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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS
WITH INVOLUTION

WENDE LI, JIANLONG CHEN, AND YUKUN ZHOU

ABSTRACT. In a ring with involution, we first investigate some necessary and sufficient conditions under
which Jacobson’s lemma for weak core inverse holds true. Then, we present reverse order laws of weak
core inverses and some equivalent conditions under which absorption laws of weak core inverses hold
true. Finally, some equivalent characterizations of a∗ commuting with the weak core inverse of a are
shown, which improve the relevant result of Zhou et al. [Weak group inverses and partial isometries in
proper ∗-rings. Linear Multilinear Algebra (2021)].

1. Introduction

Moore-Penrose inverses [36] and Drazin inverses [12] are two types of classical generalized inverses
and have been thoroughly studied since they were defined (see, e.g., [3–5, 9, 11, 23, 30]). Afterwards,
some new kinds of generalized inverses, such as core inverses [1], core-EP inverses [29], pseudo core
inverses [20], DMP inverses [28], weak group inverses [41, 43] and m-weak group inverses [46], were
introduced and have attracted widespread attention (for more details, see, e.g., [7, 16–18, 27, 34]).

The subject of this article is to investigate some characterizations and properties of the weak core
inverse in a ring with involution. The concept of weak core inverses of complex matrices was first
introduced by Ferreyra et al. [15] and later was generalized to a ring with involution by Zhou and
Chen [45]. The weak core inverse is a new extension of the concept of the core inverse and different
from other generalized inverses (see [15, Example 3.10]). This is an interesting research topic and it
deserves further study. For example, Mosić and Stanimirović [35] provided various novel expressions
in terms of Moore-Penrose inverses, integral and limit representations as well as perturbation formulae
of weak core inverses for complex matrices. Fu et al. [19] investigated some new characterizations of
the weak core inverse by using ranges, null spaces and matrix equations.

Throughout the paper, R is a unitary ring with involution ∗. The motivations and outline of this
paper are as follows.

In Section 2, we give some definitions of relevant generalized inverses and necessary lemmas.
Given any a,b ∈ R, it is well-known as Jacobson’s lemma that if 1− ab is invertible, then so is

1−ba. Moreover, these two inverses are related by the following formula

(1−ba)−1 = 1+b(1−ab)−1a.
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 2

It is natural to ask whether Jacobson’s lemma for various kinds of generalized inverses is valid and
many scholars paid attention to this topic. To be specific, Jacobson’s lemma for regular elements holds
with a related expression, and that for reflexive inverses (see, e.g., [6, Theorem 3.4]), group inverses
(see, e.g., [6, Theorem 3.5]) and Drazin inverses (see, e.g., [6, Theorem 3.6] and [10, Theorem 2.2])
were established, respectively. Lam and Nielsen [26] also investigated Jacobson’s lemma for Drazin
inverses and expressed a simple formula. However, neither Jacobson’s lemma for Moore-Penrose
inverses nor that for pseudo core inverses hold (see [6, Example 3.10] and [38, Example 3.7]). This
inspires scholars to consider under what conditions Jacobson’s lemma for these generalized inverses
holds true. For example, Shi et al. [38] presented several necessary and sufficient conditions under
which 1− ba is Moore-Penrose invertible when 1− ab has a Moore-Penrose inverse in a ring with
involution. Additionally, they also investigated some equivalent conditions under which Jacobson’s
lemma for pseudo core inverses is valid. Motivated by these discussion, we aim to study some necessary
and sufficient conditions under which Jacobson’s lemma for weak core inverse holds true, and express
a similar related formula in Section 3.

If a,b ∈ R are invertible, then we have the following two properties:

(ab)−1 = b−1a−1

is known as the reverse order law and

a−1(a+b)b−1 = a−1 +b−1

is known as the absorption law. However, these properties for generalized inverses, such as Moore-
Penrose inverses, Drazin inverses, pseudo core inverses, weak group inverses, may not hold in
general. Many scholars are devoted to finding some conditions which guarantee reverse order laws
and absorption laws for these generalized inverses to hold. For example, reverse order laws of Moore-
Penrose inverses were investigated in [14, 25, 33]. Gao et al. [20, 22] studied reverse order laws and
absorption laws of pseudo core inverses, absorption laws of Drazin inverses. Wang [40] illustrated
reverse order laws of Drazin inverses. Zhou et al. [44] demonstrated reverse order laws of weak group
inverses. Inspired by the discussion above, we investigate reverse order laws and absorption laws for
weak core inverses in Section 4.

In Section 5, we are committed to investigating the case of a∗ ∈ R commuting with the generalized
inverse of a. This idea originates from the study of a∗ ∈ R commuting with some generalized inverses.
For example, Hartwig and Spindelböck [24] investigated the class of complex star-dagger matrices
for which A∗ and A† commute. Mosić and Djordjević [31] presented sufficient conditions for Moore-
Penrose invertible element in a ring with involution to be star-dagger. Additionally, Zhou et al. [44]
provided equivalent characterizations for a∗ commuting with weak group inverses in proper ∗-rings
(i.e., R is a proper ∗-ring if a∗a = 0 implies a = 0 for any a ∈ R).

