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DISTANCES IN GRAPHS OF PERMUTATIONS

STEVEN T. DOUGHERTY AND MIA GIANELLO

ABSTRACT. We study the distance between permutations in three different settings which are related to
DNA and quantum entanglements. We construct a graphs where the vertices correspond to permutations
of enhanced permutations and edges are defined by adjacent permutations to define distances. Numerous
bounds and a recursion formula are given for these distances. These distances are then related to distances
in the Braid group.

1. Introduction

In this paper, we shall relate the distance between permutations using canonical definitions of distance
in terms of Japanese ladders and generalized Japanese ladders. Namely, we construct various graphs
from the final position of permutations and use the distance in the graphs to study distances between
permutations. Given the natural connection between permutations, enhanced permutations, and the
Braid group, we produce a distance between elements of this group based on the previously defined
distance. Permutations also have numerous applications in mathematical biology, see [10] for various
examples of this connection. For specific examples about the connection to DNA see [9] and [2].

We begin with the necessary definitions concerning permutations. A permutation of a set is a
bijection from a set to itself. In this paper, we always assume that the set is {1,2, . . . ,n}. That is, we are
only concerned with permutations of finite sets. It is well known that there are n! distinct permutations
on this set which form a group under functional composition and we denote this group Sn. Moreover,
it is also well known that any finite group is necessarily a subgroup of this group for some n.

In general, permutations are written in the standard orbit notation where (a1,a2, . . . ,as) indicates,
ai is mapped to ai+1 for 1≤ s−1 and as is mapped to a1. In addition to this standard notation, we
shall also use the notation of a final state of a permutation. Namely, for a given permutation σ we write
[a1,a2, . . . ,an] as the final state where σ(ai) = i. For example, the permutation (1,2,3)(4,6) has

1→ 2,2→ 3,3→ 1,4→ 6,5→ 5,6→ 4.

This permutation has final state [3,1,2,6,5,4] since σ(3) = 1,σ(1) = 2,σ(2) = 3,σ(6) = 4,σ(5) = 5,
and σ(4) = 6. It will become apparent later why this is known as the final state.

Recall that a transposition is a permutation that interchanges two elements and fixes the remaining
elements, for example the transposition (a,b) where a 6= b interchanges a and b and leaves the
remaining elements fixed. It is well known that every permutation can be written as a product of
transpositions and that every permutation can be written as either evenly many transpositions or oddly
many transpositions. These permutations are defined to be even or odd respectively.
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We shall study distances between permutations in a corresponding graph. We now give some
standard definitions from graph theory.

Definition 1. A graph (V,E) is a set of vertices V and a set of edges E, where an edge is of the form
{a,b} where a 6= b.

By graph we mean a simple graph, meaning there are no multiple loops (that is, E is a set and not a
multi-set) and there are no loops (an edge that connects a vertex to itself). A path in a graph (V,E) is a
set v1,v2, . . . ,vk+1 where {vi,vi+1} ∈ E. This path is said to have length k. The distance between two
vertices in a graph is the length of the shortest path between two vertices. The degree of a vertex is the
number of edges on that vertex. A graph is said to be regular if the degree of every vertex is the same.
The eccentricity of a vertex is the length of the largest path with that vertex as the initial point in the
graph. The diameter of a graph is the largest eccentricity of any vertex in the graph.

2. Permutations

Japanese ladders are a traditional technique used to construct a bijective map from a set to itself. They
have been used to describe interesting mathematics; for example, they were related to Markov chains in
[12] and in [7] and in [8] they were used to describe interesting mathematical games. Their connection
to the braid group and quantum mechanics was described in [1]. The connection between permutations
and DNA is described in [4].

We shall use the standard notation to denote permutations and all permutations here will be read
right to left. We begin with the definition of a Japanese ladder.

Definition 2. A Japanese ladder is a representation of a permutation by

∏
i∈A

(i, i+1),

where A is an ordered list of elements of {1,2, . . . ,n}.

