AN EXTENSION OF BREMNER AND MACLEOD’S THEOREM

NGUYEN DUY TAN AND NGUYEN XUAN THO

ABSTRACT. Bremner and Macleod [An unusual cubic representation problem, Ann. Math.
Inform. 43 (2014), 29-41] showed that for all odd positive integers n, the equation

oz y z

o Y+ z z+x x4y

has no solutions in the positive integers. We extend this theorem to the equation

2 2 2
2,2 2 2 2 2 a T b7y cz
2na“b“c® —a” —b" — ¢ =

= 1

y+z z+zx + x4y’ (1)
where a,b,c € Z — {0} and n,z,y,z € Z*. Furthermore, we show that the insolubility
(under some conditions on a, b, ¢,n) can be explained by a Brauer-Manin obstruction for weak
approximation for an elliptic curve model of the defining equation.

n

1. INTRODUCTION
The following remarkable theorem was proved by Bremner and Macleod in [IJ.

Theorem 1.1. Let n be an positive odd integer. Then the equation
x Yy z

(2)

n

= + +
y+z z+4+zx x4y
has no solutions in the positive integers.

The size of positive integer solutions to for small even values of n could be large, see [,
Table 2]. The goal of this paper is to extend Theorem

Theorem 1.2. Let a, b, c be nonzero integers such that —(a+b+c) and abe are square numbers
with 24 a+b+c and ged(abe,a+b+c) = 1. Then for all positive integers n corpime to a+b+c,
the equation

a‘x b2y 2z

2na’b’c® —a? — b — 2 = + + (3)
y+z z+zx x4y

has no solutions in the positive integers. Furthermore, the insolubility of 1s explained by a

Brauer-Manin obstruction to weak approximation for a certain elliptic curve.

Theorem [1.1]is a special case of Theorem [L.2] when |a| = [b] = |¢| = 1.

2. PRELIMINARIES

2.1. The Brauer-Manin obstruction. This section follows Colliot-Thélene and Skoroboga-
tov [4, Chapter 13], see also Poonen [7 Chapter 8|. Let k be a number field, let 2 be the set
of all places of k, and let Ay be the adéle ring of k. Let X be a proper, smooth, geometrically
irreducible variety over k. Let Br(X) be the Brauer group of X, that is the group of equivalence
classes of Azumaya algebras over X. In 1970, Manin [6] introduced the Brauer-Manin paring

X(Ay)  Br(X) > Q/Z,
sending (P,) € X(Ag) and A € Br(X) to
eva((Py) =) invy(A(P,)) € Q/Z,

vEN
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where for each valuation v and each Azumaya algebra A in Br(X), inv,: Br(k,) — Q/Z is the
local invariant map from class field theory and A(P,) is defined as follows. A point P, € X (k,)
gives a map Spec(k,) — X, and hence induces a pullback map Br(X) — Br(k,). We write
A(P,) for the image of A under this map. The Brauer set of X (A)P" is given

X (AR)B" = {(P,) € X(A) such that ev4((P,)) =0 for all A € Br(X)}.
The following theorem is due to Manin, see [6].

Theorem 2.1. Let k be a number field and let X be a variety over k. The Brauer-Manin set
X (Ar)B" contains the closure of the image of the diagonal map X (k) — X (Ag).

Assume that X (Ag)B" # X (A), then one says there is a Brauer-Manin obstruction to weak
approximation for X. Our model problem is that for a given variety X over k, we would like to
show X (k)p = 0, where X (k)p is the set of all points in X (k) having property P. The guiding
principle is to construct an Azumaya algebra A € Br(X) such that

evA((Py)) # 0 for all P € X (k)p,
where (P,) € X(Ag) = [[,cq X (ky) is the image of P € X (k) under the diagonal map.

2.2. The local Hilbert symbol. This section follows Cohen [3 Section 5.2]. Let p be a prime
number. For a p-adic number a # 0, let v,(a) denote the p-adic valuation of a; that is, the
exponent of the highest power of the prime number p dividing a. Let k = Q, or £ = R. For a
and b in k*, the local Hilbert symbol (a,b), is defined by

1 if az? + by? = 2% has a point in P?(k),
(a,b), = .
—1 otherwise.

