal University, Tianjin, 300387, P. R. China

Email: Canahr@163.com, 1363577076@qq.com, 2416522964@qq.com,

Xuguiqiao@aliyun.com

Abstract We consider the ρ-weighted p-norm of functions f : R+ → R with finite

‖f (n)ψ‖q, 1 ≤ q ≤ +∞. A sharp Wirtinger type inequality

‖fρ‖p ≤ Cn,p,q‖f (n)ψ‖q for all 1 ≤ p, q ≤ +∞

is established for function f such that f (j)(xi) = 0 for all 0 ≤ j ≤ αi − 1, i = 1, . . . , r, n =∑r
i=1 αi, where ψ, ρ and ω = ρ/ψ are non-increasing on R+, and ω1/α is integrable for

α = n− 1/q + 1/p. Using Hermite interpolation, we express Cn,p,q in terms of the norm of a

certain integral type operator. Then we calculate Cn,1,1 and Cn,∞,∞ in two specific cases.
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1 Introduction

Let N,R and R+ be respectively the sets of all positive integers, all real numbers and all non-

negative real numbers. For 1 ≤ p ≤ +∞ and weight function ρp on D ⊂ R, let Lp,ρ(D) be the

space of weighted p-power Lebesgue integrable functions f : D → R with the corresponding

weighted Lp,ρ-norms ‖ · ‖p,ρ; i.e.,

‖f‖∞,ρ = ess supx∈D|f(x)ρ(x)| < +∞, (1.1)

and

‖f‖p,ρ =

(∫
D

|f(x)ρ(x)|pdx
)1/p

< +∞, 1 ≤ p < +∞. (1.2)

For ρ(x) = 1, we simply write ‖ · ‖p,ρ as ‖ · ‖p. Denote by W n
p (D), n ∈ N, the class of all

continuous real-valued functions f defined on D such that f (n−1) (with f (0) = f) is absolutely

continuous and ‖f (n)‖p < +∞.
The relationships among the norms of a function and its derivatives play an important

role in the study of harmonic analysis and function approximation theory. There are many

well known inequalities in this area, for example, Landau-Kolmogorov inequality, Gorny in-

equality, Wirtinger inequality, Schmidt inequality, Sobolev inequality, Bernstein inequality

and Markov inequality. Wirtinger type inequality is one kind of the most important inequal-

ities in this aspect. The first result appeared in [2, p.105]. It says that for any locally abso-

lutely continuous and 2π-periodic function f with the first-order derivative f ′ ∈ L2([0, 2π])

and
∫ 2π

0
f(x)dx = 0, we have

‖f‖2 ≤ ‖f ′‖2,
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where the equality is valid if and only if f ∈ span{cos, sin}.
Since then there have been many results of Wirtinger type inequality for ρ(x) = ψ(x) = 1

and D = [a, b]. For example, for the case n = 1, E. Schmidt [17] proved the following two

results.

Let 0 < p ≤ +∞, 1 ≤ q ≤ +∞. Then for an arbitrary function f ∈ W 1
q ([a, b]) satisfying

f(a) = 0 (or equivalently f(b) = 0) there is the sharp inequality

‖f‖p ≤
(1/p+ 1/q′)−1/p−1/q′(1/p)1/p(1/q′)1/q′Γ(1 + 1/p+ 1/q′)

Γ(1 + 1/p)Γ(1 + 1/q′)
(b− a)1+1/p−1/q‖f ′‖q, (1.3)

here q′ is the conjugate exponent of q, and 1/∞ is to be interpreted (in the usual way) as 0.

At the same time, for an arbitrary function f ∈ W 1
q ([a, b]) satisfying f(a) = f(b) = 0 there

is the sharp inequality

‖f‖p ≤
1

2

(1/p+ 1/q′)−1/p−1/q′(1/p)1/p(1/q′)1/q′Γ(1 + 1/p+ 1/q′)

Γ(1 + 1/p)Γ(1 + 1/q′)
(b− a)1+1/p−1/q‖f ′‖q. (1.4)

Further generalizations and applications of (1.3) and (1.4) can be found in [1, 3, 9, 19].

