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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS

FARKHONDEH TAKHTEH AND MORTEZA MIRZAEE AZANDARYANI

ABSTRACT. In the present paper, we introduce von Neumann-Schatten K-p-frames and von Neumann-
Schatten K∗-atomic systems, where K is a bounded operator on a separable Banach space, and we
collect some relationships between these two concepts. Also, von Neumann-Schatten K-p-frames are
characterized in terms of a range inclusion property and it is shown that they are stable under different
kinds of perturbations and the action of some bounded operators. Moreover, the notions of K-duals and
K∗-duals are introduced, characterized and some of their properties are obtained.

1. Introduction

Let H be a separable Hilbert space. A sequence F = { fi}∞
i=1 in H is a frame if there exist constants

0 < AF ≤ BF < ∞ such that

AF‖ f‖2 ≤
∞

∑
i=1
|〈 f , fi〉|2 ≤ BF‖ f‖2,

for each f ∈H . The sequence F is called a Bessel sequence for H if only the second inequality is
required.

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [10] in the context of
nonharmonic Fourier series. Frames in a Hilbert space are generalizations of orthonormal bases and
usually provide non-unique representations for each element of the Hilbert space, i.e., for every frame
{ fi}∞

i=1 in a Hilbert space H , there exists at least one frame {gi}∞
i=1 such that

f =
∞

∑
i=1
〈 f ,gi〉 fi, ∀ f ∈H .

Many generalizations of frames have been introduced. Sun in [25] introduced the concept of g-frames
in Hilbert spaces. G-frames are natural generalizations of frames which cover many other recent gen-
eralizations of frames such as bounded quasi-projections [13, 14], fusion frames [5], outer frames
and pseudoframes [18]. Aldroubi, Sun and Tang [1] introduced the concept of p-frames for a Ba-
nach space X . Their main results were about p-frames for Lp(Rd). They obtained series expansions
in shift-invariant spaces of Lp(Rd). Christensen and Stoeva [8] further discussed some properties
of p-frames for a general Banach space X . In [24], the authors unified p-frames and g-frames to
introduce the notion of von Neumann-Schatten p-frames. In fact, the concept of von Neumann-
Schatten p-frames generalizes almost all of the concepts related to frames. As an important class
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of von Neumann-Schatten p-frames, Hilbert-Schmidt frames have been considered by some math-
ematicians [2, 21, 22]. L. Găvruţa introduced in [15] the notion of atomic systems for a bounded
operator K defined on a Hilbert space H . Indeed, a Bessel sequence { fi}∞

i=1 in H is said to be an
atomic system for K if there is some positive number C such that for every f ∈H there exists some
a f = {a f

i }∞
i=1 ∈ `2(N) with ‖a f ‖`2 ≤C‖ f‖ and K f = ∑

∞
i=1 a f

i fi. It is shown in [15] that the sequence
{ fi}∞

i=1 in H is an atomic system for K if and only if { fi}∞
i=1 is a K-frame for H , i.e., there exist two

positive numbers A and B such that

A‖K∗ f‖2 ≤
∞

∑
i=1
|〈 f , fi〉|2 ≤ B‖ f‖2,

for each f ∈H .
As we see, ordinary frames and also atomic systems for subspaces introduced in [12] are special cases
of K-frames. It is also stated in [15] that a necessary and sufficient condition for a Bessel sequence
{ fi}∞

i=1 in H to be a K-frame is the existence of a Bessel sequence {gi}∞
i=1 in H such that

K f =
∞

∑
i=1
〈 f ,gi〉 fi, ∀ f ∈H .

Hence, a K-frame allows us to reconstruct every element of R(K), the range of K (which is not
necessarily closed). This property can be useful in application, especially when the reconstruction of
the elements in the range of a bounded operator on a Hilbert space H is needed and it is not necessary
to reconstruct every element of H .
After the definition of K-frames in Hilbert spaces, many generalizations of them were presented in
both Hilbert and Banach spaces, see [9, 16, 19, 27, 28]. This paper addresses the theory of von
Neumann-Schatten p-frames. First, motivated by [15] and in order to reconstruct elements from
the range of a bounded linear operator K on a separable Banach space, we introduce K-frames and
K∗-atomic systems for von Neumann-Schatten p-Bessel sequences. Then we study the relationship
between them and obtain some characterizations of von Neumann-Schatten K-p-frames. Because the
study of duals is important to obtain nice properties for von Neumann-Schatten K-p-frames, inspired
by [20], K-duals and K∗-duals for von Neumann-Schatten p-Bessel sequences are introduced and
studied. We obtain some characterizations and properties of them and it is shown that they share
many useful properties with their corresponding notions in Hilbert spaces. Moreover, motivated by
[4, 6, 7, 17, 21, 26], we obtain some sufficient conditions under which von Neumann-Schatten K-
p-frames are stable under small pertubations. It is worthwhile to mention that Hilbert-Schmidt K-
frames, as an class of von Neumann-Schatten K-p-frames, are obtained from our results.

