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Abstract: Let k � 2 be an integer and let P (X) be a monic polynomial of
Z[X] with degree k � 1. We say that P (X) is a G�polynomial if for each n 2
f1; 2; : : : ; kg, P (X) divides P (Xn) in the ring Z[X] if and only if gcd(n; k) = 1.
We present several approaches on �nding necessary and su¢ cient conditions so that
P (X) is a G�polynomial. Among other interesting results, we show that Ak(X) :=
Xk�1 +Xk�2 + � � �X + 1 is the unique G�polynomial of degree k � 1 if and only
if k is a prime number.
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1 Introduction

Several authors were interested in polynomials with integer coe¢ cients having
all their roots in the unit disc [4], [7]. Other authors focused their study on
the divisibility of polynomials with integer coe¢ cients in the ring Z[X_] [3], [8].
Subsequently, some interesting results were settled about polynomials P (X)
with integer coe¢ cients that divide P (Xn) for some positive integer n [1], [2].
In this current paper, we continue in the same direction by considering some
special kind of polynomials named G�polynomials.
For an integer k � 2, let Ak(X) := Xk�1 + Xk�2 + � � �X + 1 2 Z[X]. It

is well-known [2, Theorem 1.4] that for every positive integer n, Ak(X) divides
Ak(X

n) in the ring Z[X] if and only if gcd(n; k) = 1. This result motivates us
to set the following de�nition:

De�nition 1 Let k � 2 be an integer and let P (X) be a monic polynomial of
Z[X] with degree k � 1. We say that P (X) is a G�polynomial if for each n 2
f1; 2; : : : ; kg, P (X) divides P (Xn) in the ring Z[X] if and only if gcd(n; k) = 1:

The reasoning behind the nameG�polynomials stems from their relationship
with the greatest common divisor. One can observe that the equivalence in this
de�nition is essential. Indeed, it may happen that P (X) divides P (Xn) for
each n 2 f1; 2; : : : ; k � 1g such that gcd(n; k) = 1, however, P (X) is not a
G�polynomial. For instance, the polynomial P (X) = (X�1)(X2+1) of degree
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3 divides P (X) and P (X3), and P (X) does not divide P (X2), however P (X)
is not G�polynomial because P (X) divides P (X4).
We denote by G[k] the set of all G�polynomials with degree k�1. For exam-

ple, Ak(X) is an element of G[k] whereas the polynomials Xk�1 and Xk�1 � 1
do not belong to G[k]. Our goal is to study the set G[k] for any integer k � 2.
Obviously, X + a divides X2 + a if and only if a = 0 or a = �1, so we have

G[2] = fX + a : a 2 Znf�1; 0gg:

Therefore, throughout our study, we impose the condition k � 3 and we
emphisize that any division of polynomials is performed in Z[X]. Our second
section concerns Kronecker polynomials. We investigate under which conditions
a Kronecker polynomial P (X) divides P (Xn) in Z[X] for some positive integer n
[Theorem 4]. Our third section is devoted to the case where k is a prime number.
We show that G[k] = fAk(X)g if and only k is a prime number [Theorem 8].
In the fourth section, we explore the case where k is composite. Several results
are established to determine under which conditions a polynomial of Z[X] is a
G�polynomial [Theorems 15, 19, 26]. Numerous important consequences are
derived [Corollaries 21, 22, 23, 24]. Finally, the �fth section is dedicated to
examples to show the scope of our study.

2 Kronecker polynomials

The following characterization collects several facts about Kronecker polyno-
mials. A monic polynomial of P (X) 2 Z[X] with all roots in the unit disc
fz 2 C : jzj � 1g is called a Kronecker polynomial. In fact, all the roots of
such polynomials have modulus zero or one [4, Theorem 1]. Recall that the ath

cyclotomic polynomial for a positive integer a, denoted by �a(X) or simply by
�a, is de�ned by �a(X) = (X � �1)(X � �2) � � � (X � �n), where �1; �2; : : : ; �n
are exactly the distinct primitive ath roots of unity. It is shown in [6] that �a(X)
is a monic, irreducible polynomial with integer coe¢ cients. Its degree is '(a),
where ' is the Euler�s totient function. Since a cyclotomic polynomial has all
its roots in the unit circle fz 2 C : jzj = 1g, we can then say that any cyclotomic
polynomial is a Kronecker polynomial.

Proposition 2 Let P (X) be a monic polynomial of Z[X]. Then the following
conditions are equivalent:
(i) P (X) is a kronecker polynomial,
(ii) P (X) = XrQ(X), where r is a non negative integer and Q(X) is a

�nite product of cyclotomic polynomials,
(iii) There is a positive integer m such that P (X) divides P (Xp) for every

prime number p � m,
(iv) P (X) divides P (Xt) for some integer t � 2.

Proof. (i)) (ii) from [4, Theorem 2].
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(ii) ) (iii) Suppose that P (X) := Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s , where r is

a non negative integer. Set m = 1 +Maxfai : 1 � i � sg and let p � m be a
prime number. Since gcd(p; ai) = 1 for every i 2 f1; 2; : : : ; sg, then �ai divides
�ai(X

p) [2, Theorem 1.4], so P (X) divides P (Xp).
(iii)) (iv) is trivial.
(iv)) (i) Let � be a nonzero root of P (X). Since P (X) divides P (Xt) for

some integer t � 2, then �t; �t
2

; : : : ; �t
n

; : : : are roots of P (X). But, as P (X)

has �nitely many roots, then �t
m

= �t
m+1

for some positive integer m. Thus,
�t

m(t�1) = 1 and j�j = 1.

Consequently, every G�polynomial is a Kronecker polynomial. Since the set
of all Kronecker polynomials of the same given degree is �nite, we can conclude
that G[k] is also �nite for k � 3. The following Lemma constitutes a signi�cant
improvement of [2, Theorem 1.4].

