ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

Vol., No., YEAR

https://doi.org/rmj.YEAR..PAGE

MAXIMAL ORDER GROUP ACTIONS ON RIEMANN SURFACES OF GENUS 1+3p

COY L. MAY AND JAY ZIMMERMAN

ABSTRACT. A natural problem is to determine, for each value of the integer $g \ge 2$, the largest order of a group that acts on a Riemann surface of genus g. Let N(g) (respectively M(g)) be the largest order of a group of automorphisms of a Riemann surface of genus $g \ge 2$ preserving the orientation (respectively possibly reversing the orientation) of the surface.

Let g = 1 + 3p for a large prime p. It has been established that if p is congruent to 1 (mod 6), then N(g) = M(g) = 24(g-1). Suppose p is congruent to 5 (mod 6). We prove that if p is also congruent modulo 25 to 1, 6, 11 or 16, then N(g) = 8(g+11) and M(g) = 16(g+11); otherwise N(g) = 8(g+1) and M(g) = 16(g+1).

1. Introduction.

¹⁸ A finite group *G* can be represented as a group of automorphisms of a compact Riemann surface. In ¹⁹ other words, *G* acts on a Riemann surface. The group actions were required, in most of the classical ²⁰ work, to preserve the orientation of the Riemann surface. It is possible, of course, to allow a group ²¹ action to reverse the orientation of the surface.

Among the most interesting group actions for a particular value of the genus g are those such that the orders of the groups are "large" relative to the genus g. A natural problem, then, is to determine, for each value of the integer $g \ge 2$, the largest order of a group that acts on a Riemann surface of genus g. First, let N(g) be the largest order of a group of orientation preserving automorphisms of a Riemann surface of genus $g \ge 2$. Also, let M(g) be the largest order of a group of automorphisms of a Riemann surface of genus $g \ge 2$. (possibly reversing the orientation of the surface). Clearly, $N(g) \le M(g)$.

Suppose the group *G* acts on the Riemann surface *X* of genus $g \ge 2$ (possibly reversing the orientation of *X*). Let G^+ be the subgroup of *G* consisting of the orientation preserving automorphisms. Then $|G^+| \le N(g)$ and

(1)
$$|G| \le 2|G^+| \le 2N(g).$$

Consequently, if |G| = M(g), we obtain the basic inequalities comparing N(g) and M(g),

$$\frac{34}{2}(2) \qquad \qquad N(g) \le M(g) \le 2N(g).$$

The classical upper bound of Hurwitz shows that, for all $g \ge 2$,

(3)
$$N(g) \le 84(g-1) \text{ and } M(g) \le 168(g-1).$$

³⁸/₃₉ The lower bounds for both parameters have also been established. For all $g \ge 2$,

(4)
$$N(g) \ge 8(g+1) \text{ and } M(g) \ge 16(g+1).$$

41 2020 Mathematics Subject Classification. Primary: 57M60; Secondary: 20F38, 20H10.

42 *Key words and phrases.* Riemann surface, genus, group action, NEC group.

¹ The lower bound for N(g) was established independently by Accola [1] and Maclachlan [13]. The lower bound for M(g) was obtained by constructing, for each $g \ge 2$, a group of order 16(g+1) that $\frac{1}{3}$ acts on a Riemann surface of genus g [22, Th. 1.1]. Singerman noted this in ([21, p. 24]). Each of the four bounds in (3) and (4) is the best possible, that is, there are infinitely many g such that the bound is attained. 5 In general, determining N(g) (or M(g)) for a particular g or for all g with a particular form is a very 6 difficult problem. The difficulty is related to the form of the integer g-1 (which is -1/2 times the Euler characteristic of a Riemann surface of genus g). Both N(g) and M(g) have been completely determined for the simplest case, in which g-1 is an odd prime. Accola first determined N(1+p) for 9 10 all odd primes p > 84 [2, Th. 7.11, p. 84]. Also important here is the work of Belolipetsky and Jones $\frac{1}{11}$ [4] on orientation preserving actions on compact Riemann surfaces of genus p+1 for an odd prime $\overline{12}$ p. Their work yields another determination of N(1+p) for all primes p [4, Th. 2]. The analogous $\overline{13}$ result for the parameter M(g) has also been determined. The main result of [16] is the determination $\overline{\mathbf{14}}$ of M(1+p) for all primes p [16, Th. 1]. The next natural step is to determine the parameters N(g) and M(g) in case g-1 is a small multiple 15 of a prime p. First, Accola calculated N(1+2p) for all primes p [2, Th. 7.17, p. 93]. In [22, Th. 6.3] 16 it was shown that N(1+2p) = M(1+2p) = 48p for p congruent to 1 (mod 6) and $p > (24)^2$. The 17 parameter M(1+2p) has not yet been found for p congruent 5 (mod 6). 18 Our focus here is the next step, finding N(g) and M(g) in case g-1 is 3 times a prime p. Some of 19 the work has already been done. Let p be a prime such that $p \equiv 1 \pmod{6}$ and $p > (36)^2$, and let 20 g = 1 + 3p. Then for any such g, M(g) = N(g) = 24(g-1) [22, Th. 5.7]. This surprising result shows 21 that there are infinitely many g such that M(g) = N(g); this result was the focus of [22]. 22 Intuitively, one expects M(g) to "often" be equal to 2N(g). The families of groups for which the 23 lower bounds in (4) are attained provide examples of groups for which M(g) = 2N(g). But it is 24 certainly possible that M(g) < 2N(g) and even for M(g) = N(g). 25 In any case, our focus here is to complete the determination of both N(1+3p) and M(1+3p) for a 26 prime p. Our main result is the following. 27

Theorem 1. Let g = 1 + 3p for some prime $p > (36)^2$. If p is congruent to 1 (mod 6), then $N(g) = \frac{29}{M(g)} = 24(g-1)$. Suppose p is congruent to 5 (mod 6). If p is also congruent modulo 25 to 1, 6, 11 or $\frac{30}{16}$, then N(g) = 8(g+11) and M(g) = 16(g+11); otherwise N(g) = 8(g+1) and M(g) = 16(g+1).