Notice that all of the transpositions in this product are of adjacent elements. In other words, a
Japanese ladder is writing a permutation in terms of transpositions of adjacent elements. Visually
each transposition in a Japanese ladder corresponds to a rung in its physical description. Consider the
following representation of a Japanese ladder.
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Pictorially, we see the permutation as:
1→ 2

2→ 5

3→ 4

4→ 1

5→ 3

The rungs of this ladder can be read as

(2,3)(4,5)(1,2)(3,4)(4,5)(2,3)(1,2)(3,4)(4,5)(2,3)(3,4)(2,3)(4,5)(1,2).

In cycle form this permutation is (1,2,5,3,4). The final state of this permutation is [4,1,5,3,2]. It is
clear why the final state is used for this permutation since that is way the Japanese ladder ends.

It is easy to see that any permutation has a description as a Japanese ladder. Any transposition (a,b)
can be written as a Japanese ladder as follows:

(a,b) = (a,a+1)(a+1,a+2) · · ·(b−1,b)(b−2)(b−1) · · ·(a+1,a+2)(a,a+1).

Then since every permutation can be written as a product of transpositions, and each transposition can
be written as a product of Japanese ladders, then each permutation has a representation as a Japanese
ladder. This representation is in no way a minimal representation in terms of number of rungs. In
general, it is far from the minimal number of rungs needed.
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We can now describe a graph on the set of transpositions, in which the path distance will relate to
the minimal number of rungs for a given permutation representation as a Japanese ladder.

Definition 3. Let Γn be the graph where the vertices are the possible arrangements of {1,2,3, . . . ,n}
and two vertices are connected if one can be obtained from the other by permuting two adjacent
coordinates.

In other words, the set of vertices is the set of all final states possible using the set {1,2, . . . ,n} where
two vertices are connected by an edge if one final state can be obtained from the other by adding a
single rung to the Japanese ladder. For instance, the final state [2,3,4,5,1] would be connected to the
final states [3,2,4,5,1], [2,4,3,5,1], [2,3,5,4,1], [2,3,4,1,5] since these are the 4 final states obtained
by switching the positions 1 and 2, 2 and 3, 3 and 4, and 4 and 5 respectively.

Theorem 1. The graph Γn is a regular graph on n! vertices and each vertex has degree n−1. The
number of edges is n!(n−1)2 .

Proof. It is well known that there are n! permutations of a set of size n which gives the number of
vertices. There are n−1 adjacent transpositions that are possible to act on a given ordering, namely
(1,2),(2,3), . . . ,((n−1),n). Therefore, each vertex has degree n−1. Since it is regular, we apply
the formula 2|E|= |V |d, where d is the degree of each vertex to get the number of edges. �

It is easy to see that diameter of the graph Γn is equal to the eccentricity of any vertex in the graph.
This is because any permutation beginning with [1,2, . . . ,n] can be written as a permutation of any
initial ordering by simply renaming the n elements.

Given a final state [a1,a2, . . . ,an] of a permutation, an inversion is a pair ai,aj where i < j and
ai > aj. For example, the final state [5,3,4,1,2] contains 8 inversions. Namely, the inversions are

(5,4),(5,3),(5,2),(5,1),(3,1),(3,2),(4,1),(4,2).

It is well known that the distance to [1,2, . . . ,n] is the number of inversions, see [7] for example.

Lemma 1. The diameter of the graph Γn is (n)(n−1)
2 .

Proof. The maximum number of inversions for a final state is (n)(n−1)
2 . The final state [n,n−1,n−

2,n−3, . . . ,2,1] contains this many inversions. This gives the result. �

This leads to the following theorem.

Theorem 2. In Γn the number of vertices at distance i from a given vertex is equal to the number of
vertices at distance (n)(n−1)

2 − i.

Proof. We shall consider the distance from any final state to [1,2, . . . ,n]. For a given permutation σ let
Rσ be the number of inversions. A reverse inversion is a pair ai,aj where i > j and ai > aj. Let Lσ be
the number of reverse inversions. It is immediate that Lσ+Rσ =

(n−1)(n−2)
2 which is the total number

of possible inversions. Therefore, for each final state distance i from [1,2, . . . ,n] there is a final state
distance (n)(n−1)

2 − i from [1,2, . . . ,n]. This gives the result. �

Let gni be the number of vertices of distance i from a vertex in Γn.
We have the following easy lemma.
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DISTANCES IN GRAPHS OF PERMUTATIONS 5

Lemma 2. For all n, we have gn1 = n−1.

