
AN EXTENSION OF BREMNER AND MACLEOD’S THEOREM
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Abstract. Bremner and Macleod [An unusual cubic representation problem, Ann. Math.
Inform. 43 (2014), 29-41] showed that for all odd positive integers n, the equation

n =
x

y + z
+

y

z + x
+

z

x+ y

has no solutions in the positive integers. We extend this theorem to the equation

2na2b2c2 − a2 − b2 − c2 =
a2x

y + z
+

b2y

z + x
+

c2z

x+ y
, (1)

where a, b, c ∈ Z − {0} and n, x, y, z ∈ Z+. Furthermore, we show that the insolubility (1)
(under some conditions on a, b, c, n) can be explained by a Brauer-Manin obstruction for weak
approximation for an elliptic curve model of the defining equation.

1. Introduction

The following remarkable theorem was proved by Bremner and Macleod in [1].

Theorem 1.1. Let n be an positive odd integer. Then the equation

n =
x

y + z
+

y

z + x
+

z

x+ y
(2)

has no solutions in the positive integers.

The size of positive integer solutions to (2) for small even values of n could be large, see [1,
Table 2]. The goal of this paper is to extend Theorem 1.1.

Theorem 1.2. Let a, b, c be nonzero integers such that −(a+b+c) and abc are square numbers
with 2 ∤ a+b+c and gcd(abc, a+b+c) = 1. Then for all positive integers n corpime to a+b+c,
the equation

2na2b2c2 − a2 − b2 − c2 =
a2x

y + z
+

b2y

z + x
+

c2z

x+ y
(3)

has no solutions in the positive integers. Furthermore, the insolubility of (3) is explained by a
Brauer-Manin obstruction to weak approximation for a certain elliptic curve.

Theorem 1.1 is a special case of Theorem 1.2 when |a| = |b| = |c| = 1.

2. Preliminaries

2.1. The Brauer-Manin obstruction. This section follows Colliot-Thélène and Skoroboga-
tov [4, Chapter 13], see also Poonen [7, Chapter 8]. Let k be a number field, let Ω be the set
of all places of k, and let Ak be the adèle ring of k. Let X be a proper, smooth, geometrically
irreducible variety over k. Let Br(X) be the Brauer group of X, that is the group of equivalence
classes of Azumaya algebras over X. In 1970, Manin [6] introduced the Brauer-Manin paring

X(Ak)× Br(X) → Q/Z,
sending (Pv) ∈ X(Ak) and A ∈ Br(X) to

evA((Pv)) =
∑
v∈Ω

invv(A(Pv)) ∈ Q/Z,
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where for each valuation v and each Azumaya algebra A in Br(X), invv : Br(kv) → Q/Z is the
local invariant map from class field theory and A(Pv) is defined as follows. A point Pv ∈ X(kv)
gives a map Spec(kv) → X, and hence induces a pullback map Br(X) → Br(kv). We write
A(Pv) for the image of A under this map. The Brauer set of X(Ak)

Br is given

X(Ak)
Br = {(Pv) ∈ X(Ak) such that evA((Pv)) = 0 for all A ∈ Br(X)} .

The following theorem is due to Manin, see [6].

Theorem 2.1. Let k be a number field and let X be a variety over k. The Brauer-Manin set
X(Ak)

Br contains the closure of the image of the diagonal map X(k) → X(Ak).

Assume that X(Ak)
Br ̸= X(Ak), then one says there is a Brauer-Manin obstruction to weak

approximation for X. Our model problem is that for a given variety X over k, we would like to
show X(k)P = ∅, where X(k)P is the set of all points in X(k) having property P. The guiding
principle is to construct an Azumaya algebra A ∈ Br(X) such that

evA((Pv)) ̸= 0 for all P ∈ X(k)P ,

where (Pv) ∈ X(Ak) =
∏

v∈ΩX(kv) is the image of P ∈ X(k) under the diagonal map.

2.2. The local Hilbert symbol. This section follows Cohen [3, Section 5.2]. Let p be a prime
number. For a p-adic number a ̸= 0, let vp(a) denote the p-adic valuation of a; that is, the
exponent of the highest power of the prime number p dividing a. Let k = Qp or k = R. For a
and b in k∗, the local Hilbert symbol (a, b)p is defined by

(a, b)p =

{
1 if ax2 + by2 = z2 has a point in P2(k),

−1 otherwise.

Then

• For a, b, c ∈ Q∗
p,

(a, b2)p = 1,

(a, bc)p = (a, b)p(a, c)p.

