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Abstract. The minimal excludant of an integer partition, first studied prominently by An-

drews and Newman from a combinatorial viewpoint, is the smallest positive integer missing

from a partition. Several generalizations of this concept are being explored by mathemati-

cians nowadays. We analogously consider the second minimal excludant of a partition and

analyze its relationship with the minimal excludant. This leads us to the notion of a mex

sequence and we derive two neat identities involving the number of partitions whose mex

sequence has length at least r.

1. Introduction

The notion of the minimal excludant of a set S of positive integers, namely, the smallest

positive integer missing from that set, was introduced by Fraenkel and Peled [11]. They

denoted this number by “mex(S)”. In the recent past, Andrews and Newman [2] examined

this idea in the context of integer partitions. They defined [2, Equation (1.1)] the minimal

excludant of an integer partition to be the least positive integer missing from the partition,

and denoted it by mex(π) for a partition π. For a positive integer n, define

σmex(n) :=
∑

π∈P(n)

mex(π),

where P(n) represents the collection of integer partitions of n. By deriving the generating

function of σmex(n), Andrews and Newman [2, Theorem 1.1] proved the following intriguing

identity:

σmex(n) = D2(n), (1.1)

where D2(n) is the number of distinct parts partitions of n into two colors. This was earlier

also proved by Grabner and Knopfmacher [13], where they undertook an analytic study of

the minimal excludant under a different name, viz., the least gap in a partition. A bijective

proof of (1.1) was attained by Ballantine and Merca [4]. Andrews and Newman [2], also

defined another function:

a(n) =
∑

π∈P(n)
mex(π) odd
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i.e., a(n) enumerates the number of partitions of n with an odd minimal excludant. They

observed that σmex(n) and a(n) have the same parity and proved that a(n) is “usually” even

by showing that it is odd exactly when n is of the form j(3j ± 1).

Analogues of the minimal excludant have begun to appear in the literature. For example,

Andrews and Newman [2] also studied moex(π), the smallest odd integer missing from a

partition. In a subsequent paper [3], they introduced the function pA,a(n), which counts the

number of partitions π of n satisfying mexA,a(π) ≡ a (mod 2A), where mexA,a(π) denotes

the smallest positive integer congruent to a modulo A that is not a part of π. Note that

p1,1(n) simply equals a(n) and mex2,1(π) is nothing but moex(π). Two of their significant

results are partition identities relating instances of pA,a(n) to the partition statistics rank and

crank. We have that p1,1(n) equals the number of partitions of n with non-negative crank,

and p3,3(n) equals the number of partitions of n with rank ≥ −1. Sellers and da Silva [14]

gave complete parity characterizations of p1,1(n) and p3,3(n), along with some congruences

modulo 2 for other partition functions of this type.

Chern [10] studied the complementary problem for the largest integer less than the largest

part that goes missing in a partition, calling it the maximal excludant (denoted by maex(π) for

a partition π) and investigated the corresponding function σmaex(n) :=
∑

π∈P(n)maex(π).

In particular, he derived the generating function of σmaex(n) and showed the asymptotic

relation σmaex(n) ∼ σL(n), as n → ∞, where σL(n) stands for the sum of largest parts in

all partitions of n. In [8] the first and the third authors, along with Bhoria and Maji, looked

at restricted versions of σmex type functions. Instead of taking the sum over the set of all

partitions of n, they only considered those in D(n), the set of distinct parts partitions of n.

More precisely, they defined σdmex(n) :=
∑

π∈D(n)mex(π) and allied functions. They showed

that this function is related to Ramanujan’s function σ(q) =
∞∑
n=0

qn(n+1)/2

(−q; q)n
via its generating

function:
∞∑
n=0

σdmex(n)qn = (−q; q)∞σ(q).

Here, and in the sequel, the ‘q’- products are as defined below. For complex numbers a and

q, we have

(a; q)n :=
n−1∏
j=0

(1− aqj), for n ≥ 1, and (a; q)0 := 1,

(a; q)∞ :=
∞∏
j=0

(1− aqj), for |q| < 1.

