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Abstract. In this paper, we consider the two Hecke groups G4 and G6

generated by the transformations 〈S, T 〉 defined by S(z) = z + λm and
T (z) = −1/z where λm = 2 cos(π/m) with m ∈ {4, 6}. We give a full

characterization of purely periodic Rosen continued fractions over G4 and

G6. Finally, we end by finding a family of examples of purely periodic
Rosen expansions of period length two and some related examples.

1. introduction

In 1954, a new class of continued fractions was introduced By D. Rosen
[3] closely associated with the Hecke groups Gm. The Hecke groups are the
set of linear fractional transformations 〈S, T 〉 defined by S(z) = z + λm and
T (z) = −1/z where λm = 2 cos(π/m) with m ≥ 3. For a fixed m ≥ 3, a λm-
continued fraction noted λmcf is an expression of the form:

r0λm +
ε1

r1λm +
ε2

r2λm +
.. .

= [r0λm, ε1/r1λm, ε2/r2λm, · · · ] ,

with εi = ±1, r0 ∈ Z and ri ∈ Z+.
The λmcf of any real number is given by a nearest multiple of λm- algorithm.
More precisely, any real number α can be written as follows: α = r0λm + ε1R1

where r0 is a nearest multiple of λm to α, ε1 = ±1, 0 ≤ R1 < λm/2, and
r0 can be obtained by the so-called nearest integer function {·} as follows:
r0 = {α/λm}, then apply the algorithm to 1/R1 and continue the expansion.
In [1], Galois proved that a real quadratic number x > 1 of the form a +

b
√
δ where a, b ∈ Z and δ ∈ N has purely periodic simple continued fraction

expansion if and only if its conjugate x = a− b
√
δ ∈ (−1, 0). So, it was natural

to ask whether similar results can be proven with Rosen continued fractions
over the two Hecke groups G4 and G6 whose underlying fields are the quadratic
extensions of Q, that are, Q(

√
2) and Q(

√
3) respectively.

In [5], the authors showed that all units of Z(
√
D) have purely periodic Rosen
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continued fractions where D is a squarefree integer. Note that the results of
[5] concern only the units in the ring Z[

√
D]. In this paper, we are interested

especially with elements of Z[λm];m ∈ {4, 6} whose Rosen continued fractions
are purely periodic despite they are not necessary units.

The main purpose of this paper is to give a characterization of elements
whose λmcf is purely periodic over the two Hecke groups G4 and G6.
So, our paper is organized as follows. In Section 2, we define some basic
notions and give some preliminary results. The main results of this paper,
those of Section 3, are devoted to describe purely periodic Rosen continued
fractions over G4 and G6. Finally, in Section 4, the length of such purely
periodic elements is discussed with concrete examples.

2. Preliminaries

Let m = 4 or 6, then λm =
√

2 or
√

3 respectively. From a nearest integer
algorithm, we can conclude that every real number α can be written as follows

α = r0λm +
ε1

r1λm +
ε2

r2λm +
.. .

= [r0λm, ε1/r1λm, ε2/r2λm, · · · ] ,

with εi = ±1, r0 ∈ Z and ri ∈ Z+.

We recall that the nth convergent pn/qn, obtained by truncating the λmcf
of α after exactly n steps, is given by:

pn/qn = [r0λm, ε1/r1λm, . . . , εn/rnλm],

where (pn)n≥−1 and (qn)n≥−1 are two sequences of real numbers defined by
the following recurrence relations:

p−1 = 1; p0 = 0; pn = rnλmpn−1 + εnpn−2;n ≥ 1,

q−1 = 0; q0 = 1; qn = rnλmqn−1 + εnqn−2;n ≥ 1.

So, it follows that:

pnqn−1 − qnpn−1 = (−1)n−1ε1ε2 · · · εn.