2. Preliminaries

Throughout this paper, we use N and N+ to denote the sets of all nonnegative integers and positive
integers, respectively. In this section, we present some definitions of relevant generalized inverses and
auxiliary lemmas.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

13 Feb 2023 00:32:21 PST
221008-Chen Version 2 - Submitted to Rocky Mountain J. Math.



CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 3

Definition 2.1. [36] Let a ∈ R. Then a is said to be Moore-Penrose invertible if there exists x ∈ R such
that the following four equations

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa

hold. Such x is unique when it exists, and is called the Moore-Penrose inverse of a, denoted by a†.

An element x is called an outer inverse of a if there exists x ∈ R satisfying Equation (2). An element
a ∈ R is said to be {1,3}-invertible if there is a(1,3) ∈ R satisfying Equations (1) and (3), in which
case, a(1,3) is called a {1,3}-inverse of a. Similarly, the {1,4}-inverse of a is defined. We use the
symbols a{1,3}, a{1,4} to denote the sets of all {1,3}-inverses and {1,4}-inverses of a, respectively.
In addition, the symbols R{1,3} and R{1,4} denote the sets of all {1,3}-invertible and {1,4}-invertible
elements of R, respectively.

Lemma 2.2. [23] Let a ∈ R. Then a ∈ R{1,3} with a {1,3}-inverse x if and only if x∗a∗a = a.

Definition 2.3. [12] Let a ∈ R. If there exist x ∈ R and k ∈ N+ such that

(2.1) xak+1 = ak, ax2 = x, ax = xa,

then a is said to be Drazin invertible. Such x is unique when it exists, and is called the Drazin inverse
of a, denoted by aD.

If k is the smallest positive integer such that Equations (2.1) hold, then k is called the Drazin index
of a and denoted by ind(a).

Definition 2.4. [20, Definition 1.1] Let a ∈ R. If there exist x ∈ R and k ∈ N+ such that

(2.2) xak+1 = ak, ax2 = x, (ax)∗ = ax,

then a is said to be pseudo core invertible. Such x is unique when it exists, and is called the pseudo
core inverse of a, denoted by a D©.

The smallest positive integer k satisfying Equations (2.2) is called the pseudo core index of a, which
coincides with its Drazin index, and still denoted by ind(a). In particular, if ind(a) = 1, then x is called
the core inverse of a, denoted by a #©.

Definition 2.5. [43, Definition 3.1] Let a ∈ R. Then a is said to be weak group invertible if there exist
x ∈ R and k ∈ N+ satisfying

xak+1 = ak, ax2 = x, (ak)∗a2x = (ak)∗a.

Any such x is called the weak group inverse of a.

Definition 2.6. [46, Definition 4.1] Let m ∈N. An element a ∈ R is said to be m-weak group invertible
if there exist x ∈ R and k ∈ N+ satisfying

(2.3) xak+1 = ak, ax2 = x, (ak)∗am+1x = (ak)∗am.

Any such x is called the m-weak group inverse of a.
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When the m-weak group inverse (resp., weak group inverse) of a is unique, we use a w©m (resp., a w©)
to denote the unique m-weak group inverse (resp., weak group inverse) of a (see Lemma 2.9).

Comparing Definition 2.5 with Definition 2.6, the definition of the 1-weak group inverse is exactly
that of the weak group inverse. If k is the smallest positive integer such that Equations (2.3) hold, then
k is called the m-weak group index of a. If a is m-weak group invertible, then a is Drazin invertible
and the m-weak group index of a is equal to the Drazin index of a. Therefore, we still use ind(a) to
denote the m-weak group index of a.

Throughout this paper, the symbols R #©,RD,R D©,R w© denote the sets of all core invertible, Drazin
invertible, pseudo core invertible and weak group invertible elements of R, respectively.

Lemma 2.7. [38, Theorem 3.3] If a ∈ RD, then a ∈ R D© if and only if aaD ∈ R{1,3}. In this case,
aa D© ∈ (aaD){1,3} and a D© = aD(aaD)(1,3) for any (aaD)(1,3) ∈ (aaD){1,3}.

Lemma 2.8. ( [21, Theorem 3.1], Core-EP decomposition) Let a ∈ R D©. Then a = a1 +a2, where
(i) a #©

1 exists.
(ii) am

2 = 0 for some m ∈ N+.
(iii) a∗1a2 = a2a1 = 0.

In this case, a #©
1 = a D©, a#

1 = (a D©)2a, a1 = aa D©a and a2 = a−aa D©a.

In the following of this paper, unless specifically noted, we will restrict a1 = aa D©a and a2 =
a−aa D©a when a ∈ R D© according to Lemma 2.8.

Lemma 2.9. [46, Corollary 4.11] Let a ∈ R and m ∈ N+. If a ∈ R D©, then a has a unique m-weak
group inverse.

In addition, it was shown in [46, Corollary 4.3] that a ∈ R D© if and only if a ∈ R w©0 , in this case,
a w©0 = a D©. Furthermore, a w© = (a D©)2a when a ∈ R D© according to [46, Proposition 4.8]

Definition 2.10. [45, Definition 3.6] Let a ∈ R. If a ∈ R w©∩R{1,3}, then a is said to be weak core
invertible. The unique x ∈ R satisfying the following equations

xax = x, ax = aa w©aa(1,3), xa = a w©a

is called the weak core inverse of a and denoted by awC.

