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Abstract5

The purpose of this work is to provide a rigorous mathematical study for global asymptotic stability (GAS) of a

recognized fractional-order hepatitis B epidemic model, which was proposed in a recent work. We use a simple

approach to establish the GAS of the fractional-order hepatitis B model. This approach is based on extensions

of the Lyapunov stability theory and the fractional Barbalat’s lemma in combination with some nonstandard

techniques for fractional dynamical systems. As an important consequence, the GAS of disease free and disease

endemic equilibrium points is determined fully. The obtained results not only improve but also generalize some

existing works. In addition, a set of numerical experiments is performed to support and illustrate the constructed

theoretical results.
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1. Introduction9

Hepatitis B is an infectious disease caused by the hepatitis B virus (HVB), which can attack the liver and10

can cause both acute and chronic diseases. Nowadays, hepatitis B has become a major global health problem.11

This leads to urgent requests for strategies and measures to prevent and control the HBV. For this purpose,12

many mathematicians and epidemiologists have proposed a large number of mathematical models, which are13

based on epidemiological principles, to discover characteristics and transmission mechanisms of the HBV (see, for14

instance, [3, 10, 11, 12, 15, 16, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 44, 47]). These mathematical models can15

provide us with good observations of the mechanism of the transmission of the HBV; consequently, appropriate16

and effective strategies for preventing and controlling the hepatitis B can be suggested.17

We start this work by considering a recognized hepatitis B epidemic model, which was proposed by Khan et18

al. in [27]. This model is constructed based on some suitable hypotheses of the hepatitis B virus spreading and19
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is given by1

dS(t)

dt
= Λ− λS(t)I(t)

1 + γI(t)
−
(
µ0 + ν

)
S(t),

dI(t)

dt
=
λS(t)I(t)

1 + γI(t)
−
(
µ0 + µ1 + β

)
I(t),

dR(t)

dt
= βI(t) + νS(t)− µ0R(t).

(1)

In the model2

• the entire population is divided into three classes: susceptible (S) class, infected (I) class and recovered3

(R) class;4

• Λ is the birth rate;5

• λ is the transmission rate of hepatitis B virus;6

• µ0 and µ1 are the natural and disease induced death rates, respectively;7

• β is the recovery rate;8

• ν and γ are the vaccination and saturation rates, respectively;9

We refer the readers to [28] for more details and qualitative dynamical properties of the model (1).10

Although the model (1) provides a good mathematical model for transmission dynamics of the HBV with11

several applications in real-life, it can be improved by using fractional-order derivatives, which have the ability to12

describe the memory effect on population dynamic models (see, for instance, [1, 2, 8, 13, 18, 35, 42, 46, 51]). In13

recent years, many fractional-order models have been proposed and analyzed because of its accuracy compared14

to integer-order (ODE) models [4, 19, 25, 48, 51]. Motivated and inspired by the above reason, Hoang and15

Egbelowo in [23] proposed a fractional-order hepatitis B epidemic model, which is described by the following16

system of fractional differential equations17

CDα
0+S(t) = Λα − λαS(t)I(t)

1 + γαI(t)
−
(
µα0 + να

)
S(t),

CDα
0+I(t) =

λαS(t)I(t)

1 + γαI(t)
−
(
µα0 + µα1 + βα

)
I(t),

CDα
0+R(t) = βαI(t) + ναS(t)− µα0R(t),

(2)

where CDα
0+f(t) with α ∈ (0, 1) stands for the Caputo fractional derivative of the function f(t) [8, 13, 35, 46].18

Note that the derivation of the model (2) can be explained in terms of memory effect on population dynamics19

by using the approach used in [19].20

In [23], a threshold quantity for the model (2) was defined by21

Rα0 :=
λαΛα(

µα0 + να
)(
µα0 + µα1 + βα

) . (3)
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Also, it was proved that: The model (2) always possesses a disease free equilibrium (DFE) point E0 = (S0, I0, R0)1

for all values of the parameters, whereas, a disease endemic equilibrium (DEE) point E∗ = (S∗, I∗, R∗) exists if2

and only if Rα0 > 1, where3

S0 =
Λα

µα0 + να
, I0 = 0, R0 =

ναΛα

µα0
(
µα0 + να

) , (4)

and4

I∗ =
Λαλα −

(
µα0 + να

)(
µα0 + µα1 + βα

)(
µα0 + µα1 + βα

)[
λα + γα

(
µα0 + να

)] ,
S∗ =

(µα0 + µα1 + βα)(1 + γαI∗)

λα
,

R∗ =
βαI∗ + ναS∗

µα0
.