A natural continuation to the study of minimal excludants is the second minimal excludant

which we define as follows:

Definition 1 (Second minimal excludant). The second smallest integer missing from an

integer partition π is known as the second minimal excludant, denoted by mex2(π).
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For instance, mex2(1+1) = 3, mex2(9+7+7+5+5+5+3+3+2) = 4. We analogously

define the σ2mex(n) function as

σ2mex(n) :=
∑

π∈P(n)

mex2(π). (1.2)

We derive the generating function for σ2mex(n) and study partitions with a fixed difference

between the minimal excludant and the second minimal excludant. For this, we define ∆t(n),

the number of partitions π of n with mex2(π)−mex(π) = t. We derive its generating function

and as special cases, obtain interesting identities connecting ∆t(n) to σmex(n) and certain

restricted partition functions.

Starting with the observation that ∆1(n) enumerates the partitions of n in which the min-

imal excludant and the second minimal excludant are consecutive integers, we are naturally

led to examine the longest sequence of missing integers in a partition, starting from the

minimal excludant.

Definition 2 (Mex sequence). The mex sequence of a partition is the longest sequence of

consecutive missing integers in the partition, starting from its minimal excludant.

For example, the mex sequences of some partitions of 6 are tabulated below:

Partition Minimal excludant Mex sequence Length of mex sequence

6 1 (1, 2, 3, 4, 5) 5

5 + 1 2 (2, 3, 4) 3

4 + 2 1 (1) 1

4 + 1 + 1 2 (2, 3) 2

3 + 3 1 (1, 2) 2

3 + 1 + 1 + 1 2 (2) 1

2 + 2 + 2 1 (1) 1

A remark is in place here. The mex sequence of a partition can be infinitely long. For

instance, the partitions of 6 not alluded to in the table above, namely, 3 + 2+ 1, 2+ 2+ 1+

1, 2 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 all have such mex sequences.

Definition 3 (The function pmex
r (n)). The function pmex

r (n) enumerates the number of par-

titions of n whose corresponding mex sequences have length at least r.

The generating function for pmex
r (n) and its consequences form an important component

of the present work. Interestingly, depending on the parity of r, this gives us two elegant

partition identities for pmex
r (n). We now state our main results in the next section.

2. Main Results

Let σ2mex(n) be the function defined in (1.2). For instance, σ2mex(4) = 2+4+3+4+3 =

16, the listed summands being the respective second minimal excludants of the partitions

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1+ 1, of the integer 4. We then have the following result:
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Theorem 2.1. The generating function of σ2mex(n) is given by

∞∑
n=0

σ2mex(n)qn =
1

(q; q)∞

{
1

(1− q)
−

∞∑
s=0

(s− 1)q(
s+1
2 )

}
. (2.1)

As outlined in Section 1, for a positive integer t we define:

∆t(n) = number of partitions π of n satisfying mex2(π)−mex(π) = t. (2.2)

Example 1. See that ∆1(5) = 5, as the relevant partitions of 5 are 5, 4 + 1, 2 + 2 + 1, 2 +

1 + 1 + 1, 1 + 1 + 1 + 1 + 1, whereas ∆2(5) = 1, by taking into consideration the partition

3 + 1 + 1.

Let ψ(q) be one of Ramanujan’s theta functions defined by

ψ(q) =
∞∑
n=0

q(
n+1
2 ). (2.3)

The generating function for ∆t(n) has a nice representation in terms of a “tail” of ψ(q).

Theorem 2.2. Let t be a positive integer. Then the following is the generating function for

∆t(n):
∞∑
n=0

∆t(n)q
n =

qt−1

(q2; q)∞

∞∑
r=0

q(
r+t
2 ). (2.4)

Corollary 2.3. For t = 1, 2, (2.4) gives us the partition identities listed below.

∆1(n) = σmex(n)− σmex(n− 1), (2.5)

∆2(n) = σmex(n− 1)− σmex(n− 2)− p(n|exactly one 1). (2.6)

Here, p(n|condition) means the number of partitions of n satisfying the condition appearing

after the | symbol. For instance, p(n|exactly one r) counts the number of partitions of n in

which the integer r appears exactly once. We discuss the main results pertaining to mex

sequences in the upcoming subsection.