Alternately, if p is congruent modulo 150 to 11, 41, 101 or 131 and $p > (36)^2$, then $N(1+3p) = \frac{32}{33} 24p + 96 = 8(g+11)$ and M(g) = 2N(g).

2. Background results.

36 Much of the following background information is taken from [15]; also see [7, Section 2]. We shall 37 assume that all surfaces are compact. Group actions on Riemann surfaces have often been studied 38 using non-euclidean crystallographic (NEC) groups . Let \mathscr{L} denote the group of automorphisms of 39 the open upper half-plane U, and let \mathscr{L}^+ denote the subgroup of index 2 consisting of the orientation 40 preserving automorphisms. An NEC group is a discrete subgroup Γ of \mathscr{L} (with the quotient space 41 U/Γ compact). If $\Gamma \subseteq \mathscr{L}^+$, then Γ is called a *Fuchsian* group. Otherwise Γ is called a *proper NEC* 42 *group*; in this case Γ has a canonical Fuchsian subgroup $\Gamma^+ = \Gamma \cap \mathscr{L}^+$ of index 2.

34

35

Associated with the NEC group Γ is its *signature*, which has the form

$$(p; \pm; [m_1, \cdots, m_t]; \{(n_{1,1}, \cdots, n_{1,s_1}), \cdots, (n_{k,1}, \cdots, n_{k,s_k})\}).$$

The quotient space U/Γ is a surface with topological genus p and k holes. The surface is orientable if the plus sign is used and non-orientable otherwise. Associated with the signature (5) is a presentation for the NEC group Γ ; see [20, p.234]. Further, the non-euclidean area $\mu(\Gamma)$ of a fundamental region for Γ can be calculated directly from its signature. This is shown in [20, p.235], where $\mu(\Gamma)$ is given in terms of the topological genus of the quotient surface U/Γ and the periods and link periods of Γ .

An NEC group K is called a *surface group* if the quotient map from U to U/K is unramified. Let $10 \ X$ be a Riemann surface of genus $g \ge 2$. Then X can be represented as U/K where K is a Fuchsian surface group with $\mu(K) = 4\pi(g-1)$. Let G be a group of dianalytic automorphisms of the Riemann $11 \ surface X$. Then there are an NEC group Γ and a homomorphism $\phi : \Gamma \to G$ onto G such that kernel $13 \ \phi = K$ and thus the group of automorphisms G is isomorphic to Γ/K .

If Δ is a subgroup of finite index in Γ , then $[\Gamma : \Delta] = \mu(\Delta)/\mu(\Gamma)$. Then the genus of the surface X on which G acts is given by

$$\frac{16}{2} (6) \qquad \qquad g = 1 + |G| \cdot \mu(\Gamma) / 4\pi$$

The simpler, classical case is that *G* acts on *X* preserving orientation. This is the case if and only if Γ is a Fuchsian group and *G* is generated by elements a_i , b_i for $1 \le i \le h$ and x_j of order m_j for $1 \le j \le k$ with relation $x_1 \cdots x_k[a_1, b_1] \cdots [a_h, b_h] = 1$. Then the application of (6) yields the classical Riemann-Hurwitz equation

(7)
$$2g-2 = |G|\left(2h-2+\sum_{j=1}^{k}\left(1-\frac{1}{m_j}\right)\right).$$

The group *G* acts reversing the orientation of *X* in case Γ is a proper NEC group. Then it is necessary to check that the surface group *K* does not contain orientation-reversing elements, or equivalently, the image $\alpha(\Gamma^+)$ has index two in *G* [19, Th. 1, p. 52]. If this condition holds, then we will say that *G* has a particular partial presentation *with the Singerman subgroup condition*. The Riemann-Hurwitz equation in this case is more complicated and is in [7, p. 274], for instance. In this case, though, $|G| = 2|G^+|$ and (7) can be employed to calculate the relationship between the genus *g* and |G|.

Let Γ be a proper NEC group. Then Γ has a canonical Fuchsian subgroup Γ^+ of index 2. Further, the quotient group Γ^+/K acts on X preserving orientation. For a particular Fuchsian group Λ , however, there may be more than one type of NEC group Δ such that Δ^+ is isomorphic to Λ ; see [21].

Next we quickly survey the Fuchsian groups with relatively small non-euclidean area. We use the notation of [15]. First, an (ℓ, m, n) triangle group is a Fuchsian group Λ with signature

36

$$(0; +; [\ell, m, n]; \{\})$$
, where $1/\ell + 1/m + 1/n < 1$.

³⁷ If the group G is a quotient of Λ by a surface group, then G has a presentation of the form

$$X^{\ell} = Y^{m} = (XY)^{n} = 1.$$

⁴⁰ We will say that *G* has partial presentation $T(\ell, m, n)$.