(5)

The local asymptotic stability of E0 and E∗ was established as follows (see Propositions 2 and 3 in [23]):5

(i) The DFE point E0 is locally asymptotically stable if Rα0 < 1.6

(ii) The DEE point E∗ is locally asymptotically stable if Rα0 > 1.7

It is clear that the stability analysis performed in [23] lacks the global asymptotic stability (GAS) of the fractional-8

order model (2). Motivated by this, in the present work we establish the complete GAS of the model (2)9

by using a simple approach, which is based on extensions of the Lyapunov stability theory and the fractional10

Barbalat’s lemma (see [18, 42, 50, 51]) in combination with some nonstandard techniques for fractional dynamical11

systems. Here, we first use general Volterra-type Lyapunov functions with undetermined coefficients as potential12

candidates. Then, nonstandard techniques of mathematical analysis are used to prove that the time derivatives13

of the proposed Lyapunov functions are globally positive define. Finally, the fractional Barbalat’s lemma is14

applied to show the convergence of solutions of the fractional-order model. Consequently, the GAS of DEE and15

DFE points is analyzed rigorously.16

It is worth noting that the analysis of GAS of integer-order and fractional-order dynamical systems is very17

important but not simple in general. The Lyapunov stability theory and its extensions can be considered as18

one of the most successful approaches to this problem [1, 2, 18, 39, 42, 43]. However, this approach requires19

suitable Lyapunov functions but there is no general technique for constructing Lyapunov functions for dynamical20

systems. Although many researchers have successfully constructed Lyapunov functions for important differential21

equation models (see, for example, [1, 2, 18, 36, 37, 38, 42, 51]), the construction of Lyapunov functions for the22

fractional-order model (2) is not a trivial problem. However, by the present approach, we obtain the complete23

GAS of the fractional-order model. Moreover, this approach can be extended to study stability properties of24

general fractional dynamical systems. It should be emphasized that our approach is differently from the one25

used in [25].26

As noted before, the model (2) is a generalization of the integer-order HBV model (1). In [27], Khan et al.27

proved the GAS of the DFE point but failed to conclude the GAS of the DEE point of the model (1). Since28

3
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the GAS of the fractional-order model (2) can imply the GAS of the integer-order model (1), we also obtain1

the GAS of the model (1) from the stability analysis of the model (2). Although Hoang and Egbelowo in [24]2

provided a proof of the GAS of DEE point of the model (1) based on the Bendixson-Dulac criterion and the3

Poincare-Bendixson theory, this approach is only appropriate for two-dimensional dynamical systems governed4

by ODEs and not applicable for the model (2) in particular and for fractional dynamical systems in general.5

This means that the present approach is more general and efficient.6

The plan of this work is as follows:7

Section 2 provides some important basic definitions and preliminaries. The complete GAS of the fractional-8

order model (2) is studied in Section 3. Numerical experiments are conducted in Section 4. Some remarks and9

discussions are presented in the last section.10

2. Preliminaries11

We first recall from [8, 13, 35, 46] the definitions of the Caputo fractional derivatives and their properties.12

Let Ω = [a, b] (−∞ < a < b < ∞) be a finite interval on the real axis R. The Riemann-Liouville fractional

integralsIαa+f and Iαb−f of order α ∈ C (<(α) > 0) are defined by (see [35, Section 2.1])

(Iαa+f)(x) :=
1

Γ(α)

∫ x

a

f(t)dt

(x− t)1−α
(x > a;<(α) > 0)

and

(Iαb−f)(x) :=
1

Γ(α)

∫ b

x

f(t)dt

(x− t)1−α
(x < b;<(α) > 0),

respectively. The above integrals are called the left-sided and the right-sided fractional integrals.13