Lemma 3 Let a, b, �, � and n be positive integers. Set d := gcd(n; a), then
the following conditions are equivalent:
(i) (�a)

� divides (�b(X
n))�,

(ii) (�a)
� divides (�b(X

d))�,
(iii) � � � and a = bd.

Proof. (i) ) (iii) Suppose that (�a)
� divides (�b(X

n))� . Let � be a root of
�a, then �

n is a root of �b and o(�
n) = b. Considering the order of �n as an

element of the cyclic group < � > generated by �, then o(�n) = o(�)
gcd(n;a) =

a
d .

We derive the formula a = bd. Obviously, the multiplicity of � relative to the

polynomial (�a)
� is �. Now, assume that �b =

tY
i=1

(X � �i). As �n is a root of

�b, then �
n 2 f�1; �2; : : : ; �tg, say �n = �1. We have

(�b(X
n))� =

tY
i=1

(Xn � �i)� = (Xn � �n)�
tY
i=2

(Xn � �i)� = (X � �)�Q(X);

where

Q(X) = (
nX
i=1

Xn�i�i�1)�
tY
i=2

(Xn � �i)� :

Since Q(�) = (n�n�1)�
tY
i=2

(�1 � �i)� 6= 0, then the multiplicity of � relative to

(�b(X
n))� is �. Finally, because (�a)

� divides (�b(X
n))� , then � � �.

(iii)) (ii) Assume that � � � and a = bd. For every root � of �a, we have
o(�) = a. Since o(�d) = o(�)

gcd(d;a) =
a
d = b, then �

d is a root of �b. We deduce

that �b(X
d) vanishes on each root of �a. As the multiplicity of each root of

�a is 1, we conclude that �a divides �b(X
d). Since � � �, then (�a)� divides

(�b(X
d))� .
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(ii) ) (i) Suppose now that (�a)
� divides (�b(X

d))� . By using a similar
argument as in (i) ) (iii), we �nd that � � � and a = b gcd(d; a) = bd.
Since gcd(nd ; b) = 1, then �b divides �b(X

n
d ) [2, Theorem 1.3], so (�b)

� divides
(�b(X

n
d ))� . Thus, (�b(X

d)� divides (�b((X
d)

n
d ))� = (�b(X

n)� : Finally, as
(�a)

� additionally divides (�b(X
d))� , then (�a)

� divides (�b(X
n))� .

For our convenience, if P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s is a Kronecker

polynomial, we will assume that a1 < a2 < � � � < as.

Theorem 4 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker polyno-

mial. For every positive integer n, set di := gcd(n; ai). Then the following
conditions are equivalent:
(i) P (X) divides P (Xn),
(ii) For each i 2 f1; 2; : : : ; sg, there is j � i (necessarily unique) such that

(�ai)
�i divides (�aj (X

n))�j .
(iii) For each i 2 f1; 2; : : : ; sg, there is j � i (necessarily unique) such that

(�ai)
�i divides (�aj (X

di))�j .
(iv) For each i 2 f1; 2; : : : ; sg, there is j � i (necessarily unique) such that

�i � �j and ai = ajdi.
(v) For each i 2 f1; 2; : : : ; sg, di = 1 or there is j < i (necessarily unique)

such that �i � �j and ai = ajdi.

Proof. (i) ) (ii) Suppose that P (X) divides P (Xn). Then for each i 2
f1; 2; : : : ; sg, �ai divides P (X

n) = Xnr(�a1(X
n))�1(�a2(X

n))�2 � � � (�as(X
n))�s .

As �ai is irreducible in Z[X], then �ai divides �aj (X
n) for some j 2 f1; 2; : : : ; sg.

In light of Lemma 3, we get ai = ajdi and j � i. Furthermore, from this latter
relationship between ai and aj , we deduce that aj is the sole among the a0is for
which �ai divides �aj (X

n). Therefore, (�ai)
�i divides (�aj (X

n))�j .
(ii)) (iii)) (iv) Results directly from Lemma 3:
(iv), (v) is clear.
(iv)) (i) Let i 2 f1; 2; : : : ; sg. There is j 2 f1; 2; : : : ; ig such that ai = ajdi

and �i � �j . In view of Lemma 3, �ai divides �aj (X
n), so (�ai)

�i divides
(�aj (X

n))�j . We conclude that (�ai)
�i divides P (Xn) for every i 2 f1; 2; : : : ; sg.

As the polynomials Xr; (�a1)
�1 ; (�a2)

�2 ; � � � (�as)
�s are relatively prime, then

P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s divides P (Xn).

Remark that the factor Xr of P (X) has no e¤ect in Theorem 4. We can
state the following direct result.

Corollary 5 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker polyno-

mial and let Qvh(X) = Xv(�a1)
�1(�a2)

�2 � � � (�ah)
�h for some 1 � h � s and

0 � v � r. Then the following conditions are equivalent:
(i) P (X) divides P (Xn)
(ii) Qvh(X) divides Q

v
h(X

n) for every h 2 f1; 2; : : : ; sg,
(iii) Q0s(X) divides Q

0
s(X

n).
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Corollary 6 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker polyno-

mial such that P (X) divides P (Xn). If (�ai)
�i divides (�aj (X

n))�j for some
i; j 2 f1; 2; : : : ; sg, set di := gcd(n; ai) and dj := gcd(n; aj). Then
(i) dj divides di.
(ii) If, in addition, ai is a square-free integer, then �aj divides �aj (X

n).