2. Preliminaries

In this section, we have a brief review of the definitions and basic properties of von Neumann-Schatten
p-Bessel sequences and von Neumann-Schatten p-frames ([23] can be used as a reference.). Through-
out this paper, X is a separable Banach space, X ∗ is the dual space of X and X ∗∗ is the dual space
of X ∗. As we know, X can be considered as a subspace of X ∗∗. We denote the set of all bounded,
linear operators from a Banach space X to a Banach space Y by B(X ,Y ) and B(X ,X ) is denoted
by B(X ). If T ∈ B(X ,Y ), then T ∗ is the adjoint operator of T and R(T ) is the range of T. Also,
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C and N are the field of all complex numbers and the set of all natural numbers, respectively. p is a
number with 1 < p < ∞ and q is the conjugate exponent to p, i.e., 1

p +
1
q = 1.

Let H be a separable Hilbert space. For a compact operator A ∈ B(H ), let s1(A ) ≥ s2(A ) ≥
. . .≥ 0 denote the singular values of A , i.e., the eigenvalues of the positive operator |A |= (A ∗A )

1
2 ,

arranged in a decreasing order and repeated according to multiplicity. For 1 ≤ p < ∞, the von
Neumann-Schatten p-class Cp is defined as the set of all compact operators A for which ∑

∞
i=1 sp

i (A )<
∞. For A ∈ Cp, the von Neumann-Schatten p-norm of A is defined by

‖A ‖p =

(
∞

∑
i=1

sp
i (A )

) 1
p

= (tr|A |p)
1
p ,(2.1)

where tr is the trace functional which is defined by tr(A ) = ∑e∈E 〈A e,e〉, where E is any orthonor-
mal basis of H . Cp is a Banach space with respect to this norm. Also, C1 is the trace class and C2 is
the Hilbert-Schmidt class. Note that an operator A is in Cp if and only if A p ∈ C1. It is proved that
Cp is a two sided ∗-ideal of the C∗-algebra B(H ) and the finite rank operators are dense in Cp. Also,
if A ∈ Cp and B ∈ Cq, then A B ∈ C1, tr(A B) = tr(BA ), and ‖A B‖1 ≤ ‖A ‖p‖B‖q, whenever
1 < p,q < ∞ with 1

p +
1
q = 1. Moreover, if 1 ≤ p ≤ p′ < ∞, then Cp ⊆ Cp′ and ‖A ‖p ≥ ‖A ‖p′ . It

is well-known that the space C2 with respect to the inner product 〈A ,B〉 = tr(B∗A ) is a Hilbert
space.
For 1≤ p < ∞, the Banach space ⊕Cp is defined by

⊕Cp =

{Ai}∞
i=1 : Ai ∈ Cp and ‖{Ai}∞

i=1‖=

(
∞

∑
i=1
‖Ai‖p

p

) 1
p

< ∞

 .

In particular, ⊕C2 is a Hilbert space with the inner product 〈{Ai}∞
i=1,{Bi}∞

i=1〉= ∑
∞
i=1 tr(B∗i Ai).

Definition 2.1. A countable family G = {Gi}∞
i=1 of bounded linear operators from a separable Banach

space X to Cp is a von Neumann-Schatten p-frame for X with respect to H if there exist constants
AG ,BG > 0 such that

AG ‖ f‖ ≤

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

≤ BG ‖ f‖, ∀ f ∈X .

It is called a von Neumann-Schatten p-Bessel sequence with bound BG if the second inequality is
satisfied.

Lemma 2.2. [24] If G = {Gi}∞
i=1 is a von Neumann-Schatten p-frame for X , then X is reflexive.

Definition 2.3. Let G = {Gi}∞
i=1 ⊆ B(X ,Cp) be a von Neumann-Schatten p-Bessel sequence for

X . Then its analysis operator is defined by UG : X → ⊕Cp, UG ( f ) = {Gi( f )}∞
i=1. Furthermore,

TG : ⊕Cq→X ∗ defined by TG ({Ai}∞
i=1) = ∑

∞
i=1 AiGi is called the synthesis operator (note that this

operator is defined using the existence of an isometric isomorphism from Cq onto C ∗p . For more
information, see [24]).
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Theorem 2.4. [24] A sequence G = {Gi}∞
i=1 ⊆ B(X ,Cp) is a von Neumann-Schatten p-Bessel se-

quence for X with a bound BG if and only if its synthesis operator TG is a bounded operator with
‖TG ‖ ≤ BG . In this case, TG = U∗G and if X is reflexive, then UG = T ∗G and G = {Gi}∞

i=1 is a von
Neumann-Schatten p-frame for X if and only if the operator TG is bounded and onto.

