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Abstract

Given a continuum X and n ∈ N, let Cn(X) (resp., Fn(X)) be the
hyperspace of nonempty closed sets with at most n-components (resp.,
n-points). Let S1 denote the unit circle in the plane. Given 1 ≤ m ≤ n,
we consider the quotient space Cn(S1)/Fm(S1). The homogeneity degree
of X, hd(X), is the number of orbits of the group of homeomorphisms
of X. In this paper we discuss the known models for the hyperspaces
of S1, we construct a new model for a hyperspace of S1 by proving that
C2(S

1)/F2(S
1) is homeomorphic to the topological suspension of a solid

torus and we show that hd(C2(X)/F2(X)) = 3, and hd(C2(X)/F1(X)) =
4.
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1 Inroduction

A continuum is a compact connected metric space with more than one point. A
subcontinuum of a continuum X is a nonempty compact connected subspace of
X, so one-point sets are also subcontinua.

If 1 ≤ m ≤ n, in this paper we consider the following hyperspaces of X:

2X = {A ⊂ X : A is a nonempty closed subset of X},
Cn(X) = {A ∈ 2X : A has at most n components},

Fn(X) = {A ∈ 2X : A has at most n points}, and the quotient space
Cn(X)/Fm(X).

The hyperspace 2X is considered with the Hausdorff metric [11, Theorem
2.2]. A mapping is a continuous function. Given a topological space Z, the
homogeneity degree of Z, denoted by hd(Z), is the number of orbits of the
group of homeomorphisms of Z. So Z is homogeneous when hd(Z) = 1. Spaces
Z for which hd(Z) = n (n ∈ N) are also known as 1

n -homogeneous.
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A finite graph is a continuum which is a finite union of arcs such that the
intersection of each two of them is a finite set.

As usual we denote the unit circle in the plane by S1 and the unit disk by
D1. The solid torus is the space D1 × S1.

The following are the known results about models and homogeneity degree
of the hyperspaces of S1.

A. Since for every locally connected continuum X, 2X is homeomorphic to
the Hilbert cube [11, Theorem 11.3], 2S1

is homeomorphic to the Hilbert cube
and hd(2S1

) = 1.
B. C(S1) is a 2-cell [10, p. 41], so hd(C(S1)) = 2.
C. C2(S1) is homeomorphic to the cone over a solid torus [9], so hd(C2(S1)) =

3.
D. F2(S1) is homeomorphic to the Möebius strip [10, pp. 53 and 54], so

hd(F2(S1)) = 2.
E. F3(S1) is homeomorphic to the 3-dimensional sphere [1], so hd(F3(S1)) =

1.
F. If n ≥ 4, then hd(Fn(S1)) = n [5].
G. hd(C2(S1)/F1(S1)) > 2 [15, Theorem 3.18].
H. hd(C2(S1)/F2(S1)) > 2 [12, Theorem 4.3].

Models for hyperspaces can be very complicated. In [10] it was discussed
almost all the possible models that have been constructed. In [9] it was shown
that C2(S1) is homeomorphic to the solid torus. As can be seen, the proof
is complicated and it does not allow to see what is the result of making the
identifications to obtain the spaces C2(S1)/F2(S1) and C2(S1)/F1(S1). The
main results of this paper are:

-The construction of a model for C2(S1)/F2(S1). We prove that this space
is homeomorphic to the suspension of the solid torus. As a consequence, we
obtain that hd(C2(X)/F2(X)) = 3.

-The proof that hd(C2(S1)/F1(S1)) = 4. This answers Question 3.19 of [15],
where it was asked whether hd(C2(S1)/F1(S1)) = 3.

With the results we are presenting in this paper, and some other known
results, in [6] the following theorem is proved.

Theorem 1 [6, Theorem 2] Let X be a finite graph and 1 ≤ m ≤ n. Then
(a) hd(Cn(X)/Fm(X)) = 1 if and only if X is homeomorphic to S1 and n =
m = 1,
(b) hd(Cn(X)/Fm(X)) = 2 if and only if X is an arc and either n = m = 1 or
n = 2 and m ∈ {1, 2},
(c) hd(Cn(X)/Fm(X)) = 3 if and only if X is homeomorphic to S1 and n =
m = 2, and
(d) hd(Cn(X)/Fm(X)) = 4 if and only if X is homeomorphic to S1, n = 2 and
m = 1.

The geometric ideas behind the arguments in this paper are similar as those
used in [9]. However we make important adjustments to the formulas.

2



2 A model for the hyperspace C2(S
1)/F2(S

1)

In this section we show a model for the hyperspace C2(S1)/F2(S1) by proving
that this hyperspace is homeomorphic to the suspension over the solid torus.

Let T be the solid torus, let C1 be the cone over T and v its vertex. By the
main result of [9], C2(S1) is homeomorphic to C1. Given z, w ∈ S1 and A ⊂ S1,
denote the complex product of w and z by w ∙ z and w ∙ A = {w ∙ a : a ∈ A}.

We consider the exponential mapping e : R→ S1 given by

e(t) = (cos(t), sin(t)).

Given α, β ∈ R, we will use the following properties of the mapping e.
(1) e(α + β) = e(α) ∙ e(β),
(2) e(α) = e(β) if and only if α = β + 2kπ for some integer k,
(3) if α ≤ β and β − α < 2π, then the length of the arc e([α, β]) is β − α,
(4) if α ≤ β and β − α < 2π, then the middle points of the arcs joining e(α)
and e(β) are e(α+β

2 ) and e(α+2π+β
2 ),

(5) −e(α) = e(α ± π), and
(6) e(t) ∙A is the image of A under a translation, so length(e(t) ∙A) = length(A).

Define σ : C2(S1) → [0, 2π] by σ(A) = length(A), if A is connected; and
σ(A) = length(A1)+ length(A2), where A1 and A2 are the components of A,
if A is not connected. Observe that σ is continuous, σ−1(0) = F2(S1) and
σ−1(2π) = {S1}.

Define

A = {A ∈ C2(S1) : σ(A) = π}.

Theorem 2 A is homeomorphic to the solid torus.

Proof. Define

K = {(r, β) ∈ [−π
2 , π

2 ] × [−π
2 , π

2 ] : − 1
2 (|r| + π

2 ) ≤ β ≤ 1
2 (|r| + π

2 )}.

Then K = K− ∪ K+, where K− is the convex quadrilateral in the plane with
vertices (−π

2 ,−π
2 ), (−π

2 , π
2 ), (0,−π

4 ) and (0, π
4 ) and K+ is the convex quadri-

lateral with vertices (0,−π
4 ), (0, π

4 ), (π
2 , π

2 ), and (π
2 ,−π

2 ).
Define % : K → A by

%(r, β) = e([β( 2r−π
2r+π ) − 3π

4 + r
2 , β − π

4 + r
2 ] ∪ [β + π

4 − r
2 , β( 2r−π

2r+π ) + 3π
4 − r

2 ]), if
r ∈ [0, π

2 ], and
%(r, β) = −%(−r,−β), if r ∈ [−π

2 , 0].

We check that the following properties hold for each (r, β) ∈ K,
Property A. %(π

2 , β) = e([−π
2 , π

2 ]), %(−π
2 , β) = e([π

2 , 3π
2 ]),

Property B. If −π
2 < r < π

2 , then %(r, β) is the union of two disjoint
subcontinua of S1. Moreover, the lengths of the components of S1 \ %(r, β) are
π
2 +r and π

2 −r; if r ≥ 0, then the respective middle points of these components
are e(β( 2r−π

2r+π )+π) and e(β); and if r ≤ 0, then the middle points are e(β( 2r+π
2r−π ))

(with length π
2 − r) and e(−β + π) (with length π

2 + r).
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Property C. σ(%(r, β)) = π,
Property D. % is well defined and continuous,
Property E. If −π

2 < r < π
2 , then for every − 1

2 (|r| + π
2 ) ≤ β ≤ 1

2 (|r| +
π
2 ), %−1(%(r, β)) = {(r, β)}. Moreover, %−1(e([−π

2 , π
2 ])) = {π

2 } × [−π
2 , π

2 ] and
%−1(e([π

2 , 3π
2 ])) = {−π

2 } × [−π
2 , π

2 ].
First, we prove properties A, B, C and D. Property A is immediate. For

proving B and C, first suppose that r ≥ 0. The inequalities β ≥ − 1
2 (r + π

2 )
and β ≤ 1

2 (r + π
2 ) are equivalent to the respective inequalities: β − π

4 + r
2 ≥

β( 2r−π
2r+π )− 3π

4 + r
2 and β( 2r−π

2r+π )+ 3π
4 − r

2 ≥ β + π
4 − r

2 . Observe that β + π
4 − r

2 −
(β − π

4 + r
2 ) = π

2 − r ≥ 0 and the inequality holds if and only π
2 > r. Moreover

β( 2r−π
2r+π ) + 3π

4 − r
2 − (β( 2r−π

2r+π ) − 3π
4 + r

2 ) = 3π
2 − r < 2π. Hence %(r, β) is the

union of two nonempty subcontinua. Clearly, the sum of the lengths of these
subcontinua is π. Furthermore, in the case that r < π

2 these subcontinua are
disjoint and %(r, β) is the union of two disjoint subcontinua. Observe that the
lengths of the components of S1\%(r, β) are π

2 +r and π
2 −r. The shortest (resp.,

largest) component of S1 \ %(r, β) is the open subarc e(β − π
4 + r

2 , β + π
4 − r

2 )
(resp., e(β( 2r−π

2r+π )+ 3π
4 − r

2 , β( 2r−π
2r+π )+2π− 3π

4 + r
2 )). Thus, the respective middle

points are e(β) and e(β( 2r−π
2r+π ) + π).