⁴¹ There are two types of NEC groups with a triangle group as canonical Fuchsian subgroup. We are

⁴² interested in the full (or extended) (ℓ, m, n) triangle group is an NEC group Γ with signature

$$\begin{array}{c} 1 & (0; +; []; [(\ell,m,n)]), \ where 1/\ell + 1/m + 1/n < 1. \\ \hline 1 G is a quotient of Γ (by a surface group), then G has a presentation of the form
$$\begin{array}{c} \frac{3}{4} & (9) & A^2 = B^2 = C^2 = (AB)^\ell = (BC)^m = (CA)^n = 1, \\ \hline 3 & and, \ further, \ the subgroup generated by AB and BC (the image of Γ^1) has index 2. The partial a presentation (9) will be denoted $FT(\ell,m,n), \\ \hline 1 & An(\ell,m,n,t) \ quadrilateral group is a Fuchsian group A with signature
$$\begin{array}{c} (0;+;[\ell,m,n,l]; \{\}), \ where 1/\ell+1/m+1/n+1/n+1/l < 2. \\ \hline 0 & A quotient group G of A has a presentation of the form \\ \hline 1 & (10) & X^\ell = Y^m = Z^n = (XYZ)^\ell = 1 \\ \hline 1 & W will denote this partial presentation $Q(\ell,m,n,t). \\ \hline 1 & 0 & A the end of prime, and let g = 1 + 3p. Let X be a Riemann surface X of genus g \geq 2, and let the group G at cn X preserving orientation. Then, regardless of whether p is congruent to 1 or 5 modulo \\ \hline 1 & group G at cn X preserving orientation. Then, regardless of whether p is congruent to 1 or 5 modulo \\ \hline 1 & (11) & |G| \leq 24(g-1) \\ \hline 2 & (11) & |G| \leq 24(g-1) \\ \hline 2 & (11) & |G| \leq 24(g-1) \\ \hline 2 & (12) & 24(g-1) \geq |G| > 8(g+1) \\ \hline 1 & Here we will be concerned with primes congruent to 5 modulo 6 and orientation preserving actions such that \\ \hline 2 & (12) & 24(g-1) \geq |G| > 8(g+1). \\ \hline 3 & Most of the work here is showing that, except for four special congruence classes of primes, three are no group actions satisfying (12) (as long as p is not small). Our general approach is to represent \\ \hline 2 & X = U/K \ and G = \Gamma/K, \ where \Gamma is a Fuchsian group and K a surface group and then consider two a cases, depending upon whether r on the lon-euclidean area of the Fuchsian group Γ and the types of partial presentations that Γ can have. The area restriction is $\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ (13) \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ (13) \\ 1 \\ 1 \\ 2 \\ 2 \\ (13) \\ 1 \\ 1 \\ 2 \\ 2 \\ (12, 3, \lambda), 1 \\ 2 \\ (1) \\ (12) \\ 1 \\ 1 \\ 2 \\ (1) \\ (2a, 3, \lambda), 1 \\ 2 \\ (1) \\ (12) \\ 1 \\ 1 \\ 1 \\ 2 \\ (2a, 3), 1 \\ 2 \\ (2a, 1) \\ 1 \\ 1 \\ 1 \\ 2 \\ (2a, 1) \\ 1 \\ 1 \\ 2 \\ (12)$$$$$$$$$

1 4. $T(2,6,\lambda)$, $6(g-1) = |G|(\lambda-3)/\lambda$ where $6 \le \lambda < 12$, **2** 5. $T(2,7,\lambda)$, $28(g-1) = |G|(5\lambda - 14)/\lambda$ where $7 \le \lambda \le 9$, **6.** $T(3,3,\lambda)$, $6(g-1) = |G|(\lambda-3)/\lambda$ where $4 \le \lambda < 12$, **4** 7. $T(3,4,\lambda)$, $24(g-1) = |G|(5\lambda - 12)/\lambda$ where $\lambda = 4,5$, **5** 8. Q(2,2,2,3), 12(g-1) = |G|. 6 7 Now let p be an odd prime number and g = 1 + 3p. Let X be a Riemann surface of genus g > 2, and let G act on X preserving orientation. If G satisfies the inequality (12), then G has one of the partial presentations in Theorem A. For each of the partial presentations in Theorem A, then Riemann-Hurwitz 10 formulas give |G| in terms of λ and p. For example, if G has partial presentation $T(2,4,\lambda)$, then 11 $|G| = 24p\lambda/(\lambda - 4)$. In addition, as long as $(\lambda - 4)/6 < p$, then |G| satisfies inequality (12). 12 Next, as long as the value of λ is bounded above, applying the Riemann-Hurwitz equation in a 13

straightforward way shows that |G| is a multiple of p for large enough values of p. It is also clear that p^2 does not divide |G|. In cases (3) - (7) in Theorem A, the prime p needs to be larger than 47 in order to guarantee that p divides the order of G. The exceptional cases $T(2,3,\lambda)$ and $T(2,4,\lambda)$ where λ does not have an upper bound must be treated separately. In summary, we have the following.

Lemma 1. Let p be an odd prime with p > 47, and let g = 1 + 3p. Let G act on a surface of genus g preserving orientation such that |G| satisfies the inequality (12). If G has one of the partial presentations (3) - (8) in Theorem A, then p divides |G|.

4. $T(2,3,\lambda)$ groups.

Assume *p* is a prime, and let g = 3p + 1. Here it is not necessary to assume $p \equiv 5 \pmod{6}$, but we need to assume that *p* is not small in order to apply the following useful result of Accola [1, Lemma 5, p. 402]. We use the argument from the proof of [22, Lemma 5.1].

Accola's Lemma. Let G be a non-abelian group with partial presentation $T(2,3,\lambda)$. If G has order $\mu\lambda$, then $\lambda \leq \mu^2$.

³⁰₃₁ **Lemma 2.** Let *p* be an odd prime, and let g = 1 + 3p. Let *G* act on a surface of genus *g* preserving orientation having partial presentation $T(2,3,\lambda)$, with $\lambda \ge 12$. If the prime $p > (36)^2$, then *p* divides |G|.