For the case n > 1, the most important result is that if f ∈ W n
q ([a, b]) with j multiple

zeros a and n − j multiple zeros b, 0 ≤ j ≤ n, 1 ≤ p, q ≤ +∞, then we have the following

inequality

‖f‖p ≤ C(n, j, p, q)(b− a)n+1/p−1/q‖f (n)‖q, (1.5)

and the best constants C(n, j, p, q) can be found in [22]. Some authors such as A. Shadrin [18],

S. Waldron [20] and S.N. Kudryavtsev [5] obtained the inequalities in the form

‖f −HΘ(f)‖p ≤ C(n, p, q)(b− a)n+1/p−1/q‖f (n)‖q for all f ∈ W n
q ([a, b]),

where HΘ(f) is the Hermite interpolation to f at some multiset of n points in [a, b]. Further

generalizations and the best constants C(n, p, q) can be found in [11]. If HΘ(f) = 0, then

above relationship becomes the Wirtinger inequality,

‖f‖p ≤ C(n, p, q)(b− a)n+1/p−1/q‖f (n)‖q for all f ∈ W n
q ([a, b]). (1.6)

Recently, F.Y. Kuo, L. Plaskota, G.W. Wasilkowski [6] and P. Kritzer, F. Pillichsham-

mer, L. Plaskota, G.W. Wasilkowski [4] considered doubly weighted approximation problems

for piecewise Lagrange interpolation and piecewise Taylor interpolation on R+, respectively, I.

Kh. Musin [12] considered the approximation of infinitely differentiable functions by polyno-

mials in weighted spaces on R. It is noticed that G.W. Wasilkowski and H. Woźniakowski [21]

considered doubly weighted approximation problems on R based on Hermite data. In this

paper we consider doubly weighted Wirtinger type inequality on R+ based on Hermite da-

ta, which is equivalent to doubly weighted approximation by Hermite interpolation, but we

obtain sharp estimates other than weak asymptotic results in [4, 6].

The paper is organized as follows. Section 2 contains our main theorem and its proof.

Section 3 gives two examples to show our method.
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2 Basic concepts and our main result

Let ψ : R+ → R+ be a given positive and measurable function. For a positive integer

n and q ∈ [1,+∞], let F = F (n, q, ψ) be the linear space of functions f : R+ → R with

(locally) absolutely continuous derivative f (n−1) and ‖f (n)ψ‖q < +∞. The function spaces

F (n, q, ψ) were introduced in [21], see also [7, 8, 10, 13–16]. Let ρ : R+ → R+ be a function

such that ρp is a weight function for all 1 ≤ p ≤ +∞.

Similar to [6], in this paper we assume that ψ, ρ : R+ → R+ and ω = ρ/ψ are non-

increasing on R+. For n ∈ N, 1 ≤ p, q ≤ +∞, let α = n− 1/q + 1/p. We assume that

‖ω1/α‖1 =

∫ +∞

0

ω1/α(x)dx < +∞. (2.1)

Recall that

‖vnρ‖p < +∞ (2.2)

is a necessary and sufficient condition for ‖fρ‖p < +∞ for all f ∈ F (n, q, ψ), where vn(x) =

xn−1, see Proposition 1 in [6].

Corresponding to [4,6], we will consider doubly weighted Wirtinger inequality. Now we

introduce the Hermite interpolation.

For r distinct points

0 ≤ z1 < z2 < · · · < zr < +∞

and numbers αk ∈ N with n =
∑r

k=1 αk, we denote by ∆ := {zk, αk, 1 ≤ k ≤ r} a Hermite

interpolation nodes with their multiplicities. Then, the Hermite interpolation polynomial

H∆(g) of a function g ∈ Cn−1(R+) based on nodes ∆ is defined as

H∆(g) ∈ Pn−1, and H
(j)
∆ (g, zk) = g(j)(zk), 0 ≤ j ≤ αk − 1, 1 ≤ k ≤ r, (2.3)

where and in what follows, Pn represents the space of all algebraic polynomials of a degree

at most n. The classical Hermite interpolation formula is given by

H∆(g, x) =
r∑

k=1

W∆(x)

(x− zk)αk

αk−1∑
s=0

g(s)(zk)
(x− zk)s

s!

{
(x− zk)αk

W∆(x)

}(αk−s−1)

(zk)

=
r∑

k=1

αk−1∑
s=0

g(s)(zk)hk,s(x), (2.4)

where and in what follows,

hk,s(x) =
W∆(x)

(x− zk)αk

(x− zk)s

s!

{
(x− zk)αk

W∆(x)

}(αk−s−1)

(zk)

, W∆(x) =
r∏

k=1

(x− zk)αk , (2.5)

and {g(x)}(s)
(zk) is the s-th degree Taylor polynomial of g at zk.

For g ∈ F (n, q, ψ), by the Taylor expansion of g at 0 with integral remainder, we obtain

that
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g(x) = {g(x)}(n−1)
(0) +

1

(n− 1)!