Now, suppose that r ≤ 0. Then %(r, β) = −%(−r,−β). Since −r ≥ 0,
by the previous paragraph, the lengths of the components of S1 \ %(r, β) =
S1 \ −%(−r,−β) are π

2 − r and π
2 + r with middle points −e(−β) = e(−β + π)

and −e(−β(−2r−π
−2r+π ) + π) = e(β( 2r+π

2r−π )).
For proving D, note that if r = 0, then with the first definition (when r ≥ 0)

we obtain %(r, β) = e([−β − 3π
4 , β − π

4 ] ∪ [β + π
4 ,−β + 3π

4 ]). With the second
one (0 ≤ r), we obtain %(r, β) = −%(−r,−β) = −e([β − 3π

4 ,−β − π
4 ] ∪ [−β +

π
4 , β + 3π

4 ]) = e([β − 3π
4 + π,−β − π

4 + π] ∪ [−β + π
4 − π, β + 3π

4 − π]). This
shows that both ways of defining %(0, β) coincide. By A, B and C, we have that
%(r, β) ∈ A. Therefore % is well defined, and clearly % is continuous.

We prove E. First suppose that r ∈ [0, π
2 ). Take (r, β), (r1, β1) ∈ K such

that %(r, β) = %(r1, β1). We are going to prove that (r, β) = (r1, β1). By B,
%(r, β) is not connected. Then A implies that r1 ∈ (−π

2 , π
2 ). By B the length of

the shortest component of S1 \ %(r, β) is equal to π
2 − |r| and to π

2 − |r1|. Then
|r| = |r1|. We consider three cases.

Case 1. r1 > 0.
In this case r = r1. Since the length of the component J1 = e(β1−

π
4 + r1

2 , β1+
π
4 − r1

2 ) of S1 \ %(r1, β1) is π
2 − r1, we have that J1 is the shortest component.

Since the same happens with J = e(β − π
4 + r

2 , β + π
4 − r

2 ), we obtain that
J = J1. In particular, the middle point of J1 is also the middle point of J .
This implies that e(β) = e(β1). Since β ∈ [− 1

2 (r + π
2 ), 1

2 (r + π
2 )] ⊂ [−π

2 , π
2 ] and

β1 ∈ [− 1
2 (r1 + π

2 ), 1
2 (r1 + π

2 )] ⊂ [−π
2 , π

2 ], we obtain that β = β1, and we are done
in this case.

Case 2. r1 = 0.
In this case r = 0. Then %(r, β) = e([−β − 3π

4 , β − π
4 ] ∪ [β + π

4 ,−β + 3π
4 ]) =

e([−β1 − 3π
4 , β1 − π

4 ] ∪ [β1 + π
4 ,−β1 + 3π

4 ]). Thus the middle points of the
components of S1\%(0, β) are e(β) and e(−β+π). Then {β, β+π} = {β1, β1+π}.
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Since −π
4 ≤ β, β1 ≤ π

4 and 3π
4 ≤ β + π, β1 + π ≤ 5π

4 , we conclude that β = β1.
This case is finished.

Case 3. r1 < 0.
In this case, r1 = −r. By B., the middle point of the shortest component of

S1 \ %(r1, β1) = S1 \ %(r, β) is e(−β1 + π) and e(β). Thus e(−β1 + π) = e(β).
This contradicts the facts that −π

2 < β < π
2 and π

2 ≤ −β1 + π ≤ 3π
2 . Hence

this case is impossible.
Now we analyze the case that r ∈ (−π

2 , 0). By symmetry and Case 3,
it is impossible that r1 ∈ [0, π

2 ). Thus suppose that r1 ∈ (−π
2 , 0). In this

case, r = r1, and the middle point of the shortest component of S1 \ %(r, β) is
−e(−β) = e(−β + π) = e(−β1 + π) = −e(−β1). Since −π

2 < β, β1 < π
2 , we

have that β = β1. This ends the proof of the first part of E. The second part
follows from A and B.

Let L be the continuum obtained from K by identifying the set {−π
2 } ×

[−π
2 , π

2 ] to a one-point set {p−} and the set {π
2 }× [−π

2 , π
2 ] to another one-point

set {p+}. Let η∗ : K → L be the quotient mapping. Observe that L is a 2-
cell. By Property E, the mapping % preserves the fibers of the mapping η∗ and
the mapping η∗ preserves the fibers of the mapping %. By the Transgression
Theorem [3, Theorem 3.2], there exists a homeomorphism η : L → %(K) such
that % = η ◦ η∗.

Let ω : K × [0, π] → A be defined by

ω(r, β, t) = e(t) ∙ %(r, β).

We will need the following property.
Property F. Suppose that (r, β, t), (s, γ, u) ∈ K×[0, π], ω(r, β, t) = ω(s, γ, u)

and (r, β, t) 6= (s, γ, u). Then:

(i) if −π
2 < r < π

2 , then |t − u| = π and (r, β) = (−s,−γ); and
(ii) if {r, s} ∩ {−π

2 , π
2 } 6= ∅, then {r, s} ⊂ {−π

2 , π
2 } and either (t, r) = (u, s) or

{r, s} = {−π
2 , π

2 } and |t − u| = π.

We prove F. Set A = ω(r, β, t) = ω(s, γ, u). We analyze two cases.
Case 1. −π

2 < r < π
2 .

In this case, by B, A is not connected. This implies that −π
2 < s < π

2 . Let I
and J be the respective largest and shortest components of S1 \A (there is the
possibility that I and J have the same length). By B, length(J) = π

2 − |r| =
π
2 − |s|. Thus |r| = |s|.

Subcase 1.1. r, s > 0.
In this subcase, r = s and by B, length(J) < length(I). Then the middle

point of J is distinct from the middle point of I. Since the middle point of J is
e(t + β) and e(u + γ), we have that e(t + β) = e(u + γ). Since 0 ≤ s, t ≤ π and
−π

2 < β, γ < π
2 , we obtain that −π

2 < t + β, u + γ < 3π
2 . Thus

t + β = u + γ.

5



Taking the middle point of I, we obtain that e(t + β( 2r−π
2r+π ) + π) = e(u +

γ( 2r−π
2r+π ) + π). The inequality r > 0, implies that −1 < 2r−π

2r+π < 1. Then π
2 <

t+β( 2r−π
2r+π )+π, u+γ( 2r−π

2r+π )+π < 5π
2 . Hence t+β( 2r−π

2r+π )+π = u+γ( 2r−π
2r+π )+π.

Then γ −β = t−u = (γ −β)( 2r−π
2r+π ). Since 2r−π

2r+π 6= 1, we obtain that β = γ and
t = u. This contradicts our assumption and shows that this case is impossible.

Subcase 1.2. r = 0 or s = 0.
Since |r| = |s|, we obtain that r = s = 0. Then, by B, the middle points of

the open intervals I and J are the points e(t+β) and e(t−β +π) in some order
and the same happens with e(u + γ) and e(u − γ + π). Hence either:
(I) e(t + β) = e(u + γ) and e(t − β + π) = e(u − γ + π), or
(II) e(t + β) = e(u − γ + π) and e(t − β + π) = e(u + γ).

Recall that −π
2 < t+β, u+ γ < 3π

2 and π
2 < t−β +π, u− γ +π < 5π

2 . . . (*)
If (I) holds, then t + β = u + γ and t + π − β = u + π − γ. This implies that

β = γ and t = u. This contradicts our assumption and proves that (I) does not
hold.

If (II) holds, by (*), either

t + β = u − γ + π or t + β + 2π = u − γ + π.

Similarly,

u + γ = t − β + π or u + γ + 2π = t − β + π.

Thus we need to consider four possibilities:
(1.) t + β = u − γ + π and u + γ = t − β + π,
(2.) t + β = u − γ + π and u + γ + 2π = t − β + π,
(3.) t + β + 2π = u − γ + π and u + γ = t − β + π,
(4.) t + β + 2π = u − γ + π and u + γ + 2π = t − β + π.