2.1. Mex sequences. We let Mr(n) denote the set of partitions of n whose mex sequence

has length at least r. We also put

|Mr(n)| := pmex
r (n),

agreeing with the definition of pmex
r (n) as stated in Definition 3.

Firstly, observe that pmex
1 (n) is simply the partition function p(n), since the mex sequence

of every partition has length at least 1. From the definition of ∆1(n) in (2.2), one can also

deduce that pmex
2 (n) = ∆1(n). In fact, this observation was the motivation for defining the

mex sequence in Section 1. (see the paragraph just before Definition 2)
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Example 2. Consider the set M3(6), which consists of the partitions 6, 5+1, 3+2+1, 2+

2+1+1, 2+1+1+1+1, 1+1+1+1+1+1, and so pmex
3 (6) = 6. Similarly, the partitions

belonging to the set M4(6) are 6, 3+2+1, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1,

which gives us pmex
4 (6) = 5. Note that M4(6) ⊂ M3(6) and hence, pmex

4 (6) ≤ pmex
3 (6).

In fact, from the definition of the sets Mr(n), it follows that Mr+1(n) ⊂ Mr(n), and

consequently

pmex
r+1(n) ≤ pmex

r (n) ∀ r ≥ 1. (2.7)

At the other end of the spectrum, it is interesting to see what happens for “large” values of

r. The next result speaks to this:

Proposition 2.4. Let r, n be positive integers and suppose q(n) denotes the number of distinct

parts partitions of n. Then

pmex
r (n) = q(n) ⇐⇒ r ≥ n.

We now turn to the generating function for pmex
r (n), and see that it has a succinct repre-

sentation in terms of q-products.

Theorem 2.5. If r is a positive integer, then the generating function of pmex
r (n) is given by

∞∑
n=0

pmex
r (n)qn =

1

(q; q2)∞(qr+1; q2)∞
. (2.8)

Indeed, with r = 1 this gives the generating function for pmex
1 (n) to be 1/(q; q)∞, the

generating function for p(n), as it should be. Also, as r → ∞ the right hand side of (2.8)

tends to 1/(q; q2)∞ = (−q; q)∞, the generating function of distinct parts partitions, which is

in agreement with Proposition 2.4. Interpreting Theorem 2.5 combinatorially leads to two

identities, based on the parity of r.

Corollary 2.6. Define p>r
e (n) to be the number of partitions of n in which no even integer

less than r is allowed to be a part and p>r
o,2(n) is the number of partitions of n into odd parts

where parts greater than r come in two colors. Then,

• For odd integers r, we have pmex
r (n) = p>r

e (n) and

• For even integers r, we have pmex
r (n) = p>r

o,2(n).

Example 3. We have pmex
2 (5) = 5, because the relevant partitions are 5, 4+1, 2+2+1, 2+

1 + 1 + 1, 1 + 1 + 1 + 1 + 1. The partitions of 5 into odd parts where parts greater than 2

come in two colors, say r and b, are 5r, 5b, 3r + 1 + 1, 3b + 1 + 1, 1 + 1 + 1 + 1 + 1, also

five in number. Next, 5, 2 + 2+ 1, 2 + 1+ 1+ 1, 1 + 1+ 1+ 1+ 1 are the four partitions of

5 with mex sequence of length at least 3. We also see that there are four partitions of 5 with

no ‘2’s, namely, 5, 4 + 1, 3 + 1 + 1, 1 + 1 + 1 + 1 + 1.
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Remark 1. Observe that we can also calculate the number of partitions of n whose mex

sequence has length r. Such partitions are precisely the members of the set Mr(n)\Mr+1(n)

and thus total pmex
r (n) − pmex

r+1(n) in number. From the example above, we see that there is

pmex
2 (5)− pmex

3 (5) = 1 partition of 5 with mex sequence of length two, namely, 4 + 1.

Finally, as a consequence of Theorem 2.5 for r = 2, we obtain a q-product representation

for ψ(q), which is usually derived using Jacobi’s triple product identity [7, Equation (1.3.14),

p. 11].