∫ +∞

0

(x− t)n−1
+ g(n)(t)dt, (2.6)

where x+ = x for x ≥ 0 and x+ = 0 for x < 0. Here, corresponding to the Hermite

interpolation nodes ∆, it would be convenient to define the classes of functions

F∆ = F∆(n, q, ψ) = {f ∈ F (n, q, ψ) : f (j)(zk) = 0, 0 ≤ j ≤ αk − 1, 1 ≤ k ≤ r}.

If f ∈ F∆(n, q, ψ), then from (2.4), (2.6) and f (j)(zk) = 0, 0 ≤ j ≤ αk − 1, 1 ≤ k ≤ r, it

follows that

f(x) = f(x)−H∆(f, x) = {f(x)}(n−1)
(0) −H∆({f}(n−1)

(0) , x)

+
1

(n− 1)!

∫ +∞

0

(x− t)n−1
+ f (n)(t)dt− 1

(n− 1)!
H∆

(∫ +∞

0

(· − t)n−1
+ f (n)(t)dt, x

)
=

1

(n− 1)!

∫ +∞

0

[
(x− t)n−1

+ −
r∑

k=1

αk−1∑
s=0

(n− 1)!

(n− 1− s)!
(zk − t)n−1−s

+ hk,s(x)

]
f (n)(t)dt

=
1

(n− 1)!

∫ +∞

0

[
(x− t)n−1

+ −H∆((· − t)n−1
+ , x)

]
f (n)(t)dt

=

∫ +∞

0

K∆(x, t)f (n)(t)dt, (2.7)

where we used that {f(x)}(n−1)
(0) is an algebraic polynomial of a degree at most n− 1, and

K∆(x, t) =
(x− t)n−1

+ −H∆((· − t)n−1
+ , x)

(n− 1)!
. (2.8)

Now we introduce some information about the norms of integral operators. Let K(x, t)

be a continuous function on R+ × R+, and let

S(f, x) =

∫ +∞

0

K(x, t)f(t)dt. (2.9)

Let ‖S‖q,p be the norm of S treated as a linear operator from Lq(R+) to Lp(R+); i.e.,

‖S‖q,p = sup
f∈Lq(R+),f 6=0

‖S(f)‖p
‖f‖q

. (2.10)

Obviously, S is a linear and continuous operator from Lq(R+) to Lp(R+) if and only if

‖S‖q,p is finite. In particular, it is known that

‖S‖1,1 = sup
t∈R+

∫ +∞

0

|K(x, t)|dx, (2.11)

‖S‖∞,∞ = sup
x∈R+

∫ +∞

0

|K(x, t)|dt. (2.12)

For given ∆ := {0 ≤ z1 < z2 < · · · < zr < +∞, αi ∈ N, n =
∑r

i=1 αi ≥ 2} with n ≥ 2,

let

K∆,ψ,ρ(x, t) =
ρ(x)

ψ(t)
K∆(x, t), (2.13)
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and for f ∈ Lq(R+), let

S∆,ψ,ρ(f, x) =

∫ +∞

0

K∆,ψ,ρ(x, t)f(t)dt, x ∈ R+. (2.14)

Lemma 2.1. Assume that ψ and ρ are such that (2.1) and (2.2) hold. Then for any ∆

with n ≥ 2 and 1 ≤ p, q ≤ +∞, S∆,ψ,ρ is a linear and continuous operator from Lq(R+) to

Lp(R+); i.e.,

‖S∆,ψ,ρ‖q,p < +∞, 1 ≤ p, q ≤ +∞. (2.15)

Proof. First, we consider the case p = q = +∞. For f ∈ L∞(R+), it follows from (2.14) that
for any x ∈ R+, we have that

|S∆,ψ,ρ(f, x)| ≤ ‖f‖∞ ·
∫ +∞

0

|K∆,ψ,ρ(x, t)|dt. (2.16)

From (2.8) it is easy to verify that

K∆(x, t) = 0 for t /∈ [min(x, z1),max(x, zr)], (2.17)

K∆(x, t) =
(x− t)n−1

+

(n− 1)!
, t > zr. (2.18)

For 0 ≤ x ≤ zr, it follows from the monotonicity of ψ, ρ and (2.17) that∫ +∞

0

|K∆,ψ,ρ(x, t)|dt =

∫ zr

0

|K∆,ψ,ρ(x, t)|dt ≤
ρ(0)

ψ(zr)

∫ zr

0

|K∆(x, t)|dt. (2.19)

By (2.8) we know that |K∆(x, t)| is continuous on [0, zr]
2. Therefore there exists an M such

that |K∆(x, t)| ≤ M for all (x, t) ∈ [0, zr]
2. This and (2.19) imply that for all x ∈ [0, zr], we

have that ∫ +∞

0

|K∆,ψ,ρ(x, t)|dt ≤
Mzrρ(0)