If (1.) holds, then π − (β + γ) = t − u = −π + β + γ. This implies that
π = β + γ. Which contradicts the fact that β,γ ∈ (−π

2 , π
2 ). Hence (1.) does not

hold.
If (2.) holds, then π− (β +γ) = t−u = π+β +γ. This implies that β = −γ,

t = u + π and r = 0 = −s.
If (3.) holds, as in the previous paragraph, β = −γ, t = u−π and r = 0 = −s.
If (4.) holds, as in the case (1.), β + γ = −π, a contradiction. So (4.) does

not hold.
Subcase 1.3. r, s < 0.
Since ω(r, β, t) = ω(s, γ, u), we have that e(t) ∙ %(−r,−β) = e(u) ∙ %(−s,−γ).

Then ω(−r,−β, t) = ω(−s,−γ, u). By Subcase 1.1., this equality does not hold.
Thus, this subcase is also impossible.

Subcase 1.4. r < 0 < s or s < 0 < r.
We analyze the case r < 0 < s, the other one is similar. Since ω(r, β, t) =

ω(s, γ, u), we have −e(t)∙%(−r,−β) = e(u)∙%(s, γ). Let I and J be the respective
largest and shortest components of S1 \A. By B, length(J) = π

2 − |r| = π
2 − |s|.

This implies that s = −r. Moreover, the middle point of J coincides with the
points −e(t − β) = e(t − β + π) and e(u + γ). Since π

2 < t − β + π < 5π
2 and

−π
2 < u + γ < 3π

2 , we have that either
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t − β + π = u + γ or t − β + π = u + γ + 2π.

On the other hand, the middle point of I coincides with the points e(t+β( 2r+π
2r−π ))

and e(u + γ( 2s−π
2s+π ) + π). Since −1 < 2r+π

2r−π , 2s−π
2s+π < 1 and −π

2 < β, γ < π
2

we have that −π
2 < β( 2r+π

2r−π ), γ( 2s−π
2s+π ) < π

2 , −π
2 < t − β( 2r+π

2r−π ) < 3π
2 and

π
2 < u + γ( 2s−π

2s+π ) + π < 5π
2 . Then either

t − β( 2r+π
2r−π ) = u + γ( 2s−π

2s+π ) + π or t − β( 2r+π
2r−π ) + 2π = u + γ( 2s−π

2s+π ) + π.

Hence we have to consider four possibilities.
(5.) t − β + π = u + γ and t − β( 2r+π

2r−π ) = u + γ( 2s−π
2s+π ) + π,

(6.) t − β + π = u + γ and t − β( 2r+π
2r−π ) = u + γ( 2s−π

2s+π ) − π

(7.) t − β + π = u + γ + 2π and t − β( 2r+π
2r−π ) = u + γ( 2s−π

2s+π ) + π,
(8.) t − β + π = u + γ + 2π and t − β( 2r+π

2r−π ) = u + γ( 2s−π
2s+π ) − π.

If (5.) holds, then β + γ − π = t − u = β( 2r+π
2r−π ) + γ( 2s−π

2s+π ) + π > 0. This
implies that β + γ > π, a contradiction. Therefore (5.) does not hold.

If (6.) holds, then β + γ − π = t− u = β( 2r+π
2r−π ) + γ( 2s−π

2s+π )− π. This implies
that γ( 2π

2s+π ) = β( 2π
2r−π ). Since s = −r, we infer that β = −γ and t = u− π, so

in this case, we are done.
If (7.) holds, then β + γ + π = t − u = β( 2r+π

2r−π ) + γ( 2s−π
2s+π ) + π. As in (6.)

we obtain that β = −γ and t = u + π, so in this case, we are done.
If (8.) holds, then β + γ + π = t − u = β( 2r+π

2r−π ) + γ( 2s−π
2s+π ) − π < 0. This

implies that β + γ < −π, a contradiction. Hence (8.) does not hold.
This completes the proof for Case 1.
Case 2. r = π

2 or r = −π
2 .

We analyze the case r = π
2 , the other case is similar. By A, ω(r, β, t) =

e(t) ∙ %(r, β) = e([t − π
2 , t + π

2 ]) = ω(s, γ, u). Since ω(s, γ, u) is connected,
by B, s ∈ {−π

2 , π
2 }. If s = π

2 , then ω(s, γ, u) = e([u − π
2 , u + π

2 ]). Thus
e([t − π

2 , t + π
2 ]) = e([u − π

2 , u + π
2 ]) and the middle point of this set is e(t) and

e(u), so e(t) = e(u) and t = u. Hence (t, r) = (u, s).
Now suppose that s = −π

2 . Then ω(s, γ, u) = e([u + π
2 , u + 3π

2 ]). Since
e([t− π

2 , t + π
2 ]) = e([u + π

2 , u + 3π
2 ]), taking the middle points of these arcs, we

obtain that e(t) = e(u + π). Since t ∈ [0, π] and π + u ∈ [π, 2π], we conclude
that either t = π = π + u or t = 0 and π + u = 2π. In both cases, |t − u| = π.
Therefore {r, s} = {−π

2 , π
2 } and |t − u| = π. This finishes the proof of F.

Property G. ω is onto.
We prove G. Take an element A ∈ A. First we consider the case that A is

not connected. Then A = e([a, b] ∪ [c, d]), with b < c and d − a < 2π. Since
A ∈ A, π = b− a + d− c. We assume that the open interval J = e((b, c)) is the
shortest component of S1 \ A. That is, c − b ≤ a + 2π − d. Since σ(A) = π,
the sum of the lengths of the components of S \ A is equal to π. That is,
(c − b) + (a + 2π − d) = π. Then c − b ≤ π

2 . We consider two cases.
Case 1. (b + c)(π + a − d) = (a + d)(π + b − c).
Define
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β = b+c
2 , α = a+d

2 + π and r = a − d + 3π
2 .

Since π = b − a + d − c, we have that

r = b − c + π
2 .

Then r ∈ [0, π
2 ), observe that 2r − π = 2(π + a − d) = 2(b − c) and 2r + π =

2(2π + a − d) = 2(π + b − c). Hence β( 2r−π
2r+π ) = ( b+c

2 )( 2(π+a−d)
2(π+b−c) ) = a+d

2 , so

β( 2r−π
2r+π ) = a+d

2 .
Let r0 = π

2 + r ∈ [π
2 , π), s0 = π − r0 ∈ (0, π

2 ] and w = bs0 + ar0. Then
r0 = π + b − c = 2π + a − d, s0 = c − b, and

(b + c)s0 + (a + d)r0 = (b + c)(−π − a + d) + (a + d)(2π + a − d) =
−(b + c)(π + a − d) + (a + d)(π + b − c) = 0.

This implies that −w = cs0 + dr0. Then

2w = bs0 + ar0 − cs0 − dr0 = (b − c)s0 + (a − d)r0 =
(π + a − d)s0 + (−π + b − c)r0 = (−π + 2π + a − d)s0 + (−π + b − c)r0 =

(−π + r0)s0 + (−π − s0)r0 = −π(r0 + s0) = −π2.

Thus w
π = −π

2 , a r0
π + b s0

π = −π
2 and c s0

π + d r0
π = π

2 . Since s0
π + r0

π = 1, we
have that −π

2 (respectively, π
2 ) is a convex combination of a and b (respectively,

c and d). Therefore a ≤ −π
2 ≤ b and c ≤ π

2 ≤ d.
Then 2c ≤ π, b + c ≤ π + b − c = π

2 + r and β ≤ 1
2 (r + π

2 ). On the other
hand −π ≤ 2b, −r − π

2 = −π − b + c ≤ b + c and − 1
2 (r + π

2 ) ≤ β.
Since 0 ≤ r < π

2 , we have that (r, β) ∈ K. Moreover,

ω(r, β, 0) =
%(r, β) = e([β( 2r−π

2r+π ) − 3π
4 + r

2 , β − π
4 + r

2 ] ∪ [β + π
4 − r

2 , β( 2r−π
2r+π ) + 3π

4 − r
2 ]) =

e([a+d
2 + a−d

2 , b+c
2 + b−c

2 ] ∪ [ b+c
2 − b−c

2 , a+d
2 − a−d

2 ]) = A.

Therefore, ω(r, β, 0) = A and A ∈ Im ω.

Case 2. (b + c)(π + a − d) 6= (a + d)(π + b − c).
Since d− c+ b− a = π, we have that b− c = π + a− d and d− a = π + c− b.

Define

t = (b+c)(π+a−d)−(a+d)(π+b−c)
2(b−c+d−a) .

Then (a + d)(π + b − c) + 2t(b − c) = (b + c)(π + a − d) − 2t(d − a). Thus
(b+ c)(π +a−d)+2t(π +a−d) = (a+d)(π + b− c)+2t(π + b− c). This implies
that (b + t + c + t)(π + a + t− (d + t)) = (a + t + d + t)(π + b + t− (c + t)). Set

a0 = a + t, b0 = b + t, c0 = c + t, d0 = d + t and A0 = e([a0, b0] ∪ [c0, d0]).
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Observe that (b0 + c0)(π + a0 − d0) = (a0 + d0)(π + b0 − c0), A0 ∈ A and
e((b0, c0)) is the shortest component of S1 \ A0.