Then
e For a, b, c € Qy,
(a, b?), =1,
(a,bc)p = (a,b)p(a, c)p.
e For a = p®u, b = p’v, where a = v,(a) and 3 = v,(b),

B «
(a,b)p = (—1)25D/2 (“) <p) ifp 2,

p
(a,b), = (—1)(@DE-D/A+a* 1)/ ~1)/8 jf ), — 9

where (u) denotes the Legendre symbol.
p
Let 7% = {2?: z € Z}, Z]Q) ={2?: 1 € Zp}, Qg ={2?: 2 € Qp}, Ly ={x € Lp: vp(x) = 0}.
3. PROOF OF THEOREM

Assume that there exist positive integers xg, yo, 2¢ satisfying . Then [z : yo : 20] is a point
on the projective cubic curve F defined by
(2n0202¢? a2~ b2 —) (w-+y) (y+2) (2+)— a2 (@-+y) (04+2) ~by(y+2) (y+a)— 22 (=) () = 0.
A Weierstrass form is
E:y? = x(a? + Az + B), (4)
where
A =16n%a’b e — 8na®b>c*(a® + b + 2) 4 a' + bt + * — 26%0* — 2a° — 20%C7,
B = 64na’*b*ct.
A map ¢ from F to £ is given by

dlr:y:z)=(u:v:1),
2
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where
(z + ) (64n2a5b2c* + 2na®c? — 48nab?c? + 8a?b? — a®c?) + (y + 2)c* (2na’c? — 1)

(x +y)(4na?c® — 1) ’
8ct(2a* 4 2na®c? — 1)%(a®(z + y)(2na®c® — 1) — 2na’c*(z — y) + 2x)

v (x +y)(4na?c? —1)3 '
(5)
Note that
A% — 4B = DEFQG,
where

D = (a+b+c)? —4nd®v’c?, E = (a — b+ ¢)* — 4nab*c?,
F=(a+b—c)*—4na*b*c?, G = (—a +b+c)* — 4na®b*c*.

The Magma code verifying the map ¢ and the factorization of A?> — 4B is available at https:
//www.overleaf.com/read/wwmkcknjfkbv.

Lemma 3.1. D<0, E<0, F<0, and G < 0.

Proof. We show that D < 0. The cases £ < 0, F' < 0, and G < 0 are treated similarly. Without
loss of generality, we assume |a| = max{|al, |b],|c|}.
Case 1: |bc| > 1. Then

(a+b+c)? < (la] + |b] + |c))? < 9]al? < 4na®b? 2.

Hence D < 0.

Case 2: |bc|] = 1. Then (b,c) = (1,1),(1,-1),(—1,1),(=1,—1). But (b,c) = (1,1) is
impossible due to the condition that —(a + b+ ¢) and abc are both perfect squares.

If (b,c) = (1,—-1),(—1,1), then

D =a® - 4na® < 0.
If (b,c) = (—=1,—1), since a + b+ ¢ < 0 and abc > 0, 0 < a < 2. Hence a = 1. Therefore
D=1-4n<0.

By Lemma (3.1}
A% — 4B = DEFG > 0.

Therefore £ is an elliptic curve and the set £(R) has two components: the bounded component
with z < 0 and the unbounded component with x > 0. A remarkable property of the curve £ is
that it has no rational points on the bounded component x < 0. This surprising property also

holds for many other curves, see [Il, 2 5, 8, @, [10].

Theorem 3.2. Let S be the set of points (x,y) € E(Q) with x < 0. Then S is empty. Further-
more, the emptiness of S is explained by a Brauer-Manin obstruction to weak approximation

for &.

We need some lemmas.