Corollary 2.7. Let ψ(q) be the theta function of Ramanujan defined in (2.3). Then,

ψ(q) =
(q2; q2)∞
(q; q2)∞

.

We now collect some auxiliary results in the upcoming section.

3. Preliminaries

We shall require the following result which is due to Andrews and Newman [2, Theorem

1.1].

Theorem 3.1. We have the ensuing identity for the generating function of σmex(n):

∞∑
n=0

σmex(n)qn =
ψ(q)

(q; q)∞
, (3.1)

where ψ(q) is as defined in (2.3).

The famous q-binomial theorem is given by [1, Equation (2.2.1), p. 17]

∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

. (|z| < 1) (3.2)

A version of Heine’s transformation for q-hypergeometric series is given below [12, Equation

(III.1), p. 359]:

2ϕ1

[
a, b

c
; q, z

]
=

(b; q)∞(az; q)∞
(c; q)∞(z; q)∞

2ϕ1

[
c
b , z

az
; q, b

]
, (3.3)

where the q-hypergeometric series r+1ϕr is defined to be

r+1ϕr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
:=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar+1; q)n
(q; q)n(b1; q)n · · · (br; q)n

zn. (3.4)
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4. Proofs of the main results

Proof of Theorem 2.1. If Ar,s(n) denotes the number of partitions of n with minimal exclu-

dant r and second minimal excludant s, we can write

∞∑
n=0

Ar,s(n)q
n =

q1

1− q1
· · · qr−1

1− qr−1
· qr+1

1− qr+1
· · · qs−1

1− qs−1
· 1

1− qs+1
· 1

1− qs+2
· · · to ∞

=
q(

s
2)−r(1− qr)(1− qs)

(q; q)∞
. (4.1)

We introduce two parameters z and w and let the exponents of z and w keep track of the

minimal excludant and the second minimal excludant of a partition respectively. Note that

the second minimal excludant s of a partition is at least two and the minimal excludant then

ranges between 1 and s − 1. We thus have the three parameter generating function for the

number of partitons with a specified minimal excludant and second minimal excludant as

follows:

∞∑
n=0

∞∑
s=2

s−1∑
r=1

Ar,s(n)z
rwsqn =

∞∑
s=2

s−1∑
r=1

zrws
∞∑
n=0

Ar,s(n)q
n (4.2)

=
1

(q; q)∞

∞∑
s=2

s−1∑
r=1

zrwsq(
s
2)−r(1− qr)(1− qs), (4.3)

by (4.1).

If we put z = 1 in the left side of (4.2), we get

∞∑
n=0

∞∑
s=2

(
s−1∑
r=1

Ar,s(n)

)
wsqn =

∞∑
n=0

∞∑
s=2

pmex2(s, n)wsqn, (4.4)

where pmex2(s, n) is the number of partitions of n with second minimal excludant s. This is

because in
s−1∑
r=1

Ar,s(n), we are summing over all possible values of r for a given s. Now, put
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z = 1 in the right hand side of (4.3) obtaining

1

(q; q)∞

∞∑
s=2

s−1∑
r=1

q(
s
2)−r(1− qr)(1− qs)ws

=
1

(q; q)∞

∞∑
s=2

ws(1− qs)q(
s
2)

s−1∑
r=1

1− qr

qr

=
1

(q; q)∞

∞∑
s=2

ws(1− qs)q(
s
2){q−1 + q−2 + · · ·+ q−(s−1) − (s− 1)}

=
1

(q; q)∞

∞∑
s=2

ws(1− qs)q(
s
2)
{
1− qs−1 − qs−1(1− q)(s− 1)

qs−1(1− q)

}

=
1

(1− q)(q; q)∞

∞∑
s=2

ws(1− qs)q(
s−1
2 ){1 + (s− 1)qs − sqs−1}.