Proof. There are n−1 adjacent transpositions possible for Γn. They are the transpositions

(1,2),(2,3),(3,4), . . . ,(n−1,n).

Therefore, there are n−1 permutations distance 1 from any given permutation. �

Lemma 3. For all n, we have gn2 =
(n−1)(n−2)

2 +(n−2).

Proof. There are n−1 adjacent transpositions. The number of ways of choosing two distinct adjacent
transpositions is C(n−1,2) = (n−1)(n−2)

2 . If two adjacent transpositions commute then we only want
to count them once since (a,b)(c,d) = (c,d)(a,b) if a,b,c,d are distinct. However, if they do not
commute then (a,b)(b,c) = (b,c,a) and (b,c)(a,b) = (a,c,b). Of these (n−2) have an element
in common (and hence do not commute). Therefore, the number is

(n−1)(n−2)

2
−(n−2)+2(n−2) =

(n−1)(n−2)

2
+(n−2).

�

Example 1. For n = 2, (n−1)(n−2)
2 +(n− 2) = 0, for n = 3, (n−1)(n−2)

2 +(n− 2) = 2, for n = 4,
(n−1)(n−2)

2 +(n−2) = 5, forn= 5, (n−1)(n−2)
2 +(n−2) = 9, and forn= 6, (n−1)(n−2)

2 +(n−2) = 14.

We are now able to give a recursive formula for the number of vertices distance i from any vertex in
Γn. Using this recursion we can determine gi for all i for a given n.

Theorem 3. We have the following recursion:

(1) gn+1i =
n

∑
j=0

gni−j,

where gni = 0 if i < 0 or i > n.

Proof. If a final state [a1,a2, . . . ,an] on n elements has i inversions, then placing n+ 1 at the end,
namely the final state [a1,a2, . . . ,an,n+1] gives i inversions. Placing n+1 before the j-the position
to give

[a1,a2, . . . ,an−j,n+1,an−j+1, . . . ,an]

gives i+ j inversions. This gives the result. �

This theorem allows us to compute all gi.

Example 2. As an example of the theorem, we have

g126 = g116 +g115 +g114 +g113 +g112 +g111 +g110

and

g59 = g
4
9+g

4
8+g

4
7+g

4
6+g

4
5.
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DISTANCES IN GRAPHS OF PERMUTATIONS 6

We can use this theorem to determine gni for some small values of n.

i n= 1 n= 2 n= 3 n= 4 n= 5 n= 6

0 1 1 1 1 1 1

1 1 2 3 4 5

2 2 5 9 14

3 1 6 15 29

4 5 20 49

5 3 22 71

6 1 20 90

7 15 101

8 9 101

9 4 90

10 1 71

11 49

12 29

13 14

14 5

15 1

Notice the symmetry from Theorem 2 and that the sum of every column is n!.

2.1. Braids. In this subsection, we shall give an important application of the results presented here
concerning distance of permutations. We begin by recalling some basic definitions of the Braid group.
This group was first explicitly defined in [3] by Emil Artin. Complete descriptions of this group can be
found in [6] and [11].

The braid group, denoted by Bn, is generated by the elements σ1,σ2, ...,σn−1 along with with the
following defining relations:

(B1): σiσj = σjσi , |i− j|≥ 2;
(B2): σiσi+1σi = σi+1σiσi+1 , 1≤ i≤ n−2.

The first relation is known as far-commutativity and the second relation is called the braid relation.
Additionally, there is also the trivial relation, σi(σi)−1 = e= (σi)

−1σi, where e is n straight strands
without any crossings (that is, the identity). We may represent the braid σi as the ith strand crossing
over the (i+1)st. In general, this group is non-abelian and infinite.

By enumerating each strand, one can associate permutations with braids. This can be accomplished
by mapping each generator, σi to the transposition (i, i+1). Notice that this is an adjacent permutation.

The kernel of the homomorphism that maps Bn to Sn that is given by σi → (i, i+1) is Pn, the
pure braid group, where Pn consists of the braids in which each strand starts and ends in the same
position.