ψ(zr)
. (2.20)

For x > zr, denote ∆′ = {0 ≤ x1 < x2 < · · · < xn < +∞, αi = 1, 1 ≤ i ≤ n}. Then it follows
from Lemma 1 in [6] that for t ∈ [x1, xn], we have that

|K∆′(x, t)| ≤
(x− t)n−1

(n− 1)!
. (2.21)

By the continuity of Hermite interpolation on nodes ∆ and (2.21), we obtain that

|K∆(x, t)| = lim
limxi=zk,∑k−1

s=1 αs<i≤
∑k

s=1 αs

|K∆′(x, t)| ≤
(x− t)n−1

(n− 1)!
. (2.22)

From (2.17), (2.18) and (2.22) it follows that

∫ +∞

0

|K∆,ψ,ρ(x, t)|dt ≤
1

(n− 1)!

∫ x

z1

ρ(x)

ψ(t)
(x− t)n−1dt

≤ 1

(n− 1)!

∫ x

z1

ω(x)(x− t)n−1dt

=
ω(x)(x− z1)n

n!
≤ ω(x)xn

n!
. (2.23)
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Since ω is non-increasing on R+, by α = n and (2.1), it is easy to see that

ω1/α(x)x ≤
∫ x

0

ω(u)1/αdu ≤
∫ +∞

0

ω(u)1/αdu = ‖ω1/α‖1. (2.24)

From (2.23) and (2.24) it follows that∫ +∞

0

|K∆,ψ,ρ(x, t)|dt ≤
‖ω1/α‖α1
n!

. (2.25)

It follows from (2.16), (2.20) and (2.25) that ‖S∆,ψ,ρ‖∞,∞ < +∞.
Now we consider the case 1 ≤ p < +∞, q = +∞. From (2.16), (2.20) and (2.23) it

follows that

‖S∆,ψ,ρ(f)‖pp ≤ ‖f‖p∞
(∫ zr

0

(∫
R+

|K∆,ψ,ρ(x, t)|dt
)p

dx+

∫ +∞

zr

(∫
R+

|K∆,ψ,ρ(x, t)|dt
)p

dx

)
≤ ‖f‖p∞

(
zr

(
Mzrρ(0)

ψ(zr)

)p
+

1

(n!)p

∫ +∞

0

ωp(x)xpndx

)
. (2.26)

Note that α = n+ 1/p. Hence, similar to (2.24), we obtain that∫ +∞

0

ωp(x)xpndx ≤ ‖ω1/α‖pn1
∫ +∞

0

ω1/α(x)dx = ‖ω1/α‖pα1 . (2.27)

From (2.26) and (2.27) it follows that

‖S∆,ψ,ρ(f)‖p ≤ ‖f‖∞
(
zr

(
Mzrρ(0)

ψ(zr)

)p
+
‖ω1/α‖pα1

(n!)p

)1/p

;

i.e., ‖S∆,ψ,ρ‖∞,p < +∞ for all 1 ≤ p < +∞.
Next, we consider the case p = +∞, 1 ≤ q < +∞. In this case, for q = 1, from (2.14) it

follows that for any x ∈ R+, we have that

|S∆,ψ,ρ(f, x)| ≤ ‖f‖1 max
t∈R+

|K∆,ψ,ρ(x, t)|. (2.28)

For 0 ≤ x ≤ zr, from K∆(x, t) = 0 for t > zr, it follows that

max
t∈R+

|K∆,ψ,ρ(x, t)| ≤
Mρ(0)

ψ(zr)
, (2.29)

where M is given in (2.20). For x > zr, it follows from (2.17), (2.18) and (2.22) that

max
t∈R+

|K∆,ψ,ρ(x, t)| ≤ max
t∈R+

ρ(x)(x− t)n−1
+

(n− 1)!ψ(t)
≤ ω(x)xn−1

(n− 1)!
. (2.30)

Note that α = n− 1. Hence it follows from (2.30) and (2.1) that

max
t∈R+

|K∆,ψ,ρ(x, t)| ≤
ω(x)xα

(n− 1)!
≤ 1

(n− 1)!

(∫ x

0

ω1/α(u)du

)α
≤ ‖ω

1/α‖α1
(n− 1)!

. (2.31)

From (2.28), (2.29) and (2.31), it follows that

‖S∆,ψ,ρ(f)‖∞ ≤
(
Mρ(0)

ψ(zr)
+
‖ω1/α‖α1
(n− 1)!