But by (4.4), this gives us

∞∑
n=0

∞∑
s=2

pmex2(s, n)wsqn =
1

(1− q)(q; q)∞

∞∑
s=2

ws(1− qs)q(
s−1
2 ){1 + (s− 1)qs − sqs−1}. (4.5)

Note that differentiating the left hand side of (4.5) with respect to w and putting w = 1, we

arrive at
∞∑
n=0

( ∞∑
s=2

spmex2(s, n)

)
qn =

∞∑
n=0

σmex2(n)q
n, (4.6)

since each partition of n contributes s, its second minimal excludant, to the sum
∑∞

s=2 sp
mex2(s, n).

Now differentiate the right hand side of (4.5) with respect to w and put w = 1 to get:

1

(1− q)(q; q)∞

∞∑
s=2

s(1− qs)q(
s−1
2 ){1 + (s− 1)qs − sqs−1}. (4.7)

From (4.5), (4.6) and (4.7), we obtain

∞∑
n=0

σmex2(n)q
n =

1

(1− q)(q; q)∞

∞∑
s=2

s(1− qs)q(
s−1
2 ){1 + (s− 1)qs − sqs−1}. (4.8)

We start by re-indexing the sum on the right hand side of (4.8) as shown:

∞∑
s=1

(s+ 1)(1− qs+1)q(
s
2){1 + sqs+1 − (s+ 1)qs}

=

∞∑
s=1

(s+ 1)(1− qs+1)q(
s
2){1 + sqs(q − 1)− qs}

=

∞∑
s=1

(s+ 1)(1− qs+1)q(
s
2) − (1− q)

∞∑
s=1

s(s+ 1)(1− qs+1)q(
s+1
2 ) −

∞∑
s=1

(s+ 1)(1− qs+1)q(
s+1
2 ).

(4.9)
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We shall consider the three terms in the right hand side above one by one. First, start with

∞∑
s=1

(s+ 1)(1− qs+1)q(
s
2) =

∞∑
s=1

(s+ 1)q(
s
2) − q

∞∑
s=1

(s+ 1)q(
s+1
2 )

= 2 +
∞∑
s=2

(s+ 1)q(
s
2) − q

∞∑
s=2

sq(
s
2)

= 2 +
∞∑
s=2

q(
s
2) + (1− q)

∞∑
s=2

sq(
s
2) =

∞∑
s=0

q(
s
2) + (1− q)

∞∑
s=2

sq(
s
2).

(4.10)

Next, look at the second term in (4.9):

(1− q)

∞∑
s=1

s(s+ 1)(1− qs+1)q(
s+1
2 ) = (1− q)

∞∑
s=1

s(s+ 1)
(
q(

s+1
2 ) − q(

s+2
2 )
)

= (1− q)

∞∑
s=1

s(s+ 1)q(
s+1
2 ) − (1− q)

∞∑
s=2

s(s− 1)q(
s+1
2 )

= 2q(1− q) + 2(1− q)

∞∑
s=2

sq(
s+1
2 )

= 2(1− q)

∞∑
s=1

sq(
s+1
2 ) = 2(1− q)

∞∑
s=2

(s− 1)q(
s
2). (4.11)

And the last term in (4.9) is

∞∑
s=1

(s+ 1)(1− qs+1)q(
s+1
2 ) =

∞∑
s=2

s(1− qs)q(
s
2)

=
∞∑
s=2

s
(
q(

s
2) − q(

s+1
2 )
)
=

∞∑
s=2

sq(
s
2) −

∞∑
s=3

(s− 1)q(
s
2)

= 2q +
∞∑
s=3

q(
s
2) = q +

∞∑
s=2

q(
s
2). (4.12)

Putting (4.10), (4.11), and (4.12) into (4.9), we obtain

∞∑
s=1

(s+ 1)(1− qs+1)q(
s
2){1 + sqs+1 − (s+ 1)qs}

=

∞∑
s=0

q(
s
2) + (1− q)

∞∑
s=2

sq(
s
2) − 2(1− q)

∞∑
s=2

(s− 1)q(
s
2) − q −

∞∑
s=2

q(
s
2)

= 2− q − (1− q)
∞∑
s=2

(s− 2)q(
s
2) = 2− q − (1− q)