³⁴ *Proof.* By Theorem A 1), $|G| = 36p\lambda/(\lambda - 6)$ so that $72p\lambda = |G|(\lambda - 6)$. Now by Euclid's Lemma, ³⁵ either *p* divides |G| or *p* divides $(\lambda - 6)$.

Assume that *p* divides $(\lambda - 6)$ and write $\lambda - 6 = mp$ for some integer $m \ge 1$. Now $\lambda = mp + 6 > \frac{37}{2}$ $p > (36)^2$ (by assumption). But on the other hand, $|G| = 36p\lambda/mp = 36\lambda/m$. Then the group of orientation preserving automorphisms *G* is a $T(2,3,\lambda)$ group of order $\mu\lambda$, where $\mu = 36/m \le 36$. Now by Accola's Lemma, $p < \lambda \le \mu^2 \le (36)^2$, an obvious contradiction. Thus, if *G* is a $T(2,3,\lambda)$ group (and $p > (36)^2$), then *p* divides |G|.

22

23

27

Hence, assuming $p > (36)^2$ guarantees that p divides |G| in case G has partial presentation $T(2,3,\lambda)$.

1

21

MAX ORDER ACTIONS ON SURFACES

5.
$$T(2,4,\lambda)$$
 groups

²/₃ We need to examine the structure of a general $T(2,4,\lambda)$ group. Let G be a group with partial presentation $T(2,4,\lambda)$ of order $n = \mu\lambda$. Let $G = \langle a,b \rangle$ with $a^2 = b^4 = (ab)^{\lambda} = 1$, and set c = ab and d = ba. Note that $G = \langle a,c \rangle$ and that d is a conjugate of c. Also μ is the index of $\langle c \rangle$ in G.

Let $J = \langle c \rangle \cap \langle d \rangle$. Then $J = \langle c^k \rangle$ for some k that divides λ . Also J is normal in G, and G/J is a $\frac{6}{2}$ T(2,4,k) group of order μk .

The notation, Z_n is the cyclic group of order n, D_n is the dihedral group of order 2n and S_n is the symmetric group on n elements, will be used throughout this section. For $k \le 5$, T(2,4,k) is a full presentation of a well-known finite group. Specifically, $T(2,4,1) \cong Z_2$, $T(2,4,2) \cong D_4$, $T(2,4,3) \cong S_4$ and $T(2,4,5) \cong S_5$. So for k = 1, it follows that G is an extension of Z_λ by Z_2 and has order 2λ . Using the Riemann-Hurwitz equation from Theorem A, we see that $\lambda = 4g$ and therefore, |G| = 8g. By Theorem A, this group will not have maximal order. So k > 1 for the groups in which we are interested. Next, if k = 2, then $T(2,4,2) \cong D_4$ and so $\mu = 4$. Also $T(2,4,3) \cong S_4$, with $\mu = 8$ and $T(2,4,5) \cong S_5$, with $\mu = 24$.

Since $G = \langle a, c \rangle$, the subgroup $\langle c, d \rangle$ has index one or two in *G*. Thus there are two cases. Let ℓ be $\frac{16}{17}$ the index of $\langle c, d \rangle$ in *G* so that ℓ is 1 or 2. Since μ is the index of $\langle c \rangle$ in *G*, it follows that μ/ℓ is the $\frac{17}{18}$ index of $\langle c \rangle$ in $\langle c, d \rangle$.

¹⁹ **Lemma 3.** Let G be a group with partial presentation $T(2,4,\lambda)$ of order $n = \mu\lambda$. Let $k = \lambda/|J|$, ²⁰ where $J = \langle c \rangle \cap \langle d \rangle$ as defined above. Then $\mu/\ell \ge k$.

Proof. Consider the group $\langle c, d \rangle / J$ of order $\mu k / \ell$. Accola [1, p. 401] has shown this group has k^2 distinct elements of the form $(cJ)^i (dJ)^j$, where *i* and *j* are between 0 and k - 1. So $\mu k / \ell \ge k^2$ and we are done.

²⁵₂₆ Lemma 4. Suppose $G = \langle c, d \rangle$. If 4 divides $k\mu$, then $\lambda \leq \mu^2$.

Proof. The following proof comes directly from Accola [1, Lemma 4, p. 401]. Since $G = \langle c, d \rangle$, *J* is central in *G*. By Lemma 3, $\mu \ge k$. Now, the transfer map into *J* is $g \mapsto g^{k\mu}$. Since 4 divides $k\mu$, this map takes both *a* and *b* to the identity and so it is the zero map. Hence λ divides $k\mu$ and we are done.

Now we focus on orientation preserving actions on surfaces of genus g = 1 + 3p, where p is an odd prime. We begin by applying the Riemann-Hurwitz equation and Euclid's Lemma, as in the proof of Lemma 2.

³⁵ **Lemma 5.** Let *p* be an odd prime, and let g = 1 + 3p. Let *G* act on a surface of genus *g* preserving ³⁶ orientation having partial presentation $T(2,4,\lambda)$ with $6 \le \lambda < 2(g+1)$. Then either *p* divides |G| or ³⁷ *G* has one of the four partial presentations T(2,4,mp+4) with $1 \le m \le 4$.

³⁹ *Proof.* By Theorem A 2), $|G| = 24p\lambda/(\lambda - 4)$ so that

$$\frac{40}{41}(14) \qquad \qquad 24p\lambda = |G|(\lambda - 4).$$

⁴² Now by Euclid's Lemma, either *p* divides |G| or *p* divides $(\lambda - 4)$.