We use RwC to denote the set of all weak core invertible elements of R. From [45], we know that

RwC ⊆ R D© ⊆ R w© ⊆ RD and awC = a w©aa(1,3) = (a D©)2a2a(1,3).

Lemma 2.11. [45, Corollary 3.2] Let a∈R. Then a∈R w©∩R{1,3} if and only if a∈R D© and a2 ∈R{1,3}.

Let a ∈ RD. In [45], Zhou and Chen wrote

Tl(a) = {x ∈ R : xak+1 = ak,ax2 = x for some k ∈ N+},

which is also equal to {x ∈ R : xaind(a)+1 = aind(a),ax2 = x}. According to [20, Lemma 2.1], if a ∈ RD

and x ∈ Tl(a), then we get that

xax = x and ax = amxm for arbitrary m ∈ N+.
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 5

Lemma 2.12. [45, Lemma 2.2] Let a ∈ RD, k1, . . . ,kn,s1, . . . ,sn ∈ N and x1, . . . ,xn ∈ Tl(a). If sn 6= 0,
then

n

∏
i=1

akixsi
i = akxs

n,

where k =
n
∑

i=1
ki and s =

n
∑

i=1
si.

3. The relation between 1−ab ∈ RwC and 1−ba ∈ RwC

In [38, Theorem 3.10], Shi et al. presented some necessary and sufficient conditions under which 1−ba
has a pseudo core inverse when 1−ab is pseudo core invertible, and gave a formula for (1−ba) D© in
terms of (1−ab) D©. As follows in Lemma 3.1, we improve this result and give a new formula.

Lemma 3.1. Let a,b ∈ R. If α = 1−ab ∈ R D©, then the following conditions are equivalent.
(i) β = 1−ba ∈ R D©.
(ii) b(1−ααD)ra ∈ R{1,4}, where r = 1+α + · · ·+αk−1 and k = ind(α).
(iii) u = (1−αα

D©)aa∗+αα
D© is invertible.

In this case, β
D© = (1+bαDa)

(
1−a∗u−1(1−αα

D©)a
)
.

Proof. (i)⇔ (ii). It can be found in [38, Theorem 3.10].
(ii)⇔(iii). By a similar method to the proof of (ii)⇔(iii) in [38, Theorem 3.10], we can get

a
(
br(1−αα

D)
)
= (1−α)r(1−αα

D) = (1−α
k)(1−αα

D) = (1−αα
D),(

(1−αα
D)a
)

br = (1−αα
D)(1−α)r = (1−αα

D)(1−α
k) = (1−αα

D).

Since ααD = αDα , we have b(1−ααD)ra = br(1−ααD)a. From 1−αα
D© ∈ (1−ααD){1,4},

it follows that b(1−ααD)ra ∈ R{1,4} if and only if u = (1−αα
D©)aa∗+αα

D© is invertible by [38,
Theorem 3.8]. Then a similar argument can derive

β
D© = (1+bαDa)

(
1−a∗u−1(1−αα

D©)a
)
.

�

Next, we present some necessary and sufficient conditions under which 1−ba ∈ RwC when 1−ab ∈
RwC, and also give the formulae of (1−ba)wC.

Theorem 3.2. Let a,b ∈ R. If α = 1−ab ∈ RwC, then the following conditions are equivalent.
(i) β = 1−ba ∈ RwC.
(ii) b(1−ααD)ra ∈ R{1,4} and bαπ

r a ∈ R{1,4}, where r = 1+α + · · ·+αk−1 and k = ind(α).
(iii) u = απaa∗+1−απ and v = απ

r aa∗+1−απ
r are invertible.

In this case,

β
wC = (1+bα

Da)2 (1−ba−a∗u−1
α

π
αa
)(

1−a∗v−1
α

π
r a
)

= (1+bα
Da)2

(
1−ba−a∗u−1

α
2(α(1,3)−α

wC)a
)(

1−a∗v−1
α

π
r a
)
,

where απ = 1−αα
D© and απ

r = 1−αα(1,3).
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 6

Proof. According to Lemma 3.1 and [38, Theorem 5.6], it is easy to derive that (i)⇔(ii)⇔(iii).
For the expressions of β wC, we first calculate (β D©)2. Write απ = 1−αα

D© and απ
r = 1−αα(1,3).

Since απu = απaa∗ and απ
r v = απ

r aa∗, we get

α
π = α

πaa∗u−1 and α
π
r = α

π
r aa∗v−1.