The Riemann-Liouville fractional derivatives Dα
a+y and Dα

b−y of order α ∈ C (<(α) ≥ 0) are given by

(Dα
a+y)(x) =

(
d

dx

)n
(In−αa+ y)(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a

y(t)dt

(x− t)α−n+1
(n = [<(α)] + 1;x > a)

and

(Dα
b−y)(x) =

(
− d

dx

)n
(In−αb− y)(x) =

1

Γ(n− α)

(
− d

dx

)n ∫ b

x

y(t)dt

(x− t)α−n+1
(n = [<(α)] + 1;x < b),

respectively, where [<(α)] means the integer part of <(α).14

The Caputo fractional derivatives of order α ∈ C (<(α) ≥ 0) on [a, b] are defined via the above Riemann-

Liouville fractional derivatives by

(CDα
a+y)(x) :=

(
Dα
a+

[
y(t)−

n−1∑
k=0

y(k)(a)

k!
(t− a)k

])
(x)

and

(CDα
b−y)(x) :=

(
Dα
b−

[
y(t)−

n−1∑
k=0

y(k)(b)

k!
(b− t)k

])
(x),

respectively, where

n = [<(α)] + 1 for α /∈ N0; n = α for α ∈ N0.

4
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These derivatives are called the left-sided and right-sided Caputo fractional derivatives of order α.1

Let [a, b] be a finite interval of the real line R and y(x) be a function belonging to the space AC[a, b] of

absolutely continuous functions on [a, b]. As a direct consequence of Theorem 2.1 in [35], the left-sided and

right-sided Caputo fractional derivatives of order 0 < α < 1 are given by (see [35, Section 2.4])

(CDα
a+y)(x) =

1

Γ(1− α)

∫ t

a

y′(τ)dτ

(x− τ)α

and

(CDα
b−y)(x) = − 1

Γ(1− α)

∫ b

t

y′(τ)dτ

(x− t)α
,

respectively. In particular, when α = 0 and α = 1 we have

(CD0
a+y)(x) = (CD0

b−y)(x) = y(x)

and

(CD1
a+y)(x) = (CD1

b−y)(x) = y′(x),

respectively.2

Remark 1. The notation C
aD

α
t f(t) is also often used to denote the left-sided Caputo fractional derivative of a3

function f(t) (see, for instance, [2, 18, 42, 51]).4

Property 1. (Linearity property [13]). Let f(t), g(t) : [a, b] → R be such that C
aD

α
t f(t) and C

aD
α
t g(t) exist

everywhere and let c1, c2 ∈ R. Then, CaD
α
t (c1f(t) + c2g(t)) exists everywhere, hence

C
aD

α
t

(
c1f(t) + c2g(t)

)
= c1

C
aD

α
t f(t) + c2

C
aD

α
t g(t).

Lemma 1. (Generalized mean value theorem [45]) Suppose that w ∈ C[a, b] and C
aD

α
t w(t) ∈ C[a, b] for 0 < α ≤

1, then we have

w(t) = w(a) +
1

Γ(α)
C
aD

α
t w(ξ)(t− a)α,

with a ≤ ξ ≤ t, for all t ∈ (a, b].5

Theorem 1. ([13]) Assume that f ∈ C1[a, b] is such that CaD
α
t f(t) ≥ 0 for all t ∈ [a, b] and all α ∈ (α0, 1) with6

some α0 ∈ (0, 1). Then, f is monotone increasing. Similarly, if CaD
α
t f(t) ≤ 0 for all t and α mentioned above,7

then f is monotone decreasing.8

Consider a general dynamical systems governed by the Caputo fractional differential equations of the form9

C
t0D

α
t y(t) = f(t, y), y(t0) = y0, α ∈ (0, 1). (6)

Definition 1. ([42]). The constant y∗ is an equilibrium point of the Caputo fractional dynamical system (6) if10

and only if f(t, y∗) = 0.11

We now present some concepts of stability for the system (6) (see [1, 13, 18, 39, 41, 42, 43]).12

5
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Definition 2 (Concepts of stability). The equilibrium point y∗ = 0 of the system (6) is said to be1

(i) stable if for every ε > 0 and t0 ∈ R+ there exists δ = δ(ε, t0) > 0 such that for any y0 ∈ Rn the inequality2