We may also prove by simple induction that for every convergent pn/qn, exactly
one of pn, qn is in Z, the other is in λmZ. More precisely, if pn ∈ Z, then
pn+1 ∈ λZ , qn ∈ λZ and qn+1 ∈ Z; ∀n ≥ 0. Also from the definition of pn
and qn, we may easily remark that (qn)n≥1 is an increasing sequence of real
numbers and by a simple induction we may show that

pn/pn−1 = [rnλm, εn/rn−1λm, . . . , ε1/r0λm]. (∗)
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By a periodic Rosen continued fraction, we mean any Rosen continued fraction
which is eventually periodic, more precisely λmcf(α) is eventually periodic if
and only if ∃s ∈ N, such that:

λmfr(α) =
[
r0λm, ε1/r1λm, . . . , εs/rsλm, εs+1/rs+1λm, . . . , εn/rnλm; ε

]
,

where εi = ±1. In this case, the expression [rs+1λm, . . . , εn/rnλm; ε] will be
called the period of the λmcf of α. And when the period begins with the first
term r0 of the Rosen continued fraction of α, we say that this Rosen continued
fraction is purely periodic which will be noted as follows:

α =
[
r0λm, ε1/r1λm, . . . , εs/rsλm, ε

]
.

For more details one can see [3], [4], [2] and [6]. Let us consider the following
sets:

Q(λm) = {a+ bλm
c

; a, b ∈ Z and c ∈ Z∗}

and

Z[λm] = {a+ bλm; a, b ∈ Z}.

For given α ∈ Z[λm], α = a + bλm where a, b ∈ Z, we denote by α = a − bλm
its conjugate.

Let P be the set of positive non-square rational integers and S be the set of
square integers.
In [6], the authors defined the following set:

Rm = {α ∈ R, α2 ∈ Z[λm];α is hyperbolic fixed point of Gm},

where m = 4 or 6 and proved that hyperbolic fixed points of G4 and G6 are ex-
actly periodic ones except for those elements having the period of [2, 1 · · · · · · , 1]
corresponding to the cusps which are parabolic fixed points of Hecke groups
G4 and G6 ( see [6]). Schmidt and Sheingorn [6] showed that for each of G4

and G6, the periodic Rosen continued fraction expansions other than those of
exactly one period are in 1-1 correspondence with the fixed points of hyperbolic
elements of the group. In particular, the authors showed that

Rm = (Z∗ + λmZ)
⋃
{λm
√
p | p ∈ P}

⋃
{√p | p ∈ (P \ λ2mS)}.

It follows from this that all elements of Rm have periodic λmcf. From this
full characterization of the real numbers which have periodic Rosen continued
fraction expansions given in [6], we aim to determine in the cases G4 and G6

exactly which values correspond to the purely periodic Rosen continued fraction
expansions.
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3. Main results

Recall that for m = 4, λm =
√

2 and for m = 6, λm =
√

3, so we will consider
the two Hecke groups G4 and G6.

In [4], the authors showed that for every m ≥ 4, if

√
D

C
> 2/λm with C,D ∈

Z[λm], then

√
D

C
cannot have purely periodic Rosen continued fraction expan-

sion. Following the same technical argument as in [4], we state the following
result.

Proposition 3.1. Let α ∈ Rm greater than 2/λm. If

α ∈ {λm
√
p | p ∈ P}

⋃
{√p | p ∈ (P \ λ2mS)},

then α is not purely periodic.

Proof. Suppose that the λmcf(α) is purely periodic, then

α =
[
r0λm, ε1/r1λm, . . . , εn/rnλm, ε

]
,

= [r0λm, ε1/r1λm, . . . , εn/rnλm, ε/α] .

Let now pn/qn = [r0λm, ε1/r1λm, . . . , εn/rnλm] be the nth convergent of α, it
follows that:

α =
αpn + εpn−1

αqn + εqn−1
,

and then α verifies the following equation

α2qn + (εqn−1 − pn)α− εpn−1 = 0.