Let us recall the concept of K-frames for a Hilbert space H .

Definition 2.5. [15] Let K ∈ B(H ). A sequence F = { fi}∞
i=1 is a K-frame for H if there exist

constants AF ,BF > 0 such that

AF‖K∗ f‖2 ≤
∞

∑
i=1
|〈 f , fi〉|2 ≤ BF‖ f‖2.

The constants AF and BF are called the lower K-frame bound and the upper K-frame bound of F ,
respectively. F is called a tight K-frame if the following condition is satisfied:

AF‖K∗ f‖2 =
∞

∑
i=1
|〈 f , fi〉|2.

Theorem 2.6. [15] A sequence F = { fi}∞
i=1 is a K-frame for H if and only if F is a Bessel sequence

and R(K)⊆ R(TF ), where TF is the synthesis operstor of F .

The notion of duality for K-frames was introduced in [20].

Definition 2.7. [20] Let F = { fi}∞
i=1⊆H be a Bessel sequence. A Bessel sequence {gi}∞

i=1 is called
a K-dual of F if

K f =
∞

∑
i=1
〈 f ,gi〉 fi ( f ∈H ).

The following two theorems will play a key role in the proofs of our main results.

Theorem 2.8. [11] Let X , Y and Z be Banach spaces and let D ∈ B(X ,Y ) and E ∈ B(X ,Z ).
Then the following conditions are equivalent:

(i) D = FE for some continuous linear transformation F : R(E)→ Y .
(ii) ‖D(x)‖ ≤M‖E(x)‖, for some M ≥ 0 and each x ∈X .

(iii) R(D∗)⊆ R(E∗).

Theorem 2.9. [3] Let T ∈B(X ,Y ). If S∈B(X ,Z ) with R(S∗)⊆R(T ∗) and R(T ) is complemented,
then there exists some V ∈ B(Y ,Z ) such that S =V T.

3. von Neumann-Schatten K-p-frames

In this section, we introduce and study von Neumann-Schatten K-p-frames, von Neumann-Schatten
K∗-atomic systems, von Neumann-Schatten K-duals and von Neumann-Schatten K∗-duals.

Definition 3.1. Let K ∈ B(X ). A sequence G = {Gi}∞
i=1 ⊆ B(X ,Cp) is a von Neumann-Schatten

K-p-frame for X with respect to H if there exist constants AG ,BG > 0 such that

AG ‖K f‖ ≤

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

≤ BG ‖ f‖, ∀ f ∈X .
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 5

The sequence G is called a tight von Neumann-Schatten K-p-frame if the following condition is
satisfied:

AG ‖K f‖=

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

.

Remark 3.2. In general, a von Neumann-Schatten K-p-frame may not be a von Neumann-Schatten p-
frame although it is always a von Neumann-Schatten p-Bessel sequence. For some special operators K
such as K = IX or when K is bounded below, a von Neumann-Schatten K-p-frame is a von Neumann-
Schatten p-frame.

Now, some examples of von Neumann-Schatten K-p-frames which are not von Neumann-Schatten
p-frames are presented.

Example 3.3. Let X =⊕Cp. Define K :⊕Cp→⊕Cp by

K({Ai}∞
i=1) =

{
Ai i = 2k,
0 i = 2k+1.

Obviously, K ∈ B(⊕Cp) and ‖K‖ ≤ 1.
Now, for each i ∈ N, define

Gi :⊕Cp→ Cp, Gi(A ) = PiK(A ),

where Pi is the coordinate operator on ⊕Cp. Clearly, {Gi}∞
i=1 ⊆ B(⊕Cp,Cp) and for each A =

{Ai}∞
i=1 ∈ ⊕Cp, we have( ∞

∑
i=1
‖Gi(A )‖p

p

) 1
p

=
( ∞

∑
i=1
‖PiK(A )‖p

p

) 1
p
= ‖K(A )‖.

Therefore, {Gi}∞
i=1 is a tight von Neumann-Schatten K-p-frame for X . But {Gi}∞

i=1 is not a von
Neumann-Schatten p-frame for X . To see this, suppose that {ei}∞

i=1 is an orthonrmal basis for H .
Consider A1 = e1⊗ e1, and

{Ai}∞
i=1 =

{
A1 i = 1,
0 i 6= 1.

Clearly, {Ai}∞
i=1 ∈ ⊕Cp and ‖{Ai}∞

i=1‖= ‖A1‖p = 1. But ∑
∞
i=1 ‖Gi({Ai}∞

i=1)‖
p
p = 0.

