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Abstract: Let k& > 2 be an integer and let P(X) be a monic polynomial of
Z]X] with degree k — 1. We say that P(X) is a G—polynomial if for each n €
{1,2,...,k}, P(X) divides P(X™) in the ring Z[X] if and only if ged(n, k) = 1.
We present several approaches on finding necessary and sufficient conditions so that
P(X) is a G—polynomial. Among other interesting results, we show that Ay (X) :=
XF=1 4 Xk=2 4 ... X 4+ 1 is the unique G—polynomial of degree k — 1 if and only
if k is a prime number.
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1 Introduction

Several authors were interested in polynomials with integer coefficients having
all their roots in the unit disc [4], [7]. Other authors focused their study on

the divisibility of polynomials with integer coefficients in the ring Z[X } (3], [8]-
Subsequently, some interesting results were settled about polynomials P(X)
with integer coefficients that divide P(X™) for some positive integer n [1], [2].
In this current paper, we continue in the same direction by considering some
special kind of polynomials named G —polynomials.

For an integer k > 2, let Ap(X) := X1+ Xk-2 +... X +1 € Z[X]. Tt
is well-known [2, Theorem 1.4] that for every positive integer n, Ai(X) divides
Ap(X™) in the ring Z[X] if and only if ged(n, k) = 1. This result motivates us
to set the following definition:

Definition 1 Let k > 2 be an integer and let P(X) be a monic polynomial of
Z[X] with degree k — 1. We say that P(X) is a G—polynomial if for each n €
{1,2,...,k}, P(X) divides P(X™) in the ring Z|X] if and only if gcd(n, k) = 1.

The reasoning behind the name G—polynomials stems from their relationship
with the greatest common divisor. One can observe that the equivalence in this
definition is essential. Indeed, it may happen that P(X) divides P(X™) for
each n € {1,2,...,k — 1} such that ged(n,k) = 1, however, P(X) is not a
G—polynomial. For instance, the polynomial P(X) = (X —1)(X?+1) of degree
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3 divides P(X) and P(X?), and P(X) does not divide P(X?), however P(X)
is not G—polynomial because P(X) divides P(X*).

We denote by G[k] the set of all G—polynomials with degree k—1. For exam-
ple, A;(X) is an element of G[k] whereas the polynomials X*~1 and X*~1 — 1
do not belong to G[k]. Our goal is to study the set G[k] for any integer k > 2.
Obviously, X + a divides X2 + a if and only if a = 0 or a = —1, so we have

G2] = {X +a:acZ\{-1,0}}.

Therefore, throughout our study, we impose the condition £ > 3 and we
emphisize that any division of polynomials is performed in Z[X]. Our second
section concerns Kronecker polynomials. We investigate under which conditions
a Kronecker polynomial P(X) divides P(X™) in Z[X] for some positive integer n
[Theorem 4]. Our third section is devoted to the case where k is a prime number.
We show that G[k] = {Ax(X)} if and only k is a prime number [Theorem 8§].
In the fourth section, we explore the case where k is composite. Several results
are established to determine under which conditions a polynomial of Z[X] is a
G—polynomial [Theorems 15, 19, 26]. Numerous important consequences are
derived [Corollaries 21, 22, 23, 24]. Finally, the fifth section is dedicated to
examples to show the scope of our study.

2 Kronecker polynomials

The following characterization collects several facts about Kronecker polyno-
mials. A monic polynomial of P(X) € Z[X] with all roots in the unit disc
{z € C: |z|] < 1} is called a Kronecker polynomial. In fact, all the roots of
such polynomials have modulus zero or one [4, Theorem 1]. Recall that the a'”
cyclotomic polynomial for a positive integer a, denoted by ¢,(X) or simply by
@, is defined by ¢,(X) = (X — A)(X — A2) -+ (X — A,), where A\, Ao, ..., A\,
are exactly the distinct primitive a!”* roots of unity. It is shown in [6] that ¢, (X)
is a monic, irreducible polynomial with integer coefficients. Its degree is ¢(a),
where ¢ is the Euler’s totient function. Since a cyclotomic polynomial has all
its roots in the unit circle {z € C : |z| = 1}, we can then say that any cyclotomic
polynomial is a Kronecker polynomial.

Proposition 2 Let P(X) be a monic polynomial of Z[X]. Then the following
conditions are equivalent:

(¢) P(X) is a kronecker polynomial,

() P(X) = X"Q(X), where r is a non negative integer and Q(X) is a
finite product of cyclotomic polynomials,

(7i1) There is a positive integer m such that P(X) divides P(XP) for every
prime number p > m,

(iv) P(X) divides P(X") for some integer t > 2.

Proof. (i) = (i1) from [4, Theorem 2].

10 Jan 2023 22:13:53 PST
220806-Ayache Version 2 - Submitted to Rocky Mountain J. Math.



(i4) = (iii) Suppose that P(X) := X" (¢, ) (¢g,)*? -+ (@, )", where r is
a non negative integer. Set m = 1+ Maxz{a; : 1 <i < s} and let p > m be a
prime number. Since ged(p, a;) = 1 for every i € {1,2,...,s}, then ¢, divides
¢,,(XP) [2, Theorem 1.4], so P(X) divides P(XP).

(7i) = (4v) is trivial.

(iv) = (i) Let X be a nonzero root of P(X). Since P(X) divides P(X?") for
some integer ¢ > 2, then )\t,)\t2, .., AU, .. are roots of P(X). But, as P(X)

has finitely many roots, then A" = A for some positive integer m. Thus,
ATTED - 1and|)\|71 .