Proof. (i) By application of Theorem 4(iv), we have ai = diaj . If dj =
1, there is nothing to prove. Let us assume that dj 6= 1. Then there is
h 2 f1; 2; : : : ; sg such that aj = djah. It follows that di = gcd(n; ai) =
gcd(n; diaj) = gcd(n; didjah) = dj gcd(n=dj ; diah). Thus, dj divides di.
(ii) In view of the �rst point, di = cdj for some positive integer c. Suppose

that dj 6= 1. We necessarily have di 6= 1 and there is h 2 f1; 2; : : : ; sg such that
aj = djah. Therefore, ai = diaj = c(dj)2ah and ai is not a square-free integer.
Hence, dj = 1 and �aj divides �aj (X

n) [2, Theorem 1.4].

3 The case where k is a prime number

Lemma 7 Let P (X) = Xr(�pm1
1
)�1(�pm2

2
)�2 � � � (�pms

s
)�s , where p1; p2; : : : ; ps

are distinct primes. For every positive integer n, the following conditions are
equivalent:
(i) P (X) divides P (Xn),
(ii) gcd(n; p1p2 � � � ps) = 1.

Proof. (i) ) (ii) Let i 2 f1; 2; : : : ; sg. By virtue of Theorem 4(iv), since
P (X) divides P (Xn), there is j 2 f1; 2; : : : ; sg such that pmi

i = p
mj

j gcd(n; pmi
i ).

We necessarily have pi = pj and gcd(n; p
mi
i ) = 1. Thus, gcd(n; pi) = 1 for all

i 2 f1; 2; : : : ; sg. It follows that gcd(n; p1p2 � � � ps) = 1.
(ii)) (i) Assume that gcd(n; p1p2 � � � ps) = 1. Then gcd(n; pmi

i ) = 1 for all
i 2 f1; 2; : : : ; sg. Hence, P (X) divides P (Xn), by Theorem 4(iv), as desired.

The following Theorem determines explicitly the set G[k] when k is a prime
number.

Theorem 8 G[k] = fAk(X)g if and only if k is a prime number.

Proof. Suppose that k is a prime number and let P (X) 2 G[k]. We need
to show that P (X) = Ak(X). Since P (X) is a Kronecker polynomial, then
P (X) = Xr(�a1)

�1(�a2)
�2 � � � (�as)

�s , where r � 0, �i � 0 and ai > 0 are
integers. As gcd(k; k) = k, then P (X) does not divide P (Xk). So, there is
i 2 f1; 2; : : : ; sg such that (�ai)

�i does not divide (�ai(X
k))�i . By application

of Lemma 3, gcd(ai; k) 6= 1. Since k is a prime number, then k must divide

ai and '(ai) � '(k) = k � 1. But deg(P (X)) = r +
sX
i=1

�i'(ai) = k � 1 , we

necessarily have r = 0, s = 1 , �i = 1 and ai = k. Hence, P (X) = �ai = Ak(X).
Conversely, assume that G[k] consists only of the polynomial Ak(X). We shall
prove that k is a prime number by using two steps:
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Step 1: We �rst prove that k is square-free: By the contrapositive, suppose
that k is a not square-free. Then there is a natural number q 2 Nnf0; 1g such
that q2 divides k. Let m := k=q and consider the polynomial

P (X) = Am(X)(X
k�m � 1) = Am(X)((Xm)q�1 � 1):

We shall prove that P (X) is a G�polynomial. Firstly, note that P (X) 6=
Ak(X) since P (0) = �1 while Ak(0) = 1. Let n 2 f1; 2; : : : ; kg such that
gcd(n; k) = 1. Since gcd(m;n) = 1, then Am(X) divides Am(Xn) [1, Theorem
1.4]. Moreover, because Xk�m� 1 clearly divides (Xn)k�m� 1, we deduce that
P (X) divides P (Xn). Now, let n 2 f1; 2; : : : ; kg such that gcd(n; k) 6= 1. We
must prove that P (X) does not divide P (Xn). We claim that gcd(m;n) 6= 1.
Indeed, if p is a prime number that divides n and k, then p divides m or q. But,
as q divides m, we can say that p divides m. Thus p divides m and n, so that
gcd(m;n) 6= 1. On the other hand, we have

P (Xn) = Am(X
n)((Xmn)q�1 � 1)

= Am(X
n)((Xm(q�1))n � 1)

= Am(X
n)((Xm)q�1 � 1)Q(X);

where Q(X) =
n�1X
i=0

Xim(q�1). Assume that P (X) divides P (Xn). Then Am(X)

divides Am(Xn)Q(X). Let � = exp( 2i�m ), then the roots of Am(X) in C are
�; �2; : : : ; �m�1. Since the polynomial Q(�i) = n for each i 2 f1; 2; : : : ;m� 1g,
we conclude that Am(Xn) vanishes on each root of Am(X). This means that
Am(X) divides Am(Xn). It follows that gcd(m;n) = 1 by [2, Theorem 1.4],
yielding a contradiction.
Step 2: Suppose, by way of contradiction, that k is not a prime number.

Then k = p1p2 : : : ps for some prime numbers p1, p2, : : :, ps with s > 1. Consider
the polynomial

P (X) = XrAp1(X)Ap2(X) � � �Aps(X);

where r = k � 1 + s �
sX
i=1

pi. In view of Lemma 7, P (X) divides P (Xn) for

every n 2 f1; 2; : : : ; kg if and only if gcd(n; k) = 1. It results that P (X) is a
G�polynomial, a contradiction since G[k] = fAk(X)g.

According to Theorem 8, G[3], G[5], G[7]; : : : are well-known. How about
G[k] for a composite number k?

4 The case where k is composite

Lemma 9 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker polyno-

mial and let n be a positive integer. If P (X) divides P (Xn), then gcd(n; a1) = 1.
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Proof. Suppose that P (X) divides P (Xn). According to Theorem 4(iv), we
have a1 = gcd(n; a1)aj for some j 2 f1; 2; : : : ; sg. As a1 � aj , we necessarily
have gcd(n; a1) = 1.