Example 3.4. Let X = H be a separable Hilbert space and let {ei}∞
i=1 be an orthonormal basis for

H . Fix M ∈ N and define K ∈ B(H ) by

K(e j) =

{
0, 1≤ j ≤M,

e j, j > M.

It is easy to see that for each x ∈H , ‖Kx‖ ≤ ‖x‖. Now, for each i ∈ N, define

Gi : H → Cp Gi( f ) =
1
2i K( f )⊗ e1.
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 6

Obviously, {Gi}∞
i=1 ⊆ B(H ,Cp). For each f ∈H , we have( ∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

=
( ∞

∑
i=1

1
2pi ‖K f‖p‖e1‖p

) 1
p

= ‖K f‖
( ∞

∑
i=1

1
2pi

) 1
p

=
‖K f‖

(2p−1)
1
p
.

Therefore, G is a von Neumann-Schatten K-p-frame for H . If we take f = e1, then ‖ f‖ = 1 but
∑

∞
i=1 ‖Gi( f )‖p

p = 0. Thus G is not a von Neumann-Schatten p-frame for H .

The next proposition characterizes von Neumann-Schatten K-p-frames in terms of a range inclusion
property. This characterization is analogous to the one presented for Hilbert space K-frames in [15,
Theorem 4].

Proposition 3.5. Let K ∈B(X ). Then a sequence G = {Gi}∞
i=1 is a von Neumann-Schatten K-p-frame

for X if and only if G is a von Neumann-Schatten p-Bessel sequence for X and R(K∗) ⊆ R(TG ),
where TG is the synthesis operator of G .

Proof. A sequence G is a von Neumann-Schatten K-p-frame for X with bounds AG and BG if and
only if

AG ‖K f‖ ≤

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

≤ BG ‖ f‖, ∀ f ∈X ,

which is equivalent to say that

AG ‖K f‖ ≤ ‖UG ( f )‖ ≤ BG ‖ f‖, ∀ f ∈X ,

where UG is the analysis operator of G . Now, the result follows from Theorem 2.4 and Theorem
2.8. �

Corollary 3.6. Let G = {Gi}∞
i=1 be a von Neumann-Schatten K-p-frame for X and T ∈ B(X ) with

R(T ∗)⊆ R(K∗). Then G is a von Neumann-Schatten T-p-frame for X .

Definition 3.7. Let K ∈ B(X ). A countable family G = {Gi}∞
i=1 ⊆ B(X ,Cp) is a von Neumann-

Schatten K∗-atomic system for X if the following conditions hold:

(i) the series ∑
∞
i=1 AiGi converges for each {Ai}∞

i=1 ∈ ⊕Cq;
(ii) there exists some positive number C such that for each x∗ ∈X ∗, there is a sequence Ax∗ =
{A x∗

i }∞
i=1 ∈ ⊕Cq with ‖Ax∗‖ ≤C‖x∗‖ and K∗x∗ = ∑

∞
i=1 A x∗

i Gi.

In the rest of this section, some relationships between von Neumann-Schatten K-p-frames and von
Neumann-Schatten K∗-atomic systems are collected. We first show that every von Neumann-Schatten
K∗-atomic system is a von Neumann-Schatten K-p-frame. In fact, the next theorem generalizes the
result obtained in the implication (i)⇒ (ii) of [15, Theorem 3].
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 7

Theorem 3.8. Let K ∈ B(X ) and let G = {Gi}∞
i=1 be a von Neumann-Schatten K∗-atomic system for

X . Then G is a von Neumann-Schatten K-p-frame for X .

Proof. Let x∗ ∈X ∗. Since G is a von Neumann-Schatten K∗-atomic system for X , there exist a se-
quence {A x∗

i }∞
i=1 ∈⊕Cq and a constant C > 0 such that ‖{A x∗

i }∞
i=1‖≤C‖x∗‖ and K∗x∗=∑

∞
i=1 A x∗

i Gi.
Now, for each x ∈X , we have

‖Kx‖ = sup
x∗∈X ∗,‖x∗‖≤1

∣∣∣x∗(Kx)
∣∣∣= sup

x∗∈X ∗,‖x∗‖≤1

∣∣∣K∗x∗(x)∣∣∣
= sup

x∗∈X ∗,‖x∗‖≤1

∣∣∣ ∞

∑
i=1

A x∗
i Gi(x)

∣∣∣
≤ sup

x∗∈X ∗,‖x∗‖≤1

(
∞

∑
i=1
‖A x∗

i ‖q
q

) 1
q
(

∞

∑
i=1
‖Gi(x)‖p

p

) 1
p

≤ sup
x∗∈X ∗,‖x∗‖≤1

C‖x∗‖

(
∞

∑
i=1
‖Gi(x)‖p

p

) 1
p

=C

(
∞

∑
i=1
‖Gi(x)‖p

p

) 1
p

.