Consequently, every G—polynomial is a Kronecker polynomial. Since the set
of all Kronecker polynomials of the same given degree is finite, we can conclude
that G[k] is also finite for k > 3. The following Lemma constitutes a significant
improvement of [2, Theorem 1.4].

Lemma 3 Let a, b, o, § and n be positive integers. Set d := ged(n,a), then
the following conditions are equivalent:

(Z) (¢a)a divides (¢b(Xn))ﬁ7

(1) (9,)° divides (6,(X%))",

(i4i) a < B and a = bd.

Proof. (i) = (iii) Suppose that (¢,)® divides (¢,(X™))?. Let A be a root of
¢qs then A" is a root of ¢, and o(A") = b. Considering the order of A" as an
element of the cyclic group < A > generated by A, then o(A") = = d((i‘b)a) g

We derive the formula a = bd. Obviously, the multiplicity of A relative to the
t

polynomial (¢,)® is . Now, assume that ¢, = H(X — ;). As \" is a root of
i=1
oy, then A" € {uq, pig, ..., iy}, say A" = py. We have

t t

(@ (X)) = TT(X" = )" = (X" =N TT(X™ = 1)? = (X = NPQX),
i=1 i=2
where .
= xm AN TIx = ).
i=1 i=2
Since Q(\) = (nA" )P H )8 # 0, then the multiplicity of ) relative to

(¢, (X™))P is B. Flnally, because (¢,)* divides (¢,(X™))?, then o < B.
(#4i) = (i) Assume that a < 8 and a = bd. For every root A of ¢,, we have

o(\) = a. Since o(\?) = gcg((z)a) @ — b, then A\ is a root of ¢,. We deduce

that ¢,(X?) vanishes on each root of ¢,. As the multiplicity of each root of
é, is 1, we conclude that ¢, divides ¢,(X?). Since a < 3, then (¢,)* divides

(0p(XD)7.
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(i) = (i) Suppose now that (¢,)* divides (¢,(X¢))?. By using a similar
argument as in (i) = (i), we find that @« < § and a = bged(d,a) = bd.
Since ged(%,b) = 1, then ¢, divides ¢,(X 4) [2, Theorem 1.3], so (¢;,)® divides
(G (X 1)P" Thus, (6,(X? divides (6,(X)))? = (65(X")5. Finally, as
(¢,)* additionally divides (¢,(X%))?, then (¢,)* divides (¢,(X™))”. m

For our convenience, if P(X) = X"(¢,,)% (¢4,)* - -+ (¢,,)* is a Kronecker
polynomial, we will assume that a; < as < -+ < as.

Theorem 4 Let P(X) = X"(¢,,)* (¢4,)** -+ - (¢,.)* be a Kronecker polyno-
mial. For every positive integer n, set d; := ged(n,a;). Then the following
conditions are equivalent:

(1) P(X) divides P(X™),

(ii) Foreachi€ {1,2,...,s}, there is j < i (necessarily unique) such that
(6,) divides (6, (X™))*.

(t4i) For each i € {1,2,...,s}, there is j < i (necessarily unique) such that
(60, ) divides (6, (X)),

(iv) For each v € {1,2,...,s}, there is j < i (necessarily unique) such that
o; < oy and a; = a;d;.

(v) For each i € {1,2,...,s}, d; =1 or there is j < i (necessarily unique)
such that a; < o and a; = a;d;.

Proof. (i) = (i) Suppose that P(X) divides P(X™). Then for each i €

{1a 2,..., 8}7 ¢ai divides P(Xn) = an(¢a1 (Xn))al (d)az (Xn))a2 T (¢as (Xn))ab
AS ¢,, is irreducible in Z[X], then ¢, divides ¢, (X") for some j € {1,2,...,s}.
In light of Lemma 3, we get a; = a;d; and j < <. Furthermore, from this latter
relationship between a; and a;, we deduce that a; is the sole among the a}s for
which ¢,, divides ¢, (X™). Therefore, (¢,,)* divides (¢, (X"))*.

(ii) = (#i4) = (iv) Results directly from Lemma 3.

(iv) < (v) is clear.

(iv) = (i) Let ¢ € {1,2,...,s}. Thereis j € {1,2,...,i} such that a; = a;d;
and a; < a;. In view of Lemma 3, ¢,, divides ¢, (X"), so (¢,,)** divides

(¢q,(X™))*. We conclude that (¢,,)** divides P(X") for every i € Jfl7 2,...,8}

As the polynomials X7, (¢,, )", (d,,)%%, - (¢, )" are relatively prime, then
P(X) = X"(¢4,)" (a,)*? -+ (¢4,)* divides P(X"). m

Remark that the factor X" of P(X) has no effect in Theorem 4. We can
state the following direct result.

Corollary 5 Let P(X) = X"(¢g,)* (¢4,)* -+ (¢4,)" be a Kronecker polyno-
mial and let Q7 (X) = X"(¢y, ) (Pa,)*? - (Dg, )" for some 1 < h < s and
0 < v <r. Then the following conditions are equivalent:

(1) P(X) divides P(X™)

(it) Q3 (X) divides Q3 (X™) for every h € {1,2,...,s},

(ii7) QY(X) divides Q%(X™).
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Corollary 6 Let P(X) = X"(¢g,)* (¢4,)?* -+ (¢g,)* be a Kronecker polyno-
mial such that P(X) divides P(X™). If (¢,,)*" divides (¢,,(X™))* for some
i,j €{1,2,...,s}, set d; :== ged(n,a;) and d; := ged(n,a;). Then

(¢) d; divides d;.