)
‖f‖1. (2.32)

614 Jan 2023 03:33:43 PST
221014-GuiqiaoXu Version 2 - Submitted to Rocky Mountain J. Math.



For 1 < q < +∞, from (2.14) and Hölder inequality it follows that for any x ∈ R+, we
have that

|S∆,ψ,ρ(f, x)| ≤ ‖f‖q
(∫ +∞

0

|K∆,ψ,ρ(x, t)|q/(q−1)dt

)1−1/q

. (2.33)

For 0 ≤ x ≤ zr, similar to the proof of (2.20), we obtain that∫ +∞

0

|K∆,ψ,ρ(x, t)|q/(q−1)dt ≤ zr

(
Mρ(0)

ψ(zr)

)q/(q−1)

. (2.34)

For x > zr, similar to the proof of (2.25), from (2.30) and α = n− 1/q it follows that∫ +∞

0

|K∆,ψ,ρ(x, t)|q/(q−1)dt ≤ ωq/(q−1)(x)x1+(n−1)q/(q−1)

((n− 1)!)q/(q−1)
≤ ‖ω1/α‖qα/(q−1)

1

((n− 1)!)q/(q−1)
. (2.35)

From (2.33)-(2.35) it follows that

‖S∆,ψ,ρ(f)‖∞ ≤

(
zr

(
Mρ(0)

ψ(zr)

)q/(q−1)

+
‖ω1/α‖qα/(q−1)

1

((n− 1)!)q/(q−1)

)1−1/q

‖f‖q. (2.36)

From (2.32) and (2.36) it follows that ‖S∆,ψ,ρ‖q,∞ < +∞ for all 1 ≤ q < +∞.
At last we consider the case 1 ≤ p, q < +∞. For q = 1, from (2.28) it follows that

‖S∆,ψ,ρ(f)‖pp ≤ ‖f‖p1
∫ +∞

0

max
t∈R+

|K∆,ψ,ρ(x, t)|pdx

= ‖f‖p1
(∫ zr

0

max
t∈R+

|K∆,ψ,ρ(x, t)|pdx+

∫ +∞

zr

max
t∈R+

|K∆,ψ,ρ(x, t)|pdx
)
.(2.37)

By (2.29) we obtain that∫ zr

0

max
t∈R+

|K∆,ψ,ρ(x, t)|pdx ≤ zr

(
Mρ(0)

ψ(zr)

)p
. (2.38)

Similar to the proof of (2.25), from (2.30) and α = n− 1 + 1/p it follows that∫ +∞

zr

max
t∈R+

|K∆,ψ,ρ(x, t)|pdx ≤
1

((n− 1)!)p

∫ +∞

zr

ωp(x)x(n−1)pdx ≤ ‖ω1/α‖pα1
((n− 1)!)p

. (2.39)

It follows from (2.37)-(2.39) that

‖S∆,ψ,ρ(f)‖p ≤ ‖f‖1

(
zr

(
Mρ(0)

ψ(zr)

)p
+
‖ω1/α‖pα1

((n− 1)!)p

)1/p

. (2.40)

For 1 < q < +∞, from (2.33) and Minkowski inequality it follows that
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‖S∆,ψ,ρ(f)‖p ≤ ‖f‖q

(∫ +∞

0

(∫ +∞

0

|K∆,ψ,ρ(x, t)|q/(q−1)dt

)p−p/q
dx

)1/p

≤ ‖f‖q

(∫ zr

0

(∫ zr

0

|K∆,ψ,ρ(x, t)|q/(q−1)dt

)p−p/q
dx

)1/p

+ ‖f‖q

(∫ +∞

zr

(∫ +∞

z1

|K∆,ψ,ρ(x, t)|q/(q−1)dt

)p−p/q
dx

)1/p

. (2.41)

From (2.29) and α = n− 1/q + 1/p it follows that(∫ zr

0

(∫ zr

0

|K∆,ψ,ρ(x, t)|q/(q−1)dt

)p−p/q
dx

)1/p

≤ zα−n+1
r Mρ(0)

ψ(zr)
. (2.42)

Similar to the proof of (2.25), from (2.30) it follows that∫ +∞

zr

(∫ +∞

z1

|K∆,ψ,ρ(x, t)|q/(q−1)dt

)p−p/q
dx

≤ 1

((n− 1)!)p

∫ +∞

0

ωp(x)xnp−p/qdx ≤ ‖ω1/α‖pα1
((n− 1)!)p

. (2.43)

From (2.41)-(2.43) it follows that

‖S∆,ψ,ρ(f)‖p ≤ ‖f‖q
(
zα−n+1
r Mρ(0)

ψ(zr)
+
‖ω1/α‖α1
(n− 1)!