Then also by Lemma 2.12, we can obtain that

(β D©)2 = (1+bα
Da)
(
1−a∗u−1

α
πa
)
(1+bα

Da)
(
1−a∗u−1

α
πa
)

= (1+bα
Da)
(
1+bα

Da−a∗u−1
α

πa−a∗u−1
α

π(1−α)αDa
)(

1−a∗u−1
α

πa
)

= (1+bα
Da)
(
1+bα

Da−a∗u−1
α

πa−a∗u−1
α

π
α

D(1−α)a
)(

1−a∗u−1
α

πa
)

= (1+bα
Da)
(
1+bα

Da−a∗u−1
α

πa
)(

1−a∗u−1
α

πa
)

= (1+bα
Da)2 (1−a∗u−1

α
πa
)
− (1+bα

Da)
(
a∗u−1

α
πa
)(

1−a∗u−1
α

πa
)

= (1+bα
Da)2 (1−a∗u−1

α
πa
)
− (1+bα

Da)a∗u−1 (
α

π −α
πaa∗u−1

α
π
)

a

= (1+bα
Da)2 (1−a∗u−1

α
πa
)
.

Therefore, combing [38, Theorem 5.6], it follows that

β
wC = (β D©)2

β
2
β
(1,3)

= (1+bα
Da)2 (1−a∗u−1

α
πa
)
(1−ba)2(1+bα

(1,3)a)
(
1−a∗v−1

α
π
r a
)

= (1+bα
Da)2 (1−ba−a∗u−1

α
π

αa
)
(1−bα

π
r a)

(
1−a∗v−1

α
π
r a
)

= (1+bα
Da)2 (1−ba−a∗u−1

α
π

αa
)((

1−a∗v−1
α

π
r a
)
−bα

π
r a
(
1−a∗v−1

α
π
r a
))

= (1+bα
Da)2 (1−ba−a∗u−1

α
π

αa
)((

1−a∗v−1
α

π
r a
)
−b
(
α

π
r −α

π
r aa∗v−1

α
π
r
)

a
)

= (1+bα
Da)2 (1−ba−a∗u−1

α
π

αa
)(

1−a∗v−1
α

π
r a
)
.

In addition, we can give another formula of β wC, i.e.,

β
wC = (β D©)2

β
2
β
(1,3)

= (1+bα
Da)2 (1−a∗u−1

α
πa
)
(1−ba)2(1+bα

(1,3)a)
(
1−a∗v−1

α
π
r a
)

= (1+bα
Da)2 ((1−ba)2−a∗u−1

α
π

α
2a
)
(1+bα

(1,3)a)
(
1−a∗v−1

α
π
r a
)

= (1+bα
Da)2

(
(1−ba)2(1+bα

(1,3)a)−a∗u−1
α

π
α

2a(1+bα
(1,3)a)

)(
1−a∗v−1

α
π
r a
)

= (1+bα
Da)2

(
1−b(1+αα

π
r )a−a∗u−1(α2−αα

D©
α

2)(α(1,3)+α
π
r )a
)(

1−a∗v−1
α

π
r a
)

= (1+bα
Da)2

(
1−b(1+αα

π
r )a−a∗u−1(α2−α

2
α

wC
α)(α(1,3)+α

π
r )a
)(

1−a∗v−1
α

π
r a
)

= (1+bα
Da)2

(
1−b(1+αα

π
r )a−a∗u−1

α
2(1−α

wC
α)(α(1,3)+α

π
r )a
)(

1−a∗v−1
α

π
r a
)

= (1+bα
Da)2

(
1−ba−a∗u−1

α
2(1−α

wC
α)α(1,3)a

)(
1−a∗v−1

α
π
r a
)

− (1+bα
Da)2 (bα +a∗u−1

α
2(1−α

wC
α)
)

α
π
r a
(
1−a∗v−1

α
π
r a
)
.
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Since απ
r = απ

r aa∗v−1, we have απ
r a
(
1−a∗v−1απ

r a
)
= 0. Then it follows that

β
wC = (1+bα

Da)2
(

1−ba−a∗u−1
α

2(1−α
wC

α)α(1,3)a
)(

1−a∗v−1
α

π
r a
)

= (1+bα
Da)2

(
1−ba−a∗u−1

α
2(α(1,3)−α

wC)a
)(

1−a∗v−1
α

π
r a
)
.

�

4. Reverse order laws and absorption laws of weak core inverses

Let a,b ∈ R with ab = ba and ab∗ = b∗a. Gao and Chen [20, Theorem 4.3] proved that if a,b ∈ R D©,
then (ab) D© = a D©b D© = b D©a D©. Zhou et al. [44, Theorem 5.2] showed that (ab) w© = a w©b w© = b w©a w©

when a,b ∈ R w© in a proper ∗-ring. In this section, we first investigate the reverse order law of weak
core inverses in R.

Example 4.1. Let R = C2×2 with the transpose as the involution. Take a =

(
1 1
0 0

)
∈ R, b = a∗.

Then it is easy to verify that ab∗ = b∗a and (ab)† = b†a† but ab 6= ba. In addition, by computation,

we get a,b ∈ RwC with awC =

(
1 0
0 0

)
and bwC =

(1
2

1
2

1
2

1
2

)
. Moreover, we obtain ab ∈ RwC with

(ab)wC =

(1
2 0
0 0

)
. However (ab)wC 6= bwCawC.

Example 4.1 shows that the commutativity property ab = ba is required for the reverse order law
of weak core inverses. That is also to say, only satisfying the condition that (ab)† = b†a† does not
guarantee the reverse order law of weak core inverses to hold.