Now, consider the operator

T :⊕Cq −→ X ∗

{Ai}∞
i=1 7→

∞

∑
i=1

AiGi.

By the Banach-Steinhaus theorem, T is a bounded operator. It follows from Theorem 2.4 that G is
also a von Neumann-Schatten p-Bessel sequence for X . Therefore, G is a von Neumann-Schatten
K-p-frame for X . �

As we know, every closed subspace of a Hilbert space is complemented but this does not necessarily
hold for subspaces of a Banach space. The following theorem shows that if R(UG ) is complemented,
where G is a von Neumann-Schatten K-p-frame, then G is also a von Neumann-Schatten K∗-atomic
system. Indeed, the next result is a more general version of the implication (ii)⇒ (i) in [15, Theorem
3].

Theorem 3.9. Suppose that G = {Gi}∞
i=1 is a von Neumann-Schatten K-p-frame for X and R(UG ) is

complemented. Then G is a von Neumann-Schatten K∗-atomic system for X .

Proof. The von Neumann-Schatten K-p-frame G is a von Neumann-Schatten p-Bessel sequence. It
follows from Theorem 2.4 that TG is a well-defined linear operator. Hence, the first condition of
Definition 3.7 is satisfied. Since G is a von Neumann-Schatten K-p-frame, it follows from Proposition
3.5 that R(K∗)⊆ R(TG ) and because R(UG ) is complemented, by Theorem 2.9, there exists some V ∈
B(⊕Cp,X ) such that K = VUG , so K∗ = TGV ∗. For each x∗ ∈X ∗, V ∗(x∗) ∈ ⊕Cq and ‖V ∗(x∗)‖ ≤
‖V ∗‖‖x∗‖, also we get

K∗x∗ = TGV ∗(x∗) =
∞

∑
i=1

Pi(V ∗(x∗))Gi.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 8

Considering C := ‖V ∗‖ and A x∗
i := Pi(V ∗(x∗)), where Pi is the coordinate operator on⊕Cq, we obtain

that G is a von Neumann-Schatten K∗-atomic system for X . �

Definition 3.10. Let K ∈ B(X ) and let G = {Gi}∞
i=1 ⊆ B(X ,Cp) be a von Neumann-Schatten p-

Bessel sequence for X and F = {Fi}∞
i=1 ⊆ B(X ∗,Cq) be a von Neumann-Schatten q-Bessel se-

quence for X ∗. The sequence G is called a von Neumann-Schatten K-dual for F if

K f =
∞

∑
i=1

Gi( f )Fi, ( f ∈X ),

and F is called a von Neumann-Schatten K∗-dual for G if

K∗g =
∞

∑
i=1

Fi(g)Gi, (g ∈X ∗).

Remark 3.11. With the assumptions of Definition 3.10, it is easy to check that if X is a reflexive
Banach space, then F is a von Neumann-Schatten K∗-dual for G if and only if G is a von Neumann-
Schatten K-dual for F .

Example 3.12. Let X = ⊕Cp. Suppose that G = {Gi}∞
i=1 and K ∈ B(X ) are the sequence and the

linear operator defined in Example 3.3, respectively. As we saw, G is a von Neumann-Schatten K-
p-frame. Now, for each i ∈ N, suppose that Fi is the coordinate operator on ⊕Cq (Fi : ⊕Cq→ Cq).
Obviously, {Fi}∞

i=1 ⊆ B(⊕Cq,Cq). It is easy to see that {Fi}∞
i=1 is a von Neumann-Schatten q-Bessel

sequence for⊕Cq and ∑
∞
i=1 Gi(A )Fi = KA , for each A ∈⊕Cp and ∑

∞
i=1 Fi(A )Gi = K∗A , for each

A ∈ ⊕Cq. Hence, F is a von Neumann-Schatten K∗-dual of G and G is a von Neumann-Schatten
K-dual of F .

The following proposition says that if a von Neumann-Schatten p-Bessel sequence G possesses a
von Neumann-Schatten K∗-dual, then G and its K∗-dual are von Neumann-Schatten K-p-frame and
von Neumann-Schatten K∗-q-frame, respectively. A special case of this result can be found in the
implication (iii)⇒ (ii) of [15, Theorem 3].