‖y0‖ < δ implies that ‖y(t; t0, y0)‖ < ε for t ≥ t0;3

(ii) local asymptotically stable if it is stable and there exists some γ > 0 such that limt→∞ ‖y(t)‖ = 0 whenever4

‖y0‖ < γ;5

(iii) globally asymptotically stable if it is stable and limt→∞ ‖y(t)‖ = 0 for all y0 satisfying ‖y0‖ <∞.6

Definition 3. (Class-K functions [26]) A continuous function α : [0, t)→ [0,∞) is said to belong to class-K if7

it is strictly increasing and α(0) = 0.8

Lemma 2. (A relationship between positive define functions and class-K functions [49]) A function V (x, t) is

locally (or globally) positive definite if and only if there exists a class-K function γ1 such that V (0, t) = 0 and

V (x, t) ≥ γ1(‖x‖)

∀t ≥ t0 and ∀x belonging to the local space (or the whole space).9

Theorem 2. (Fractional Lyapunov direct method by using the class-K functions [42]) Let x = 0 be an equilib-

rium point for the non-autonomous fractional-order system (6). Assume that there exists a Lyapunov function

V (t, y(t)) and class-K functions αi (i = 1, 2, 3) satisfying:

α1(‖y‖) ≤ V (t, y) ≤ α2(‖y‖)

and

C
t0D

β
t y(t) ≤ −α3(‖y‖)

where β ∈ (0, 1). Then the system (6) is asymptotically stable.10

Theorem 3. (Lyapunov stability and uniform stability of fractional order systems [18]) Let x = 0 be an equi-

librium point for the non-autonomous fractional-order system (6). Let us assume that there exists a continuous

Lyapunov function V (y(t), t) and a scalar class-K function γ1(.) such that, ∀y 6= 0

γ1(‖y(t)‖) ≤ V (y(t), t)

and

C
t0D

β
t y(t) ≤ 0, with β ∈ (0, 1]

then the origin of the system (6) is Lyapunov stable (stable).11

If, furthermore, there is a scalar class-K function γ2(.) satisfying

V (y(t), t) ≤ γ2(‖y‖)

then the origin of the system (6) is Lyapunov uniformly stable (uniformly stable).12

6
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Theorem 4. (Fractional order Barbalat’s lemma [50, Theorem 3]) If a scalar function V (t, y(t)) is positive1

semi-definite and the Caputo fractional derivative of V (t, y(t)) along the solution y(t) of the system (6) satisfies2

C
t0D

α
t V (t, y(t)) ≤ −ϕ(‖y(t)‖), where ϕ(.) belongs to class-K, then y(t)→ 0 as t→ +∞ if yi(t) i = 1, 2, . . . , n are3

uniformly continuous.4

The following results are very useful in studying stability properties of the system (6)5

Corollary 1. ([50, Corollary 3]) If a scalar function V (t, y(t)) is positive semi-definite and the Caputo fractional6

derivative of V (t, y(t)) along the solution y(t) of the system (6) satisfies C
t0D

α
t V (t, y(t)) is negative semi-define,7

then y(t)→ 0 as t→ +∞ if fi(t, y(t)) i = 1, 2, . . . , n for the system (6) are bounded.8

Lemma 3. (A fractional comparison principle [42, Lemma 6.1]) Let x(0) = y(0) and C
t0D

β
t x(t) ≥ C

t0D
β
t y(t),9

where β ∈ (0, 1). Then x(t) ≥ y(t).10

Lemma 4. ([51]). Let x(t) ∈ R+ be a continuous and derivable function. Then, for any time instant t ≥ t011

C
t0D

α
t

[
x(t)− x∗ − x∗ ln

x(t)

x∗

]
≤

(
1− x∗

x(t)

)
C
t0D

α
t x(t), x∗ ∈ R+, ∀α ∈ (0, 1). (7)

3. Stability analysis12

In this section, the GAS of the fractional-order model (2) is studied. First, it is important to note that the13

two first equations of (2) do not depend on R; consequently, we only need to consider the following sub-model:14

CDα
0+S = Λα − λαSI

1 + γαI
−
(
µα0 + να

)
S,

CDα
0+I =

λαSI

1 + γαI
−
(
µα0 + µα1 + βα

)
I.