By Case 1, there exists (r, β) ∈ K such that %(r, β) = A0. Observe that
A0 = e(t) ∙ A and e(−t) ∙ %(r, β) = A.

Let t0 ∈ [0, 2π] be such that e(t0) = e(−t). In the case that t0 ∈ [0, π],
we conclude that (r, β, t0) ∈ K × [0, π], ω(r, β, t0) = A and A ∈ Im ω. In the
case that t0 ∈ [π, 2π], let t1 = t0 − π. Then t1 ∈ [0, π] and e(t1) = −e(t0).
Hence (−r,−β, t1) ∈ K × [0, π] and, by the definition of %, ω(−r,−β, t1) =
e(t1) ∙ %(−r,−β) = e(t1) ∙ (−%(r, β)) = e(t0) ∙ %(r, β) = A. Therefore A ∈ Im ω.

This completes the proof that A ∈ Im ω for each A ∈ A such that A is
disconnected.

Now, we suppose that A ∈ A and A is connected. Then A = e([a, b]) for some
a, b ∈ R such that b−a = π. We may assume that the number t0 = a+b

2 ∈ [0, 2π].
Then e(t0) ∙ e([−π

2 , π
2 ]) = e([t0 − π

2 , t0 + π
2 ]) = e([a, b]) = A. In the case that

t0 ∈ [0, π], we have that ω(π
2 , 0, t0) = A. In the case that t0 ∈ [π, 2π], the

number t1 = t0 − π belongs to [0, π] and by A, ω(−π
2 , 0, t1) = e(t1) ∙ %(−π

2 , 0) =
−e(t0) ∙ e([π

2 , 3π
2 ]) = e(t0) ∙ e([−π

2 , π
2 ]) = A. This ends the proof that A ∈ Im ω.

This completes the proof of G.

Let D0 be the unit disk in the plane given by

D0 = {(x, y) : x2 + y2 ≤ 1}.

Since K is a 2-cell and the arcs L+ = {π
2 }×[−π

2 , π
2 ] and L− = {−π

2 }×[−π
2 , π

2 ]
are contained in the manifold boundary of K, it is possible to find an onto map-
ping λ : K → D0 such that λ(L+) = {(1, 0)}, λ(L−) = {(−1, 0)}, the mapping
λ|K\(L+∪L−) : K \ (L+ ∪L−) → D0 \ {(−1, 0), (1, 0)} is a homeomorphism, and
since both sets K and D0 are symmetric with respect to the origin (0, 0), it is
possible to ask that for every (r, β) ∈ K, the following equality holds:

λ(r, β) = −λ(−r,−β).

By A, % preserves the fibers of λ. Then Theorem 3.2, Ch. VI of [3], implies
that there exists a mapping %∗ : D0 → A such that % = %∗ ◦ λ.

Define ω∗ : D0 × [0, π] → A by

ω∗(r, β, t) = e(t) ∙ %∗(r, β).

Property H. Suppose that (r∗, β∗, t), (s∗, γ∗, u) ∈ D0×[0, π], ω∗(r∗, β∗, t) =
ω∗(s∗, γ∗, u) and (r∗, β∗, t) 6= (s∗, γ∗, u). Then (r∗, β∗) = (−s∗,−γ∗) and π =
|t − u|.

We prove H. Let (r, β), (s, γ) ∈ K be such that λ(r, β) = (r∗, β∗) and
λ(s, γ) = (s∗, γ∗). Then ω∗(r∗, β∗, t) = e(t)∙%∗(r∗, β∗) = e(t)∙%(r, β) = ω(r, β, t)
and ω∗(s∗, γ∗, u) = ω(s, γ, u). Thus ω(r, β, t) = ω(s, γ, u).

In the case that −π
2 < r < π

2 , by Property F, |t − u| = π and (r, β) =
(−s,−γ). By the choice of λ, (r∗, β∗) = λ(r, β) = λ(−s,−γ) = −λ(s, γ) =
−(s∗, γ∗). So, in this case we are done.
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In the case that {r, s} ∩ {−π
2 , π

2 } 6= ∅, by Property F, {r, s} ⊂ {−π
2 , π

2 } and
either (t, r) = (u, s) or {r, s} = {−π

2 , π
2 } and |t − u| = π. We consider three

cases.
Case 1. r = s = π

2 .
In this case, (t, r) = (u, s) and (r, β), (s, γ) ∈ L+. Then (r∗, β∗) = λ(r, β) =

(1, 0), so r∗ = 1 and β∗ = 0. Similarly, s∗ = 1 and γ∗ = 0. Therefore
(r∗, β∗, t) = (s∗, γ∗, u), a contradiction. Thus this case is impossible.

Case 2. r = s = −π
2 .

This case is similar to Case 1.
Case 3. {r, s} = {−π

2 , π
2 } and |t − u| = π.

We may suppose that r = π
2 and s = −π

2 . Then (r, β) ∈ L+ and (s, γ) ∈ L−.
Thus (r∗, β∗) = λ(r, β) = (1, 0) and (s∗, γ∗) = λ(s, γ) = (−1, 0). So r∗ = 1,
β∗ = 0, s∗ = −1 and γ∗ = 0. Therefore (r∗, β∗) = (−s∗,−γ∗). This completes
the proof of H.

In the space D0 × [0, π] define the relation (r∗, β∗, t) ' (s∗, γ∗, u) if and only
if either (r∗, β∗, t) = (s∗, γ∗, u) or (r∗, β∗) = (s∗, γ∗) and {t, u} = {0, 2π} or
(r∗, β∗) = (−s∗,−γ∗) and |t − u| = π. Clearly, ' is an equivalence relation, so
it is possible to consider the quotient space

(D0 × [0, π])/ '.

Let ζ : D0 × [0, π] → (D0 × [0, π])/ ' be the quotient mapping. By Property
H, the fibers of ζ coincide with the fibers of ω∗.

Given A ∈ A, by G, there exists (r, β, t) ∈ K × [0, π] such that A =
ω(r, β, t) = e(t) ∙ %(r, β) = e(t) ∙ (%∗(λ(r, β)) = e(t) ∙ %∗(r∗, β∗) = w∗(r∗, β∗, t),
where (r∗, β∗) = λ(r, β). This proves that ω∗ is onto.

The Transgression Theorem [3, Theorem 3.2, Ch. VI] implies that A is
homeomorphic to (D0 × [0, π])/ '.

Observe that (D0 × [0, π])/ ' can be obtained by taking the convex cilinder
D0 × [0, π] and identifying its top and its bottom making a rotation of 1800. It
is easy to see that after this identification we obtain a solid torus. Therefore, A
is homeomorphic to the solid torus.

Theorem 3 The continuum C2(S1)/F2(S1) is homeomorphic to the suspension
of A.

Proof. Set P = C2(S1) \ (F1(S1) ∪ {S1}). We are going to define a mapping
f : P × (0, 2π) → P .

In order to define f , take (A, t) ∈ P × (0, 2π). We consider two cases.
If A is connected, A is a subarc of S1. Let I = S1 \ A and p = e(α) be the

middle point of I. Then

f(A, t) = e([α + π − t
2 , α + π + t

2 ]).

In the case that A is not connected, the complement of A in S1 consists of
two open subarcs I and J . Let p and q be the respective middle points of I and
J , and let r and s be the respective lengths of I and J , we choose I and J in
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such a way that s ≤ r. Let α and β be real numbers such that |α − β| ≤ π,
p = e(α) and q = e(β).

Define

P+ = {A ∈ P : α ≤ β}, and
P− = {A ∈ P : α ≥ β}.

For defining f(A, t) (when A is not connected), we consider two subcases:
Case 1. A ∈ P+.
In this case, α ≤ β. Observe that

A = e([α + r
2 , β − s

2 ] ∪ [β + s
2 , α + 2π − r

2 ]).

Define

α′ = 1
r+s (αr + βs − s

σ(A) ((β − α)t + π(σ(A) − t))),

β′ = 1
r+s (αr + βs + r

σ(A) ((β − α)t + π(σ(A) − t))),

r′ = r(2π−t)
r+s and s′ = s(2π−t)

r+s .

Then define

f(A, t) = e([α′ + r′

2 , β′ − s′

2 ] ∪ [β′ + s′

2 , α′ + 2π − r′

2 ]).

Claim 1.
(a) σ(A) = 2π − (r + s), β − α ≥ r+s

2 and 2π + α − β ≥ r+s
2 ,

(b) αr + βs = α′r + β′s,
(c) αr′ + βs′ = α′r′ + β′s′,
(d) β′ − α′ = 1

σ(A) ((β − α)t + π(σ(A) − t)),

(e) β − α = 1
t ((β

′ − α′)σ(A) − π(σ(A) − t)),
(f) α = 1

r+s (α′r + β′s − s
t ((β

′ − α′)σ(A) − π(σ(A) − t))),
(g) β = 1

r+s (α′r + β′s + r
t ((β

′ − α′)σ(A) − π(σ(A) − t))),

(h) 0 ≤ β′ − s′

2 − α′ − r′

2 ,

(i) 0 ≤ α′ + 2π − r′

2 − β′ − s′

2 ,
(j) β′ − α′ ≤ π,
(k) f(A, t) ∈ P+,
(l) σ(f(A, t)) = t,
(m) f(f(A, t), σ(A)) = A.