Set }(1) := ?. If a is a positive integer, let }(a) be the set of all prime num-
bers that divide a. Let P (X) = Xr(�a1)

�1(�a2)
�2 � � � (�as)

�s be a Kronecker
polynomial of degree k � 1. To provide e¤ective conditions under which P (X)
would be a G�polynomial, we need some preliminary results that will give us
good ideas about the positive integers a1; a2; : : : ; as of P (X). To this end, we
distinguish the cases where }(ai) * }(k) or }(ai) � }(k).

Proposition 10 If P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s is a G�polynomial

of degree k � 1, then }(a1) � }(k) �
s[
l=1

}(al).

Proof. We may assume that a1 > 1. Let p 2 }(a1). Then gcd(p; a1) = p. In
light of Lemma 9, P (X) does not divides P (Xp). It follows that gcd(p; k) 6= 1
and p 2 }(k). Thus, }(a1) � }(k). Now, let p 2 }(k). Then P (X) does
not divide P (Xp). It follows that �aj does not divide �aj (X

p) for some j 2

f1; 2; : : : ; sg. Hence, gcd(p; aj) 6= 1 and p 2 }(aj) �
s[
l=1

}(al).

Corollary 11 (i) Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker

polynomial of degree k � 1. If
s[
l=2

}(al) � }(a1) = }(k), then P (X) is a

G�polynomial.
(ii) P (X) = Xr(�a)

� is a G�polynomial of degree k � 1 if and only if
}(k) = }(a).

Proof. Let n be a positive integer such that 1 � n � k. If gcd(n; k) = 1,
then gcd(n; ai) = 1 and (�ai)

�i divides (�ai(X
n))�i for every i 2 f1; 2; : : : ; sg.

Hence, P (X) divides P (Xn). If gcd(n; k) 6= 1, then there is a prime number
p 2 }(k) such that p divides n. As p 2 }(a1), then gcd(n; a1) 6= 1 and P (X)
does not divide P (Xn) [Lemma 9]. We conclude that P (X) is a G�polynomial.
In particular, for s = 1, we derive the point (ii) that is a direct consequence of
Proposition 10 and the point (i).

Corollary 12 (i) If P (X) = Xr(�a)
� is a G�polynomial and gcd(a; r+1) = 1,

then a is a square-free number and a� �'(a) � r + 1.
(ii) �a is a G�polynomial if and only if a is a prime number.

Proof. Suppose that deg(P (X)) = k � 1. Then k = r + 1 + �'(a) and
}(k) = }(a) [Proposition 10]. If a has the factorization a = p�11 p

�2
2 � � � p�ss

into prime numbers, then '(a) = p�1�11 p�2�12 � � � p�s�1s

sY
i=1

(pi � 1). For every
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i 2 f1; 2; : : : ; sg, pi divides k and a. Since gcd(a; r + 1) = 1, then '(a) is not
divisible by pi. Therefore, �i = 1 for all i and a = p1p2 � � � ps is a square-
free number. We deduce, in particular, that a � k = r + 1 + �'(a); that is
a � �'(a) � r + 1. For the second statement, it is su¢ cient to apply the �rst
point with r = 0 and � = 1 to get '(a) = a� 1.

Lemma 13 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a G�polynomial of

degree k � 1. If i � 2 and }(ai) * }(k), then for every p 2 }(ai)n}(k), there
exists a unique j < i such that �i � �j and ai = paj.

Proof. Let p 2 }(ai)n}(k). Then gcd(p; k) = 1 and P (X) divides P (Xp). By
application of Theorem 4(iv), there exists a unique j � i such that �i � �j and
ai = gcd(p; ai)aj = paj . In fact, we have i 6= j since ai 6= aj .

De�nition 14 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker poly-

nomial of degree k � 1. We say that P (X) is a quasi�G�polynomial if ei-

ther }(k) =
s[
l=1

}(al); or for every ai (i � 2) such that }(ai) * }(k) and

p 2 }(ai)n}(k), there exists a unique j < i such that �i � �j and ai = ajp.

In view of Lemma 13, every G�polynomial is quasi�G�polynomial. The
following Theorem provides several characterizations of quasi�G�polynomials.

Theorem 15 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker poly-

nomial of degree k � 1. If }(a1) � }(k), then the following conditions are
equivalent:
(i) P (X) is a quasi�G�polynomial,
(ii) If }(ai) * }(k) and p1; p2; : : : ; pu of }(ai)n}(k) such that ph11 , p

h2
2 , � � � ,

phuu divide ai for positive integers h1; h2; : : : ; hu, then there exists a unique j < i
such that �i � �j and ai = ph11 p

h2
2 � � � phuu aj,

(iii) If }(ai) * }(k), then there exists a unique j � i such that (�ai)
�i

divides (�aj (X
n))�j for every positive integer n such that gcd(n; k) = 1,

(iv) P (X) divides P (Xn) for every positive integer n such that gcd(n; k) = 1,
(v) P (X) divides P (Xp) for every prime p such that p =2 }(k).