Assume that p divides $(\lambda - 4)$ and write $\lambda - 4 = mp$ for some integer $m \ge 1$. Now $\lambda = mp + 4$, 1 and λ divides |G|. Write $|G| = \mu \lambda$. Now we have $|G| = 24\lambda p/mp = 24\lambda/m$ and $\mu = 24/m$. Hence 3 *m* divides 24 and, since $\lambda < 2(g+1) = 6p+4$, *m* < 6. Thus *m* is 1, 2, 3, or 4. \square

4 5 6 7 8 9 10 11 12 13 Thus, if p does not divide |G|, G has one of four partial presentations. We exhibit these possibilities. It is also clear that if G has one of these partial presentations, then p does not divide |G|.

TABLE 1. Partial Presentations of G

m	Lambda	Order	Mu
m = 1	$\lambda = p + 4$	$ G = 24\lambda = 8(g+11)$	$\mu = 24$
m = 2	$\lambda = 2p + 4$	$ G = 12\lambda = 8(g+5)$	$\mu = 12$
m = 3	$\lambda = 3p + 4$	$ G = 8\lambda = 8(g+3)$	$\mu = 8$
m = 4	$\lambda = 4p + 4$	$ G = 6\lambda = 8(g+2)$	$\mu = 6$

15 As we shall see, there are group actions of the first type for infinitely many $p \equiv 5 \pmod{6}$. There ¹⁶ are no actions of the three remaining types at all, as long as p is not small.

17 One of the four possibilities requires special treatment.

14

18 **Lemma 6.** Let p be an odd prime, and let g = 1 + 3p. Let G act on a surface of genus g preserving 19 orientation having partial presentation $T(2,4,\lambda)$. If G has order 6λ ($\mu = 6$), then $\lambda \leq 36$. 20

Proof. First $k \le 3$ is not possible so that $k \ge 4$. By Lemma 3, $6/\ell \ge k$. Hence $\ell \ne 2$. This means $\ell = 1$, 21 $G = \langle c, d \rangle$, and k must be 4, 5 or 6. If k is 4 or 6, then 4 divides $k\mu = 6k$ and $\lambda \leq 36$ by Lemma 4. 22

Suppose k = 5. Then the quotient group G/J would be a non-abelian T(2,4,5) group of order 30. 23 Each of the three non-abelian groups of order 30 is obviously not generated by an involution and an 24 element of order 4. Thus $k \neq 5$ and $\lambda < 36$. \square 25

26 Now we consider the general case in which $G = \langle c, d \rangle$. As in the previous section, we assume that p 27 is not small and apply Lemma 4. 28

Lemma 7. Let p be an odd prime, and let g = 1 + 3p. Let G act on a surface of genus g preserving 29 orientation. Suppose G has partial presentation $T(2,4,\lambda)$, with $6 \le \lambda < 2(g+1)$. Suppose $G = \langle c,d \rangle$. 30 If the prime $p > (24)^2$, then p divides |G|. 31

³² *Proof.* As in the proof of Lemma 5, if p does not divide |G|, then $\lambda - 4 = mp$ for where m is 1,2,3 or ³³ 4 and $\mu = 24/m$. Then $\lambda = mp + 4 > p > (24)^2$ (by assumption). Assume $m \neq 4$. Then by Accola's ³⁴ Lemma 4, $p < \lambda \le \mu^2 \le (24)^2$, an obvious contradiction. Finally, Lemma 6 immediately rules out the 35 case with m = 4 and $\mu = 6$. Hence p must divide |G|.

36 Thus, if G is a $T(2,4,\lambda)$ group with $G = \langle c,d \rangle$ (and $p > (24)^2$), then p divides |G|. 37

We still must consider the case in which $G \neq \langle c, d \rangle$. Lemma 5 still applies so that either p divides 38 |G| or G has one of four partial presentations. We focus on these partial presentations. 39

40 **Lemma 8.** Assume that G is a $(2,4,\lambda)$ group of order $n = \mu\lambda$ with $\mu > 4$. Let $a,b \in G$ with o(a) = 241 and o(b) = 4 and let c = ab and d = ba. Suppose that $G \neq \langle c, d \rangle$. Then there is a number k which 42 divides λ satisfying $2 \le k \le \mu/2$.

1 *Proof.* Since $G = \langle a, c \rangle$, we have that $N = \langle c, d \rangle$ has index 2 in *G*. Next define $J = \langle c \rangle \cap \langle d \rangle$. Since 2 conjugation by *a* interchanges *c* and *d*, the subgroup *J* is normal in *G*. Define $k = \lambda/|J|$ and so *k* 3 divides λ . Now let \bar{c} and \bar{d} be the image of *c* and *d* in *G/J*. Since $\bar{c}^m \bar{d}^n$ for $m, n = 0, 1, \dots (k-1)$ are 4 distinct elements in N/J, we have that $k^2 \leq k\mu/2$ and $k \leq \mu/2$.

At this point, we assume that the prime p is congruent to 5 modulo 6 and that p is not small.

Lemma 9. Let p be a prime satisfying $p \equiv 5 \pmod{6}$ with $p > (24)^2$. Let g = 1+3p and let G act on a surface of genus g preserving orientation with partial presentation T(2,4,mp+4) with $1 \le m \le 4$. Then m = 1 and p+4 is divisible by 5 but not divisible by 25. Further, the group G contains a cyclic normal subgroup J of odd order with $G/J \cong S_5$.

¹¹ *Proof.* Since *G* acts with one of the four partial presentations, *p* does not divide |G|. Since $p > (24)^2$, ¹² then we must have $G \neq \langle c, d \rangle$ by Lemma 7. Now, as in the proof of Lemma 8, *G* contains a cyclic ¹³ normal subgroup *J* of order λ/k for some integer *k*. Notice that the quotient group G/J is a (2,4,k)

¹⁴ group.