Lemma 3.3. Let Q(&) be the function field of £. Let d € Q*. Let A be the class of quaternion
algebras in Br(Q(E)) defined by

A= (z,d).
Then A is an Azumaya algebra of E; that is, A belongs to the subgroup Br(E) of Br(Q(£)).
Furthermore, the quaternion algebras A, B, C, where

2+ Ar+ B

B= (2?4 Az + B,d), C = ( -

d
x )

all represent the same class in Br(Q(E)).
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Proof. Since A+ B = (y?,d), A = B. Since B—C = (2%,d), B = C. Hence A = B =C. Let

Ui, Us, Us be the maximal open subsets of £ where x, 22 + Az + B, and (22 + Az + B)/z? have

neither zeroes nor poles respectively. Then A € Br(U;), B € Br(Us), and C € Br(Us). We just
need to show that

E=U1UU;UUs. (6)

Since Uy = € — {(0,0),00}, Uy = € — {(a1,0), (a2,0), 00}, where a; and «g are roots of
22+ Az + B =0,

Uy UUy =€ — {o0}. (7)
However, at oo then 2~ !(c0) = 0. Therefore
2
T P =1+ 24 D) =140
Thus
oo € Us. (8)
Then @ follows from and . O

Let M be the class of quaternion algebras in Br(Q(£)) given by M = (z, D). By Lemma
D # 0. By Lemma M belongs to the Brauer group Br(€).
Fix P = (z,y) € S. Then z < 0 and

y? = z(2® + Az + B). 9)
Lemma 3.4. Let p be an odd prime. Then
inv,(M(P,)) = 0.

Proof. 1t is enough to show that (x, D), = 1.
Case 1: vy(z) < 0. Let = 21/p", where r € Z* and v,(z1) = 0. From (9),

p T

Therefore vp(y2) = —3r. Thus 2|r. From ,
(p3r/2y)2 = ggl(x% J,»prAl’l + Bp2r). (11)

Reducing modulo p gives z1 = square (mod p). Therefore x; € Z[Q,. Hence z = x1/p" € Qg.
Thus (z, D), = 1.

Case 2: v,(x) = 0.

Case 2.1: p{ D. Since x and D are units in Z,, (z, D), =1

Case 2.2: p|D. Since D|A? — 4B, p|A? — 4B. Therefore

A2
x2+Ax+B:(x+é)2+M
2 4 (12)
A
= (z+ 5)2 (mod p).

eptxz+ A/2. From (12)), 2° + Az + B € Zg. Therefore
2
.y 2
T2y A+ B €Q
Thus (z, D), = 1.
e plz+ A/2. Then
A
T=—7 (mod p). (13)
Since p|D = (a + b+ ¢)? — 4nab*c?,

4na*b*c® = (a+b+c)? (mod p).
4
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Therefore
A =16n2a’b e — 8na®v?c2(a® 4+ b* + ) + a* + b1 + ¢ — 2a%0* — 2a%P — 2032
= (4na*v*c® — a* — b* — *)? — 4(a*b* + b?c? + 2a?)
=((a+b+c)—a®—b*—c)? — 4’ + v’ + ?a®) (mod p) (14)
= (2(ab + bc + ca))? — 4(a®b* + b%c® + c*a?)  (mod p)
= 8abc(a+b+c) (mod p).
From and ,

x = —4abc(a+b+c) (mod p).
Since —abc(a +b+¢) € Z? and pf z, x € Z. Therefore (x,D), = 1.
Case 3: vp(z) > 0. Let = p"zq, where r € Z" and vy(z1) = 0. From (9)),

v’ =p e (0" et + p" Ay + B). (15)
Case 3.1: p|B. Then p|nabe. Therefore
D= (a+b+c)—4na®v’c* = (a+b+c)* (mod p). (16)
Since ged(nabe,a + b+ ¢) = 1 and p|nach, pt a + b+ ¢. Then shows that D € ZZQ). Thus
(x,D), = 1.
Case 3.2: p{ B. From (15), v2(y?) = r. Thus 2|r.
e ptD. Then

(z, D)p = (p"x1, D)y
= (z1,D), (since 2|r)
=1 (since x1,D € Zy).
e p|D. Then 4na®b?c® = (a+b+c)? (mod p). Since ged(nabe,a+b+c) =1and 2fa+b+ec,
p1abc(a+ b+ c). Therefore
2>+ Az + B=B (mod p)
= 64na’b*c*  (mod p)
= 16a%v*c*(a +b+c¢)* (mod p)
#Z0 (mod p).
Hence 22 + Ar + B € ZIQJ. Thus
2
-y 2
YT i Ar 1B € Q-
Therefore (z, D), = 1.