Proof. (i)) (ii) Since P (X) is a quasi�G�polynomial, there exists a unique
j1 < i such that �i � �j1 and ai = p1aj1 . If h1 � 2, then p1 2 }(aj1)n}(k),
and there exists a unique j2 < j1 such that �j1 � �j2 and aj1 = p1aj2 . Thus,
�i � �j1 � �j2 and ai = p21aj2 . We can continue and use the same argument
to prove that there exists a unique i1 < i such that �i � �i1 and ai = ph11 ai1 .
Moreover, we have fp2; : : : ; pug � }(ai1)n}(k). Repeating the same procedure
for ai1 , we �nd that there exists a unique i2 < i1 < i such that �i1 � �i2 and
ai1 = ph22 ai2 . Thus, �i � �i2 and ai = ph11 p

h2
2 ai2 . After some �nite steps, we

progressively realize that there exists a unique j < i such that �i � �j and
ai = p

h1
1 p

h2
2 � � � phuu aj .
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(ii)) (i) is trivial.
(ii) ) (iii) Let n be a positive integer such that gcd(n; k) = 1, and as-

sume that }(ai) * }(k). If gcd(n; ai) = 1, then (�ai)
�i divides (�ai(X

n))�i

[2, Theorem 1.3]. Let us assume that gcd(n; ai) 6= 1. As gcd(n; k) = 1, then
gcd(n; ai) = p

h1
1 p

h2
2 � � � phuu for some primes p1; p2 : : : ; pu 2 }(ai)n}(k) and non-

negative integers h1; h2 : : : ; hu (not all equal to 0). Therefore, there exists a
(unique) j < i such that �i � �j and ai = ph11 p

h2
2 � � � phuu aj = gcd(n; ai)aj

Hence, there exists a unique j � i such that (�ai)
�i divides (�aj (X

n))�j .
(iii) ) (iv) Let n be a positive integer such that gcd(n; k) = 1 and let

i 2 f1; 2; : : : ; kg. Obviously, gcd(n; a1) = 1 since }(a1) � }(k). We may
suppose that i � 2. If di = gcd(n; ai) = 1, we are done. If di 6= 1, then
}(ai) * }(k). From (iii); there exists a unique j � i such that (�ai)

�i divides
(�aj (X

n))�j . It follows that there is j � i such that �i � �j and ai = ajdi.
Hence, P (X) divides P (Xn) by Theorem 4(v).
(iv)) (v) is trivial.

(v) ) (i) If }(k) =
s[
l=1

}(al), then we are done. Let ai such that }(ai) *

}(k). According to (v), for every prime p 2 }(ai)n}(k), P (X) divides P (Xp).
By virtue of Theorem 4(iv), there is a unique j < i such that �i � �j and
ai = gcd(p; ai)aj = paj . Hence, P (X) is a quasi�G�polynomial.

Corollary 16 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a quasi�G�polynomial

of degree k � 1. If for i � 2, }(ai)n}(k) consists of the primes p1; p2; : : : ; pu,
then there exists a unique j < i and unique positive integers m1, m2, : : :, mu

such that �i � �j and ai = pm1
1 pm2

2 � � � pmu
u aj with }(aj) � }(k).

Proof. Suppose that ai has the factorization

ai = p
m1
1 pm2

2 � � � pmu
u qn11 q

n2
2 � � � qnvv

into primes such that qi 2 }(k) while pi =2 }(k) for each i. In view of Theorem
15(ii), there exists a unique j < i such that �i � �j and ai = pm1

1 pm2
2 � � � pmu

u aj .
A fortiori, we have aj = q

n1
1 q

n2
2 � � � qnvv and }(aj) � }(k).

The following Corollary readily comes from Theorem 15 since anyG�polynomial
is a quasi�G�polynomial.

Corollary 17 If P (X) is a G�polynomial of degree k � 1, then P (X) divides
P (Xn) for every positive integer n such that gcd(n; k) = 1.

It is well-known [2, Theorem 1.4] that for every positive integer n, Ak(X)
divides Ak(Xn) if and only if gcd(n; k) = 1. A question arises: In the de�nition
of a G�polynomial P (X) of degree k � 1, can we replace n 2 f1; 2; : : : ; kg by
any positive integer n? The next corollary provides a partial answer.
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Corollary 18 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker poly-

nomial of degree k � 1. If ai divides k for each i 2 f1; 2; : : : ; sg, then the
following conditions are equivalent:
(i) P (X) is a G�polynomial,
(ii) For each positive integer n; P (X) divides P (Xn) if and only if gcd(n; k) =

1.

Proof. In view of Corollary 17, it is su¢ cient to prove that if P (X) is a
G�polynomial and n is a positive integer such that gcd(n; k) 6= 1, then P (X)
does not divide P (Xn). Let P (X) = Xr(�a1)

�1(�a2)
�2 � � � (�as)

�s . Set m =
gcd(n; k), then gcd(k;m) = m 6= 1 and 1 � m � k, so P (X) does not divide
P (Xm). By virtue of Theorem 4(iii), there exists i 2 f1; 2; : : : ; sg such that
for every j � i, (�ai)

�i does not divide (�aj (X
bi))�j , where bi = gcd(m;ai).

Because ai divides k, then

bi = gcd(m;ai) = gcd(gcd(n; k); ai) = gcd(n; gcd(k; ai)) = gcd(n; ai) = di:

It follows that there exists i 2 f1; 2; : : : ; sg such that for every j � i, (�ai)
�i

does not divide (�aj (X
di))�j . Once again, from Theorem 4(iii), we deduce that

P (X) does not divide P (Xn).

The following Theorem provides some su¢ cient conditions for a polynomial
to be a G�polynomial.

Theorem 19 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker poly-

nomial of degree k � 1. If the following conditions are satis�ed

1) }(a1) � }(k) �
s[
l=1

}(al),

2) P (X) is a quasi�G�polynomial, and
3) If for i � 2, }(ai) � }(k), then either }(ai) �

[
l<i

}(al), or for every

j < i, �i > �j or ai
aj
is not the product of primes of }(ai)n

[
l<i

}(al),

then P (X) is a G�polynomial.