Lemma 4.2. [8, Lemma 3.1], [47, Proposition 5.11] Let a,b,x ∈ R with ax = xb and a∗x = xb∗.
(i) If a,b ∈ R{1,3}, then aa(1,3)x = xbb(1,3).
(ii) If a,b ∈ R D©, then a D©x = xb D©.

In Lemma 4.2, by induction, it follows that (a D©)mx = x(b D©)m for arbitrary m ∈N+ when a,b ∈ R D©.

Proposition 4.3. Let a,b,x ∈ R with ax = xb and a∗x = xb∗. If a,b ∈ RwC, then awCx = xbwC.

Proof. Since a,b ∈ RwC, we get a,b ∈ R D©. By Lemma 4.2, it follows that

awCx = (a D©)2a2a(1,3)x = (a D©)2axbb(1,3)

= (a D©)2xb2b(1,3) = x(b D©)2b2b(1,3) = xbwC.

�

Corollary 4.4. Let a,b ∈ R with ab = ba and ab∗ = b∗a. If b ∈ RwC, then abwC = bwCa.

Theorem 4.5. Let a,b ∈ RwC with ab = ba and ab∗ = b∗a. Then ab ∈ RwC and
(ab)wC = awCbwC = bwCawC.

Proof. By Corollary 4.4, we have bwCa = abwC and awCb = bawC. Since b∗a∗ = a∗b∗ and ab∗ = b∗a,
we obtain that awCb∗ = b∗awC, which together with awCb = bawC, implies awCbwC = bwCawC.

Also by Lemma 4.2, we can get aa(1,3)bb(1,3) = bb(1,3)aa(1,3) similarly. Then it follows that
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 8

(ab)(b(1,3)a(1,3))(ab) = bb(1,3)aa(1,3)ab = bb(1,3)ab = ab,

(abb(1,3)a(1,3))∗ = (bb(1,3)aa(1,3))∗ = aa(1,3)bb(1,3) = bb(1,3)aa(1,3) = abb(1,3)a(1,3).

Hence ab ∈ R{1,3} with b(1,3)a(1,3) ∈ (ab){1,3}.
Since ab∈ R D©, it follows that ab∈ R w©, and hence ab∈ RwC. In addition, bb(1,3)a = abb(1,3) implies

bb(1,3)a∗ = a∗bb(1,3), then we get bb(1,3)a D© = a D©bb(1,3). Hence by Lemma 4.2 and [20, Theorem 4.3],
we can get that

(ab)wC =
(
(ab) D©)2

(ab)2(ab)(1,3) =
(
b D©a D©)2

(ab)2b(1,3)a(1,3)

= (b D©)2b2b(1,3)(a D©)2a2a(1,3) = bwCawC.

�

Remark 4.6. In [22], Gao et al. investigated the reverse order law of pseudo core inverses under
a weaker condition that a,b ∈ R D© with ab2 = b2a = bab and a∗b2 = b2a∗ = ba∗b. However, when
a,b ∈ RwC with ab2 = b2a = bab and a∗b2 = b2a∗ = ba∗b, ab may not be weak core invertible. Thus,
we do not consider the reverse order law of weak core inverses in this weaker condition. For example,

let R = Z3×3 with the transpose as the involution. Take a =

1 0 0
0 0 0
1 0 1

, b =

0 1 0
0 0 0
0 0 0

. Then

it is easy to check that ab2 = b2a = bab and a∗b2 = b2a∗ = ba∗b however ab 6= ba and ab∗ 6= b∗a.

Moreover, a,b ∈ RwC. But ab =

0 1 0
0 0 0
0 1 0

 /∈ R{1,3} by Lemma 2.2, and hence ab /∈ RwC.

From [20, Theorem 4.4], it was shown that if a,b ∈ R D© with ab = ba = 0 and a∗b = 0, then
a+b ∈ R D© with (a+b) D© = a D©+b D©. In [44, Theorem 5.3], Zhou et al. also proved the relevant result
for weak group inverses, i.e., if R is a proper ∗-ring and a,b ∈ R w© with ab = ba = 0 and a∗b = 0, then
a+b ∈ R w© with (a+b) w© = a w©+b w©. However, this property may not hold for weak core inverses,
under the condition that a,b ∈ RwC with ab = ba = 0 and a∗b = 0 (see Example 4.7).

Example 4.7. Let R = Z3×3 with the transpose as the involution. Take

a =

0 0 0
1 0 0
0 0 0

 , b =

0 0 0
0 0 0
1 0 0

.

Then it is easy to check that a,b ∈ RwC with ab = ba = 0 and a∗b = 0. By computation, we get

a+ b =

0 0 0
1 0 0
1 0 0

 and (a+ b)∗(a+ b) =

2 0 0
0 0 0
0 0 0

. Since a+ b /∈ R(a+ b)∗(a+ b), we have

a+b /∈ R{1,3} by Lemma 2.2. Hence a+b is not weak core invertible.

Example 4.8. Let R = Z6 with the involution induced from the identity involution on R. Take a = 4
and b = 1. Then awC = 4 and bwC = 1. Hence awC(a+b)bwC 6= awC +bwC.
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 9

Example 4.8 shows that the absorption law of weak core inverses is not valid, which motivates us to
find some necessary and sufficient conditions under which the absorption laws for weak core inverses
hold.