(8)

The model (8) always possesses a DFE point Ê0 = (S0, I0) for all values of the parameters, meanwhile, it has a15

DEE point Ê∗ = (S∗, I∗) if and only if Rα0 > 1, where (S0, I0) and (S∗, I∗) are given by (4) and (5), respectively.16

Lemma 5. Let
(
S(0), I(0)

)T ∈ R+
2 be an initial data for the initial value problem (8) and

(
S(t), I(t)

)T
be the17

corresponding solution. Then, S(t), I(t) ≥ 0 for all t > 0. Furthermore, we have the following estimates18

lim sup
t→∞

S(t) ≤ Λα

µα0 + να
,

lim inf
t→∞

[
S(t) + I(t)

]
≥ η1,

lim sup
t→∞

[
S(t) + I(t)

]
≤ η2,

(9)

where19

η1 :=
Λα

max
{
µα0 + να, µα0 + µα1 + βα

} , η2 :=
Λα

min
{
µα0 + να, µα0 + µα1 + βα

} . (10)

Proof. First, from (8) we have

CDα
0+S

∣∣∣
S=0

= Λα > 0, CDα
0+I
∣∣∣
I=0

= 0,

7
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for all S, I ≥ 0. Let
(
S(0), I(0)

)T
be any initial data belonging to R+

2 . Then, the corresponding solution1 (
S(t), I(t)

)T
cannot escape from the hyperplanes of S = 0 and I = 0, and on each hyperplane the vector field2

is tangent to that hyperplane or points toward the interior of R2
+. This means that

(
S(t), I(t)

)T ∈ R2
+.3

From the first equation of (8) we obtain

CDα
0+S ≤ Λα −

(
µα0 + να

)
S.

Consider an auxiliary equation

CDα
0+z = Λα −

(
µα0 + να

)
z, z(0) ≥ S(0).

This equation has a unique positive equilibrium point z∗ = Λα/(µα0 + να). It is easy to show z∗ is globally

asymptotically stable. Hence, limt→∞ z(t) = z∗. Combining this with Lemma 3 (the fractional comparison

principle) we obtain

lim sup
t→∞

S(t) ≤ lim sup
t→∞

z(t) = z∗ =
Λα

µα0 + να
.

Similarly, by adding side-by-side the first and second equations of (8), we have

Λα −max
{
µα0 + να, µα0 + µα1 + βα

}
(S + I)

≤ CDα
0+(S + I)

≤ Λα −min
{
µα0 + να, µα0 + µα1 + βα

}
(S + I),

which follows the last two estimates of (9). The proof is complete.4

Remark 2. If S(0) = 0, then the first equation of (8) implies that

CDα
0+S

∣∣
t=0

= Λα > 0.

So, there exists a number t∗ > 0 such that S(t∗) > 0. Therefore, without loss of generality, it is sufficient to5

consider S(0) > 0. Similarly, if I(0) = 0 then I(t) ≡ 0 is a unique solution of the second equation of (8). In6

this case, it is easy to verify that limt→∞ S(t) = S0. Combining the above observations with Lemma 5, it suffices7

to study dynamical properties of the model (8) on a feasible set given by8

Ω∗ =

{
(S, I)

∣∣∣S, I > 0, S ≤ Λα

µα0 + να
, η1 ≤ S + I ≤ η2

}
. (11)

Before establishing the GAS of (8), we need the following auxiliary result.9

Lemma 6. Consider the function10

f(S) = S − S0 ln

(
S

S0

)
− S0, S, S0 ∈ (0, η]. (12)

Then, we have

f(S) ≥ S0

η2
(S − S0)2 for all S, S0 ∈ (0, η].

8
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Proof. Using the Taylor’s formula for the function f , we obtain

f(S) = f(S0) + f ′(S0)(S − S0) + f ′′(ξS)(S − S0)2,

where ξS is a point between S and S0. Due to the fact that

f(S0) = 0, f ′(S0) = 0, f ′′(S) =
S0

S2
≥ S0

η2
,

we have

f(S) ≥ S0

η2
(S − S0)2.

The proof is complete.1

In the following theorems, we will use the l2 norm, i.e., if y = (y1, y2)T is any vector in R2, then the norm of

y is given by

‖y‖ =
√
y21 + y22 .