Proof. Suppose that the conditions (1); (2) and (3) are satis�ed, and let n be a
positive integer such that 1 � n � k. Assume that gcd(n; k) = 1. Since P (X) is
a quasi�G�polynomial [Theorem 15], then P (X) divides P (Xn). Assume now
that gcd(n; k) 6= 1. We need to show that P (X) does not divide P (Xn). We have
gcd(n; k) = ph11 p

h2
2 � � � phtt for some primes p1; p2; : : : ; pt of }(k) and nonnegative

integers h1; h2 : : : ; ht (not all equal to 0). Because of }(k) �
s[
l=1

}(al), every

pj must belong to some of the }(al)�s. Let ai be the �rst among the al�s that
contains one of the pj�s, say p. Then p divides gcd(n; ai) and gcd(n; ai) 6= 1.
It is clear that ai 6= 1. Moreover, if i = 1, then gcd(n; a1) 6= 1, so P (X) does
not divide P (Xn) [Lemma 9]. Let us suppose that i � 2. If }(ai) * }(k), let
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q 2 }(ai)n}(k). As P (X) is a quasi�G�polynomial, there exists j < i such
that �i � �j and ai = qaj . Notice that q 6= p since p 2 }(k) while q =2 }(k).
Since p divides ai = qaj , then p divides aj and p 2 }(aj), but this contradicts
the choice of ai. We deduce that }(ai) � }(k). Moreover, according to the
condition (3), if }(ai) �

[
l<i

}(al), then p 2 }(aj) for some j < i, but this

contradicts the choice of ai. It follows that }(ai) *
[
l<i

}(al) for all i. Let j � i

be a positive integer. If j = i, then (�ai)
�i does not divide (�ai(X

n))�i since
gcd(n; ai) 6= 1. Let j < i. If (�ai)

�i divides (�aj (X
n))�j , then �i < �j and

ai
aj
= gcd(n; ai) = q

m1
1 qm2

2 � � � qmu
u for some primes q1; q2; : : : ; qt of }(ai) [Lemma

3]. As }(ai) � }(k), then q1; q2; : : : ; qu divide gcd(n; k) = ph11 p
h2
2 � � � phtt , so

fq1; q2; : : : ; qug � fp1; p2; : : : ; ptg � }(ai). But this contradicts the fact �i > �j
or ai

aj
is not the product of primes of }(ai)n

[
l<i

}(al). Hence, (�ai)
�i does

not divide (�aj (X
n))�j for every j � i, and P (X) does not divide P (Xn) by

Theorem 4(ii).

Remark 20 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker polyno-

mial of degree k�1. If P (X) is a G�polynomial, then the conditions (1) and (2)
of Theorem 19 are satis�ed according to Proposition 10 and Lemma 13. How-
ever, the conditions (3) does not hold in general (see example 27). It follows
that the converse of Theorem 19 is false.

Consequently, we can derive various Corollaries that characterizesG�polynomials
in special circumstances.

Corollary 21 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker poly-

nomial of degree k � 1. If }(k) =
s[
l=1

}(al) and for every j < i, either �i > �j

or aj does not divide ai, then P (X) is a G�polynomial.

Corollary 22 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a Kronecker poly-

nomial of degree k � 1. If }(ai) * }(k) for every i � 2, then the following
conditions are equivalent:
(i) P (X) is a G�polynomial,
(ii) }(a1) = }(k) and P (X) is a quasi�G�polynomial.

Proof. (i)) (ii) P (X) is a quasi�G�polynomial by Lemma 13. For each i �
2, }(ai) * }(k). Then ai = pm1

1 pm2
2 � � � pmu

u aj for some primes p1; p2; : : : ; pu =2
}(k) and aj such that }(aj) � }(k) [Corollary 16]. But a1 is the sole el-
ement among the al �s that satis�es }(a1) � }(k). Thus, for each i � 2,

ai = pm1
1 pm2

2 � � � pmu
u a1. Since }(a1) � }(k) �

s[
l=1

}(al) [Proposition 10], then

}(k) � }(a1); that is }(a1) = }(k).
(ii)) (i) directly results from Theorem 19.
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Corollary 23 Let P (X) = Xr(�pm1
1
)�1(�pm2

2
)�2 � � � (�pms

s
)�s , where p1; p2; : : : ; ps

are distinct primes. Then P (X) is a G�polynomial of degree k � 1 if and only
if }(k) = fp1; p2; : : : ; psg.

Proof. Suppose that }(k) = fp1; p2; : : : ; psg. Then }(k) =
s[
l=1

}(pml

l ). As

pmi
i does not divide pmj

j for each j < i, then P (X) is a G�polynomial by
Corollary 21. Conversely, assume now that P (X) is G�polynomial. Let p 2
fp1; p2; : : : ; psg. Then gcd(p; p1p2 � � � ps) 6= 1. In view of Lemma 7, P (X) does
not divide P (Xp). Therefore, gcd(p; k) 6= 1 and p 2 }(k). Thus, }(k) =
fp1; p2; : : : ; psg.

As an application of Corollary 23, if }(k) = fpg, then P (X) = Xr(�pm)
�

is a polynomial of degree k � 1 = r + �'(pm) and we have the following nice
result.

Corollary 24 Let p be a prime number. Then the following conditions are
equivalent:
(i) P (X) = Xr(�pm)

� is a G-polynomial of degree k � 1.
(ii) k = p�, where � = logp(r + 1 + �p

m � �pm�1).

The upcoming Theorem characterizes G�polynomials of the form P (X) =
Xr(�a1)

�1(�a2)
�2 . But before embarking in this direction, let us provide a

preparatory Lemma concerning the condition (3) of Theorem 19.

Lemma 25 Let P (X) = Xr(�a1)
�1(�a2)

�2 � � � (�as)
�s be a G�polynomial of

degree k� 1. If }(as) � }(k), then either }(as) �
[
l<s

}(al), or for every j < s,

�s > �j or as
aj
is not the product of primes of }(as)n

[
l<s

}(al).