(#i) If, in addition, a; is a square-free integer, then bq, divides ¢, (X™).

Proof. (i) By application of Theorem 4(iv), we have a; = d;a;. If d;
1, there is nothing to prove. Let us assume that d; # 1. Then there is
h € {1,2,...,s} such that a; = d;a;. It follows that d; = ged(n,a;)
ng(Tl, diaj) = gcd(n, didjah) = daj; ng(’I’L/dj, diah). Thus, dj divides di-

(#4) In view of the first point, d; = cd; for some positive integer c. Suppose
that d; # 1. We necessarily have d; # 1 and there is h € {1,2,..., s} such that
a; = djap. Therefore, a; = dja; = c(dj)zah and a; is not a square-free integer.
Hence, d; = 1 and ¢, divides ¢, (X") [2, Theorem 1.4]. m

3 The case where k is a prime number

Lemma 7 Let P(X) = X”(gzﬂp;nl )a1(¢p;n2)az “++ (@pms ), where p1,pa, ..., Ps
are distinct primes. For every positive integer n, the following conditions are
equivalent:

(¢1) P(X) divides P(X™),

(i) ged(n,pip2 -~ ps) = 1.

Proof. (i) = (i1) Let ¢ € {1,2,...,s}. By virtue of Theorem 4(iv), since
P(X) divides P(X™), thereis j € {1,2,..., s} such that p]** = p;”j ged(n, p;t).
We necessarily have p; = p; and ged(n, p;"*) = 1. Thus, ged(n,p;) = 1 for all
i€{1,2,...,s}. It follows that ged(n,pip2 - ps) = 1.

(#4) = (i) Assume that ged(n, pip2 - ps) = 1. Then ged(n,p;"*) =1 for all
i€4{1,2,...,s}. Hence, P(X) divides P(X"), by Theorem 4(iv), as desired. m

The following Theorem determines explicitly the set G[k] when k is a prime
number.

Theorem 8 G[k] = {Ax(X)} if and only if k is a prime number.

Proof. Suppose that k is a prime number and let P(X) € G[k]. We need
to show that P(X) = Ax(X). Since P(X) is a Kronecker polynomial, then
P(X) = X"(¢g,)* (¢g,)?% -+ (¢g,)*, where r > 0, a; > 0 and a; > 0 are
integers. As ged(k,k) = k, then P(X) does not divide P(X*). So, there is
i €{1,2,...,s} such that (¢,,)*" does not divide (¢,, (X*))* . By application
of Lemma 3, ged(a;, k) # 1. Since k is a prime number, then k& must divide

a; and ¢(a;) > p(k) = k— 1. But deg(P(X)) =r + Zocigo(ai) =k-—1, we
i=1

necessarily have r =0, s = 1, a; = 1 and a; = k. Hence, P(X) = ¢, = Ap(X).

Conversely, assume that G[k] consists only of the polynomial A;(X). We shall

prove that k is a prime number by using two steps:
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Step 1: We first prove that k is square-free: By the contrapositive, suppose
that k is a not square-free. Then there is a natural number ¢ € N\{0,1} such
that ¢? divides k. Let m := k/q and consider the polynomial

P(X) = An(X)(XF = 1) = An(O)((X™)1 = 1),

We shall prove that P(X) is a G—polynomial. Firstly, note that P(X) #
Ak(X) since P(0) = —1 while A,(0) = 1. Let n € {1,2,...,k} such that
ged(n, k) = 1. Since ged(m,n) = 1, then A,,(X) divides A,,(X™) [1, Theorem
1.4]. Moreover, because X*~™ — 1 clearly divides (X™)¥~™ — 1, we deduce that
P(X) divides P(X™). Now, let n € {1,2,...,k} such that ged(n,k) # 1. We
must prove that P(X) does not divide P(X™). We claim that ged(m,n) # 1.
Indeed, if p is a prime number that divides n and k, then p divides m or ¢. But,
as q divides m, we can say that p divides m. Thus p divides m and n, so that
ged(m,n) # 1. On the other hand, we have

PX") = A (X")((X™) 1)
= A (X)) )
An(X((X) = DQ(X),

n—1
where Q(X) = Z X m(a=1) - Assume that P(X) divides P(X™). Then A,,(X)
i=0
divides A,,(X™)Q(X). Let A = exp(2X), then the roots of A,,(X) in C are
M A2, AL Since the polynomial Q(AY) = n for each i € {1,2,...,m — 1},
we conclude that A,,(X™) vanishes on each root of A,,(X). This means that
A (X) divides A, (X™). It follows that ged(m,n) = 1 by [2, Theorem 1.4],
yielding a contradiction.