∞∑
s=0

sq(
s+2
2 ). (4.13)
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Substituting (4.13) back into (4.8), we finally arrive at

∞∑
n=0

σmex2(n)q
n =

1

(1− q)(q; q)∞

{
2− q − (1− q)

∞∑
s=0

sq(
s+2
2 )

}

=
1

(1− q)(q; q)∞

{
1− (1− q)

∞∑
s=0

(s− 1)q(
s+1
2 )

}

=
1

(q; q)∞

{
1

(1− q)
−

∞∑
s=0

(s− 1)q(
s+1
2 )

}
,

which is precisely (2.1). □

Proof of Theorem 2.2. As we have seen in the proof of Theorem 2.1, the generating function

for the number of partitions with minimal excludant r and second minimal excludant s is

q(
s
2)−r(1− qr)(1− qs)

(q; q)∞
(for 1 ≤ r ≤ s− 1).

We are interested in the generating function of ∆t(n), the number of partitions π of n with

mex2(π)−mex(π) = t. Suppose that the minimal excludant equals r for some positive integer

r. Then the generating function for partitions with minimal excludant r and second minimal

excludant r + t is given by

q(
r+t
2 )−r(1− qr)(1− qr+t)

(q; q)∞
. (4.14)

For keeping track of all partitions with mex2(π) −mex(π) = t, we need to sum expressions

of the form in (4.14) as r runs over the positive integers. Therefore,

∞∑
n=0

∆t(n)q
n =

1

(q; q)∞

∞∑
r=1

q(
r+t
2 )−r(1− qr)(1− qr+t). (4.15)

Starting with the right side of (4.15), we have

∞∑
r=1

q(
r+t
2 )−r(1− qr)(1− qr+t) =

∞∑
r=0

q(
r+1+t

2 )−r−1(1− qr+1)(1− qr+1+t)

=

∞∑
r=0

q(
r+1+t

2 )−r−1 − qt
∞∑
r=0

q(
r+1+t

2 ) −
∞∑
r=0

q(
r+1+t

2 ) +

∞∑
r=0

q(
r+1+t

2 )+r+t+1

= qt−1
∞∑
r=0

q(
r+1+t

2 )−(r+t) − qt

(
−q(

t
2) +

∞∑
r=0

q(
r+t
2 )

)
−

∞∑
r=0

q(
r+1+t

2 ) +

∞∑
r=0

q(
r+2+t

2 )

= qt−1
∞∑
r=0

q(
r+t
2 ) + q(

t+1
2 ) − qt

∞∑
r=0

q(
r+t
2 ) − q(

t+1
2 )

= (qt−1 − qt)

∞∑
r=0

q(
r+t
2 ). (4.16)
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Hence, putting the information from (4.16) in (4.15), we finally get

∞∑
n=0

∆t(n)q
n =

qt−1

(q2; q)∞

∞∑
r=0

q(
r+t
2 ).

□

Proof of Corollary 2.3. Put t = 1 in Theorem 2.2 to see that
∞∑
n=0

∆1(n)q
n =

1

(q2; q)∞

∞∑
n=0

q(
n+1
2 ) =

ψ(q)

(q2; q)∞
, (4.17)

by (2.3). Using (3.1), we can write the rightmost expression in (4.17) in terms of the gener-

ating function of σmex(n), which gives us

∞∑
n=0

∆1(n)q
n = (1− q)

∞∑
n=0

σmex(n)qn =
∞∑
n=0

(σmex(n)− σmex(n− 1)) qn.

From this, we readily derive (2.5).

Now to prove (2.6), start by setting t = 2 in Theorem 2.2 to get

∞∑
n=0

∆2(n)q
n =

q

(q2; q)∞

∞∑
r=0

q(
r+2
2 )

=
q

(q2; q)∞
(ψ(q)− 1) = (q − q2)

ψ(q)

(q; q)∞
− q

(q2; q)∞
, (4.18)

where we again invoked (2.3) between the expressions in the first and second lines above.