Denote aR = {ax : x ∈ R} and Ra = {xa : x ∈ R}. The right (resp., left) annihilator of a is defined
by a◦ = {x ∈ R : ax = 0} (resp., ◦a = {x ∈ R : xa = 0}).

Lemma 4.9. [37, Lemma 2.5] Let a,b ∈ R.
(i) If aR⊆ bR, then ◦b⊆ ◦a.
(ii) If Ra⊆ Rb, then b◦ ⊆ a◦.

In the following, we first give a general case of absorption laws when a,b ∈ RD with x ∈ Tl(a) and
y ∈ Tl(b).

Theorem 4.10. Let a,b∈RD with k =max{ind(a), ind(b)}, x∈ Tl(a) and y∈ Tl(b). Then the following
conditions are equivalent.
(i) x(a+b)y = x+ y.
(ii) ax = by.
(iii) akR = bkR and Rx = Ry.
(iv) akR⊆ bkR and Ry⊆ Rx.
(v) ◦(ak) = ◦(bk) and x◦ = y◦.
(vi) ◦(ak)⊆ ◦(bk) and y◦ ⊆ x◦.

Proof. (i)⇒(ii). Multiplying on the left side of x(a+b)y = x+ y by axa, we get axby = ax.
Again, multiplying on the right side of x(a+b)y = x+ y by b2y, we get xaby = by by Lemma 2.12.

It follows that xaby = axby by multiplying on the left side by ax. Hence axby = by. Then we get
ax = by.

(ii)⇒(i). Since ax = by, we get that xby = x and

xay = xaby2 = xaaxy = axy = by2 = y.

Hence x(a+b)y = xay+ xby = x+ y.
(ii)⇒(iii). From ax = by, we get

bk = bybk = axbk = akxkbk.

Then bkR⊆ akR. Similarly we also have akR⊆ bkR. Hence akR = bkR.
Again, we can get x = xax = xby since ax = by. Then Rx ⊆ Ry. Analogously, we have Ry ⊆ Rx.

Then Rx = Ry.
(iii)⇒(iv). It is obvious.
(iv)⇒(ii). Since akR⊆ bkR, there exists s ∈ R such that ak = bks. Then ak = bybks = byak, which

implies that

ax = akxk = byakxk = byax.

Also, Ry⊆ Rx implies that there exists t ∈ R satisfying y = tx. Then

by = btx = btxax = byax.

Therefore ax = by.
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 10

(iii)⇒(v). It is obtained by Lemma 4.9.
(v)⇒(vi). It is clear.
(vi)⇒(ii). Since ◦(ak)⊆ ◦(bk), we get (1−ax)bk = 0, it follows that by = axby. From y◦ ⊆ x◦, we

have x(1−by) = 0, it follows that ax = axby. Hence ax = by. �

In [2], Bapat et al. characterized the absorption laws of outer inverses. Here we can also present a
special case that a,b ∈ RD with x ∈ Tl(a) and y ∈ Tl(b) and give a brief proof.

Theorem 4.11. Let a,b∈RD with x∈ Tl(a) and y∈ Tl(b). Then the following conditions are equivalent.
(i) x(a+b)y = x+ y.
(ii) Rx = R(xby) and yR = (xay)R.
(iii) Rx⊆ Ry and yR⊆ xR.

Proof. (i)⇒(ii). Multiplying on the left side of x(a+b)y = x+y by xa, we can derive that xby = x and
xay = y. Therefore Rx = R(xby) and yR = (xay)R.

(ii)⇒(iii). It is clear.
(iii)⇒(i). Since Rx⊆ Ry, we can get that x = ty for some t ∈ R. Then

x = ty = tyby = xby.

A similar argument for yR⊆ xR can imply xay = y. Hence we have x(a+b)y = xay+xby = x+y. �

From Theorems 4.10 and 4.11, we can get some equivalent conditions under which absorption laws
hold true for Drazin inverses ( [22, Theorem 2.2]), pseudo core inverses ( [22, Theorems 2.4 and 2.7]),
DMP inverses ( [22, Theorems 2.5 and 2.8]) and weak core inverses, respectively. Here we present
these equivalent characterizations of the absorption law holding for weak core inverses.

Theorem 4.12. Let a,b ∈ RwC with k = max{ind(a), ind(b)}. Then the following conditions are
equivalent.
(i) awC(a+b)bwC = awC +bwC.
(ii) aawC = bbwC.
(iii) akR = bkR and RawC = RbwC.
(iv) akR⊆ bkR and RbwC ⊆ RawC.
(v) ◦(ak) = ◦(bk) and (awC)◦ = (bwC)◦.
(vi) ◦(ak)⊆ ◦(bk) and (bwC)◦ ⊆ (awC)◦.

Theorem 4.13. Let a,b ∈ RwC. Then the following conditions are equivalent.
(i) awC(a+b)bwC = awC +bwC.
(ii) RawC = R(awCbbwC) and bwCR = (awCabwC)R.
(iii) RawC ⊆ RbwC and bwCR⊆ awCR.