We prove Claim 1. The first part of (a) is immediate. The two inequalities
in (a) follow from the fact that the arc-length distance from p to q is greater
than or equal to r+s

2 .
(b) and (d) are immediate. (c) follows from (b). (e) follows from (d). (f)

and (g) are obtained as solutions of the system of linear equations given in (b)
and (e).

In order to prove (h), note that (a) and (d) imply that:
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β′ − α′ − r′+s′

2 =
1

σ(A) ((β − α)t + π(σ(A) − t)) − 2π−t
2 ≥

1
σ(A) (

r+s
2 t + π(σ(A) − t) − σ(A)(2π−t)

2 ) =
1

2σ(A) ((2π − σ(A))t + 2π(σ(A) − t) − σ(A)(2π − t)) = 0.

In order to prove (i), note that (a) and (d) imply that:

α′ + 2π − r′

2 − β′ − s′

2 =
1

σ(A) ((α − β)t + π(t − σ(A))) + 2π − 2π−t
2 =

1
σ(A) ((2π + α − β)t − 2πt + πt − πσ(A)) + 2π − 2π−t

2 ≥
1

σ(A) (
r+s
2 t − πt − πσ(A)) + 2π − 2π−t

2 =
1

2σ(A) ((2π − σ(A))t − 2πt − 2πσ(A) + 4πσ(A) − 2πσ(A) + tσ(A)) = 0.

We prove (j). Since β − α ≤ π, we have that (β − α)t ≤ πt. This implies
that (β − α)t + π(σ(A) − t) ≤ πσ(A). By (d), we conclude that β′ − α′ ≤ π.

We prove (k) and (l). Note that by (h) and (i), the sets e([α′ + r′

2 , β′ − s′

2 ])

and e([β′ + s′

2 , α′ + 2π − r′

2 ]) are nonempty subsets of S1. Since 2π + α′ + r′

2 >

α′+2π− r′

2 and β′+ s′

2 > β′− s′

2 , we have that f(A, t) is the union of two disjoint
subcontinua of S1. Hence f(A, t) ∈ C2(S1) \C(S1). Moreover, σ(f(A, t)) is the
sum of the lengths of the two intervals. Then σ(f(A, t)) = 2π−(r′+s′) = t. Let
I ′ = e((α′ − r′

2 , α′ + r′

2 )) and J ′ = ((β′ − s′

2 , β′ + s′

2 )). Then the components of
S1 \ f(A, t) are the two open subarcs I ′ and J ′. The respective middle points of
I ′ and J ′ are the points p′ = e(α′) and q′ = e(β′). Observe that the respective
lengths of I ′ and J ′ are r′ and s′. Note that s′ ≤ r′. By (h) and (j), we have
that 0 ≤ β′ − α′ ≤ π. Thus f(A, t) ∈ P+.

Finally, we prove (m). By definition,

f(f(A, t), σ(A)) = e([α′′ + r′′

2 , β′′ − s′′

2 ] ∪ [β′′ + s′′

2 , α′′ + 2π − r′′

2 ]),

where

α′′ = 1
r′+s′ (α′r′ + β′s′ − s′

t ((β′ − α′)σ(A) + π(t − σ(A))),

β′′ = 1
r′+s′ (α′r′ + β′s′ + r′

t ((β′ − α′)σ(A) + π(t − σ(A))),

r′′ = r′(2π−σ(A))
r′+s′ and s′′ = s′(2π−σ(A))

r′+s′ .

Observe that r′′ =
r(2π−t)

r+s (2π−σ(A))
r(2π−t)

r+s +
s(2π−t)

r+s

= (2π−σ(A))r
r+s . Since σ(A) + r + s = 2π,

we conclude that r′′ = r. Similarly, s′′ = s. Since r′ and s′ have the same factor
( 2π−t

r+s ), we can change r′ by r and s′ by s in the expression for α′′. Then

α′′ = 1
r+s (α′r + β′s − s

t ((β
′ − α′)σ(A) + π(t − σ(A))).

By (f), we conclude that α′′ = α. Similarly, β′′ = β. Thus f(f(A, t), σ(A)) =
A.

Case 2. A ∈ P−.
In this case, α ≥ β. Observe that
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A = e([β + s
2 , α − r

2 ] ∪ [α + r
2 , β + 2π − s

2 ]).

Define

α′ = 1
r+s (αr + βs + s

σ(A) ((α − β)t + π(σ(A) − t))),

β′ = 1
r+s (αr + βs − r

σ(A) ((α − β)t + π(σ(A) − t))),

r′ = r(2π−t)
r+s and s′ = s(2π−t)

r+s .

Then define

f(A, t) = e([β′ + s′

2 , α′ − r′

2 ] ∪ [α′ + r′

2 , β′ + 2π − s′

2 ]).

Proceeding as in Case 1, interchanging the roles of α and β in properties (a)-
(m), it is possible to prove that for every A ∈ P−, f(A, t) ∈ P−, σ(f(A, t)) = t
and f(f(A, t), σ(A)) = A.

This finishes the definition of f .

Claim 2. f is well defined.
In order to prove this claim, we only need to consider the case that A is not

connected.
First we see that the definition of f(A, t) does not change if we add the same

integer multiple of 2π to both α and β. In order to see this, it is enough to show
that f(A, t) does not change when we take α + 2π and β + 2π instead of α and
β, respectively. We consider the case that α ≤ β, the other case is similar. In
this case,

(α+2π)′ = 1
r+s ((α+2π)r+(β+2π)s− s

σ(A) ((β+2π−α−2π)t+π(σ(A)−t))) =

2π + 1
r+s (αr + βs − s

σ(A) ((β − α)t + π(σ(A) − t))) = 2π + α′.

Similarly, (β + 2π)′ = 2π + β′. Since r and s are the lengths of the components
of S1 \A, they do not depend on the choice of α and β. Therefore, the value of
f(A, t) does not change under adding integer multiples of 2π.

In the case that r = s, both components of S1 \ A have the same length, so
it is possible to interchange the roles of I and J . We check that in this case the
set f(A, t) does nto change. Take I0 = J and J0 = I. Then r0 = s = r = s0,
α0 = β and β0 = α. Consider the case that α ≤ β. Then β0 ≤ α0.

So,

α′
0 = 1

r0+s0
(α0r0 + β0s0 + s0

σ(A) ((α0 − β0)t + π(σ(A) − t))) =
1
2 (β + α + 1

σ(A) ((β − α)t + π(σ(A) − t))).

On the other hand,

β′ = 1
r+s (αr + βs + r

σ(A) ((β − α)t + π(σ(A) − t))) =
1
2 (α + β + 1

σ(A) ((β − α)t + π(σ(A) − t))).
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Therefore α′
0 = β′. Similarly, β′

0 = α′. This implies that the value f(A, t)
does not change when we take I0 and J0 instead of I and J .

Now, we see that the definition of f(A, t) does not change in the case that
it is possible to take numbers α1 ≤ β1 and β2 ≤ α2, for the same A. So
suppose that there exist α1, α2, β1 and β2 such that p = e(α1) = e(α2),
q = e(β1) = e(β2), |α1 − β1| ≤ π, |α2 − β2| ≤ π, α1 ≤ β1, β2 ≤ α2 and either
α1 6= α2 or β1 6= β2. Since the definition of f(A, t) does not change by adding
the same integer multiple of 2π to both α and β, we may assume that α1 = α2.
Then β2 ∈ [α1 − π, α1), β1 ∈ (α1, α1 + π] and β1, β2 ∈ [α1 − π, α1 + π]. Since
e(β1) = e(β2), we have that β2 = α1 − π and β1 = α1 + π.

The value of α′
1 (using α1 and β1) is

α′
1 = 1

r+s (α1r + β1s −
s

σ(A) ((β1 − α1)t + π(σ(A) − t))) =
1

r+s (α1(r + s) + πs − s
σ(A) (πt + π(σ(A) − t))) = α1.

On the other hand,

α′
2 = 1

r+s (α2r + β2s + s
σ(A) ((α2 − β2)t + π(σ(A) − t))) =

1
r+s (α1(r + s) − πs + s

σ(A) (πt + π(σ(A) − t))) = α1.