Theorem 5. The DFE point Ê0 of the model (8) is globally asymptotically stable whenever Rα0 < 1.2

Proof. First, we rewrite (8) in the form3

CDα
0+S = S

[
−
(
µα0 + να

)
(S − S0)

S
− λαI

1 + γαI

]
,

CDα
0+I =

λαSI

1 + γαI
−
(
µα0 + µα1 + βα

)
I.

(13)

Next, consider a Lyapunov function V : Ω∗ → R+ defined by4

V (S, I) =

[
S − S0 ln

(
S

S0

)
− S0

]
+ I. (14)

Thanks to Lemma 6, we have

S − S0 ln

(
S

S0

)
− S0 ≥

S0

η22
(S − S0)2 for all (S, I) ∈ Ω∗.

On the other hand

I ≥ η−12 I2 for all (S, I) ∈ Ω∗.

Consequently,

V (S, I) ≥ max

{
S0

η22
, η−12

}[
(S − S0)2 + I2

]
.

So, if setting

γ1(z) = max

{
S0

η22
, η−12

}
z2,

then γ1(.) belongs to class-K functions and the function V given by (14) satisfies

V (y) ≥ γ1(‖y‖), y := (S − S0, I).

9
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Using Property 1, Lemma 4 and (13) we obtain1

CDα
0+V = CDα

0+

[
S − S0 − S0 ln

(
S

S0

)]
+ CDα

0+I

≤ S − S0

S

(
CDα

0+S
)

+
(
CDα

0+I
)

= (S − S0)

[
−
(
µα0 + να

)
(S − S0)

S
− λαI

1 + γαI

]
+

λαSI

1 + γαI
−
(
µα0 + µα1 + βα

)
I

= −
(
µα0 + να

)
(S − S0)2

S
+

[
λαS0

1 + γαI
−
(
µα0 + µα1 + βα

)]
I

≤ −
(
µα0 + να

)
(S − S0)2

S
+
[
λαS0 −

(
µα0 + µα1 + βα

)]
I

= −
(
µα0 + να

)
(S − S0)2

S
−
(
µα0 + µα1 + βα

)
(R0 − 1)I

≤ −
(
µα0 + να

)
(S − S0)2

η2
−
(
µα0 + µα1 + βα

)
(R0 − 1)I

≤ −
(
µα0 + να

)
(S − S0)2

η2
−
(
µα0 + µα1 + βα

)
(R0 − 1)η−12 I2.

(15)

Since Rα0 < 1, the function V defined by (14) satisfies Theorem 3. Consequently, Ê0 is stable.2

Note that S(t) and I(t) are bounded. So, the fractional Barbalat’s lemma (Lemma 1) follows that

lim
t→∞

(
S(t), I(t)

)
= Ê0 = (S0, 0).

Hence, Ê0 is globally asymptotically stable. This is the desired conclusion.3

Theorem 6. If Rα0 > 1, then the DEE point Ê∗ of the model (8) is globally asymptotically stable.4

Proof. Note that the DEE point Ê∗ exists if and only if Rα0 > 1. We transform (8) to the form5

CDα
0+S = S

[
Λα

S
− λαI

1 + γαI
−
(
µα0 + να

)]

= S

[(
Λα

S
− Λα

S∗

)
−
(

λαI

1 + γαI
− λαI∗

1 + γαI∗

)]
,

= S

[
Λα(S∗ − S)

SS∗
− λα(I − I∗)

(1 + γαI)(1 + γαI∗)

]
,

CDα
0+I = I

[
λαS

1 + γαI
−
(
µα0 + µα1 + βα

)]

= I

[
λαS

1 + γαI
− λαS∗

1 + γαI∗

]

= I

[
λα(S − S∗) + λαγα(SI∗ − IS∗)

(1 + γαI)(1 + γαI∗)

]

= I

[
λα(S − S∗) + λαγαI∗(S − S∗) + λαγαS∗(I∗ − I)

(1 + γαI)(1 + γαI∗)

]
.