In general, we have the following short exact sequence:
1 −−−−→ Pn −−−−→ Bn −−−−→ Sn −−−−→ 1.

Define the mapΦn : Bn → Sn to be the map given above in the short exact sequence. It is quite
natural to define the final position of the braid in the same way that the final position was defined for
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DISTANCES IN GRAPHS OF PERMUTATIONS 7

permutations, which makes it easy to determine the corresponding permutation to the element of the
braid group.

Definition 4. Let α,β be two elements of Bn. Then dp(α,β) is defined as the distance in the graph
Γn between Φn(α) and Φn(β).

This definition means that between two elements in the braid group α and β, the minimal number of
elements needed to transform α into an element of β’s equivalence class in Bn/Pn is their distance.
Given this, we can define the following distance as well.

Definition 5. Let A,B be two elements of Bn/Pn, then Dp(A,B) is the distance in the graph Γn
between Φm(α) and Φn(β) where α ∈A and β ∈ B.

We can combine the results obtained earlier to give the following theorem.

Theorem 4. Let α,β be two elements in Bn, and A,B ∈Bn/Pn. Then we have:

• dp(α,β)≤ n(n−1)
2 , Dp(A,B)≤ n(n−1)

2 .
• The number of cosets in Bn/Pn distance i from a given coset is equal to the number of cosets

distance n(n−1)
2 − i from that coset.

• The number of cosets in Bn/Pn distance 1 is n−1 and distance 2 is (n−1)(n−2)
2 +(n−2).

• If Gi is the number of cosets in Bn/Pn distance i from a given coset, then

(2) Gn+1i =
n

∑
j=0

Gni−j,

where Gni = 0 if i < 0 or i > n.

Proof. The proof follows from Lemma 1, Theorem 2, Lemma 2, Lemma 3, and Theorem 3. �

3. Circular Permutations

In this section, we consider circular permutations. They are called circular because we add the
transposition (n,1) to the list of adjacent permutations. In other words, we allow for the Japanese
ladder to wrap around a cylinder. These permutations are related to the evolutionary distance in certain
bacteria as their DNA is circular. See [5] for a description of this relation. One might think of this as
the numbers 1,2,3, . . . ,n arranged in a circle and trying to get to another arrangement by switching
adjacent elements in the circle. Essentially, regular permutations are arranging people at a lunch
counter, hence the final position [a1,a2, . . . ,an], whereas circular permutations arrange people at a
circular table. The addition of this single transposition makes an enormous difference in terms finding
minimal paths from one permutation to another. It often significantly reduces the length of the minimal
path. We begin with the definition of the corresponding graph.

Definition 6. Let∆n be the graph where the vertices are the the possible arrangements of {1,2,3, . . . ,n}
and two vertices are connected if one can be obtained from the other by permuting two adjacent
coordinates or permuting 1 and n.

The following is immediate.
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DISTANCES IN GRAPHS OF PERMUTATIONS 8

Proposition 1. The graph Γn is a subgraph of the graph ∆n.

Proof. The vertices of Γn and ∆n are the same, that is they correspond to the permutations. However,
there are more edges in ∆n, but any edge in Γn is still an edge in ∆n. This gives the result. �

We next determine the degree and the number of edges in Γn.

Theorem 5. For n > 2, the graph ∆n is a regular graph on n! vertices and each vertex has degree n.
The number of edges is n!(n)2 .

Proof. It is well known that there are n! permutations of a set of size n which gives the number of
vertices. There are n circular adjacent transpositions that are possible to act on a given ordering,
namely (1,2),(2,3), . . .((n−1),n),(n,1). Therefore, each vertex has degree n. Since it is a regular
graph, we apply the formula 2|E| = |V |d, where d is the degree of each vertex to get the number of
edges. �

For n = 2, the graph ∆2 has 2! = 2 vertices, but only one edge since (1,2) = (2,1). In this case,
∆n = Γn.

Theorem 6. Given a final state [a1,a2, . . . ,an], let Dg be the distance to the identity in Γn and let Dd
be the distance to the identity in ∆n. Then Dd ≤Dg.