5. Characterizations of a∗awC = awCa∗

Let a ∈ R. Recall that an element a is called star-dagger if a is Moore-Penrose invertible and a∗a† =
a†a∗ [24]. Later, Mosić and Djordjević [31] gave some characterizations of star-dagger elements in
R. Zhou et al. [44] provided equivalent conditions for a∗a w© = a w©a∗. It is noted that in [44, Theorem
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 11

6.3], Zhou et al. only obtained equivalent conditions for a∗a D© = a D©a∗. In fact, the condition required
on a1 = a2a w© (i.e., a1 is an EP element) is very strong. In this section, we investigate the case of
a∗awC = awCa∗, which improves the relevant results of Zhou et al. [44].

Let p,q ∈ R be idempotent. If x ∈ R, then x can be represented as a sum x = pxq+ px(1−q)+(1−
p)xq+(1− p)x(1−q) or as a formal matrix

(5.1) x =
(

x11 x12
x21 x22

)
p×q

,

where x11 = pxq, x12 = px(1−q), x21 = (1− p)xq and x22 = (1− p)x(1−q), which is well-known as
Peirce decomposition.

Suppose that a ∈ R D© with ind(a) = k. Write p = aa D©. According to Peirce decomposition, the
element a can be represented in the form

(5.2) a =

(
a11 a12
0 a2

)
p×p

,

where a11 = a2a D©, a12 = a1−a11 and a2 is nilpotent of index k. It follows that

ak =

(
ak

11 ã12
0 0

)
p×p

,

where ã12 =
k−1
∑
j=0

a j
11a12ak−1− j

2 .

Lemma 5.1. Let a ∈ R D© with ind(a) = k and p = aa D©. If x ∈ Tl(a), then x =
(

a D© x12
0 0

)
p×p

, where

x12 ∈ pR(1− p).

Proof. Suppose that x =
(

x11 x12
x21 x22

)
p×p

. Since x ∈ Tl(a), we get that ax2 = x and xak+1 = ak. From

xak+1 = ak, we conclude by Lemma 2.12 that

x11ak+1
11 = ak

11

x11

k

∑
j=0

a j
11a12ak− j

2 = ã12

x21ak+1
11 = 0

x21

k

∑
j=0

a j
11a12ak− j

2 = 0

⇒



x11aa D© = a D©

x11a12ak
2 + x11a11ã12 = ã12

x21aa D© = 0

x21

k

∑
j=0

a j
11a12ak− j

2 = 0.

Then x21 = x21aa D© = 0 and x11 = x11aa D© = a D©. From ax2 = x, we can get
a11(a D©)2 = a D©

a11a D©x12 +(a11x12 +a12x22)x22 = x12

a2x2
22 = x22.
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 12

Obviously, a11(a D©)2 = a D©.
From a2x2

22 = x22 and a2 is nilpotent of index k, we can get ak−1
2 x22 = ak

2x2
22 = 0 by multiplying on

the left side by ak−1
2 . Then multiplying on the left side by ak−2

2 , we can get ak−2
2 x22 = ak−1

2 x2
22 = 0. By

induction, we can obtain a2x22 = 0, which implies x22 = 0. Then a11a D©x12+(a11x12+a12x22)x22 = x12

is clear. Hence x =
(

a D© x12
0 0

)
p×p

, where x12 ∈ pR(1− p). �

Remark 5.2. If a ∈ RwC, then aD,a D©,a w©m and awC ∈ Tl(a) according to [45, Remark 3.7]. Take
p = aa D©. Then their expressions can be given as follows:

aD =

(
a D© (a D©)k+1ã12
0 0

)
p×p

, a D© =

(
a D© 0
0 0

)
p×p

,

a w©m =

a D© (a D©)m+1
m−1
∑
j=0

a j
11a12am−1− j

2

0 0


p×p

, awC =

(
a D© (a D©)2a12a2a(1,3)2
0 0

)
p×p

.

Recall from [21, Lemma 2.3], a ∈ R is ∗-DMP if and only if a ∈ R D© and a D© = aD.

Proposition 5.3. Let a ∈ R D© with ind(a) = k. If x ∈ Tl(a), then the following conditions are equivalent.

(i) a∗x = xa∗.
(ii) x = a D©, a is ∗-DMP and a∗1a1 = a1a∗1.

Proof. According to Lemma 5.1, we can get that a∗x = xa∗ if and only if

(5.3)


a∗11a D© = a D©a∗11 + x12a∗12

a∗12a D© = 0

a∗11x12 = x12a∗2
a∗12x22 = 0

⇔


a∗11a D© = a D©a∗11

a12 = 0

a∗11x12 = x12a∗2.

Now it suffices to prove Equations (5.3)⇔ (ii).
(a). We first prove that a∗11x12 = x12a∗2 is equivalent to x = a D©. From a∗11x12 = x12a∗2 and a2

is nilpotent of index k, we have (a∗11)
kx12 = x12(a∗2)

k = 0. Then (ak+1a D©)∗x12 = 0, which implies
aa D©x12 = 0 by multiplying on the left side by

(
(a D©)k

)∗. Hence x12 = aa D©x12 = 0. Then we have
x= a D©. Conversely, if x= a D©, then x12 = 0 by Lemma 5.1, which is obvious to indicate a∗11x12 = x12a∗2.