Proposition 3.13. Let K ∈ B(X ) and let G = {Gi}∞
i=1 ⊆ B(X ,Cp) be a von Neumann-Schatten

p-Bessel sequence for X and F = {Fi}∞
i=1 ⊆ B(X ∗,Cq) be a von Neumann-Schatten q-Bessel

sequence for X ∗. If F is a von Neumann-Schatten K∗-dual of G , then F and G are von Neumann-
Schatten K∗-q-frame for X ∗ and von Neumann-Schatten K-p-frame for X , respectively.
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 9

Proof. Suppose that BG is an upper bound of G . Then, for each g ∈X ∗, we have

‖K∗g‖ =

∥∥∥∥∥ ∞

∑
i=1

Fi(g)Gi

∥∥∥∥∥
= sup

f∈X ,‖ f‖≤1

∣∣∣∣∣ ∞

∑
i=1

Fi(g)Gi( f )

∣∣∣∣∣
≤ sup

f∈X ,‖ f‖≤1

(
∞

∑
i=1
‖Fi(g)‖q

q

) 1
q
(

∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

≤ BG

(
∞

∑
i=1
‖Fi(g)‖q

q

) 1
q

.

Therefore F is a a von Neumann-Schatten K∗-q-frame for X ∗.
Suppose that BF is an upper bound of F . Then, for each f ∈X , we have

‖K f‖ = sup
x∗∈X ∗,‖x∗‖≤1

∣∣∣x∗(K f
)∣∣∣

= sup
x∗∈X ∗,‖x∗‖≤1

∣∣∣K∗x∗( f )
∣∣∣

= sup
x∗∈X ∗,‖x∗‖≤1

∣∣∣ ∞

∑
i=1

Fi(x∗)Gi( f )
∣∣∣

≤ sup
x∗∈X ∗,‖x∗‖≤1

(
∞

∑
i=1
‖Fi(x∗)‖q

q

) 1
q
(

∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

≤ BF

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

.

Therefore, G is a von Neumann-Schatten K-p-frame for X . �

Now, using Theorems 3.8, 3.9 and Proposition 3.13, we obtain the following result which is a
generalization of Theorem 3 in [15] to von Neumann-Schatten K-p-frames, K∗-atomic systems and
K∗-duals in Banach spaces.

Theorem 3.14. Let K ∈B(X ) and let G = {Gi}∞
i=1⊆B(X ,Cp) be a von Neumann-Schatten p-Bessel

sequence for X . If R(UG ) is complemented, then the following are equivalent:
(i) G is a von Neumann-Schatten K∗-atomic system for X .

(ii) G is a von Neumann-Schatten K-p-frame for X .
(iii) There exists a von Neumann-Schatten q-Bessel sequence F = {Fi}∞

i=1 ⊆ B(X ∗,Cq) such
that F is a K∗-dual of G .

Proof. The equivalence of (i) and (ii) can be obtained using Theorem 3.8 and Theorem 3.9.
(ii)⇒ (iii). Suppose that G is a von Neumann-Schatten K-p-frame for X . By the argument we used
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 10

in the proof of Theorem 3.9, there exists some V ∈ B(⊕Cp,X ) such that K = VUG , so K∗ = TGV ∗.
Consider Fi := Pi(V ∗), where Pi is the coordinate operator on⊕Cq, for each i∈N. For each x∗ ∈X ∗,

V ∗(x∗) ∈ ⊕Cq and
(

∑
∞
i=1 ‖Pi(V ∗(x∗))‖q

q

) 1
q
= ‖V ∗(x∗)‖ ≤ ‖V ∗‖‖x∗‖, also we have

K∗x∗ = TGV ∗(x∗) =
∞

∑
i=1

Pi(V ∗(x∗))Gi =
∞

∑
i=1

Fi(x∗)Gi.

This means that {Fi}∞
i=1 is a K∗-dual of G .

We can get the implication (iii)⇒ (ii) by Proposition 3.13. �

Corollary 3.15. Let K ∈ B(X ) and let G = {Gi}∞
i=1 ⊆ B(X ,Cp) be a von Neumann-Schatten K-p-

frame for X . If the analysis operator of G is surjective, then G has a K∗-dual.

Several characterizations for duals of a Hilbert space frame appeared in [7]. Now, motivated by
the results obtained in [7], we give a characterization for von Neumann-Schatten K∗-duals of a von
Neumann-Schatten K-p-frame.

Theorem 3.16. Let G = {Gi}∞
i=1 ⊆ B(X ,Cp) be a von Neumann-Schatten K-p-frame for X . If Pi is

the coordinate operator on⊕Cq, then von Neumann-Schatten K∗-duals of G are precisely the families
{Fi}∞

i=1 = {PiM}∞
i=1, where M : X ∗→⊕Cq is a linear bounded operator with K∗ = TG M.

Proof. For every x∗ ∈X ∗, we have∥∥∥{PiM(x∗)}∞
i=1

∥∥∥ = ‖M(x∗)‖

≤ ‖M‖‖x∗‖.