)
. (2.44)

From (2.40) and (2.44) it follows that ‖S∆,ψ,ρ‖q,p < +∞ for all 1 ≤ p, q < +∞. The proof is
completed.

Theorem 2.2. Assume that ψ and ρ are such that (2.1) and (2.2) hold. Then for any

∆ with n ≥ 2 and for all f ∈ F∆(n, q, ψ), we have the sharp inequality

‖fρ‖p ≤ ‖S∆,ψ,ρ‖q,p‖f (n)ψ‖q for all 1 ≤ p, q ≤ +∞. (2.45)

Furthermore, the following relations hold.

‖S∆,ψ,ρ‖1,1 = sup
t∈R+

∫ +∞

0

|K∆,ψ,ρ(x, t)|dx, (2.46)

‖S∆,ψ,ρ‖∞,∞ = sup
x∈R+

∫ +∞

0

|K∆,ψ,ρ(x, t)|dt. (2.47)

Proof. If f ∈ F∆(n, q, ψ), then it follows from (2.7), (2.8), (2.13) and (2.14) that

f(x)ρ(x) =

∫ +∞

0

ρ(x)

ψ(t)
K∆(x, t) · f (n)(t)ψ(t)dt = S∆,ψ,ρ(f

(n)ψ, x). (2.48)

From (2.48), (2.15) and (2.10) it follows that

‖fρ‖p = ‖S∆,ψ,ρ(f
(n)ψ)‖p ≤ ‖S∆,ψ,ρ‖q,p‖f (n)ψ‖q for all 1 ≤ p, q ≤ +∞; (2.49)
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i.e., (2.45) holds true.
We now show that (2.45) is sharp. For g ∈ Lq(R+), let

f̄(x) =
1

(n− 1)!

∫ x

0

(x− t)n−1 g(t)

ψ(t)
dt, ∀x ∈ [0,+∞)

and let
f(x) = f̄(x)−H∆(f̄ , x).

It is known that H∆(f̄) is an algebraic polynomial of a degree at most n− 1. Then we easily
check that f (n) = g

ψ
and from (2.3) it follows that f (j)(zk) = 0, , 0 ≤ j ≤ αk−1, k = 1, 2, . . . , r.

Hence f (n)ψ = g and f ∈ F∆(n, q, ψ). Therefore (2.48) turns into

f(x)ρ(x) = S∆,ψ,ρ(f
(n)ψ, x) = S∆,ψ,ρ(g, x). (2.50)

From (2.50) and (2.10) it follows that

sup
f∈F∆(n,q,ψ)

‖fρ‖p
‖f (n)ψ‖q

≥ sup
g∈Lq(R+),g 6=0

‖S∆,ψ,ρ(g)‖p
‖g‖q

= ‖S∆,ψ,ρ‖q,p. (2.51)

From (2.49) and (2.51) it follows that (2.45) holds true and is sharp. Besides, from (2.11)
and (2.12) we respectively obtain (2.46) and (2.47). The proof is completed.

It is obvious that F (n, q, ψ) includes all polynomials p of a degree at most n − 1 due

to p(n) = 0. Hence, for all f ∈ F (n, q, ψ), from (2.3) we obtain f − H∆(f) ∈ F∆(n, q, ψ).

Combining this fact with Theorem 2.2, we obtain the following result.

Corollary 2.3. Assume that ψ and ρ are such that (2.1) and (2.2) hold. Then for any

∆ with n ≥ 2 and for all f ∈ F (n, q, ψ), we have the sharp inequality

‖(f −H∆(f))ρ‖p ≤ ‖S∆,ψ,ρ‖q,p‖f (n)ψ‖q for all 1 ≤ p, q ≤ +∞. (2.52)

3 Two examples

In this section we give two examples to show how to calculate the values of ‖S∆,ψ,ρ‖1,1

and ‖S∆,ψ,ρ‖∞,∞.

Example 3.1. Let ψ(x) = e−β1x, ρ(x) = e−β2x, 0 < β1 < β2 < +∞, 0 ≤ x < +∞. Then

for any ∆ with n ≥ 2, 1 ≤ p, q ≤ +∞, α = n− 1/q + 1/p, we calculate that

‖ω1/α‖1 =

∫ +∞

0

e−(β2−β1)x/αdx =
α

β2 − β1

< +∞;

i.e., (2.1) holds true. At the same time, we calculate that

‖vnρ‖p =


(
n−1
β2

)n−1

e1−n, p = +∞;

Γ1/p(1+(n−1)p)