First suppose that $\lambda = 4p + 4$ so that $|G| = 6\lambda$. By the proof of Lemma 6, $G = \langle c, d \rangle$, an obvious contradiction. Hence, it is not possible for *G* to act on a surface of genus g = 3p + 1 with this partial presentation.

¹⁸ Next, consider $\lambda = 3p + 4$ and $|G| = 8\lambda$. Since λ is odd, so is k. Also by Lemma 8 we have that ¹⁹ $k \le 4$. Therefore, k = 3. Now λ is divisible by 3, by Lemma 8 and this case does not occur.

Now suppose $\lambda = 2p + 4$ so that $|G| = 12\lambda$. Then $k \le 6$. Since $p \equiv 5 \pmod{6}$, we see that $\lambda \equiv 2 \binom{21}{21} \pmod{6}$ and so 3 and 6 do not divide λ . If k = 2, then G/J is a (2,4,2) group and hence dihedral of order 8. Thus $|G/J| \ne 24 = 12k$. Therefore, k = 4 or k = 5. However, a search using Magma shows that there are no (2,4,4) groups of order 48 and no (2,4,5) groups of order 60. It follows that $24 \ge 2p + 4$.

Finally, suppose $\lambda = p + 4$, the only remaining possibility. Since λ is odd, so is k. We have $|G| = 24\lambda$ so that $k \le 12$. Further, |G/J| = 24k and G/J is a (2,4,k) group. Now k = 3 gives that $|G/J| = 24\lambda$ and |G/J| = 72. Likewise, if k = 9, then a MAGMA search shows that there are no (2,4,9)groups of order 216 and for k = 11, there are no (2,4,11) groups of order 264. Therefore, k = 5 or |K| = 7.

³⁰ Suppose that k = 7. It follows that Q = G/J is a (2,4,7) group of order 168. A MAGMA search ³¹ reveals that Q must be PSL(2,7), the only (2,4,7) group of order 168. Therefore, G is an extension of ³² an odd order cyclic group J by the simple group Q. Since Q must act trivially on the cyclic group, we ³³ have a central extension. The equivalence class of central extensions is in one to one correspondence ³⁴ with the second cohomology group $H^2(Q,J)$ [18, Th. 11.4.10]. The Schur multiplier of the group Q is ³⁵ relevant to this central extension (See [18, p. 347]). The simple group PSL(2,7) has Schur Multiplier ³⁶ $M(Q) \cong Z_2$. The Universal Coefficients Theorem [18, Th. 11.4.18] says that

(15)
$$H^2(Q,J) \cong Hom(M(Q),J) \times Ext(Q_{ab},J),$$

where $Q_{ab} \cong Q/Q'$ is the abelianization of Q. Thus, the second cohomology group is trivial and so Guse a direct product. This is impossible and $k \neq 7$.

Therefore k = 5 and G has a cyclic normal subgroup J with G/J is a (2,4,5) group of order 120. A

⁴² Magma search shows that S_5 is the only such group. Thus $G/J \cong S_5$.

Suppose that 25 divides p + 4. Now *G* is an extension of a cyclic group Z_n by S_5 , where 5 divides *n*. Let $\tau: G \to S_5$ be the surjection. There is an element *g* of order p + 4 in the group *G*. Now $\tau(g)$ is an element of order 5 in S_5 . Therefore, $\tau(g) \in A_5$. Consider the group $H = \tau^{-1}(A_5)$. So *H* is a central extension of Z_n by A_5 . The group *H* cannot be a direct product, since the direct product has no element of order 25 and *H* does have such an element. However, the Schur Multiplier $M(A_5) \cong Z_2$ and by the Universal Coefficients Theorem (15), the second cohomology group is trivial. Therefore, *H* must be the direct product and we have a contradiction. Thus, 25 does not divide p + 4.

Now we construct a family of groups with partial presentation T(2,4,p+4) and order 24(p+4)that act on a surface of genus g = 3p + 1, preserving its orientation.

Lemma 10. Let *p* be a prime satisfying $p \equiv 5 \pmod{6}$. Suppose $\lambda = p + 4$ is divisible by 5 but not divisible by 25. Let $G_{\lambda} = Z_{\lambda/5} \times_{\phi} S_5$ be the semidirect product of $Z_{\lambda/5}$ and the symmetric group S_5 , with the action ϕ being inversion. Then G_{λ} is a (2,4, p+4) group of order 8(g+11) that acts on a surface of genus g = 1 + 3p preserving orientation. Consequently, for such a value of g, $N(g) \ge 8(g+11)$.

 $\frac{15}{16}$ *Proof.* Let

31 32

16)
$$G_{\lambda} = \langle a, b, c | a^2 = b^5 = (ab)^4 = [a, b^2]^2 = c^{(\lambda/5)} = [b, c] = (ca)^2 = 1 \rangle.$$

¹⁸ First, note that $S_5 \cong \langle a, b \rangle$ and $\langle c \rangle$ is a normal subgroup of G_{λ} . Now $G_{\lambda} = Z_{\lambda/5} \times_{\phi} S_5$ with the ¹⁹ action being inversion. Let x = ca and y = ab. Next, xy = cb has order λ . Since $(xy)^5 = c^5$ and ²⁰ 5 does not divide the order of c, we see that $G = \langle x, y \rangle$ and so G is a (2,4, p+4) group of order ²¹ $24\lambda = 8(g+11)$.