Proof. Suppose, by way of contradiction, that }(as) *
[
l<s

}(al), and that

there exists j < s such that �s � �j and as
aj
= ph11 p

h2
2 � � � phtt for some primes

p1; p2; : : : ; pt 2 }(as)n
[
l<s

}(al). Set n = ph11 p
h2
2 � � � phtt , then gcd(n; as) = n.

Therefore, �s � �j and as = aj gcd(n; as). On the other hand, we have
p1; p2; : : : ; pt =2 }(al) for each l < s. Thus, gcd(n; al) = 1 for each l < s.
It results that P (X) divides P (Xn) [Theorem 4(v)]. But, as by assumption
}(as) � }(k), then gcd(n; k) 6= 1, a contradiction.

Theorem 26 Let P (X) = Xr(�a1)
�1(�a2)

�2 be a Kronecker polynomial of de-
gree k � 1
(A) If a1 6= 1, then P (X) is a G�polynomial if and only if

(1) }(a1) � }(k) � }(a1) [ }(a2),
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(2) }(a2) * }(k) implies �2 � �1 and a2 = pa1 for some p 2
}(a2)n}(k),

(3) }(a2) � }(k) implies either }(a2) � }(a1), or �2 > �1 or a2
a1
is not

the product of primes of }(a2)n}(a1).
(B) If a1 = 1, then P (X) is a G�polynomial if and only if }(a2) = }(k)

and �2 > �1.

Proof. We begin by considering a1 6= 1. According to Theorem 19, if (1), (2)
and (3) are satis�ed, then P (X) is a G�polynomial. Conversely, assume that
P (X) is a G�polynomial. Then (1) results from Proposition 10 and (2) comes
from Lemma 13. Finally, the point (3) is a direct consequence of Lemma 25 for
s = 2.
It remains to treat the case (B) where a1 = 1. We have }(a1) = ?. Sup-

pose that P (X) is a G�polynomial. Then }(k) � }(a2) by Proposition 10. If
}(a2) * }(k), then �2 � �1 and a2 = a1p = p for some p 2 }(a2)n}(k) [Lemma
13]. It follows that P (X) = Xr(�1)

�1(�p)
�2 = Xr(�1)

�1��2(�1�p)
�2 = Xr(X�

1)�1��2(Xp�1)�2 , a contradiction because this is not a G�polynomial. There-
fore, }(a2) = }(k). Since }(a2) * }(a1) and a2

a1
= a2 is the product of prime

elements of }(a2)n}(a1), then �2 > �1 [Lemma 25]. The converse is clear
regarding Corollary 21.

5 Examples

We need the following list that consists of the �rst twenty cyclotomic polyno-
mials.
�1 = X � 1
�2 = X + 1
�3 = X

2 +X + 1
�4 = X

2 + 1
�5 = X

4 +X3 +X2 +X + 1
�6 = X

2 �X + 1
�7 = X

6 +X5 + : : :+X2 +X + 1
�8 = X

4 + 1
�9 = X

6 +X3 + 1
�10 = X

4 �X3 +X2 �X + 1
�11 = X

10 +X9 + : : :+X2 +X + 1
�12 = X

4 �X2 + 1
�13 = X

12 +X11 + : : :+X2 +X + 1
�14 = X

6 �X5 +X4 �X3 +X2 �X + 1
�15 = X

8 �X7 +X5 �X4 +X3 �X + 1
�16 = X

8 + 1
�17 = X

16 +X15 + : : :+X2 +X + 1
�18 = X

6 �X3 + 1
�19 = X

18 +X17 + : : :+X2 +X + 1
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�20 = X
8 �X6 +X4 �X2 + 1

Example 27 Let P (X) = �1�4�6 = (X � 1)(X2 + 1)(X2 �X + 1) 2 G[6].

It is well-known from [5] or [6] that, if p is a prime number, then
�m(X

p) = �pm(X) if p divides m, and
�m(X

p) = �pm(X)�m(X) if p does not divide m.
With these facts recorded, one can check easily that

P (X2) = (X2 � 1)(X4 + 1)(X4 �X2 + 1) = �1�2�8�12;
P (X3) = (X3 � 1)(X6 + 1)(X6 �X3 + 1) = �1�3�4�12�18;
P (X4) = (X4 � 1)(X8 + 1)(X8 �X4 + 1) = �1�2�4�16�24;
P (X5) = (X5 � 1)(X10 + 1)(X10 �X5 + 1) = �1�4�5�6�30;
P (X6) = (X6 � 1)(X12 + 1)(X12 �X6 + 1) = �1�2�3�6�8�24�36.

Therefore, among all these polynomials, only P (X5) is divisible by P (X).
Hence, P (X) is a G�polynomial. However, P (X) does not satisfy the condition
3 of Theorem 19 since }(4) � }(6), whereas }(4) * }(1); �2 = �1 = 1 and
a2
a1
= 4 2 }(4)n}(1) = f4g.

Example 28 Let P (X) 2 G[4].

In view of the degrees of the �rst twenty cyclotomics, two cases may happen:

Case 1: P (X) = Xr(�a1)
�1 and deg(P (X)) = r + �1'(a1) = 3. From

Corollary 11, we get

r a1 '(a1) �1 P (X)

0 2 1 3 �32 = (X + 1)3

1 2 1 2 X�22 = X(X + 1)2

1 4 2 1 X�4 = X(X
2 + 1)

2 2 1 1 X2�2 = X
2(X + 1)

Case 2: P (X) = Xr(�a1)
�1(�a2)

�2 and deg(P (X)) = r + �1'(a1) +
�2'(a2) = 3. From Theorem 26, we obtain

r a1 a2 '(a1) '(a2) �1 �2 P (X)

0 1 2 1 1 1 2 �1�
2
2 = (X

2 � 1)(X + 1)
0 2 4 1 2 1 1 �2�4 = (X + 1)(X2 + 1)
0 2 6 1 2 1 1 �2�6 = X

3 + 1

Hence, G[4] consists of the following G�polynomials:

(X2 � 1)(X + 1); (X + 1)3; (X + 1)(X2 + 1);X3 + 1;X(X + 1)2;
X(X2 + 1); X2(X + 1).
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Example 29 Let P (X) 2 G[6].