• For a = pαu, b = pβv, where α = vp(a) and β = vp(b),

(a, b)p = (−1)αβ(p−1)/2

(
u

p

)β (v

p

)α

if p ̸= 2,

(a, b)p = (−1)(u−1)(v−1)/4+α(v2−1)/8+β(u2−1)/8 if p = 2,

where

(
u

p

)
denotes the Legendre symbol.

Let Z2 = {x2 : x ∈ Z}, Z2
p = {x2 : x ∈ Zp}, Q2

p = {x2 : x ∈ Qp}, Z×
p = {x ∈ Zp : vp(x) = 0}.

3. Proof of Theorem 1.2

Assume that there exist positive integers x0, y0, z0 satisfying (3). Then [x0 : y0 : z0] is a point
on the projective cubic curve F defined by

(2na2b2c2−a2−b2−c2)(x+y)(y+z)(z+x)−a2x(x+y)(x+z)−b2y(y+z)(y+x)−c2z(z+x)(z+y) = 0.

A Weierstrass form is
E : y2 = x(x2 +Ax+B), (4)

where

A = 16n2a4b4c4 − 8na2b2c2(a2 + b2 + c2) + a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2,

B = 64na4b4c4.

A map ϕ from F to E is given by

ϕ(x : y : z) = (u : v : 1),
2
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where
u = −(x+ y)(64n2a6b2c4 + 2na6c2 − 48na4b2c2 + 8a2b2 − a2c2) + (y + z)c4(2na2c2 − 1)

(x+ y)(4na2c2 − 1)
,

v =
8c4(2a4 + 2na2c2 − 1)2(a2(x+ y)(2na2c2 − 1)− 2na2c4(x− y) + c2x)

(x+ y)(4na2c2 − 1)3
.

(5)
Note that

A2 − 4B = DEFG,

where

D = (a+ b+ c)2 − 4na2b2c2, E = (a− b+ c)2 − 4na2b2c2,

F = (a+ b− c)2 − 4na2b2c2, G = (−a+ b+ c)2 − 4na2b2c2.

The Magma code verifying the map ϕ and the factorization of A2 − 4B is available at https:
//www.overleaf.com/read/wwmkcknjfkbv.

Lemma 3.1. D < 0, E < 0, F < 0, and G < 0.

Proof. We show that D < 0. The cases E < 0, F < 0, and G < 0 are treated similarly. Without
loss of generality, we assume |a| = max{|a|, |b|, |c|}.

Case 1: |bc| > 1. Then

(a+ b+ c)2 ≤ (|a|+ |b|+ |c|)2 ≤ 9|a|2 < 4na2b2c2.

Hence D < 0.
Case 2: |bc| = 1. Then (b, c) = (1, 1), (1,−1), (−1, 1), (−1,−1). But (b, c) = (1, 1) is

impossible due to the condition that −(a+ b+ c) and abc are both perfect squares.
If (b, c) = (1,−1), (−1, 1), then

D = a2 − 4na2 < 0.

If (b, c) = (−1,−1), since a+ b+ c < 0 and abc > 0, 0 < a < 2. Hence a = 1. Therefore

D = 1− 4n < 0.

□

By Lemma 3.1,

A2 − 4B = DEFG > 0.

Therefore E is an elliptic curve and the set E(R) has two components: the bounded component
with x < 0 and the unbounded component with x ≥ 0. A remarkable property of the curve E is
that it has no rational points on the bounded component x < 0. This surprising property also
holds for many other curves, see [1, 2, 5, 8, 9, 10].

Theorem 3.2. Let S be the set of points (x, y) ∈ E(Q) with x < 0. Then S is empty. Further-
more, the emptiness of S is explained by a Brauer-Manin obstruction to weak approximation
for E.

We need some lemmas.

Lemma 3.3. Let Q(E) be the function field of E. Let d ∈ Q∗. Let A be the class of quaternion
algebras in Br(Q(E)) defined by

A = (x, d).

Then A is an Azumaya algebra of E; that is, A belongs to the subgroup Br(E) of Br(Q(E)).
Furthermore, the quaternion algebras A, B, C, where

B = (x2 +Ax+B, d), C = (
x2 +Ax+B

x2
, d)

all represent the same class in Br(Q(E)).
3
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Proof. Since A + B = (y2, d), A = B. Since B − C = (x2, d), B = C. Hence A = B = C. Let
U1, U2, U3 be the maximal open subsets of E where x, x2 +Ax+B, and (x2 +Ax+B)/x2 have
neither zeroes nor poles respectively. Then A ∈ Br(U1), B ∈ Br(U2), and C ∈ Br(U3). We just
need to show that

E = U1 ∪ U2 ∪ U3. (6)

Since U1 = E − {(0, 0),∞}, U2 = E − {(α1, 0), (α2, 0),∞}, where α1 and α2 are roots of
x2 +Ax+B = 0,

U1 ∪ U2 = E − {∞}. (7)

However, at ∞ then x−1(∞) = 0. Therefore

x2 +Ax+B

x2
(∞) = (1 +

A

x
+

B

x2
)(∞) = 1 ̸= 0.