Proof. Any path in Γn is still a path in ∆n. This gives the result. �

In general, we cannot make this bound a strict inequality. For example, the final state [1,2,4,3,5,6]
has distance 1 from the identity in both graphs. More interestingly, [2,5,1,3,4] has distance 4 from the
identity in both graphs.

The following corollary is an immediate consequence of this theorem.

Corollary 1. The diameter of ∆n is less than or equal to the diameter of Γn.

Let dni be the number of vertices of distance i from a vertex in Γn.
We have the following easy lemma.

Lemma 4. For all n > 2, we have dn1 = n.

Proof. There are n adjacent transpositions possible for ∆n. �

When n= 2, both (1,2) and (2,1) are the same transposition.

Lemma 5. For n≥ 4, we have

dn2 =
n(n−3)

2
+2n.

Proof. We have that there are n adjacent transpositions. Then, there are n−3 transpositions that are
disjoint from a given transpositions, so there are n(n−3)

2 permutations of the form (a,b)(c,d), where
a,b,c,d are distinct. Then for each of the n transpositions, there are 2 that are adjacent (meaning
they are of the form (a,b),(b,c) where a 6= c (hence they do not commute)). This gives there are 2n
permutations of this form, that is fix the first one and there are two choices for the second. �

Example 3. For n= 4, n(n−3)2 +2n= 4
2 +2(4) = 10 and for n= 5, n(n−3)2 +2n= 5(2)

2 +2(5) = 15.
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DISTANCES IN GRAPHS OF PERMUTATIONS 9

The next theorem determines the diameter of the graph. Note that it is quite different than the
diameter of Γn.

Theorem 7. The diameter of ∆n is dn2 eb
n
2 c.

Proof. The maximum that can be reached is when each number in the initial position is as at least as
far from their desired position by moving the left and wrapping around as they are from the right. The
initial positions of these are

bn
2
c+1 bn

2
c+2 · · · n 1 2 3 bn

2
c.

The distance to the identity for this is the same in ∆n as it is in Γn. We can simply count the number of
inversions to get that its distance to the origin is dn2 eb

n
2 c. �

Example 4. For n= 8 the initial position would be

5 6 7 8 1 2 3 4.

For n= 9 the initial position would be

5 6 7 8 9 1 2 3 4.

As an example, the diameter of Γ10 is 45 and the diameter of ∆10 is 25 and the diameter of Γ10
is 4950 and the diameter of ∆10 is 2500. If diam(Γn) is the diameter of Γn and diam(∆n) is the
diameter of ∆n then we have

lim
n→∞ diam(∆n)

diam(Γn)
= lim
n→∞ n

2/4

n2/2
=
1

2
.

We can now give the following computation results of the number of permutations of distance i
from a given permutation in ∆n.

i n= 1 n= 2 n= 3 n= 4 n= 5

0 1 1 1 1 1

1 1 3 4 5

2 2 10 15

3 9 32

4 42

5 23

6 2

We note that again the sum of every column is n!. However, unlike the table for gni , this table is not
symmetric. Moreover, there is not a recursive relation for the values.

4. Enhanced Permutations

While permutations have a natural connection to the braid group. There is another map that has an even
more precise connection to the braid group, that is, enhanced permutations. While in a usual adjacent
transposition two items switch places, in an enhanced permutation, not only do they switch places, but
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DISTANCES IN GRAPHS OF PERMUTATIONS 10

like in the braid group, we keep track of which goes over the other and which goes under. Since we are
noting this geometric characterization, these maps have a natural connection to quantum states as well.

We shall now consider these enhanced permutations and build a third graph based on them.

Definition 7. An enhanced permutation is a permutation where σ : {1,2 . . . ,n}→ {±1,±2,±3, . . . ,±n}
and the product of the signs must be (−1)par(σ), where par(σ) = 1 if σ is even and par(σ) = −1 if σ
is odd.

The fact that the product of the signs is (−1)par(σ) is vital to this definition. Since each adjacent
permutation switches the sign of a single element, we need the number of negatives to be the same
parity as the permutation. That is, the element that goes under the other is multiplied by a −1 in an
enhanced adjacent permutation.