(16)
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We consider a Lyapunov function V ∗ : Ω∗ → R+ as follows1

V ∗(S, I) = τ1

[
S − S∗ − S∗ ln

(
S

S∗

)]
+ τ2

[
I − I∗ − I∗ ln

(
I

I∗

)]
, (17)

where τ1 and τ2 are undetermined positive real numbers.2

By Lemma 6, we deduce that there is a scalar class-K function γ2 such that

γ2(‖z‖) ≤ V ∗(z), z :=
(
S − S∗, I − I∗

)
.

Using Property 1, Lemma 4 and (16) we have the following estimate3

CDα
0+V

∗ = τ1
CDα

0+

[
S − S∗ − S∗ ln

(
S

S∗

)]
+ τ2

CDα
0+

[
I − I∗ − I∗ ln

(
I

I∗

)]
≤ τ1

S − S∗
S

(
CDα

0+S
)

+ τ2
I − I∗
I

(
CDα

0+I
)

= τ1(S − S∗)

[
Λα(S∗ − S)

SS∗
− λα(I − I∗)

(1 + γαI)(1 + γαI∗)

]

+ τ2(I − I∗)

[
λα(S − S∗) + λαγαI∗(S − S∗) + λαγαS∗(I∗ − I)

(1 + γαI)(1 + γαI∗)

]

= −τ1
Λα

SS∗
(S − S∗)2 − τ2

λαγαS∗
(1 + γαI)(1 + γαI∗)

(I − I∗)2

+

[
τ2

λα + λαγαI∗
(1 + γαI)(1 + γαI∗)

− τ1
λα

(1 + γαI)(1 + γαI∗)

]
(S − S∗)(I − I∗).

(18)

If τ1 and τ2 satisfy

τ2
λα + λαγαI∗

(1 + γαI)(1 + γαI∗)
− τ1

λα

(1 + γαI)(1 + γαI∗)
= 0,

or equivalently to

τ1 =
λα + λαγαI∗

λα
τ2,

then from (18) we have

CDα
0+V

∗ ≤ −τ1
Λα

SS∗
(S − S∗)2 − τ2

λαγαS∗
(1 + γαI)(1 + γαI∗)

(I − I∗)2

≤ τ1
Λα

η2S∗
(S − S∗)2 − τ2

λαγαS∗
(1 + γαη2)(1 + γαI∗)

(I − I∗)2.

This estimate means that the function V defined by (17) satisfies the Theorem 3. This implies that Ê∗ is stable.4

On the other hand, the boundedness of S(t), I(t) and the fractional Barbalat lemma (Theorem 4) follow that

lim
t→∞

(
S(t), I(t)

)
= Ê∗ = (S∗, I∗).

Therefore, the GAS of Ê∗ is shown. The proof is completed.5

Combining Theorems 5 and 6 we obtain the complete GAS of the full model (2).6

Theorem 7. The DFE point of the model (2) is globally asymptotically stable whenever Rα0 ≤ 1, whereas, the7

DEE point is globally asymptotically stable whenever Rα0 > 1.8
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As an important consequence of Theorems 5 and 6, we obtain the following result on the GAS of the ODE1

model (1).2

Corollary 2. The DFE point of the ODE model (1) is globally asymptotically stable if the basic reproduction3

number R0 :=
λΛ(

µ0 + ν
)(
µ0 + µ1 + β

) < 1 and the DEE point is globally asymptotically stable if R0 > 1.4

Proof. To prove the GAS of the DFE point, we consider a Lyapunov function of the form:5

V1(S, I) =

[
S − S0 − S0 ln

(
S

S0

)]
+ I. (19)

Meanwhile, the GAS of the DEE point can be obtained by using a Lyapunov function6

V2(S, I) = τ1

[
S − S∗ − S∗ ln

(
S

S∗

)]
+ τ2

(
I − I∗ − I∗ ln

I

I∗

)
, (20)

where

τ1 =
λ+ λγI∗

λ
τ2.

After that, the GAS of the ODE model (1) will be obtained by repeating the proofs of Theorems 5 and 6.7

4. Numerical experiments8

In this section, we report some numerical examples to support the theoretical results. For this purpose, we9

consider the fractional-order model (2) with the parameters given in Table 1.10

Table 1: The values (per day) of the parameters used in numerical examples.