Now, another application of (3.1) gives us

(q − q2)
ψ(q)

(q; q)∞
= (q − q2)

∞∑
n=0

σmex(n)qn =
∞∑
n=0

{σmex(n− 1)− σmex(n− 2)}qn. (4.19)

Also, observe that
q

(q2; q)∞
is the generating function for partitions with exactly one 1.

Combining this knowledge along with (4.19), then substituting in (4.18) and comparing the

coefficients of qn at the two extremes furnishes us the required identity:

∆2(n) + p(n|exactly one 1) = σmex(n− 1)− σmex(n− 2).

□

Proof of Proposition 2.4. We begin by taking a note of the structure of partitions π of n

with infinitely long mex sequences. This happens precisely when no integer greater than the

minimal excludant can occur as a part in π. Hence these partitions must be ‘gap-free’ with

smallest part 1, i.e., every part between 1 and the largest part must also occur as parts.

Denoting the set of such partitions of n by P∗(n), we hence see that P∗(n) ⊂ Mr(n) for all

positive integers r. Thus,

pmex
r (n) ≥ |P∗(n)|, ∀ r ≥ 1. (4.20)

Next, we claim that pmex
n (n) = |P∗(n)|. Suppose that µ ∈ Mn(n) and mex(µ) = r(≥ 1).

Then, r, r + 1, . . . , r + n− 1 do not occur in µ. But an integer m ≥ r + n also cannot occur
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in µ, a partition of n, because r + n ≥ n+ 1. Thus the parts in µ, possibly with repetitions,

are 1, 2, . . . , r − 1. (each of them occurs at least once since mex(µ) = r) This means that

µ ∈ P∗(n) and we conclude Mn(n) ⊂ P∗(n), which gives us pmex
n (n) = |P∗(n)|. As already

observed in (2.7) in Section 2, we know that for fixed n, pmex
r (n) is a non-increasing function

of r. Therefore, using this along with (4.20) gives us

|P∗(n)| ≤ pmex
r (n) ≤ pmex

n (n) = |P∗(n)|, ∀ r ≥ n.

So, for all r ≥ n, we have showed that pmex
r (n) = |P∗(n)|. We next show that if r < n,

then pmex
r (n) > |P∗(n)|. Assume that n > 1 as the proposition is readily seen to hold for

n = 1. Consider the partition µ0 = n of n, which has the mex sequence (1, 2, . . . , n − 1)

of length n − 1. Since r ≤ n − 1, we deduce that µ0 ∈ Mr(n). But note that as n > 1

we have that µ0 ̸∈ P∗(n), and consequently pmex
r (n) > |P∗(n)|. Thus, we have established

that pmex
r (n) = |P∗(n)| ⇐⇒ r ≥ n. The proof of the proposition follows because P∗(n) is

equinumerous with the set of distinct parts partitions of n, as can be seen by the bijection of

conjugation between the two sets. □

Proof of Theorem 2.5. Suppose the minimal excludant in a partition is k+1 with the inte-

gers k + 2, . . . , k + r also not occurring as parts. The integers k + r+ 1 and upwards may or

may not occur as parts. Also, note that k is a non-negative integer (as the minimal excludant

can be 1). Then we can begin to write the generating function for pmex
r (n) in the following

manner:
∞∑
n=0

pmex
r (n)qn =

∞∑
k=0

q1

1− q1
× · · · × qk

1− qk
× 1

1− qk+r+1
× . . . to ∞

=
∞∑
k=0

qk(k+1)/2

(q; q)k
· 1

(qk+r+1; q)∞

=

∞∑
k=0

qk(k+1)/2(qk+1; q)r
(q; q)∞

=
1

(q; q)∞

∞∑
k=0

(q; q)k+r

(q; q)k
qk(k+1)/2

=
1

(q; q)∞

∞∑
k=0

(q; q)r(q
r+1; q)k

(q; q)k
qk(k+1)/2

=
1

(qr+1; q)∞

∞∑
k=0

(qr+1; q)k
(q; q)k

qk(k−1)/2 · qk

=
1

(qr+1; q)∞
lim
A→0

∞∑
k=0

(−1/A; q)k(q
r+1; q)k

(q; q)k(0; q)k
(Aq)k. (4.21)