(pβ2)n−1+1/p , 1 ≤ p < +∞;

i.e., (2.2) holds true. Hence, the sharp inequality (2.15) holds for all f ∈ F∆(n, q, ψ). Fur-

thermore, the best constants ‖S∆,ψ,ρ‖1,1 and ‖S∆,ψ,ρ‖∞,∞ can be calculated by the explicit

formulas (2.46) and (2.47), respectively. We list two Hermite interpolation nodes to show it.
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(1) If r = 1, z1 = 0, α1 = 2, n = 2, β1 = 1, β2 = 2, then from (2.18) it follows that

K∆(x, t) = (x− t)+, (x, t) ∈ R2
+, (3.1)

and hence

K∆,ψ,ρ(x, t) = e−2x+t(x− t)+, (x, t) ∈ R2
+. (3.2)

Let p = q = 1. Then for any t ∈ R+, by (3.2) we calculate that

F1(t) =

∫ +∞

0

|K∆,ψ,ρ(x, t)|dx = et
∫ +∞

t

(x− t)e−2xdx =
1

4
e−t. (3.3)

From (2.46) and (3.3), it follows that

‖S∆,ψ,ρ‖1,1 = max
t∈R+

F1(t) = F1(0) =
1

4
.

Let p = q = +∞. Then for any x ∈ R+, by (3.2) we calculate that

F2(x) =

∫ +∞

0

|K∆,ψ,ρ(x, t)|dt = e−2x

∫ x

0

(x− t)etdt = e−x − e−2x(x+ 1). (3.4)

Using (2.47) and (3.4), we get (by using Mathematica) that

‖S∆,ψ,ρ‖∞,∞ = max
t∈R+

F2(x) = F2(1.2564) = 0.1018.

(2) If r = 2, z1 = 0, z2 = 1, α1 = α2 = 1, n = 2, β1 = 1, β2 = 2, then from (2.8) it follows

that

K∆(x, t) =


(t− 1)x, 0 ≤ x ≤ t ≤ 1;

(x− 1)t, 0 ≤ t ≤ 1, t < x < +∞;

(x− t)+, 1 < t, 0 ≤ x < +∞,

(3.5)

and hence

K∆,ψ,ρ(x, t) =


(t− 1)xe−2x+t, 0 ≤ x ≤ t ≤ 1;

(x− 1)te−2x+t, 0 ≤ t ≤ 1, t < x < +∞;

e−2x+t(x− t)+, 1 ≤ t, 0 ≤ x < +∞.

(3.6)

Let p = q = 1. Then for any t ∈ R+, by (3.6) we calculate that

F1(t) =

∫ +∞

0

|K∆,ψ,ρ(x, t)|dx

=

et(1− t)
∫ t

0
xe−2xdx+ tet

∫ +∞
t
|x− 1|e−2xdx, 0 ≤ t ≤ 1;

et
∫ +∞
t

(x− t)e−2xdx, 1 < t < +∞,

=

1
4
(2tet−2 − e−t + et − tet), 0 ≤ t ≤ 1;

1
4
e−t, 1 < t < +∞.

(3.7)
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Using (2.46) and (3.7), we get (by using Mathematica) that

‖S∆,ψ,ρ‖1,1 = max
t∈R+

F1(t) = F1(0.7055) = 0.1223.

Let p = q = +∞. Then for any x ∈ R+, by (3.6) we calculate that

F2(x) =

∫ +∞

0

|K∆,ψ,ρ(x, t)|dt

=

e−2x(1− x)
∫ x

0
tetdt+ xe−2x

∫ 1

x
(1− t)etdt, 0 ≤ x ≤ 1;

e−2x(x− 1)
∫ 1

0
tetdt+ e−2x

∫ x
1

(x− t)etdt, 1 < x < +∞,

=

e−2x(−ex + 1− x+ ex), 0 ≤ x ≤ 1;

e−2x(x− 1 + ex − ex), 1 < x < +∞.
(3.8)

Using (2.47) and (3.8), we get (by using Mathematica) that

‖S∆,ψ,ρ‖∞,∞ = max
x∈R+

F2(x) = F2(0.3179) = 0.0911.

Example 3.2. Let ψ(x) = e−β1x2
, ρ(x) = e−β2x2

, 0 < β1 < β2 < +∞, 0 ≤ x < +∞.

Then for any ∆ with n ≥ 2, 1 ≤ p, q ≤ +∞, α = n− 1/q + 1/p, we calculate that

‖ω1/α‖1 =

∫ +∞

0

e−(β2−β1)x2/αdx =
1

2

√
πα

β2 − β1

< +∞; (3.9)

i.e., (2.1) holds true. At the same time, we calculate that

‖vnρ‖∞ = max
x∈R+

xn−1

eβ2x2 =

(
n− 1

2β2

)n−1
2

e
1−n

2 , (3.10)

and for 1 ≤ p < +∞, we calculate that

‖vnρ‖p =
Γ1/p(1+(n−1)p

2
)

21/p(pβ2)
1+(n−1)p

2p

; (3.11)

i.e., (2.2) holds true. Hence, the sharp inequality (2.15) holds true for all f ∈ F∆(n, q, ψ).