We write the final state of an enhanced permutation by [±a1,±a2, . . . ,±an]. Each adjacent transpo-
sition is written as 〈i, i+1〉 or 〈i+1,i〉 where 〈a,b〉 is the function that is defined as τ(a) = b and
τ(b) = −a. Unless regular transpositions where (a,b) = (b,a) in this case 〈a,b〉 6= 〈b,a〉 which is
why we need to introduce new notation.

One can think of this as a Japanese ladder where the rungs have arrows on them and traversing a
rung in the direction of the arrow keeps the sign and traversing a rung in the opposite direction of the
rung multiplies the element by a −1.

Consider the following enhanced Japanese ladder.

1 2 3 4
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........................................................................................................................................〉 ........................................................................................................................................〉

........................................................................................................................................〈

........................................................................................................................................〈

........................................................................................................................................〈

−2 3 4 1

This can be written as a function σ where σ(1) = 4, σ(2) = −1, σ(3) = 2 and σ(4) = 3. Here we
write the final state as [−2,3,4,1]. We note that there are oddly many rungs and oddly many negatives
in the final state.

Definition 8. LetΠn be the graph where the vertices are the possible arrangements of {±1,±2,±3, . . . ,±n}
and the product of the signs must be (−1)par(σ) and two vertices are connected if one can be obtained
from the other by a signed adjacent transposition.

Theorem 8. The number of vertices of Πn is n!2n−1.
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DISTANCES IN GRAPHS OF PERMUTATIONS 11

Proof. There are n!
2 even permutations and there are C(n,0)+C(n,2)+ · · ·+C(n,g) possible ar-

rangements of negatives where g= n−1 if n is odd and g= n if n is even.
There are n!2 odd permutations and there areC(n,1)+C(n,3)+ · · ·+C(n,k) possible arrangements

of negatives where k= n−1 if n is even and k= n if n is odd.
This gives n!2 (∑

n
i=0C(n,i)) =

n!
2 2

n = n!2n−1. �

We note that in the graph Πn the number of vertices is much higher than in the previous two graphs.

Theorem 9. The graph Πn is a regular graph with degree 2(n−1). The number of edges is

n!2n−1(n−1).

Proof. Between rung i and i+ 1 there are two possible enhanced adjacent transpositions namely
〈i, i+1〉 and 〈i+1,i〉. Therefore, the degree of each vertex is 2(n−1).

Since is is regular we apply the formula 2|E| = |V |d, where d is the degree of each vertex to get
n!2n−12(n−1)

2 = n!2n−1(n−1). �

Let pni be the number of vertices of distance i from a vertex in Πn.

Lemma 6. For all n, we have pn1 = 2(n−1).

Proof. There are n− 1 adjacent transpositions possible and 2 possible directions for each of these.
Therefore, there are 2(n−1) vertices that are distance 1 from any vertex in for Πn. �

We can now determine the number of vertices that are distance 2 from any given vertex.

Lemma 7. For all n, we have pn2 = ( (n−1)(n−2)2 +(n−2))(22)+(n−1).

Proof. As before, in Lemma 3, there are (n−1)(n−2)
2 +(n−2) ways of writing 2 distinct adjacent trans-

positions giving different permutations. Each of these has 22 ways of placing the arrows. Additionally,
there are n−1 ways of writing 〈i, i+1〉〈i, i+1〉 which leave the elements fixed but changes the signs
on two of the elements. Note that 〈i, i+1〉〈i, i+1〉 = 〈i+1,i〉〈i+1,i〉 and 〈i, i+1〉〈i+1,i〉 is the
identity. �

Example 5. For n = 2, ( (n−1)(n−2)2 + (n− 2))(22) + (n− 1) = 1. For n = 3, ( (n−1)(n−2)2 + (n−

2))(22)+(n−1) = 10.

Proposition 2. The enhanced transposition with final state [−1,2,3,4, . . . ,n− 1,−n] has distance
2(n−1) from [1,2, . . . ,n].

Proof. The shortest path is formed by 〈1,2〉〈1,2〉〈2,3〉〈2,3〉〈3,4〉〈3,4〉 . . .〈n−1,n〉〈n−1,n〉. �

This proposition is interesting since it shows an example of a permutation that would have distance
0 from [1,2 . . . ,n] in Γn.