Note that the sum in (4.21) can be written as 2ϕ1

[
−1/A, qr+1

0
; q, Aq

]
, using the notation

in (3.4). It then changes as follows, by setting a = −1/A, b = qr+1, c = 0 and z = Aq in
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Heine’s transformation (3.3),

1

(qr+1; q)∞
lim
A→0

∞∑
k=0

(−1/A; q)k(q
r+1; q)k

(q; q)k(0; q)k
(Aq)k =

1

(qr+1; q)∞
lim
A→0

(qr+1; q)∞(−q; q)∞
(Aq; q)∞

∞∑
n=0

(Aq; q)n
(q; q)n(−q; q)n

q(r+1)n

= (−q; q)∞
∞∑
n=0

q(r+1)n

(q; q)n(−q; q)n

= (−q; q)∞
∞∑
n=0

1

(q2; q2)n
q(r+1)n. (4.22)

The sum in (4.22) can be written as a q-product by first replacing q by q2 in q-binomial

theorem (3.2), and then setting a = 0 and z = qr+1 in it. This gives us

∞∑
n=0

1

(q2; q2)n
q(r+1)n =

1

(qr+1; q2)∞
.

Putting this in (4.22), we finally obtain the following from (4.21):

∞∑
n=0

pmex
r (n)qn = (−q; q)∞

1

(qr+1; q2)∞
=

1

(q; q2)∞
· 1

(qr+1; q2)∞
,

where the rightmost equality follows by Euler’s partition theorem (−q; q)∞ = 1/(q; q2)∞. □

Proof of Corollary 2.6. We proceed with the proof in two directions depending on the parity

of r. Recall from Theorem 2.5 that the generating function for pmex
r (n) is

1

(q; q2)∞(qr+1; q2)∞
.

If r is odd: In this case, the numbers r + 1, r + 3, . . . are all even and hence
1

(q; q2)∞
×

1

(qr+1; q2)∞
is the generating function for partitions where no even part less than r is allowed.

Hence, pmex
r (n) = p>r

e (n).

If r is even: This time around, the integers r + 1, r + 3, . . . are all odd and therefore,
1

(q; q2)∞
× 1

(qr+1; q2)∞
represents partitions into odd parts where parts greater than r come

in two colors. Thus, pmex
r (n) = p>r

o,2(n). □

Proof of Corollary 2.7. By Theorem 2.2, we know that the generating function for ∆1(n)

is
ψ(q)

(q2; q)∞
. On the other hand, from Theorem 2.5, we have seen that

1

(q; q2)∞(q3; q2)∞
generates the numbers pmex

2 (n). Since pmex
2 (n) = ∆1(n), we get

ψ(q)

(q2; q)∞
=

1

(q; q2)∞(q3; q2)∞
,

which yields
ψ(q)

(q; q)∞
=

1

(q; q2)2∞
,

after dividing by 1− q on both sides. This finally gives

ψ(q) =
(q; q)∞
(q; q2)2∞

=
(q; q2)∞(q2; q2)∞

(q; q2)2∞
=

(q2; q2)∞
(q; q2)∞

.
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□

5. Concluding Remarks

In this article, we introduced the concept of second minimal excludant in an integer parti-

tion. We found its generating function and linked it to minimal excludants via the function

∆t(n). The generating function for ∆t(n), when interpreted combinatorially, gave rise to

nice identities connecting it to σmex(n) and certain restricted partition functions. We also

defined the mex sequence of a partition and discovered an elegant q-product expression for

the generating function of a related function, namely, pmex
r (n). And this gives rise to the

following natural question:

Question 1. It would be highly desirable to get a bijective proof of the identities for pmex
r (n)

in Corollary 2.6.

We have only skimmed the surface of mex sequences and it would be worth exploring other

aspects of them.

Before closing, we would like to point out that other techniques have been fruitfully applied

to the study of minimal excludants and related ideas. For instance, by using the theory of

modular forms, Barman and Singh [5, 6], and Chakraborty and Ray [9] obtained appealing

congruence properties and density results for mex-related partition functions.
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