Since α ∈ {λm
√
p | p ∈ P}

⋃
{√p | p ∈ (P \ λ2mS)}, then α /∈ Q(λm) but

α2 ∈ Z[λm], immediately we get{
εqn−1 = pn,

α2 =
εpn−1

qn
.

So, α2 =
pn−1

qn
<
pn−1

qn−1
=
pn−1

pn
(ε = 1) and from (∗), we get

pn
pn−1

≥ λm/2,

which implies that α2 ≤ 2/λm. And since 2/λm > 0, then α < 2/λm which is
absurd . �

Theorem 3.2. Let α ∈ Rm greater than 2/λm.
α is purely periodic if and only if α ∈ {Z∗ + λmZ} and α ∈ (−λm/2, λm/2) .

Proof. Suppose that α is purely periodic, then it is periodic. From the last
proposition all elements of {λm

√
p \ p ∈ P}

⋃
{√p \ p ∈ (P \ λ2mS)} cannot

be purely periodic and since α ∈ Rm, it then follows that α ∈ {Z∗ + λmZ}.
Our next goal is to prove that α ∈ (−λm/2, λm/2) . Since α is purely periodic,
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then it is a root of f(x) = x2qn +(εqn−1−pn)x− εpn−1 = 0. Let now α∗ be the
second root of f. When checking for f(λm/2) and f(−λm/2), we remark that
they are of opposite signs which implies that α∗ is in (−λm/2, λm/2) . Since α
is a root of f, it then follows that

α2qn + (εqn−1 − pn)α− εpn−1 = 0.

Two cases arise: (qn, pn−1 ∈ Z and qn−1, pn ∈ λmZ) or (qn, pn−1 ∈ λmZ and
qn−1, pn ∈ Z). If qn, pn−1 ∈ Z and qn−1, pn ∈ λmZ, it then follows that:

α2qn + (−εqn−1 + pn)α− εpn−1 = 0.

Combining the last two equations, we get the following result:

(α+ α)(qn(α− α) + εqn−1 − pn) = 0.

So, α = −α (which is impossible since α ∈ Z∗ +λmZ) or α =
−pn + εqn−1

qn
+α.

Since α∗ is the second root of f, it then follows that α + α∗ =
pn − εqn−1

qn
.

This proves that α∗ = −α. Finally, we infer from α∗ ∈ (−λm/2, λm/2) , that
α ∈ (−λm/2, λm/2) . (Note that we find a similar result even if qn, pn−1 ∈ λmZ
and qn−1, pn ∈ Z).
Conversely, let α ∈ {Z∗+λmZ} and α ∈ (−λm/2, λm/2) . We aim to prove that
α is purely periodic. Since α ∈ Rm, then its λmcf is periodic. By a nearest
multiple of λm- algorithm, one can write

α = α0 = r0λm +
ε1
α1

> 2/λm where 0 < 1/α1 < λm/2; r0 ∈ N.

Let now αn = rnλm +
εn+1

αn+1
, n ≥ 1. So,

εn+1

αn+1
= αn − rnλm which leads to:

εn+1

αn+1
= αn + rnλm. (∗∗)

Let us prove that αn ∈ (−λm/2, λm/2) . By induction, we have α0 = α ∈
(−λm/2, λm/2) . Suppose that αn ∈ (−λm/2, λm/2) , then from the fact that
εn+1

αn+1
= αn + rnλm, we get αn+1 ∈ (−λm/2, λm/2) .