(b). Next we prove that a12 = 0 and a∗11a D© = a D©a∗11 are equivalent to the conditions that a is ∗-DMP
and a∗1a1 = a1a∗1. Following Remark 5.2, it is easy to check that a12 = 0 if and only if aD = a D©, which
is equivalent to that a is ∗-DMP. When aD = a D©, we have a∗11a D© = a D©a∗11 if and only if a∗1a#

1 = a#
1a∗1,

which is also equivalent to a∗1a1 = a1a∗1 by [13, Theorem 2.2]. �

Example 5.4. However, the condition x = a D© of Proposition 5.3 can not be dropped. For example,

let R = C2×2 with the transpose as the involution. Take a =

(
1 0
0 0

)
∈ R. Then x =

(
1 1
0 0

)
∈ Tl(a).

Obviously, aD = a D© = a = a1 and a∗1a1 = a1a∗1. However a∗x 6= xa∗.
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CHARACTERIZATIONS AND PROPERTIES OF WEAK CORE INVERSES IN RINGS WITH INVOLUTION 13

Remark 5.5. Let a ∈ RD. If there exists x ∈ Tl(a) such that a∗x = xa∗, then a may not be pseudo core
invertible.

For example, let R=C2×2 with the transpose as the involution. Take a=
(

1 0
i 0

)
,x=

(
0 −i
0 1

)
∈R.

Then ax2 = x, xa2 = a and a∗x = xa∗. However, since a /∈ Ra∗a, we know that a /∈ R{1,3} by Lemma
2.2. Then a /∈ R #© according to [42, Theorem 2.6], hence a is not pseudo core invertible.

Recall from [32], an element a∈R satisfying a∗an = ana∗ for some n∈N+ will be called generalized
normal. In the following, we give some equivalent characterizations of a∗awC = awCa∗.

Theorem 5.6. Let a ∈ RwC with ind(a) = k and m ∈ N+. Then the following conditions are equivalent.
(i) a∗aD = aDa∗.
(ii) a∗a D© = a D©a∗.
(iii) a∗a w©m = a w©ma∗.
(iv) a∗awC = awCa∗.
(v) a is ∗-DMP and a∗1a1 = a1a∗1.

In this case, a is generalized normal and aD = a D© = a w©m = awC.

Proof. Note that a12 = 0 if a is ∗-DMP. Then it follows that the proofs are obtained according to Remark
5.2 and Proposition 5.3. In this case, we can get a∗ak = aka∗, which implies that a is generalized
normal. �

Remark 5.7. In [44, Theorem 6.3], Zhou et al. proved that in a proper ∗-ring R, if a ∈ RW© and
a1 = a2a w© is EP, then

a∗a D© = a D©a∗⇔ a∗a w© = a w©a∗⇔ a∗1a1 = a1a∗1.

In fact, the condition that a1 is EP can imply that a is ∗-DMP. We can reduce this condition to a1 ∈ R #©,
under which (i), (ii), (iii) and (v) in Theorem 5.6 are equivalent.

Example 5.8. However, if a is generalized normal, then a∗1a1 = a1a∗1 may not be true. For example, let

R =C2×2 with the transpose as the involution. Take a =

(
1 1
0 −1

)
∈ R. Then a2 =

(
1 0
0 1

)
, it follows

a∗a2 = a2a∗, which implies that a is generalized normal. However, a∗1a1 6= a1a∗1 since a1 = a.

According to [39, Theorem 2.2], every matrix A ∈ Cn×n of index k can be represented in the form

(5.4) A =U
(

T S
0 N

)
U∗,

where T is nonsingular with rank(T )=rank(Ak), N is nilpotent of index k and U is unitary. Then we
can give the corresponding results for complex matrices and omit their proofs.

Proposition 5.9. Let A ∈ Cn×n of index k be written as in (5.4) and X ∈ Tl(A). Then the following
conditions are equivalent.
(i) A∗X = XA∗.

(ii) X =U
(

T−1 0
0 0

)
U∗, T ∗T = T T ∗ and S = 0.
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Let A ∈ Cn×n be a matrix of index k. The DMP inverse of A, denoted by Ad,†, is defined to be the
matrix Ad,† = ADAA† [28]. Moreover, it is proved that Ad,† ∈ Tl(A).

Proposition 5.10. Let A ∈ Cn×n of index k and m ∈ N+. Then the following conditions are equivalent.
(i) A∗AD = ADA∗.
(ii) A∗A D© = A D©A∗.
(iii) A∗A w©m = A w©mA∗.
(iv) A∗AwC = AwCA∗.
(v) A∗Ad,† = Ad,†A∗.

In this case, A is generalized normal and AD = A D© = A w©m = AwC = Ad,†.
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[5] Castro-González, N., Hartwig, R.E.: Perturbation results and the forward order law for the Moore-Penrose inverse of a

product. Electron. J. Linear Algebra 34, 514–525 (2008)
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[25] Koliha, J.J., Djordjević, D., Cvetković, D.: Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 426,

371–381 (2007)
[26] Lam, T.Y., Nielsen, P.P.: Jacobson’s lemma for Drazin inverses. Contemp. Math. 609, 185–195 (2014)
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