Step 2: Suppose, by way of contradiction, that k is not a prime number.
Then k = p1ps . . . ps for some prime numbers p1, ps, - .., ps with s > 1. Consider
the polynomial

P(X) = X" Ay, (X) Ay (X) -+ Ay, (X)),

where r = k — 1+ s — Zpi. In view of Lemma 7, P(X) divides P(X™) for

i=1
every n € {1,2,...,k} if and only if ged(n, k) = 1. It results that P(X) is a
G—polynomial, a contradiction since G[k] = {Ax(X)}. =

According to Theorem 8, G[3], G[5], G[7],... are well-known. How about
G|k] for a composite number k?
4 The case where k is composite

Lemma 9 Let P(X) = X"($y,)* (a,)** - (¢,,)% be a Kronecker polyno-
mial and let n be a positive integer. If P(X) divides P(X™), then ged(n,a;) = 1.
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Proof. Suppose that P(X) divides P(X™). According to Theorem 4(iv), we
have a; = ged(n,a1)a; for some j € {1,2,...,s}. As a1 < aj, we necessarily
have ged(n,a1) =1. =

Set p(1) := @. If a is a positive integer, let p(a) be the set of all prime num-
bers that divide a. Let P(X) = X" (¢,, )% (¢q,)* - -+ (¢,,)* be a Kronecker
polynomial of degree k — 1. To provide effective conditions under which P(X)
would be a G—polynomial, we need some preliminary results that will give us
good ideas about the positive integers a1, as,...,as of P(X). To this end, we
distinguish the cases where p(a;) € p(k) or p(a;) C p(k).

Proposition 10 If P(X) = X" (¢, )" (¢4,)* -+ (¢4,)* is a G—polynomial

of degree k — 1, then p(a1) C p(k) C U plar).
=1

Proof. We may assume that a; > 1. Let p € p(a1). Then ged(p,a1) = p. In
light of Lemma 9, P(X) does not divides P(X?). It follows that ged(p, k) #

and p € p(k). Thus, p(a1) C p(k). Now, let p € p(k). Then P(X) does
not divide P(XP). It follows that ¢,, does not divide ¢, (X*) for some j €

{1,2,...,s}. Hence, ged(p,a;) # 1 and p € p(a;) C U p(a). =
=1

Corollary 11 (i) Let P(X) = X" (¢,,)% (¢g,)* -+ (¢,,)% be a Kronecker

polynomial of degree k — 1. If U p(a;)) C pla1) = p(k), then P(X) is a
1=2
G—polynomial.
(i) P(X) = X"(¢,)” is a G—polynomial of degree k — 1 if and only if
p(k) = p(a).

Proof. Let n be a positive integer such that 1 < n < k. If ged(n, k) = 1
then ged(n, a;) = 1 and (¢,,)** divides (¢, (X™))** for every i € {1,2,...,s}.
Hence, P(X) divides P(X"). If ged(n, k) # 1, then there is a prime number
D E @(k) such that p divides n. As p € p(ay), then ged(n,a1) # 1 and P(X)
does not divide P(X™) [Lemma 9]. We conclude that P(X) is a G—polynomial.
In particular, for s = 1, we derive the point (i7) that is a direct consequence of
Proposition 10 and the point (). m

Corollary 12 (i) If P(X) = X" (¢,)® is a G—polynomial and ged(a, r+1) =
then a is a square-free number and a — ap(a) <r+ 1.
(ii) ¢, is a G—polynomial if and only if a is a prime number.

Proof. Suppose that deg(P(X)) = k — 1. Then &k = r + 1 + ap(a) and
p(k) = p(a) [Proposition 10]. If @ has the factorization a = p‘l’ pPa? - phe

into prime numbers, then ¢(a) = pi*~ 1 D2 L. sl H For every
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i €{1,2,...,s}, p; divides k and a. Since ged(a,r + 1) = 1, then ¢(a) is not
divisible by p;. Therefore, v; = 1 for all ¢ and a = pips---ps is a square-
free number. We deduce, in particular, that a < k = r + 1 + ap(a); that is
a — ap(a) < r+ 1. For the second statement, it is sufficient to apply the first
point with 7 =0 and @ =1 to get p(a) =a—1. m

Lemma 13 Let P(X) = X"(¢,,)% (¢4,)%? -+ (¢,.)* be a G—polynomial of
degree k — 1. If i > 2 and p(a;) € p(k), then for every p € p(a;)\p(k), there
exists a unique j < ¢ such that o; < o and a; = pa;.

Proof. Let p € p(a;)\p(k). Then ged(p, k) = 1 and P(X) divides P(X?). By
application of Theorem 4(iv), there exists a unique j < ¢ such that o; < o; and
a; = ged(p, a;)a; = paj. In fact, we have ¢ # j since a; # a;. =

Definition 14 Let P(X) = X" (¢,,)* (¢4,)** - (¢4.)* be a Kronecker poly-
nomial of degree k — 1. We say that P(X) is a quasi—G—polynomial if ei-

ther p(k) = Up(al); or for every a; (i > 2) such that p(a;) ¢ (k) and
=1
p € p(a;)\p(k), there exists a unique j < i such that oy < a; and a; = a;p.

In view of Lemma 13, every G—polynomial is quasi—G—polynomial. The
following Theorem provides several characterizations of quasi—G—polynomials.

Theorem 15 Let P(X) = X" (¢,,)* (¢4,)%% -+ (¢4.)* be a Kronecker poly-
nomial of degree k — 1. If p(ay) C p( ), then the following conditions are
equivalent:

(1) P(X) is a quasi—G—polynomial,

(ZZ) If p(al) g p(k) and P1,P2,-- 5 Pu Of p(al)\p(k) such that p}llly p}2l2; )

ple divide a; for positive integers hy, ha, ..., hy, then there exists a unique j < i
such that o < aj and a; = pi*ph? - pluay,

(1) If p(a;) € p(k), then there exists a unique j < i such that (¢,,)™
divides (¢,,(X™))% for every positive integer n such that ged(n, k) = 1,

(iv) P(X) divides P(X™) for every positive integer n such that ged(n, k) = 1,

(v) P(X) divides P(XP) for every prime p such that p ¢ p(k).