It follows from (∗∗), that rn is a nearest multiple of λm to
εn+1

αn+1
, which is the

key remark to pursue our proof.
α is periodic, then ∃i, j ∈ N such that j > i and αi = αj , which implies that

αi = αj and
εi
αi

=
εj
αj

where εi = εj = ε. It then follows that ri−1 = rj−1 and

ri−1+
ε

αi
= rj−1+

ε

αj
, which leads to αi−1 = αj−1. Continuing to reduce indices

in this way, we eventually obtain αj−i = α0. Hence α is purely periodic. �
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4. Period length of some elements in G4 and G6

We end this work with an interesting family of examples of purely periodic
expansions of period length two and some related examples.
The next few results follows work in [5] but with non units. Recall that we
mean by units in the ring of integers Z [λm] , all elements ω = a + bλm where
a, b ∈ Z and verifying N(ω) = ωω = ∓1.

Without loss of generalities, let λm = λ4 =
√

2, completely analogous results
hold for λm = λ6 =

√
3.

Let ω = 2+
√

2 = a1+b1
√

2 ∈ Z[
√

2]. Note that ω > 2/λ4, ω ∈ (−λm/2, λm/2)

and for n > 1, by a simple induction, we show that ωn+1 = an+1 + bn+1

√
2

where an+1 = 2(an + bn), bn+1 = an + 2bn and ωn ∈ (−λm/2, λm/2) ;∀n ≥ 1.
Note that (bn)n>1 is a strictly increasing sequence. By induction again, one
can prove that N(ωn) = a2n − 2b2n = 2n and bn ≥ 2n;∀n > 1.

Let ωn = an+bn
√

2, we have to find a nearest multiple of
√

2 to ωn by technical
approximations as follows :

|a
2
n

b2n
− 2| = |a

2
n − 2b2n
b2n

| = 2n

b2n
≤ 1

2n
.

Then, we can conclude that

{an + bn
√

2√
2

} ≈ {bn
√

2 + bn
√

2√
2

} = 2bn.

Thanks to our main theorem, all elements of the set {ωn, ∀n ≥ 1} are purely
periodic.

Proposition 4.1. Let ωn = an + bn
√

2 ( as defined above). If 2n−1 | bn, then
∀n ≥ 1, the length of the period of ωn is exactly 2.

Proof.

ωn = an + bn
√

2,

= 2bn
√

2 + an − bn
√

2,

= 2bn
√

2 +
1

an + bn
√

2

2n

,

= 2bn
√

2 +
1

(2bn/2n)
√

2 +
an − bn

√
2

2n

,

= 2bn
√

2 +
1

(2bn/2n)
√

2 +
1

ωn

,

=

[
2bn
√

2,
1

(2bn/2n)
√

2

]
.
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Examples

ω = 2 +
√

2 =
[
2
√

2, 1/
√

2
]
.

ω2 = 6 + 4
√

2 =
[
8
√

2, 1/2
√

2
]
.

ω4 = 68 + 48
√

2 =
[
96
√

2, 1/6
√

2
]
.

Note that if bn is not a multiple of 2n−1, then the length of the period of ωn is
strictly greater than 2. Cite for example:

ω3 = 20 + 14
√

2 =
[
28
√

2, 1/4
√

2,−1/
√

2, 1/14
√

2,−1/
√

2, 1/3
√

2
]
.
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vol. 19, ( 1828), 294-301.

[2] E.Hanson, A.Merberg, C.Towse and E.Yudovina, Generalized continued fractions and
orbits under the action of Hecke triangle groups, ACTA ARITHMETICA, (2008),

134.4 .

[3] D. Rosen,A class of continued fractions associated with certain properly discontinuous
groups,Duke Math.J.21(1954),549-563.

[4] D. Rosen and T.Schmidt, Hecke Groups And Continued Fractions, Bull. Austral.

Math. Soc, Vol 46 (1992) , 459-474.
[5] R. Sahin, O. Koruoglu, S. Ikikardes and I. Naci Cangul, The connections between

continued fractions representations of units and certain Hecke groups, Bulletin of the

Malaysian Mathematical Society Series 2 , (2010).
[6] T.Schmidt and M.Sheingorn, Length Spectra Of The Hecke Triangle Groups, Math-

ematische Zeitschrift, Vol 220, ( 1995), 369-397.
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