Therefore, α′
1 = α′

2. Similarly, β′
1 = β1 and β′

2 = β2. Thus, using α1 and
β1, we have that f(A, t) = e([α1 + r′

2 , β1 − s′

2 ] ∪ [β1 + s′

2 , α1 + 2π − r′

2 ]) =

e([α1 + r′

2 , α1 + π − s′

2 ] ∪ [α1 + π + s′

2 , α1 + 2π − r′

2 ]), while using α2 and β2,

we have f(A, t) = e([β2 + s′

2 , α2 − r′

2 ] ∪ [α2 + r′

2 , β2 + 2π − s′

2 ]) = e([α2 − π +
s′

2 , α2 − r′

2 ]∪ [α2 + r′

2 , α2 + π − s′

2 ]) = (adding 2π to both end-points of the first

interval) e([α1 + π + s′

2 , α1 + 2π − r′

2 ] ∪ [α1 + r′

2 , α1 + π − s′

2 ]). Therefore the
value of f(A, t) using α1 and β1 is the same as the value of f(A, t) using α2 and
β2.

This completes the proof of Claim 2.

Claim 3. f is continuous.
Clearly, f is continuous at the elements (A, t) ∈ (P \ C(S1)) × (0, 1), and f

restricted to (P ∩ C(S1)) × (0, 1) is also continuous. In order to complete the
proof of the continuity of f , take a sequence {(An, tn)}∞n=1 in (P\C(S1))×(0, 1)
such that limn→∞(An, tn) = (A, t) for some (A, t) ∈ (P ∩ C(S1)) × (0, 1).

Set I = S1 \A. Let p = e(α) be the middle point of I and r the length of I.
Then A = e([α + r

2 , α + 2π − r
2 ]). For each n ∈ N, let In, Jn, pn = e(αn), qn =

e(βn), rn and sn be as in the definition of f(An, tn). Since limn→∞An = A,
we may assume that limn→∞ clS1(In) = clS1(I). Then limn→∞pn = p and
limn→∞rn = r. We may assume that limn→∞αn = α and we consider the case
that for each n ∈ N, αn ≤ βn (the case βn ≤ αn for each n ∈ N is similar). So
βn ∈ [αn, αn + π] and the sequence {βn}

∞
n=1 is bounded. Since A is connected,

we have that limn→∞sn = 0. Then

limn→∞α′
n =

limn→∞
1

rn+sn
(αnrn + βnsn − sn

σ(An) ((βn − αn)tn + π(σ(An) − tn))) = α,
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limn→∞r′n = limn→∞
rn(2π−tn)

rn+sn
= 2π − t and limn→∞s′n =

limn→∞
sn(2π−tn)

rn+sn
= 0.

Hence,

limn→∞f(An, tn) = limn→∞e([α′
n + r′

n

2 , β′
n − s′

n

2 ] ∪ [β′
n + s′

n

2 , α′
n + 2π − r′

n

2 ]) =
e([α + π − t

2 , α + π + t
2 ]) = f(A, t).

Therefore f is continuous.

In the following claim, we resume the properties that we will use of f .
Claim 4. For every (A, t) ∈ P × (0, 1), f(A, t) ∈ P , σ(f(A, t)) = t and

f(f(A, t), σ(A)) = A.
We prove Claim 4. In the case that A /∈ C(S1), these properties follow from

properties (k), (l) and (m) in Claim 1, and the corresponding properties when
β ≤ α.

In the case that A ∈ C(S1), let I = S1 \ A and p = e(α) be the middle
point of I. Then f(A, t) = e([α + π − t

2 , α + π + t
2 ]). Thus σ(f(A, t)) = t and

f(A, t) ∈ P . Note that the middle point of S1 \ f(A, t) is e(α) and the middle
point of A is e(α+π). Then f(f(A, t), σ(A)) = e([α+π− σ(A)

2 , α+π+ σ(A)
2 ]) = A.

This ends the proof of Claim 4.

Consider the suspension of A defined as the space obtained from A× [0, 2π]
by identifying the set A × {2π} to a one-point set and A × {0} to another
one-point set. We denote this suspension by B. Let ψ : A × [0, 2π] → B and
ϕ : C2(S1) → C2(S1)/F2(S1) be the quotient mappings, and denote by q0 the
point in C2(S1)/F2(S1) such that q0 = ϕ({p, q}) for every p, q ∈ X.

Define g : A× [0, 2π] → C2(S1)/F2(S1) by

g(A, t) =






ϕ(S1), if t = 2π,

q0, if t = 0,

ϕ(f(A, t)), if t ∈ (0, 2π).

Claim 5. C2(S1)/F2(S1) is homeomorphic to B.
First we prove that g is continuous. Take (A, t) ∈ A× [0, 2π]. If t ∈ (0, 2π),

clearly, g is continuous at (A, t).
Now suppose that t = 0. Take an open subset U of C2(S1)/F2(S1) such that

q0 ∈ U . Then F2(S1) is contained in the open subset ϕ−1(U) of C2(S1). Thus,
there exists δ > 0 such that if B ∈ C2(S1) and σ(B) < δ, then B ∈ ϕ−1(U).
Given u < δ and B ∈ A, by (l), σ(f(B, u)) = u < δ, then ϕ(f(B, u)) ∈ U . Hence
the open subset A × [0, δ) of A × [0, 2π] is a neighborhood of (A, 0) contained
in g−1(U). Therefore g is continuous at (A, 0).

The continuity of g in the case that t = 2π can be proved in a similar
way. Observe that g preserves the fibers of ψ. We check that ψ preserves the
fibers of g. Take (A, t), (B, u) ∈ A × [0, 2π] such that g(A, t) = g(B, u). If
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t ∈ (0, 2π), g(A, t) = ϕ(f(A, t)). By Claim 4, σ(f(A, t)) = t, so f(A, t) /∈
F2(S1) ∪ {S1}, g(B, u) = g(A, t) = ϕ(f(A, t)) /∈ {ϕ(S1)} ∪ {q0}, so u ∈ (0, 2π).
Since ϕ(f(A, t)) = ϕ(f(B, u)), we have that f(A, t) = f(B, u). By Claim
4, t = σ(f(A, t)) = σ(f(B, u)) = u. Since A,B ∈ A, σ(A) = π = σ(B).
Applying Claim 4, we obtain that A = f(f(A, t), π) = f(f(B, u), π) = B.
Hence (A, t) = (B, u). Similarly, if u ∈ (0, 2π), we obtain that (A, t) = (B, u).
In the case that t = 0, g(B, u) = q0, so u = 0, and ψ(A, t) = ψ(B, u). Similarly,
if t = 2π, then ψ(A, 2π) = ψ(B, 2π). Thus ψ preserves the fibers of g.

Now, we prove that g is onto. Take E ∈ C2(S1) such that E /∈ F1(S1)∪{S1}.
Set D = f(E, π). By Claim 4, σ(D) = π, so D ∈ A. Moreover, Claim 4
also implies that f(D,σ(E)) = f(f(E, π), σ(E)) = E. Then g(D,σ(E)) =
ϕ(f(D,σ(E))) = ϕ(E). Therefore g is onto.

The Transgression Theorem [3, Theorem 3.2, Ch. VI] implies that B is
homeomorphic to C2(S1)/F2(S1). This finishes the proof of Claim 5.

Theorem 4 C2(S1)/F2(S1) is homeomorphic to the suspension of the solid
torus.

Corollary 5 hd(C2(S1)/F2(S1)) = 3.

3 Homogeneity degree of C2(S
1)/F1(S

1)

Throughout this section, let Z = C2(S1)/F1(S1) and let ϕ : C2(S1) → Z be the
quotient mapping. Let Z0 ∈ Z be such that {Z0} = ϕ(F1(S1)) and Z1 = ϕ(S1).
Note that the mapping

ϕ0 = ϕ|C2(S1)\F1(S1) : C2(S1) \ F1(S1) → Z \ {Z0}

is a homeomorphism.
For each Z ∈ Z , let

o(Z) = {A ∈ Z : there is a homeomorphism h : Z → Z such that h(Z) = A}.

Then hd(Z) is the cardinality of the pairwise distinct sets of the form o(Z)
with Z ∈ Z .

Lemma 6 Let X be a continuum such that C(X) is contractible. Then C2(X)\
F1(X) is contractible.

Proof. By [13, Lemma 16.5], there exists a homotopy D : 2X × [0, 1] → 2X

such that:
(a) D(A, 0) = A for each A ∈ 2X ,
(b) D(A, 1) = X for each A ∈ 2X , and
(c) if A ∈ 2X and 0 ≤ s ≤ t ≤ 1, then D(A, s) ⊂ D(A, t).
By [2, Lemma 2.1], property (c) implies that D(C2(X) × [0, 1]) ⊂ C2(X),

and if A /∈ F1(X), then for every t ∈ [0, 1], D(A, t) /∈ F1(X). This implies
that D((C2(X) \ F1(X)) × [0, 1]) = C2(X) \ F1(X). Therefore C2(X) \ F1(X)
is contractible.

Since ϕ0 is a homeomorphism, Lemma 6 implies the following.
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Lemma 7 Z \ {Z0} is contractible.