Proof. (i) = (i) Since P(X) is a quasi—G—polynomial, there exists a unique
j1 < i such that o; < a;, and a; = praj,. If by > 2, then p1 € p(a;, )\p(k),
and there exists a unique jo < ji such that a;, < ay, and aj, = pra;,. Thus,
a; < aj, < aj, and a; = pla;,. We can continue and use the same argument
to prove that there exists a unique ¢; < ¢ such that o; < o, and a; = p}flail.
Moreover, we have {pa,...,pu} C p(a;,)\p(k). Repeating the same procedure
for a;,, we find that there exists a unique s < i3 < ¢ such that «;, < «;, and
ai, = pSQaiz. Thus, a; < «@;, and a; = pi”p2 a;,. After some finite steps, we

progressively realize that there exists a unique j < ¢ such that «; < «o; and

_ _hyi_h ha
=Dpy'Pe* Pyt ay.
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(i4) = (i) is trivial.

(13) = (zzz) Let n be a positive integer such that ged(n,k) = 1, and as-
sume that p(a;) ¢ p(k). If ged(n,a;) = 1, then (¢,,)* divides ((ba (X))
[2, Theorem 1. 3} Let us assume that gcd(n a;) # 1. As ged(n, k) = 1, then
ged(n, a;) = py ph2 - phu for some primes p1,pa ..., 0. € p(a;)\p(k) and non-
negative integers hl,hg ...y hy (not all equal to 0). Therefore, there exists a
(unique) j < i such that o; < o and a; = pl'ph? - -plua; = ged(n,ai)a;
Hence, there exists a unique j < such that (¢,,)*" divides (¢, (X"))*/

(791) = (iv) Let n be a positive integer such that ged(n,k) = 1 and let
i € {1,2,...,k}. Obviously, ged(n,a;) = 1 since p(a1) C p(k). We may
suppose that ¢ > 2. If d; = ged(n,a;) = 1, we are done. If d; # 1, then
p(a;) € p(k). From (iii), there exists a unique j < i such that (¢, )* d1v1des
(¢q,(X™))%. It follows that there is j < i such that a; < «; and a; = a;d;.
Hence, P(X) divides P(X™) by Theorem 4(v).

(tv) = (v) is trivial.

(v) = (4) If p(k U , then we are done. Let a; such that p(a;) ¢

p(k). According to (v), f r every prime p € p(a;)\p(k), P(X) divides P(XP).
By virtue of Theorem 4(iv), there is a unique j < 4 such that o; < «; and
a; = ged(p, a;)a; = pa;j. Hence, P(X) is a quasi—G—polynomial. m

Corollary 16 Let P(X) = X" (¢,, )% (¢4,)* - -+ (¢,,)** be a quasi—G—polynomial
of degree k — 1. 1If for i > 2, p(a;)\p(k) consists of the primes p1,ps, ... Du,
then there exists a unique j < it and unique positive integers mi, Ma, ..., My
such that a; < o and a; = p"'py™* - piiva; with p(a;) C p(k).

Proof. Suppose that a; has the factorization

=p" Pyt P g
into primes such that ¢; € p(k) while p; ¢ p(k) for each i. In view of Theorem
15(i¢), there exists a unique j < i such that o; < oj and a; = p{"*p3™* - - - piia;

A fortiori, we have a; = ¢ ¢5* - - - ¢j* and p(a;) C p(k). =

The following Corollary readily comes from Theorem 15 since any G—polynomial
is a quasi—G—polynomial.

Corollary 17 If P(X) is a G—polynomial of degree k — 1, then P(X) divides
P(X™) for every positive integer n such that ged(n, k) = 1.

It is well-known [2, Theorem 1.4] that for every positive integer n, Ax(X)
divides Ak (X™) if and only if ged(n, k) = 1. A question arises: In the definition
of a G—polynomial P(X) of degree k — 1, can we replace n € {1,2,...,k} by
any positive integer n? The next corollary provides a partial answer.
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Corollary 18 Let P(X) = X"(¢,,)* (¢g,)** -+ (¢4,)** be a Kronecker poly-
nomial of degree k — 1. If a; divides k for each i € {1,2,...,s}, then the
following conditions are equivalent:

(1) P(X) is a G—polynomial,

(ii) For each positive integer n, P(X) divides P(X™) if and only if ged(n, k) =
1.

Proof. In view of Corollary 17, it is sufficient to prove that if P(X) is a
G—polynomial and n is a positive integer such that ged(n, k) # 1, then P(X)
does not divide P(X"). Let P(X) = X"(¢,,)* (¢4,)%% - (¢4,)*. Set m =
ged(n, k), then ged(k,m) = m # 1 and 1 < m < k, so P(X) does not divide
P(X™). By virtue of Theorem 4(iii), there exists ¢ € {1,2,...,s} such that
for every j < i, (¢,,)*" does not divide (¢, (Xb))% | where b; = ged(m, a;).
Because a; divides k, then

b; = ged(m, a;) = ged(ged(n, k), a;) = ged(n, ged(k, a;)) = ged(n, a;) = d;.

It follows that there exists i € {1,2,...,s} such that for every j < i, (¢,, )"
does not divide (¢, (X di))2i . Once again, from Theorem 4(ii7), we deduce that
P(X) does not divide P(X™). m

The following Theorem provides some sufficient conditions for a polynomial
to be a G—polynomial.