This shows that {Fi}∞
i=1 is a von Neumann-Schatten q-Bessel sequence. Also, for each x∗ ∈X ∗, we

have

K∗(x∗) = TG M(x∗)

= TG

(
{PiM(x∗)}∞

i=1

)
=

∞

∑
i=1

Fi(x∗)Gi.

Therefore {Fi}∞
i=1 is a K∗-dual of G .

For the other implication, suppose that {Fi}∞
i=1 is a K∗-dual of G . Then UF : X ∗→⊕Cq is a bounded

linear operator, {Fi}∞
i=1 = {PiUF}∞

i=1 and it is clear that K∗ = TGUF . �

The preservation of the frame properties under the action of bounded operators has a major impact
on the applications of frames and their generalizations, see [5, 7, 25]. In the following proposition,
we show that every bounded below operator which commutes with K preserves the properties of a
von Neumann-Schatten K-p-frame.

Proposition 3.17. Let K ∈ B(X ) and let G = {Gi}∞
i=1 ⊆ B(X ,Cp) be a von Neumann-Schatten

K-p-frame for X . If T ∈ B(X ) is bounded below and KT = T K, then {GiT}∞
i=1 is a von Neumann-

Schatten K-p-frame for X .
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 11

Proof. Suppose that AG and BG are von Neumann-Schatten K-p-frame bounds for G and A1 is the
lower bound of T . It is clear that {GiT}∞

i=1 is a von Neumann-Schatten p-Bessel sequence. For each
f ∈X , we have ( ∞

∑
i=1
‖GiT ( f )‖p

p

) 1
p ≥ AG ‖KT ( f )‖

= AG ‖T K( f )‖
≥ A1AG ‖K f‖.

Therefore {GiT}∞
i=1 is a von Neumann-Schatten K-p-frame for X . �

4. Perturbations of von Neumann-Schatten K-p-frames

In this section, we focus on perturbations of von Neumann-Schatten K-p-frames. It is shown that they
are stable under small perturbations. Indeed, the stability of von Neumann-Schatten K-p-frames under
some well-known kinds of perturbations is considered. These perturbations have been presented and
studied for frames and some of their generalizations such as g-frames, fusion frames and Hilbert-
Schmidt frames, see [4, 6, 7, 17, 21, 26].

Theorem 4.1. Let K ∈ B(X ) and let G = {Gi}∞
i=1 be a von Neumann-Schatten K-p-frame for X and

let V = {Vi}∞
i=1 be a sequence in B(X ,Cp). If λ1,λ2,µ ≥ 0 such that max{λ1 +

µ

AG
,λ2}< 1 and

(4.1)

(
n

∑
i=1
‖Gi( f )−Vi( f )‖p

p

) 1
p

≤ λ1

(
n

∑
i=1
‖Gi( f )‖p

p

) 1
p

+λ2

(
n

∑
i=1
‖Vi( f )‖p

p

) 1
p

+µ‖K f‖,

for every f ∈X and n ∈ N, then {Vi}∞
i=1 is a von Neumann-Schatten K-p-frame for X with bounds

(1−λ1)AG −µ

(1+λ2)
and

(1+λ1)BG +µ‖K‖
(1−λ2)

.

Proof. For every f ∈X and n ∈ N, we have(
n

∑
i=1
‖Gi( f )−Vi( f )‖p

p

) 1
p

=
∥∥∥{Gi( f )−Vi( f )}n

i=1

∥∥∥
≥

∥∥∥{Vi( f )}n
i=1

∥∥∥−∥∥∥{Gi( f )}n
i=1

∥∥∥.
Using (4.1), we obtain that∥∥∥{Vi( f )}n

i=1

∥∥∥−∥∥∥{Gi( f )}n
i=1

∥∥∥ ≤ λ1

(
n

∑
i=1
‖Gi( f )‖p

p

) 1
p

+λ2

(
n

∑
i=1
‖Vi( f )‖p

p

) 1
p

+µ‖K f‖.

Therefore

(1−λ2)

(
n

∑
i=1
‖Vi( f )‖p

p

) 1
p

≤ (1+λ1)

(
n

∑
i=1
‖Gi( f )‖p

p

) 1
p

+µ‖K f‖

≤ (1+λ1)BG ‖ f‖+µ‖K‖‖ f‖,
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 12

for every n ∈ N. Hence (
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p

≤ (1+λ1)BG +µ‖K‖
(1−λ2)

‖ f‖.

Similarly using (4.1), we get(
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p

≥ (1−λ1)AG −µ

(1+λ2)
‖K f‖.

Thus {Vi}∞
i=1 is a von Neumann-Schatten K-p-frame for X with bounds

(1−λ1)AG −µ

(1+λ2)
and

(1+λ1)BG +µ‖K‖
(1−λ2)

.