Furthermore, the best constants ‖S∆,ψ,ρ‖1,1 and ‖S∆,ψ,ρ‖∞,∞ can be calculated by the explicit

formulas (2.46) and (2.47), respectively. We list two Hermite interpolation nodes to show it.

(1) If r = 1, z1 = 0, α1 = 2, n = 2, β1 = 1, β2 = 2, then from (3.1) it follows that

K∆,ψ,ρ(x, t) = e−2x2+t2(x− t)+, (x, t) ∈ R2
+. (3.12)

Let p = q = 1. Then for any t ∈ R+, by (3.12) we calculate that

F1(t) =

∫ +∞

0

|K∆,ψ,ρ(x, t)|dx = et
2

∫ +∞

t

(x− t)e−2x2

dx =
1

4
e−t

2 − tet2
∫ +∞

t

e−2x2

dx. (3.13)

By a direct calculation we obtain that F
′
1(t) < 0, and from (2.46) and (3.13) it follows that

‖S∆,ψ,ρ‖1,1 = max
t∈R+

F1(t) = F1(0) =
1

4
.
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Let p = q = +∞. Then for any x ∈ R+, by (3.12) we calculate that

F2(x) =

∫ +∞

0

|K∆,ψ,ρ(x, t)|dt = e−2x2

∫ x

0

(x− t)et2dt

= 2xe−2x2
(
ex

2 − 1
)

+
(
1− 4x2

)
e−2x2

∫ x

0

et
2

dt.

(3.14)

Using (2.47) and (3.14), we get (by using Mathematica) that

‖S∆,ψ,ρ‖∞,∞ = max
x∈R+

F2(x) = F2(0.7433) = 0.1010.

(2) If r = 2, z1 = 0, z2 = 1, α1 = α2 = 1, n = 2, β1 = 1, β2 = 2, then from (3.5) it follows

that

K∆,ψ,ρ(x, t) =


(t− 1)xe−2x2+t2 , 0 ≤ x ≤ t ≤ 1;

(x− 1)te−2x2+t2 , 0 ≤ t ≤ 1, t < x < +∞;

e−2x2+t2(x− t)+, 1 ≤ t, 0 ≤ x < +∞.

(3.15)

Let p = q = 1. Then for any t ∈ [0, 1], by (3.15) we calculate that

F1(t) = (1− t)et2
∫ t

0

xe−2x2

dx+ tet
2

∫ +∞

t

|x− 1|e−2x2

dx

= −1

4
e−t

2

+
1

4
(1− t)et2 +

1

2
tet

2−2 + tet
2

(∫ 1

t

e−2x2

dx−
∫ +∞

1

e−2x2

dx

)
.

(3.16)

For any t ∈ (1,+∞), by (3.15) we calculate that

F1(t) = et
2

∫ +∞

t

(x− t)e−2x2

dx =
1

4
e−t

2 − tet2
∫ +∞

t

e−2x2

dx. (3.17)

Using (2.46), (3.16) and (3.17), we get (by using Mathematica) that

‖S∆,ψ,ρ‖1,1 = max
t∈R+

F1(t) = max{max
0≤t≤1

F1(t), max
1<t<+∞

F1(t)} = F1(0.5790) = 0.1022.

Let p = q = +∞. Then for any x ∈ [0, 1], by (3.15) we calculate that

F2(x) = e−2x2

(1− x)

∫ x

0

tet
2

dt+ xe−2x2

∫ 1

x

(1− t)et2dt

=
1

2
e−2x2

(
ex

2

+ x− 1− xe
)

+ xe−2x2

∫ 1

x

et
2

dt.

(3.18)

For any x ∈ (1,+∞), by (3.15) we calculate that

F2(x) = e−2x2

(x− 1)

∫ 1

0

tet
2

dt+ e−2x2

∫ x

1

(x− t)et2dt

=
1

2
e−2x2

(
ex− x+ 1− ex2

)
+ xe−2x2

∫ x

1

et
2

dt.

(3.19)
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Using (2.47), (3.18) and (3.19), we get (by using Mathematica) that

‖S∆,ψ,ρ‖∞,∞ = max
x∈R+

F2(x) = max{max
0≤x≤1

F2(x), max
1<x<+∞

F2(x)} = F2(0.3648) = 0.1166.
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