Case Λ γ ν β λ µ0 µ1 α Source Rα0 GAS

1 0.5 0.8 0.004 0.9 0.005 0.001 0.05 0.90 Assumed 0.5198 E0 = (59.9213, 0, 208.6582)

2 0.5 0.8 0.004 0.9 0.005 0.001 0.05 0.95 Assumed 0.5234 E0 = (77.4399, 0, 289.0158)

3 0.5 0.8 0.004 0.9 0.005 0.001 0.05 0.99 Assumed 0.5254 E0 = (95.0211, 0, 374.8517)

4 0.8 0.1 0.005 0.3 0.01 0.001 0.005 0.90 Assumed 3.5432 E∗ = (26.3177, 1.5536, 375.5126)

5 0.8 0.1 0.005 0.3 0.01 0.001 0.005 0.95 Assumed 3.9334 E∗ = (30.9603, 1.7256, 532.0641)

6 0.8 0.1 0.005 0.3 0.01 0.001 0.005 0.99 Assumed 4.2697 E∗ = (35.2526, 1.8652, 701.9766)

In Table 1, the term ”GAS” stands for the globally asymptotically stable equilibrium point.11

We now apply a simple numerical method, namely the fractional Euler method (see [21, 40]), which uses12

the step size h = 10−3 to solve the model (2). The solutions of the model (2) are depicted in Figures 1-6. In13

these figures, each blue curve depicts a phase space corresponding to a specific initial data, the green arrows14

represent the evolution of the model and the red circles refer to the position of the globally asymptotically stable15

equilibrium points. It is clear that the solutions are stable and converge to the equilibrium points; consequently,16

the GAS of the model is shown clearly.17
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From the numerical examples, we can see the affect of the fractional-order α on the behaviour of the HBV1

model. Hence, the fractional-order model (2) is more flexible than the ODE one (1) (with α = 1) thanks to the2

appearance α. This may be useful in studying the parameter estimation problem with real data.3
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Figure 1: The phase spaces of the model (2) with the parameters given in Case 1.
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Figure 2: The phase spaces of the model (2) with the parameters given in Case 2.
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Figure 3: The phase spaces of the model (2) with the parameters given in Case 3.
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Figure 4: The phase spaces of the model (2) with the parameters given in Case 4.
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Figure 5: The phase spaces of the model (2) with the parameters given in Case 5.
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Figure 6: The phase spaces of the model (2) with the parameters given in Case 6.
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5. Conclusions and discussions1

In this work, we have provided a rigorous mathematical study for the GAS of the fractional-order hepatitis2

B epidemic model (2). Here, the GAS of the model was established by a simple approach, which is based3

on extensions of the Lyapunov stability theory and the fractional Barbalat’s lemma in combination with some4

nonstandard techniques for fractional dynamical systems. The main result is that the GAS of the disease free5

and disease endemic equilibrium points was determined fully. Finally, the theoretical results were supported and6

illustrated by a set of numerical experiments.7

The Lyapunov functions proposed in Theorems 5 and 6 are still appropriate to study the GAS of the ODE8

model (1). As an important consequence, we also obtain the complete GAS of the model (1). Hence, the9

obtained results provided an important improvement for the results formulated in [23] and [27].10

It is well-known that the Lyapunov stability theory and its extensions can be considered as one of the most11

powerful and effective approaches to study the asymptotic stability of dynamical systems governed by ordinary12

and fractional differential equations. Therefore, the present approach in this work can be also suitable for other13

mathematical models having the same characteristics as the model (2).14

It was proved in some previous works that fractional-order derivatives can have certain disadvantages and15

limitations when modeling real-world phenomena and processes (see, for instance, [6, 7, 13]). However, as16

emphasized above, the fractional-order model proposed in this work is more flexible than the ODE one (with17

α = 1) thanks to the appearance α. In future works, we will consider disadvantages and limitations of the18

fractional-order model (2) and how to overcome them.19

In the near future, we will extend the approach and results in this work to study stability properties of20

fractional-order differential equation models arising in real-world applications. Also, dynamics of the model (1)21

in the context of other fractional derivatives, such as the Riemann-Liouville fractional derivative [13, 46], the22

Caputo-Fabrizio fractional derivative [9], new fractional derivatives with non-local and non-singular kernel [5],23

new fractional derivative involving the normalized sinc function without singular kernel [52] and so on will be24

studied.25
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