�

Proposition 4.2. Let K ∈ B(X ). Suppose that G = {Gi}∞
i=1 ⊆ B(X ,Cp) is a von Neumann-Schatten

K-p-frame, P = {Pi}∞
i=1 is a subset of B(X ,Cp) and {ci}∞

i=1 is a sequence in `p. If there exist some
0≤ λ1,λ2 < 1 such that∥∥Gi( f )−Pi( f )

∥∥
p ≤ λ1

∥∥Gi( f )
∥∥

p +λ2
∥∥Pi( f )

∥∥
p + ci‖K f‖,

for each f ∈X and i ∈ N with (1−λ1)AG > ‖{ci}∞
i=1‖`p , then P is a von Neumann-Schatten K-p-

frame.

Proof. For each f ∈X and every finite subset Ω in N, we have

∥∥{Gi( f )−Pi( f )
}

i∈Ω

∥∥≤ λ1
∥∥{Gi( f )

}
i∈Ω

∥∥+λ2
∥∥{Pi( f )

}
i∈Ω

∥∥+∥∥{ci}i∈Ω

∥∥
`p‖K f‖,

so ∥∥{Pi( f )
}

i∈Ω

∥∥ ≤ ∥∥{Gi( f )
}

i∈Ω

∥∥+∥∥{Pi( f )−Gi( f )
}

i∈Ω

∥∥
≤ (1+λ1)

∥∥{Gi( f )
}

i∈Ω

∥∥+λ2
∥∥{Pi( f )

}
i∈Ω

∥∥+∥∥{ci}i∈Ω

∥∥
`p‖K‖‖ f‖,

consequently, ∥∥{Pi( f )
}

i∈Ω

∥∥≤ 1
1−λ2

(
(1+λ1)BG +‖K‖

∥∥{ci}∞
i=1
∥∥
`p

)
‖ f‖.

This means that P is a von Neumann-Schatten p-Bessel sequence. If G is a von Neumann-Schatten
K-p-frame with (1−λ1)AG > ‖{ci}∞

i=1‖`p , then∥∥{Pi( f )
}

i∈Ω

∥∥ ≥ ∥∥{Gi( f )
}

i∈Ω

∥∥−∥∥{Pi( f )−Gi( f )
}

i∈Ω

∥∥
≥ (1−λ1)

∥∥{Gi( f )
}

i∈Ω

∥∥−λ2
∥∥{Pi( f )

}
i∈Ω

∥∥−∥∥{ci}i∈Ω

∥∥
`p‖K f‖.

Hence ∥∥{Pi( f )
}∞

i=1

∥∥≥ 1
1+λ2

(
(1−λ1)AG −

∥∥{ci}∞
i=1
∥∥
`p

)
‖K f‖.

This yields that P is a von Neumann-Schatten K-p-frame. �
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VON NEUMANN-SCHATTEN P-FRAMES FOR OPERATORS 13

Theorem 4.3. Let K ∈ B(X ) and let G = {Gi}∞
i=1 be a von Neumann-Schatten K-p-frame for X and

let {Vi}∞
i=1 be a sequence in B(X ,Cp). If there exists some positive constant M, such that for each

f ∈X ,

(4.2)

(
∞

∑
i=1
‖Gi( f )−Vi( f )‖p

p

) 1
p

≤M min


(

∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

,

(
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p
 ,

then the sequence {Vi}∞
i=1 is a von Neumann-Schatten K-p-frame for X .

Proof. Suppose that (4.2) holds. For each f ∈X and n ∈ N, we have(
n

∑
i=1
‖Vi( f )‖p

p

) 1
p

≤
∥∥∥{(Gi−Vi)( f )}n

i=1

∥∥∥+∥∥∥{Gi( f )}n
i=1

∥∥∥
≤

(
∞

∑
i=1
‖Gi( f )−Vi( f )‖p

p

) 1
p

+

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

≤ M

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

+

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

= (M+1)

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

≤ BG (M+1)‖ f‖.

Therefore, (
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p

≤ BG (M+1)‖ f‖.

Also, for each f ∈X , we get

AG ‖K f‖ ≤

(
∞

∑
i=1
‖Gi( f )‖p

p

) 1
p

=
∥∥∥{Gi( f )}∞

i=1

∥∥∥
≤

∥∥∥{(Gi−Vi)( f )}∞
i=1

∥∥∥+∥∥∥{Vi( f )}∞
i=1

∥∥∥
=

(
∞

∑
i=1
‖Gi( f )−Vi( f )‖p

p

) 1
p

+

(
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p

≤ M

(
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p

+

(
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p

= (M+1)

(
∞

∑
i=1
‖Vi( f )‖p

p

) 1
p

.

Therefore, V = {Vi}∞
i=1 is a von Neumann-Schatten K-p-frame. �
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