Lemma 3.5.
invo(M(Py)) = 0.
Proof. If 2|nabc then
D=(a+b+c)—4na®b*’c* =1 (mod 8).
Hence D € Z2. Therefore (x, D)y = 1.

We consider the case 2 { nabc. Then 2 { n and 2 { abe.
Case 1: 2|va(x). Let x = 2"z, where 2|r and va(x1) = 0. Then

(l‘,D)Q = 2T:E1,D)2
x1,D)2  (since 2|r)
_1)(x1*1)(D*1)/4

(since 4|D —1).
5
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Case 2: 2 {vy(z).
Case 2.1: va(z) < 0. Let © = x1/2", where r € Z" and ve(z1) = 0.

From @,
o, wi(x}+42"As+ 27" B)
vy = 93r :
Therefore v3(y?) = 3r, which impossible since 2 { r.

Case 2.2: vy(z) > 0. Let = 2"z, where r € Z" and vy(z1) = 0. From (9)),

y? = 2"z (2723 + 2" Axy + 25natbiet).
Since 2 t abc,

A =16n2a’b e — 8a?b%c*(a® + b + ) + a* + b* + ¢t — 2ab* — 2d%c? — 2672

=5 (mod 8).
Thus va(A4) = 0.
e r > 6. From ,
y? = 2700, (2277622 1 2775 Azy + na'dtc?).

Therefore v3(y?) = r + 6, which is impossible since 2 1 r.

er < 6. From ([17),

y? = 2% xy (2723 + Az 4 25 Tnatblct).
Thus va(y) = r. From (18],
(27"y)? = 21(272% + Azy + 25 "na'btct).
Note that in we have A =5 (mod 8), 217, 0 < r <6, 2{nabc.
(i) 7 = 1. Reducing modulo 4 gives
=224 21) =221+ 1 (mod 4).

which is impossible since 2 1 7.
(ii) » = 3. Reducing modulo 8 gives

1=5 (mod 8),

which is impossible.
(iii) » = 5. Reducing modulo 4 gives

l=z1(z1+2)=1+22; (mod4),

which is impossible since 2 1 z.

Lemma 3.6. )
inve, (M(Px)) = 5

(17)

Proof. Since D < 0 (proved in Lemma[3.1)) and z < 0, (z, D)o = —1. Therefore inve (M (Ps)) =

1/2.
We are now ready to prove Theorem (3.2

Proof. Lemmas .5 and show that for all P € S,

0 if v # oo,
inv,( M(Py)) =41 .
— if v = o0.
2
Therefore )
evam((Py)) = inveo (M(Px)) + inv,(M(Pp)) = 3 VP e S
p<oo
6
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On the other hand, by Theorem E(Q) C E(Ag)P. In particular, S C £(Ag)P". Hence
evm((Py)) =0 VPeS. (21)
It follows from and that S = (). The proof is complete. O
Theorem is now a consequence of Theorem Let (ug :vp:1) = ¢(xo:yo: 20). By 7

(w0 + yo)(64n2a8b%c* + 2nabc? — 48na*h?c? + 8a?b? — a?c?) + (yo + 20)c*(2na’c® — 1)

vo=- (xo + yo)(4na2c? — 1)

Since n, a2, b2, ¢2, xo, Y0, 20 € ZT,
64n2a%b%ct > 48na*b?>c? + 8a%1?, 2nac? > a>c?, 2na*c® > 1.

Therefore ug < 0. Hence (ug,vg) € S, which is impossible since S is empty. Thus equation
has no solutions in the positive integers.

Remark 3.7. The method in this paper allows one to study the results in [Il 2 B 8, O] OI0]
within the Brauer-Manin obstruction framework. A major part in [II, 2 Bl B O I0] is to show

the nonexistence of rational points on the bounded component x < 0 on certain elliptic curves

E of the form

y? = z(2* + Az + B)

with A, B € Q. Then Lemmal[3.4 is used to construct an Azumaya algebra M in Br(Q(€)) such
that for all P = (z,y) € £(Q) with x <0,

0 ifv# oo,
inv,(M(P,)) =<1 . (22)
— if v =00,
2
where (P,) is the image of P in E(Ag). And the rest follows exactly as in the proof of Theorem
2
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