23 Combining the last two lemmas gives the following.

Theorem 2. Let p be a prime satisfying $p \equiv 5 \pmod{6}$ with $p > (24)^2$, and let g = 1+3p. Suppose that G is a (2,4,mp+4) group of order larger than 8(g+1). Then if G acts on a surface of genus gpreserving orientation, then m = 1, $\lambda = p+4$ is divisible by 5 and not by 25. Furthermore, if p+4 is divisible by 5 and not by 25, then there exists a group G that is a (2,4,p+4) group of order 8(g+11).

Next, we show that groups G with order greater than 8(g+1) and p divides |G| cannot act on a surface of genus g = 3p + 1 preserving its orientation.

6. p divides |G|.

Let *p* be an odd prime with $p \equiv 5 \pmod{6}$, and let g = 1 + 3p. Let *G* act on a surface *X* of genus *g* preserving orientation such that |G| satisfies the inequality (12). Now we assume that *p* divides |G|and p > 72. We show that in this case, none of the partial presentations in Theorem A are possible. We let the Sylow *p*-subgroup act on *X* and follow the approach in [22, Section 5].

38 Lemma 11. The Sylow p-subgroup of G is a cyclic normal subgroup in G isomorphic to Z_p .

 $\frac{39}{40}$ *Proof.* We have $|G| \le 24(g-1) = 24 \cdot 3p = 72p$. Obviously, p^2 does not divide |G|, we are done. \Box

Now let the Sylow *p*-subgroup *S* act on *X* with Y = X/S the quotient space, γ the genus of *Y* and $\pi: X \to Y$ the quotient map. For a detailed proof of the following, see [22, Lemma 5.3].

Lemma 12. The quotient map π is unramified, and the quotient space Y = X/S has genus $\gamma = 4$. Further, the quotient group Q = G/S is a group of orientation-preserving automorphisms of Y with $40 < |Q| \le 72$.

Orientation preserving group actions on Riemann surfaces of genus 4 are well understood. These group actions were considered in determining the groups of strong symmetric genus 4 [14, Table 1]. The groups with order larger than 36 are groups of reflexible regular maps [14, Lemma 1]. There are three possibilities for the quotient group Q here, and they are presented in Table 2. The regular maps of genus 4 were first classified by Garbe [10, p. 53]. These maps also appear in [6, Table 1]. In Table 2, we give the group number in the MAGMA small groups library. Map symbols are from [6].

Group	Order	Library	Partial	Map	G/G′
		Number	Presentation	Symbol	
$Z_3 \times S_4$	72	42	T(2,3,12)	R4.1	Z_6
(2,4,6;2)	72	40	T(2,4,6)	R4.3	$(Z_2)^3$
A ₅	60	5	T(2,5,5)	R4.6	1

TABLE 2. Group Actions on Surfaces of Genus 4

The group G is an extension of Z_p by Q. Since |Q| is relatively prime to p, the group G is a semidirect product, by the Schur-Zassenhaus Lemma.

 $\frac{22}{23}$ Lemma 13. $G \cong Z_p \times_{\phi} Q$.

11 12

13 14 15

The following is important here. The proof is an exercise using the definition of semidirect product. $\frac{24}{25}$

Lemma 14. Let *H* be the semidirect product $K \times_{\phi} Q$, and let $L = \text{kernel}(\phi)$. Then *L* is normal in the *product* $K \times_{\phi} Q$ and let $L = \text{kernel}(\phi)$. Then *L* is normal in the *product* $K \times_{\phi} Q$ and let $L = \text{kernel}(\phi)$.

For each of the possibilities for Q, we show that G cannot have the relevant partial presentation.

First suppose there were such a group G of order 72p with partial presentation T(2,3,12). Let Δ be a Fuchsian group with signature $(0;+;[2,3,12];\{\})$ and presentation

$$\overline{X^2} = Y^3 = (XY)^{12} = 1$$

Then $G \cong \Delta/K$ and is generated by two elements of orders 2 and 3. Let $\alpha : \Delta \longrightarrow G$ be the quotient map.

We have $G \cong Z_p \times_{\phi} Q$, where $Q \cong Z_3 \times S_4$. Let $L = kernel(\phi)$. Since $\phi : Q \to Aut(Z_p) \cong Z_{p-1}$, Q/L is cyclic. It follows that $Q' \subset L \subset Q$. Now the commutator quotient group $Q/Q' \cong Z_6$. Thus Lmust have index 1, 2, 3 or 6 in Q, and L is normal in G by Lemma 14. Let T = G/L and let $\rho : G \longrightarrow T$ be the quotient map of G onto T. Also let $\theta = \rho \circ \alpha$ be the composition of α and ρ so that $\theta : \Delta \longrightarrow T$ maps Δ onto T. We eliminate all the possibilities for the quotient group T.

The following preliminary results will be helpful. Let Δ have presentation (17).

42 Lemma 15. The only nontrivial odd order quotient of Δ is Z_3 .

1 *Proof.* Let $\beta : \Delta \longrightarrow W$ be a homomorphism of Δ onto the nontrivial odd-order group W. If J is an 2 involution in Δ , then $\beta(J) = 1$. In particular, $\beta(X) = 1$ and hence $W = \langle \beta(X), \beta(Y) \rangle = \langle \beta(Y) \rangle \cong$ 3 Z_3 .

⁴ **Lemma 16.** Let p be an odd prime, p > 3. Then D_p is not a quotient of Δ .

⁶ *Proof.* Write $D \cong D_p$, and assume that $\beta : \Delta \longrightarrow D$ be a homomorphism of Δ onto D. Then $D = \frac{1}{2} \langle \beta(X), \beta(Y) \rangle$ so that $\beta(X)$ and $\beta(Y)$ must be non-identity elements of D. But D has no elements of β order 3 so that $\beta(Y) = 1$. Hence $D \cong D_p$ is not a quotient of Δ .