Theorem 19 Let P(X) = X"(¢,,)* (¢4,)* -+ (04.)" be a Kronecker poly-
nomial of degree k — 1. If the following conditions are satisfied
S

1) plar) € p(k) € | o(a),
=1
2) P(X) is a quasi—G—polynomial, and
3) If fori > 2, p(a;) C p(k), then either p(a;) C Up(al), or for every
1<i
Jj<i, ;> a5 or g—J is not the product of primes of p(a;)\ U plar),
1<i
then P(X) is a G—polynomial.

Proof. Suppose that the conditions (1), (2) and (3) are satisfied, and let n be a
positive integer such that 1 < n < k. Assume that ged(n, k) = 1. Since P(X) is
a quasi—G—polynomial [Theorem 15], then P(X) divides P(X™). Assume now
that ged(n, k) # 1. We need to show that P(X) does not divide P(X™). We have
— hi he hy : .
ged(n, k) = py'py? -« - p,t for some primes p1, po, ..., of p(k) and nonnegative

integers hy,ha ..., hs (not all equal to 0). Because of p(k) C U p(ay), every
=1

p; must belong to some of the p(a;)’s. Let a; be the first among the g;’s that

contains one of the p;’s, say p. Then p divides ged(n,a;) and ged(n,a;) # 1.

It is clear that a; # 1. Moreover, if ¢ = 1, then ged(n,a1) # 1, so P(X) does

not divide P(X") [Lemma 9]. Let us suppose that ¢ > 2. If p(a;) € p(k), let

10
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q € p(a;)\p(k). As P(X) is a quasi—G—polynomial, there exists j < i such

that o; < a; and a; = ga;. Notice that g # p since p € p(k) while ¢ ¢ p(k).

Since p divides a; = ga;, then p divides a; and p € p(a;), but this contradicts

the choice of a;. We deduce that p(a;) C p(k). Moreover, according to the

condition (3), if p(a;) C Up(al), then p € p(a;) for some j < 4, but this
1<i

contradicts the choice of a;. It follows that p(a;) € U p(ay) for all i. Let j <14

I<i
be a positive integer. If j = 4, then (¢, )* does not divide (¢,,(X"))** since

ged(n,a;) # 1. Let j <. If (¢,,)* divides (¢, (X"))*, then a; < e and

“; =ged(n,a;) = ¢ gy - gl for some primes ql, q2,--.,qt of p(a;) [Lemma

3]. As p(a;) C p(k), then ¢1,q2,...,q, divide ged(n, k) = p’l“pg12 -~-p?", SO
{¢1,92, - qu} € {p1,p2, ..., 0t} C p(a;). But this contradicts the fact ; >
a;

& s not the product of primes of p(ai)\Up(al). Hence, (¢,,)* does

1<i
not divide (¢, (X™))* for every j < i, and P(X) does not divide P(X™) by
Theorem 4(iz). m

Remark 20 Let P(X) = X"(¢,,)% (¢q,)* - -~ (¢,,)* be a Kronecker polyno-
mial of degree k—1. If P(X) is a G—polynomial, then the conditions (1) and (2)
of Theorem 19 are satisfied according to Proposition 10 and Lemma 13. How-
ever, the conditions (3) does not hold in general (see example 27). It follows
that the converse of Theorem 19 is false.

or

Consequently, we can derive various Corollaries that characterizes G—polynomials
in special circumstances.

Corollary 21 Let P(X) = X"(6,,)" (8,,)° -+ (6,.) be a Kronccker poly-
nomial of degree k — 1. If p(k O p(ar) and for every j < i, either a; >
or a; does not divide a;, then P(Xf)ﬂzs a G—polynomial.

Corollary 22 Let P(X) = X"(¢,,) (¢,,)% - -+ (¢,,)* be a Kronecker poly-

nomial of degree k — 1. If p(a;) € p(k) for every 1 > 2, then the following
conditions are equivalent:

(¢1) P(X) is a G—polynomial,

(1) p(a1) = p(k) and P(X) is a quasi—G—polynomial.
Proof. (i) = (i1) P(X) is a quasi—G—polynomial by Lemma 13. For each i >

2, p(a;) € p(k). Then a; = p{"'py™*---p'=a; for some primes p1,ps,...,p, ¢

p(k) and a; such that p(a;) C p(k) [Corollary 16]. But aq is the sole el-
ement among the a; ’s that satisfies p(a1) C p(k). Thus, for each i > 2,
a; = pytpy? - pimay. Since p(ar) C p(k) C U p(a;) [Proposition 10], then
=1
(k) € p(a1); that is p(a1) = p(k).
(#4) = (i) directly results from Theorem 19. m
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Corollary 23 Let P(X) = X"(¢,m1)* (¢m2)*2 -+ (dpms ), where p1,pa, ..., ps

2

are distinct primes. Then P(X) is a G—polynomial of degree k — 1 if and only
Zf p(k) = {PlaP27 cee 7]95}'

Proof. Suppose that p(k) = {p1,p2,...,ps}. Then p(k) = U ™). As
I=1

p** does not divide p;"j for each j < 4, then P(X) is a G—polynomial by

Corollary 21. Conversely, assume now that P(X) is G—polynomial. Let p €

{p1,p2,...,ps}. Then ged(p,p1p2---ps) # 1. In view of Lemma 7, P(X) does

not divide P(XP). Therefore, ged(p,k) # 1 and p € p(k). Thus, p(k) =

{plap2a"'7ps}' u

As an application of Corollary 23, if p(k) = {p}, then P(X) = X"(¢,m )"
is a polynomial of degree k — 1 = r + ap(p™) and we have the following nice
result.