Lemma 8 F2(S1) is a retract of C2(S1) \ {S1}

Proof. Define r : C2(S1) \ {S1} → F2(S1) in the following way.
In the case that A is connected, set I = S1 \ A. Let p = e(α) (α ∈ R) be

the middle point of I and r the length of I. Then A = e([α + r
2 , α + 2π − r

2 ]).
Define

g(A) = e({α + π
2 + r

4 , α + 3π
2 − r

4}).

In the case that A is not connected, the complement of A in S1 consists of
two open subarcs I and J . Let p and q be the respective middle points of I and
J , and let r and s be the respective lengths of I and J , we choose I and J in
such a way that s ≤ r. Let α and β be real numbers such that |α − β| ≤ π,
p = e(α) and q = e(β).

In the case that α ≤ β, define a = αr+(β−π)s
r+s and g(A) by:

g(A) = e({a + π
2 + r

4 − s
4 , a + 3π

2 + s
4 − r

4}).

In the case that β ≤ α, define a = (α−π)r+βs
r+s and g(A) by:

g(A) = e({a + π
2 + s

4 − r
4 , a + 3π

2 + r
4 − s

4}).

Claim 1. g is well defined.
First we see that the definition of g(A) does not change if we add the same

integer multiple of 2π to both α and β. In order to do this it is enough to see
that g(A) does not change when we take α + 2π and β + 2π instead of α and β,
respectively. In the case that α ≤ β, the definition of the number a for α + 2π

and β + 2π is equal to (α+2π)r+(β+2π−π)s
r+s = αr+(β−π)s

r+s + 2π. Since a is the only
term in the definition of g(A) that changes when we consider α+2π and β +2π
instead of α and β, respectively, we conclude that, if α ≤ β, then g(A) does
not change by adding 2π to both α and β. The case β ≤ α can be treated in a
similar way.

In the case that r = s, it is possible to interchange the choice of I and
J . Observe that in both cases a = α+β−π

2 , so α and β play symmetric roles.
Moreover, in both cases, g(A) = e({a + π

2 , a + 3π
2 }). This shows that, when

r = s, the definition of g does not depend on the choice of the open subarcs I
and J .

Now, we see that the definition of g(A) does not change in the case that
it is possible to take numbers α1 ≤ β1 and β2 ≤ α2, for the same A. So
suppose that there exist α1, α2, β1 and β2 such that p = e(α1) = e(α2),
q = e(β1) = e(β2), |α1 − β1| ≤ π, |α2 − β2| ≤ π, α1 ≤ β1, β2 ≤ α2 and either
α1 6= α2 or β1 6= β2. Since the definition of g(A) does not change by adding
the same integer multiple of 2π to both α and β, we may assume that α1 = α2.
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Then β2 ∈ [α1 − π, α1), β1 ∈ (α1, α1 + π] and β1, β2 ∈ [α1 − π, α1 + π]. Since
e(β1) = e(β2), we have that β2 = α1 − π and β1 = α1 + π.

If we use α1 and β1, we obtain a1 = α1r+(β1−π)s
r+s = α1r+α1s

r+s = α1, and if we

use α2 and β2, we obtain a2 = (α2−π)r+β2s
r+s = α1 − π. So, if we use α1 and β1,

we obtain:

g(A) = e({α1 + π
2 + r

4 − s
4 , α1 + 3π

2 + s
4 − r

4}).

On the other hand, if we use α2 and β2, we obtain:

g(A) = e({α1 − π + π
2 + s

4 − r
4 , α1 − π + 3π

2 + r
4 − s

4}) =

e({α1 + π + π
2 + s

4 − r
4 , α1 + π

2 + r
4 − s

4}).

Thus both ways of defining g(A) coincide.

Claim 2. g is continuous.
Clearly, g is continuous at the elements A ∈ C2(S1)\C(S1), and g restricted

to C(S1) is also continuous. In order to complete the proof of the continuity
of g, take a sequence {An}∞n=1 in C2(S1) \ C(S1) such that limn→An = A for
some A ∈ C(S1).

Set I = S1 \A. Let p = e(α) be the middle point of I and r the length of I.
Then A = e([α + r

2 , α + 2π − r
2 ]). For each n ∈ N, let In, Jn, pn = e(αn), qn =

e(βn), rn and sn be as in the definition of g(An). Since limn→∞An = A, we may
assume that limn→∞ clS1(In) = clS1(I). Then limn→∞pn = p and limn→∞rn =
r. We may assume that limn→∞αn = α and for each n ∈ N, αn ≤ βn. So
βn ∈ [αn, αn + π] and the sequence {βn}

∞
n=1 is bounded. Since A is connected,

we have that limn→∞sn = 0. For each n ∈ N, let an = αnrn+(βn−π)sn

rn+sn

Then limn→∞an = αnrn+(βn−π)sn

rn+sn
= α, and

limn→∞g(An) =
limn→∞e({an+π

2 + rn

4 − sn

4 , an+ 3π
2 + sn

4 − rn

4 }) = e({α+π
2 + r

4 , α+ 3π
2 − r

4}) = g(A)

Therefore g is continuous.

Claim 3. For each A ∈ F2(S1), g(A) = A.
First we prove Claim 3. In the case that A = {w} for some w ∈ S1, set

I = S1 \ A, let p = e(α) (α ∈ R) be the middle point of I and r the length of
I. Then r = 2π and p = −w. Then

g(A) = e({α + π
2 + r

4 , α + 3π
2 − r

4}) = e({α + π}) = {w} = A.

Now suppose that A = {w, z}, for some z 6= w. Let I, J , r, s, p, q, α and
β be as in the definition of g. We consider the case that α ≤ β, the other case
is similar. Observe that r + s = 2π, p = −q, β = α + π, e(α + r

2 ) = e(β − s
2 )

and e(β + s
2 ) = e(2π + α − r

2 ). We may assume that e(α + r
2 ) = w and

e(2π + α − r
2 ) = z. Since β = α + π, we have that a = α. Observe that

π + r
2 − s

2 = r, and 3π + s
2 − r

2 = 4π − r. Then

18



g(A) = e({a+ π
2 + r

4 −
s
4 , a+ 3π

2 + s
4 −

r
4}) = e({α+ r

2 , α+2π− r
2}) = {w, z} = A.

This finishes the proof of Claim 3 and the proof of the lemma.

Let P = C2(S1) \ {S1}, Q = Z \ {ϕ(S1)} = Z \ {Z1} , R = ϕ(F2(S1)) and

ψ = ϕ|P : P → Q.

Lemma 9 R is a retract of Q.

Proof. Since ϕ is an identification, P is open in C2(S1) and ϕ−1(ϕ(P)) = P ,
we have that ψ is an identification.

Observe that Theorem 4.3 of [3, Ch. VI] can be applied to obtain a mapping
g∗ that makes commutative the following diagram.

P
g
→

F2(S1)

ψ ↓ ↓ ψ

Q
g∗
→

R.

Given A ∈ R, there exists B ∈ F2(S1) such that A = ψ(B) = ψ(g(B)).
Then g∗(A) = g∗(ψ(B)) = ψ(g(B)) = ψ(B) = A. Thus, for each A ∈ R,
g∗(A) = A. This proves that g∗ is a retraction.

Lemma 10 Q is not contractible and then o(Z0) 6= o(Z1).

Proof. Suppose to the contrary that Q is contractible, since R is a retract of Q,
R is contractible. It is known [10, p. 53 and 54] that F2(S1) is a Möbius strip
having F1(S1) as its manifold boundary. Since ϕ|F2(S1) : F2(S1) → ϕ(F2(S1))
is an identification (it is a closed function), the Transgression Theorem [3,
Theorem 3.2, Ch. VI] implies that R = ϕ(F2(S1)) is homeomorphic to the
quotient space F2(S1)/F1(S1). Since F2(S1)/F1(S1) is homeomorphic to the
2-dimensional real projective space RP2, this implies that RP2 is contractible.
This is a contradiction since the fundamental group of RP2 is Z2. Therefore Q
is not contractible. Thus, Lemma 7 implies that o(Z0) 6= o(Z1).

Lemma 11 Z0 does not have a 4-cell neighborhood in Z.

Proof. Suppose to the contrary that there exists a 4-cell neighborhood M of
Z0 in Z. Take a homeomorphism f : F1(S1) → S1. Since S1 is an ANR, there
exist an open subset U of C2(S1), containing F1(S1) and a mapping F : U → S1

that extends f . We may assume that S1 /∈ U . Since ϕ−1(ϕ(U)) = U , ϕ(U) is
open in Z. Then there exists a 4-cell neighborhood K of Z0 in Z such that K ⊂
M ∩ ϕ(U). Let W = ϕ−1(K) ⊂ U . Then F1(S1) ⊂ IntC2(S1)(W). Thus there
exists δ > 0 such that δ < π

4 and for each t ∈ [0, 2π], F2(e([t, t + δ])) ⊂ W ⊂ U .
Set S0 = {{e(t), e(t + δ)} : t ∈ [0, 2π]}. Observe that S0 is a simple closed curve
contained in W . Let L : S1× [0, 1] → W be defined by L(z, s) = {e(t), e(t+δs)}
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(where z = e(t) and t ∈ [0, 2π]). Then L is a homotopy between the mappings
L0 and L1 given by L0(z) = {z} and L1(z) = {e(t), e(t + δ)}. Since f ◦ L0 is
a homeomorphism, F ◦ L0 = f ◦ L0 is not homotopic to a constant mapping.
Therefore F ◦ L1 is not homotopic to a constant mapping.