Lemma 8. The diameter of the graph Πn is max{ (n)(n−1)2 ,
(n−2)(n−3)

2 +2(n−1)}.
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DISTANCES IN GRAPHS OF PERMUTATIONS 12

Proof. Consider a Japanese ladder that is not enhanced. If the adjacent transpositions (i, i+1) occurs
for each i, 1≤ i≤ n−1, then by changing the directions of the first occurrence of each of these in a
given enhanced ladder built on this Japanese ladder, will result in 2(n−1) changes in the signs in the
final position which is the total amount.

As we saw in Proposition 2, given each of these n−1 adjacent transpositions that is not used, 2
enhanced rungs need to be added to get the proper signs. Given any enhanced ladder on 2,3, . . . ,n−1,
if 1 and n are not a part of any rung, then it may require an additional 2(n−1) rungs to change their
signs.

Therefore, if no changes to the signs are necessary or every adjacent transposition occurs, then
the maximum distance is n(n−1)

2 . However, if the signs need to be changed and not every adjacent
transposition occurs, then it is the maximum of the number of regular permutations on n−2 rungs (n
rungs excluding 1 and n) which is (n−2)(n−3)

2 plus the number which is needed to make the necessary
sign changes which is 2(n−1).

Since it is not always true that one of these numbers is larger than the other, we have that the
maximum distance in this graph is the maximum of n(n−1)2 and (n−2)(n−3)

2 +2(n−1).
�

We give the values of pni for small values of n in the following table.

i n= 1 n= 2 n= 3

0 1 1 1

1 2 4

2 1 11

3 7

4 1

We note that the sum of each column is n!2n−1.
We can now summarize our results for the three graphs in the following table.

Graph vertices edges degree diameter

Γ n! n!(n−1)/2 n−1 n(n−1)/2

∆ n! n!(n)/2 n dn2 eb
n
2 c.

Π n!2n−1 n!2n−1(n−1) 2(n−1) max{ (n)(n−1)2 ,
(n−2)(n−3)

2 +2(n−1)}

4.1. Braids and Enhanced Permutations. We can now show results in terms of the Braid group from
our study of enhanced permutations.

Let En be the group of signed permutations that are realizable as signed ladders. That is, this is the
group of functions that are described as the vertices of the graph Πn. Therefore, |En|= n!2n−1.

Instead of mapping Bn to Sn, it makes more sense to consider the mapping of Bn to En. See
[1] for a complete description of this approach. The kernel, Kn, consists only of those braids whose
underlying signed permutation is the identity. This means that not only is the underlying permutation
the identity, but all signs are positive. The corresponding short exact sequence is:

1 −−−−→ Kn −−−−→ Bn −−−−→ En −−−−→ 1.
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DISTANCES IN GRAPHS OF PERMUTATIONS 13

Define the map Ψn : Bn → En to be the map given above in the short exact sequence. This leads to
the following definition.

Definition 9. Let α,β be two elements of Bn. Then de(α,β) is defined as the distance in the graph
Πn between Ψn(α) and Ψn(β).

We note that earlier we defined the distance dp, where the p stood for permutation, whereas here we
use e to stand for enhanced permutation.

This definition means that between two elements in the braid group α and β, the minimal number of
elements needed to transform α into an element of β’s equivalence class in Bn/En is their distance.
As before, we can extend this.

Definition 10. Let A,B be two elements of Bn/En, then De(A,B) is the distance in the graph Πn
between Ψm(α) and Ψn(β) where α ∈A and β ∈ B.

We can combine the results obtained earlier to give the following theorem.

Theorem 10. Let α,β be two elements in Bn, and A,B ∈Bn/En. Then we have:

• de(α,β)≤max{ (n)(n−1)2 ,
(n−2)(n−3)

2 +2(n−1)}

• De(A,B)≤max{ (n)(n−1)2 ,
(n−2)(n−3)

2 +2(n−1)}.
• The number of cosets in Bn/Pn that are distance 1 under De from a given coset is 2(n−1).
• The number of cosets in Bn/Pn that are distance 2 underDe from a given coset is ( (n−1)(n−2)2 +

(n−2))(22)+(n−1).

Proof. The proof follows from Lemma 6, Lemma 7, and Lemma 8. �
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