According to the degrees of the �rst twenty cyclotomics, three cases have to
be considered:

Case 1: P (X) = Xr(�a1)
�1 and deg(P (X)) = r + �1'(a1) = 5. From

Corollary 11, we get

r a1 '(a1) �1 P (X)

1 6 2 2 X�26 = X(X
2 �X + 1)2

1 12 4 1 X�12 = X(X
4 �X2 + 1)

3 6 2 1 X3�6 = X
3(X2 �X + 1)

Case 2: P (X) = Xr(�a1)
�1(�a2)

�2 and deg(P (X)) = r + �1'(a1) +
�2'(a2) = 5. From Theorem 26, we obtain

r a1 a2 '(a1) '(a2) �1 �2 P (X)

0 1 6 1 2 1 2 �1�
2
6 = (X � 1)(X2 �X + 1)2

0 2 3 1 2 1 2 �2�
2
3 = (X + 1)(X2 +X + 1)2

0 2 12 1 4 1 1 �2�12 = (X + 1)(X4 �X2 + 1)
1 3 4 2 2 1 1 X�3�4 = X(X

2 +X + 1)(X2 + 1)
2 2 3 1 2 1 1 X2�2�3 = X

2(X + 1)(X2 +X + 1)2

Case 3: P (X) = Xr(�a1)
�1(�a2)

�2(�a3)
�3 and deg(P (X)) = r+�1'(a1)+

�2'(a2) + �3'(a3) = 5.
If }(a3) * }(k) = f2; 3g, then a3 = pa1 or a3 = pa2 for some prime p =2 }(k).

It results that p � 5 and '(a3) � p� 1 � 4. But this leads to the contradiction

deg(P (X)) = r + �1'(a1) + �2'(a2) + �3'(a3) � 1 + 1 + 4 � 6:

We conclude that }(a3) � }(k) = f2; 3g. By comparing '(a3) to the degrees of
the �rst twenty cyclotomics, we �nd that 1 � a1 < a2 < a3 � 6 and r 2 f0; 1g.
We deduce at least that a3 2 f3; 4; 6g and �3 = 1. Therefore, 3 subcases may
occur:

Subcase 1: a3 = 3. A fortiori a1 = 1 and a2 = 2. Thus, P (X) =
Xr(�1)

�1(�2)
�2�3. As }(3) * }(1) [ }(2), �3 = �1 = 1 and a3

a1
= 3 2

}(3)n(}(1)[}(2)) = f3g, then Lemma 25 ensures that P (X) is not aG�polynomial.

Subcase 2: a3 = 4.
�If a1 = 1 and a2 = 2, then P (X) = Xr(�1)

�1(�2)
�2�4. By virtue of

Proposition 10, P (X) is not a G�polynomial because of }(6) * }(1) [ }(2) [
}(3) = f2g.
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�If a1 = 1 and a2 = 3, then P (X) = �1�3�4. As }(4) * }(1) [ }(3),
�3 = �1 = 1 and a3

a1
= 4 is a product of primes of }(4)n(}(1) [ }(3)) = f2g,

then Lemma 25 enables us to conclude that P (X) is not a G�polynomial.

Subcase 3: a3 = 6.
�If a1 = 1 and a2 = 2, then P (X) = Xr(�1)

�1(�2)
�2�6. As }(6) * }(1) [

}(2), �3 = 1 � �2 and a3
a2
= 3 2 }(6)n(}(1) [ }(2)) = f3g, then P (X) is not a

G�polynomial by Lemma 25.
�If a1 = 1 and a2 = 3, then P (X) = �1�3�6. As }(6) * }(1) [ }(3),

�3 = �1 = 1 and a3
a2
= 2 2 }(6)n(}(1) [ }(3)) = f2g, then P (X) is not a

G�polynomial by Lemma 25.
�If a1 = 1 and a2 = 4, then P (X) = �1�4�6. We have already seen in

Example 27 that P (X) is a G�polynomial.
�If a1 = 2 and a2 = 3, then P (X) = �2�3�6. As }(6) = }(2) [ }(3);

}(3) * }(2) and a2
a1
= 3=2 is not the product of primes of }(3)n}(2), then P (X)

is a G�polynomial by Theorem 19.
�If a1 = 2 and a2 = 4, then P (X) = �2�4�6. As }(6) * }(2) [ }(4),

�3 = �1 = 1 and a3
a1
= 3 2 }(6)n(}(2) [ }(4)) = f3g, then P (X) is not a

G�polynomial by Lemma 25.
Hence, G[6] consists of the G�polynomials, namely:

X(X2 �X + 1)2;X(X4 �X2 + 1);X3(X2 �X + 1); (X � 1)(X2 �X + 1)2;
(X + 1)(X2 +X + 1)2; (X + 1)(X4 �X2 + 1);X(X2 +X + 1)(X2 + 1);

X2(X + 1)(X2 +X + 1)2; (X � 1)(X2 + 1)(X2 �X + 1);
(X + 1)(X2 +X + 1)(X2 �X + 1):

I close this paper by stating some conjectures.

Conjecture 30 Find a complete characterization of a G�polynomial of degree
k � 1 for every k � 3.

Conjecture 31 Find an e¤ective algorithm to determine all the elements of
G[k] for every k � 3.

Acknowledgement: Thanks are due to the anonymous referee for his/her
very valuable and helpful advice, corrections and remarks.
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