By [4, Théorème 1] does not exist a mapping σ : S1 → R such that e ◦ σ =
F ◦ L1.

On the other hand, since ϕ0 : C2(S1) \ F1(S1) → Z \ {Z0} is a homeomor-
phism and ϕ(W) = K, we obtain that W\F1(S1) is homeomorphic to K\{Z0}.
Since K is a 4-cell, K \ {Z0} is unicoherent. Hence W \F1(S1) is also unicoher-
ent. By [4, Théorème 3], there exists a mapping Σ : W \ F1(S1) → R such that
F |W\F1(S1) = e ◦Σ. Since S0 ⊂ W \F1(S1), we obtain that F ◦L1 = e ◦Σ ◦L1.
Making σ = Σ ◦ L1, we obtain a contradiction with the previous paragraph.
This finishes the proof of the lemma.

Set

A1 = {A ∈ Z : A has a 4-cell neighborhood M in Z such that A is in the
manifold boundary of M}, and

A2 = {A ∈ Z : A has a 4-cell neighborhood M in Z such that A is in the
manifold interior of M}.

Lemma 12 Z = {Z0, Z1}∪A1∪A2 and the sets {Z0} and {Z1} are equivalence
classes of ∼= in Z.

Proof. By [15, Lemma 3.17], each A ∈ C2(S1)\{S1} has a 4-cell neighborhood
in C2(S1) and the element Z1 = ϕ(S1) does not have a 4-cell neighborhood in Z.
Hence Z1 /∈ A1 ∪A2. Recall that we are denoting the cone over the solid torus
by C1 and its vertex by v. Since every point in C1\{v} has a 4-cell neighborhood
in C1, we conclude that each homeomorphism from C2(S1) onto C1 sends S1 to
v. Since F1(S1) is closed in C2(S1), each element A ∈ C2(S1) \ (S1 ∪ F1(S1))
has a 4-cell neighborhood in P . Since C2(S1)\({S1∪F1(S1)}) is homeomorphic
to Z \ {Z0, Z1}, each element in Z \ {Z0, Z1} belongs to A1 ∪ A2. Therefore,
Z = {Z0, Z1} ∪ A1 ∪ A2.

By Lemma 11, Z0 /∈ A1 ∪A2. Thus Lemma 10 implies that each of the sets
{Z0} and {Z1} is an equivalence class of ∼=.

Lemma 13 A1 and A2 are equivalence classes of ∼= in Z.

Proof. Clearly, A1 ∩ A2 = ∅. Take two elements A1, B1 ∈ A1, we are going
to show that A1

∼= B1. Since A1, B1 /∈ {Z0, Z1}, there exist unique elements
A,B ∈ P such that ϕ(A) = A1 and ϕ(B) = B1. Since ϕ|P : P → Q is
a homeomorphism each of the sets A and B has a 4-cell neighborhood in P
containing it in its manifold boundary.

Since C2(S1)\{S1} is homeomorphic to C1 \{v}, we have that C2(S1)\{S1}
is homeomorphic to T × [0, 1) (T is the solid torus). Since T is a 3-dimensional
manifold with boundary, we obtain that T × [0, 1) and C2(S1) \ {S1} are 4-
dimensional manifolds with boundary. Let F be the manifold boundary of
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C2(S1) \ {S1}. Observe that F is homeomorphic to (T × {0}) ∪ ((S1 × S1) ×
[0, 1)) ⊂ T × [0, 1). Thus F is a connected 3-dimensional manifold (in fact, it is
possible to show that F is homeomorphic to D0×S1, where D0 is the open disc in
the plane given by D0 = {(x, y) ∈ R2 : x2+y2 < 1}). Since A,B ∈ C2(S1)\{S1},
we conclude that A,B ∈ F . Since F1(S1) is homeomorphic to S1, from Corollary
to Theorem IV.4 of [7], it is possible to prove that F \ F1(S1) is connected.

Set G = (T × {0}) ∪ ((S1 × S1) × [0, 1)). Given a point p ∈ G and an
open neighborhood U of p in G, observe that there exist a 4-cell Mp ⊂ T ×
[0, 1) and a homeomorphism ϕp : [0, 1]4 → Mp such that p = ϕp((

1
2 , 1

2 , 1
2 , 0)),

ϕp([0, 1]3 × {0}) = Mp ∩ G ⊂ U , FrT ×[0,1)(Mp) = ϕp((manifold boundary of
[0, 1]4) \ ((0, 1)3 × {0}))) and ϕp((0, 1)3 × {0}) is open in G. Thus, for each
element D ∈ F (respectively, F \ F1(S1)) and each open neighborhood U of
D in F (respectively, F \ F1(S1)), there exist a 4-cell MD ⊂ C2(S1) \ {S1}
(respectively, MD ⊂ P) and a homeomorphism ϕD : [0, 1]4 → MD such that
D = ϕD(( 1

2 , 1
2 , 1

2 , 0)), ϕD([0, 1]3 ×{0}) = MD ∩F ⊂ U (respectively, MD ∩F \
F1(S1) ⊂ U), FrP (MD) = ϕD((manifold boundary of [0, 1]4) \ ((0, 1)3 × {0})))
and ϕD((0, 1)3 × {0}) is open in F (respectively, in F \ F1(S1)).

Since V = F \F1(S1) is connected, it is possible to find m ∈ N and elements
D1, . . . , Dm ∈ F \F1(S1) such that for the 4-cells MD1 , . . . ,MDm

⊂ P and the
homeomorphisms ϕ1, . . . , ϕm, described in the previous paragraph, we have the
following properties: A = D1, B = Dm, and for each i ∈ {1, . . . ,m − 1}, there
exists an element Ei ∈ ϕDi

((0, 1)3 × {0}) ∩ ϕDi+1
((0, 1)3 × {0}).

Since A,E1 ∈ ϕD1
((0, 1)3 × {0}), it is easy to see that there is a home-

omorphism g : ϕD1
([0, 1]4) → ϕD1

([0, 1]4) such that g(A) = E1 and for ev-
ery D ∈ ϕD1

((manifold boundary of [0, 1]4) \ ((0, 1)3 × {0}))) = FrP(MD1),
g(D) = D. Since ψ(A) = A1 and ϕD1

([0, 1]4) = MD1 , the homeomorphism
σ = ψ◦g◦((ψ|Q)−1)|ψ(MD1 ) : ψ(MD1) → ψ(MD1), satisfies σ(A1) = ψ(E1) and
for every D ∈ ψ(FrP(MD1)) = FrQ(ψ(MD1)) = FrZ(ψ(MD1)), σ(D) = D.
Thus defining G : Z → Z by:

G(D) =

{
σ(D), D ∈ ψ(MD1),

D, D ∈ Z \ ψ(MD1),

is a homeomorphism such that G(A1) = ψ(E1).
We have shown that A1

∼= E1. Proceeding as in the previous paragraph,
using ϕD2

, . . . ϕDm
instead of ϕD1

, we obtain that E1
∼= E2

∼= ∙ ∙ ∙ ∼= Em
∼= B1.

Thus A1
∼= B1.

This completes the proof that A1 is an equivalence class of ∼= in Z.
In a similar way, it is possible to prove that A2 is an equivalence class of ∼=

in Z.
Combining Lemmas 12 and 13, we obtain the following.

Theorem 14 hd(C2(S1)/F1(S1))) = 4.
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plan, Fund. Math. 26 (1936), 61-112.

[5] R. Hernández-Gutiérrez and V. Mart́ınez-de-la-Vega, Homogeneity degree
of some symmetric products, Topology Appl. 230 (2017), 276-283.

[6] R. Hernández-Gutiérrez and V. Mart́ınez-de-la-Vega, Homogeneity degree
of hyperspaces of arcs and simple closed curves, Accepted in Rocky Moun-
tain J. Math.

[7] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University
Press, ninth printing, 1974.

[8] A. Illanes Finite graphs have unique hyperspace Cn(X), Topology Appl. 27
(2003), 179-188.

[9] A. Illanes A model for the hyperspace C2(S1), Quest. Answ. Gen. Topol.
22 (2004), 117-130.

[10] A. Illanes Models of hyperspaces, Topology Proc. 41 (2013), 39-64.

[11] A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and recent
advances, Monographs and Textbooks in Pure and Applied Math. Vol.
216, Marcel Dekker, Inc. New York and Basel, 1999.
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