Thus

∞ ∈ U3. (8)

Then (6) follows from (7) and (8). □

Let M be the class of quaternion algebras in Br(Q(E)) given by M = (x,D). By Lemma
3.1, D ̸= 0. By Lemma 3.3, M belongs to the Brauer group Br(E).

Fix P = (x, y) ∈ S. Then x < 0 and

y2 = x(x2 +Ax+B). (9)

Lemma 3.4. Let p be an odd prime. Then

invp(M(Pp)) = 0.

Proof. It is enough to show that (x,D)p = 1.
Case 1: vp(x) < 0. Let x = x1/p

r, where r ∈ Z+ and vp(x1) = 0. From (9),

y2 =
x1(x

2
1 + prAx1 +Bp2r)

p3r
. (10)

Therefore vp(y
2) = −3r. Thus 2|r. From (10),

(p3r/2y)2 = x1(x
2
1 + prAx1 +Bp2r). (11)

Reducing (11) modulo p gives x1 ≡ square (mod p). Therefore x1 ∈ Z2
p. Hence x = x1/p

r ∈ Q2
p.

Thus (x,D)p = 1.
Case 2: vp(x) = 0.
Case 2.1: p ∤ D. Since x and D are units in Zp, (x,D)p = 1
Case 2.2: p|D. Since D|A2 − 4B, p|A2 − 4B. Therefore

x2 +Ax+B = (x+
A

2
)2 +

4B −A2

4

≡ (x+
A

2
)2 (mod p).

(12)

• p ∤ x+A/2. From (12), x2 +Ax+B ∈ Z2
p. Therefore

x =
y2

x2 +Ax+B
∈ Q2

p.

Thus (x,D)p = 1.
• p|x+A/2. Then

x ≡ −A

2
(mod p). (13)

Since p|D = (a+ b+ c)2 − 4na2b2c2,

4na2b2c2 ≡ (a+ b+ c)2 (mod p).
4
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Therefore

A = 16n2a4b4c4 − 8na2b2c2(a2 + b2 + c2) + a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

= (4na2b2c2 − a2 − b2 − c2)2 − 4(a2b2 + b2c2 + c2a2)

≡ ((a+ b+ c)2 − a2 − b2 − c2)2 − 4(a2b2 + b2c2 + c2a2) (mod p)

≡ (2(ab+ bc+ ca))2 − 4(a2b2 + b2c2 + c2a2) (mod p)

≡ 8abc(a+ b+ c) (mod p).

(14)

From (13) and (14),
x ≡ −4abc(a+ b+ c) (mod p).

Since −abc(a+ b+ c) ∈ Z2 and p ∤ x, x ∈ Z2
p. Therefore (x,D)p = 1.

Case 3: vp(x) > 0. Let x = prx1, where r ∈ Z+ and vp(x1) = 0. From (9),

y2 = prx1(p
2rx21 + prAx1 +B). (15)

Case 3.1: p|B. Then p|nabc. Therefore
D = (a+ b+ c)2 − 4na2b2c2 ≡ (a+ b+ c)2 (mod p). (16)

Since gcd(nabc, a + b + c) = 1 and p|nacb, p ∤ a + b + c. Then (16) shows that D ∈ Z2
p. Thus

(x,D)p = 1.
Case 3.2: p ∤ B. From (15), v2(y

2) = r. Thus 2|r.
• p ∤ D. Then

(x,D)p = (prx1, D)p

= (x1, D)p (since 2|r)
= 1 (since x1, D ∈ Z×

p ).

• p|D. Then 4na2b2c2 ≡ (a+ b+ c)2 (mod p). Since gcd(nabc, a+ b+ c) = 1 and 2 ∤ a+ b+ c,
p ∤ abc(a+ b+ c). Therefore

x2 +Ax+B ≡ B (mod p)

≡ 64na4b4c4 (mod p)

≡ 16a2b2c2(a+ b+ c)2 (mod p)

̸≡ 0 (mod p).

Hence x2 +Ax+B ∈ Z2
p. Thus

x =
y2

x2 +Ax+B
∈ Q2

p.

Therefore (x,D)p = 1.
□

Lemma 3.5.
inv2(M(P2)) = 0.

Proof. If 2|nabc then

D ≡ (a+ b+ c)2 − 4na2b2c2 ≡ 1 (mod 8).

Hence D ∈ Z2
2. Therefore (x,D)2 = 1.