Corollary 24 Let p be a prime number. Then the following conditions are
equivalent:

(1) P(X)=X"(¢,m)* is a G-polynomial of degree k — 1.

(i1) k = p", where v =log,(r + 1+ ap™ — ap™1).

The upcoming Theorem characterizes G—polynomials of the form P(X) =
X"(¢4,) (¢4,)*2. But before embarking in this direction, let us provide a
preparatory Lemma concerning the condition (3) of Theorem 19.

Lemma 25 Let P(X) = X"(¢,,)% (¢4,)%? -+ (¢,.)* be a G—polynomial of

degree k — 1. If p(as) C p(k), then either p(as) C U play), or for every j < s,
I<s

as > aj or g= is not the product of primes of p(as)\ U plar).
I<s

Proof. Suppose, by way of contradiction, that p(as) ¢ U p(a;), and that
I<s
there exists j < s such that oy < o; and Z—; = p’flpg2 .. .pgt for some primes

P1,D2, .-, Pt € plas)\ U o(a;). Set n = pliphz...plt then ged(n,a,) = n.
I<s
Therefore, a; < «@; and as = a;gcd(n,as). On the other hand, we have

P1,DP2,---,0t & @(a;) for each I < s. Thus, ged(n,a;) = 1 for each I < s.
It results that P(X) divides P(X"™) [Theorem 4(v)]. But, as by assumption
p(as) C p(k), then ged(n, k) # 1, a contradiction. m

Theorem 26 Let P(X) = X"(¢,,)" (¢4,)** be a Kronecker polynomial of de-
gree k — 1
(A) If a1 # 1, then P(X) is a G—polynomial if and only if
(1) plar) € p(k) € plar) U p(az),
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(2) plaz) € p(k) implies as < a1 and as = pay for some p €
plaz)\p(k),
(3) plaz) € p(k) implies either p(az) C p(a1), or az > a1 or ¢ is not
the product of primes of p(az)\p(ai).
(B) If a; = 1, then P(X) is a G—polynomial if and only if p(a2) = p(k)
and ag > aq.

Proof. We begin by considering a; # 1. According to Theorem 19, if (1), (2)
and (3) are satisfied, then P(X) is a G—polynomial. Conversely, assume that
P(X) is a G—polynomial. Then (1) results from Proposition 10 and (2) comes
from Lemma 13. Finally, the point (3) is a direct consequence of Lemma 25 for
5 =2.

It remains to treat the case (B) where a; = 1. We have p(a;) = &. Sup-
pose that P(X) is a G—polynomial. Then p(k) C p(az) by Proposition 10. If
p(az) ¢ p(k), then as < o and as = a1p = p for some p € p(az)\p(k) [Lemma
13]. Tt follows that P(X) = X7 (¢,)* (6,)°2 = X" (1) =2 (¢, ,)** = X" (X —
1)@r—22(XP —1)*2_ a contradiction because this is not a G—polynomial. There-
fore, p(az) = p(k). Since p(az) € p(a1) and &2 = ay is the product of prime
elements of p(az)\p(a1), then as > a; [Lemma 25]. The converse is clear
regarding Corollary 21. m

5 Examples
We need the following list that consists of the first twenty cyclotomic polyno-
mials.

pr=X-1

Py =X+1

p3=X?*+X+1

by =X2+1

P =X+ X3+ X2+ X +1

b =X2—X+1
=X+ X+ X2+ X+1

g = X141

g =X+ X3+1

b =X+ X9+ + X2+ X +1

¢ =X - X?+1
Gr3=X24+ XU+ + X2+ X +1

Py =X - X+ X4 - X34+ X2 - X +1
b5 =X - X"+ X5 - X+ X3 - X +1
¢16:X8+1

G =X+ X5+ + X2+ X +1

g =X0— X3 +1
Prg=XB¥ 4+ X"+ +X2+X+1
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Example 27 Let P(X) = ¢10,06 = (X — 1)(X2+1)(X? — X + 1) € G[6].

It is well-known from [5] or [6] that, if p is a prime number, then
G (XP) = G (X) if p divides m, and
G (XP) = G (X) 9, (X) if p does not divide m.

With these facts recorded, one can check easily that

P(X?) = (X? = D)(X* + 1)(X* = X2 4+ 1) = ¢ 905019,

P(X?) = (X? = 1)(X® + 1)(X® = X? 4+ 1) = ¢ 9304012015
P(X?") = (X4 —DXP+1)(XE - X +1) = D10204916P24,

P(X?) = (X° = 1)(X' + 1)(X = X° + 1) = 01040506030

P(X%) = (X0 = 1)(X"2 4+ 1)(X"? = X® + 1) = ¢1ho0306P5P24P36-

Therefore, among all these polynomials, only P(X?®) is divisible by P(X).
Hence, P(X) is a G—polynomial. However, P(X) does not satisfy the condition
3 of Theorem 19 since p(4) C p(6), whereas p(4) € p(1),a2 = g = 1 and

o =4cp@\p(l) = {4}.
Example 28 Let P(X) € G[4].