We consider the case 2 ∤ nabc. Then 2 ∤ n and 2 ∤ abc.
Case 1: 2|v2(x). Let x = 2rx1, where 2|r and v2(x1) = 0. Then

(x,D)2 = (2rx1, D)2

= (x1, D)2 (since 2|r)

= (−1)(x1−1)(D−1)/4

= 1 (since 4|D − 1).
5
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Case 2: 2 ∤ v2(x).
Case 2.1: v2(x) < 0. Let x = x1/2

r, where r ∈ Z+ and v2(x1) = 0.
From (9),

y2 =
x1(x

2
1 + 2rAs+ 22rB)

23r
.

Therefore v2(y
2) = 3r, which impossible since 2 ∤ r.

Case 2.2: v2(x) > 0. Let x = 2rx1, where r ∈ Z+ and v2(x1) = 0. From (9),

y2 = 2rx1(2
2rx21 + 2rAx1 + 26na4b4c4). (17)

Since 2 ∤ abc,

A = 16n2a4b4c4 − 8a2b2c2(a2 + b2 + c2) + a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

≡ 5 (mod 8).

Thus v2(A) = 0.
• r > 6. From (17),

y2 = 2r+6x1(2
2r−6x21 + 2r−6Ax1 + na4b4c4).

Therefore v2(y
2) = r + 6, which is impossible since 2 ∤ r.

•r < 6. From (17),

y2 = 22rx1(2
rx21 +Ax1 + 26−rna4b4c4). (18)

Thus v2(y) = r. From (18),

(2−ry)2 = x1(2
rx21 +Ax1 + 26−rna4b4c4). (19)

Note that in (19) we have A ≡ 5 (mod 8), 2 ∤ r, 0 < r < 6, 2 ∤ nabc.
(i) r = 1. Reducing (19) modulo 4 gives

1 ≡ x1(2 + x1) ≡ 2x1 + 1 (mod 4).

which is impossible since 2 ∤ x1.
(ii) r = 3. Reducing (19) modulo 8 gives

1 ≡ 5 (mod 8),

which is impossible.
(iii) r = 5. Reducing (19) modulo 4 gives

1 ≡ x1(x1 + 2) ≡ 1 + 2x1 (mod 4),

which is impossible since 2 ∤ x1.
□

Lemma 3.6.

inv∞(M(P∞)) =
1

2
.

Proof. SinceD < 0 (proved in Lemma 3.1) and x < 0, (x,D)∞ = −1. Therefore inv∞(M(P∞)) =
1/2. □

We are now ready to prove Theorem 3.2.

Proof. Lemmas 3.4, 3.5, and 3.6 show that for all P ∈ S,

invv(M(Pv)) =

0 if v ̸= ∞,
1

2
if v = ∞.

Therefore

evM((Pv)) = inv∞(M(P∞)) +
∑
p<∞

invp(M(Pp)) =
1

2
∀P ∈ S. (20)

6
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On the other hand, by Theorem 2.1, E(Q) ⊂ E(AQ)
Br. In particular, S ⊂ E(AQ)

Br. Hence

evM((Pv)) = 0 ∀P ∈ S. (21)

It follows from (20) and (21) that S = ∅. The proof is complete. □

Theorem 1.2 is now a consequence of Theorem 3.2. Let (u0 : v0 : 1) = ϕ(x0 : y0 : z0). By (5),

u0 = −(x0 + y0)(64n
2a6b2c4 + 2na6c2 − 48na4b2c2 + 8a2b2 − a2c2) + (y0 + z0)c

4(2na2c2 − 1)

(x0 + y0)(4na2c2 − 1)
.

Since n, a2, b2, c2, x0, y0, z0 ∈ Z+,

64n2a6b2c4 > 48na4b2c2 + 8a2b2, 2na6c2 > a2c2, 2na2c2 > 1.

Therefore u0 < 0. Hence (u0, v0) ∈ S, which is impossible since S is empty. Thus equation (3)
has no solutions in the positive integers.

Remark 3.7. The method in this paper allows one to study the results in [1, 2, 5, 8, 9, 10]
within the Brauer-Manin obstruction framework. A major part in [1, 2, 5, 8, 9, 10] is to show
the nonexistence of rational points on the bounded component x < 0 on certain elliptic curves
E of the form

y2 = x(x2 +Ax+B)

with A,B ∈ Q. Then Lemma 3.3 is used to construct an Azumaya algebra M in Br(Q(E)) such
that for all P = (x, y) ∈ E(Q) with x < 0,

invv(M(Pv)) =

0 if v ̸= ∞,
1

2
if v = ∞,

(22)

where (Pv) is the image of P in E(AQ). And the rest follows exactly as in the proof of Theorem
1.2.
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