In view of the degrees of the first twenty cyclotomics, two cases may happen:

Case 1: P(X) = X"(¢,,)*" and deg(P(X)) = r + a1p(a1) = 3. From
Corollary 11, we get

roar plar) o P(X)

0 2 1 3 ¢2 (X +1)°

1 2 1 2 X¢3=X(X+1)?
1 4 2 1 X¢,=X(X%2+1)
2 2 1 1 X2¢,=X* (X +1)

Case 2: P(X) = X"(¢,,)* (d,,)** and deg(P(X)) = 7 + arp(ar) +
asp(ag) = 3. From Theorem 26, we obtain

roar ax plar) pla2) a1 as P(X)

0 1 2 1 1 1 2 ¢¢5=(X2-1)(X+1)
0 2 4 1 2 11 ¢y =(X+1)(X2+1)
0 2 6 1 2 11 ot = X3+ 1

Hence, G[4] consists of the following G—polynomials:

(X2-1D)(X+1);( X+ (X +1D)(X2+1); X3+ 1, X(X +1)%
X(X2+4+1),X2(X +1).
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Example 29 Let P(X) € G[6].

According to the degrees of the first twenty cyclotomics, three cases have to
be considered:

Case 1: P(X) = X"(¢,,)** and deg(P(X)) = 7 + a1p(a1) = 5. From
Corollary 11, we get

a1 plar) o P(X)

6 2 2 X¢g=X(X2-X+1)?
12 4 1 X¢pp=X(X*—X2+1)
6 2 1 X3¢, =X3(X2-X+1)

W = 3

Case 2: P(X) = X"(¢,,)* (¢,,)* and deg(P(X)) = r + arp(ar) +
asp(ag) = 5. From Theorem 26, we obtain

roa; az @(ar) @laz) a1 o P(X)

0 1 6 1 2 12 b1 = (X —1)(X? - X +1)?

0 2 3 1 2 1 2 bots = (X + 1)(X%+ X +1)?

0 2 12 1 4 11 Badro = (X +1)(X* — X2 +1)

1 3 4 2 2 11 Xy =X(X2+X+1)(X2+1)
2 2 3 1 2 I 1 X200 = X2(X +1)(X2+ X +1)?

Case 3: P(X) = X7 () (6,)" (60" and deg(P(X)) = r+arp(ar) +
aggo(ag) + agcp(ag) = 5.

If p(as) € p(k) = {2,3}, then a3 = pa; or az = pas for some prime p ¢ p(k).
It results that p > 5 and ¢(as) > p — 1 > 4. But this leads to the contradiction

deg(P(X)) =7+ a1p(ar) + asp(as) + azp(as) > 1+1+4 > 6.

We conclude that p(as) C p(k) = {2,3}. By comparing ¢(ag) to the degrees of
the first twenty cyclotomics, we find that 1 < a; < az < a3 <6 and r € {0,1}.
We deduce at least that az € {3,4,6} and a3 = 1. Therefore, 3 subcases may
occur:

Subcase 1: a3 = 3. A fortiori a1 = 1 and ay = 2. Thus, P(X) =

X"(01)" ($2)2¢3. As 0(3) € p(1) Up(2), a3 = oy = 1 and 22 = 3 €
P(3)\(p(1)Up(2)) = {3}, then Lemma 25 ensures that P(X) is not a G—polynomial.

Subcase 2: a3 = 4.
—If a; = 1 and ay = 2, then P(X) = X"(¢;)* (¢9)*2¢,. By virtue of
Proposition 10, P(X) is not a G—polynomial because of p(6) € p(1) U p(2) U

p3) = {2}
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—If a; = 1 and ap = 3, then P(X) = ¢1d3¢4. As p(4) € p(1) U p(3),
az = a1 =1 and £2 =4 is a product of primes of p(4)\(p(1) U p(3)) = {2},
then Lemma 25 enables us to conclude that P(X) is not a G—polynomial.

Subcase 3: az = 6.

—If a; =1 and as = 2, then P(X) = X" (¢1)* (d3)*2dg. As p(6)  p(1) U
0(2), a3 =1 < az and 22 =3 € p(6)\(p(1) U p(2)) = {3}, then P(X) is not a
G—polynomial by Lemma 25.

—If a3 = 1 and ap = 3, then P(X) = ¢1d3¢5. As p(6) € p(1) U p(3),
az = ar = land 2 =2 € p(6)\(p(1) U p(3)) = {2}, then P(X) is not a
G—polynomial by Lemma 25.

—If a; = 1 and ag = 4, then P(X) = ¢,¢,¢¢. We have already seen in
Example 27 that P(X) is a G—polynomial.

—If a1 = 2 and az = 3, then P(X) = ¢o0304. As p(6) = p(2) U p(3);
©(3) € p(2) and &2 = 3/2is not the product of primes of p(3)\p(2), then P(X)
is a G—polynomial by Theorem 19.

—If a1 = 2 and ap = 4, then P(X) = ¢yd405. As p(6) € p(2) U p(4),
az = a1 = 1and 22 =3 € p(6)\(p(2) U p(4)) = {3}, then P(X) is not a
G—polynomial by Lemma 25.

Hence, G[6] consists of the G—polynomials, namely:

X(X2-X+1DE XX - X2+ 1) X3(X2 =X +1); (X - 1)(X%2 - X +1)%
(X4+D(X2+ X+ D5 (X + D)X= X2+ 1) X( X2+ X+ 1D)(X2+1);
XX +D)(X2+ X+ D)% (X -D(X2+1)(X2 - X +1);
(X+D(X2+ X +1)(X2 - X +1).

I close this paper by stating some conjectures.

Conjecture 30 Find a complete characterization of a G—polynomial of degree
k—1 for every k > 3.

Conjecture 31 Find an effective algorithm to determine all the elements of
G[k] for every k > 3.

Acknowledgement: Thanks are due to the anonymous referee for his/her
very valuable and helpful advice, corrections and remarks.
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