⁹ Now we consider the possible indices of *L* in *Q*. First suppose L = Q so that $G \cong Z_p \times Q$. Then *G* ¹⁰ and hence Δ would have Z_p as a quotient which is not possible by Lemma 15.

¹¹ Next assume [Q:L] = 2 so that the quotient group T = G/L has order 2p. Then T is isomorphic ¹² to either Z_{2p} or the dihedral group D_p . Suppose $T = Z_{2p}$. Then T and hence Δ would have Z_p as a ¹³ quotient, which is not possible by Lemma 15. But D_p is not a quotient either, by Lemma 16.

¹⁴ Suppose [Q:L] = 3 so that the quotient group G/L has odd order 3p. This is not possible by Lemma ¹⁵ 15.

Finally, suppose [Q:L] = 6. Then the quotient group G/L has order 6p, and there are four possibilities for the group G/L, since 3 does not divide p-1. (There are two additional groups of order 6p if 3 divides p-1.) There are the cyclic group Z_{6p} , the dihedral group D_{3p} , and the direct products $Z_3 \times D_p$ and $Z_p \times D_3$.

We have to consider the four possibilities for the quotient group T = G/L. First suppose $T = Z_{6p}$. Then T and hence Δ would have Z_p as a quotient, which is not possible by Lemma 15.

Assume next that $T \cong D_{3p}$. Then *T* has a characteristic subgroup *V* of order 3 with $T/V \cong D_p$. This is not possible by Lemma 16. Lemma 16 also eliminates the direct product $Z_3 \times D_p$ which has D_p as a quotient, and Lemma 15 eliminates the direct product $Z_p \times D_3$, which has a nontrivial odd order quotient.

²⁶ In summary, there is no group of order 72p with partial presentation T(2,3,12).

²⁷ Next suppose there were such a group *G* of order 72*p* with partial presentation T(2,4,6). Let Γ be a ²⁸ Fuchsian group with signature $(0;+;[2,4,6];\{\})$ and presentation

$$X^2 = Y^4 = (XY)^6 = 1.$$

Then $G \cong \Gamma/K$ and is generated by two elements of orders 2 and 4. Let $\alpha : \Gamma \longrightarrow G$ be the quotient map.

We have $G \cong Z_p \times_{\phi} Q$, where the quotient group $Q \cong (2,4,6;2)$ (see [9, p. 142] for a presentation). Let $L = kernel(\phi)$. Since $\phi : Q \to Aut(Z_p) \cong Z_{p-1}$, Q/L is cyclic. It follows that $Q' \subset L \subset Q$. Now a calculation shows that the commutator quotient group $Q/Q' \cong (Z_2)^2$. Thus L must have index 1 or 2 in Q, and L is normal in G by Lemma 14. Let T = G/L and let $\rho : G \longrightarrow T$ be the quotient map of G onto T. Also let $\theta = \rho \circ \alpha$ be the composition of α and ρ so that $\theta : \Gamma \longrightarrow T$ maps Γ onto T. We eliminate all the possibilities for the quotient group T.

³⁹ The following preliminary results will be helpful. Let Γ have presentation (18).

Lemma 17. The group Γ has no nontrivial odd order quotients at all.

42 Lemma 18. Let p be an odd prime. Then D_p is not a quotient of Γ .

¹ *Proof.* Write $D \cong D_p$, and assume that $\beta : \Gamma \longrightarrow D$ be a homomorphism of Γ onto D. Then D = $\langle \beta(X), \beta(Y) \rangle$ so that $\beta(X)$ and $\beta(Y)$ must be non-identity elements of D. The dihedral group D has $\frac{1}{3}$ reflections and rotations of order p. Then $\beta(X), \beta(Y)$ must be reflections so that the product $\beta(X)\beta(Y)$ $\overline{\mathbf{4}}$ is a rotation of order p. But $[\beta(XY)]^6 = 1$. This means $\beta(X) = \beta(Y)$ and D would be abelian. Hence **5** $D \cong D_p$ is not a quotient of Γ . \square Now we consider the two possible indices of L in Q. First suppose L = Q so that $G \cong Z_p \times Q$. Then G and hence Γ would have Z_p as a quotient which is not possible by Lemma 17. Next assume [Q:L] = 2 so that the quotient group T = G/L has order 2p. Then T is isomorphic to either Z_{2p} or the dihedral group D_p . Suppose $T = Z_{2p}$. Then T and hence Γ would have Z_p as a 10 quotient, which is not possible by Lemma 17. But D_p is not a quotient either, by Lemma 18. 11 In summary, there is no group of order 72p with partial presentation T(2,4,6). 12 Finally suppose there were such a group G of order 60p with partial presentation T(2,5,5). Let A 13 be a Fuchsian group with signature $(0; +; [2, 5, 5]; \{\})$ and presentation 14 $X^2 = Y^5 = (XY)^5 = 1.$ 15 (19)¹⁶ Then $G \cong \Lambda/K$ and is generated by two elements of orders 2 and 5. Let $\alpha : \Lambda \longrightarrow G$ be the quotient 17 map. 18 We have $G \cong Z_p \times_{\phi} Q$, where the quotient group $Q \cong A_5$. Since A_5 is simple, this means $G \cong Z_p \times A_5$. 19 **Lemma 19.** The only nontrivial odd order quotient of Λ is Z_5 . 20 21 *Proof.* Let $\beta : \Lambda \longrightarrow W$ be a homomorphism of Λ onto the nontrivial odd-order group W. If J is an 22 involution in A, then $\beta(J) = 1$. In particular, $\beta(X) = 1$ and so $W = \langle \beta(X), \beta(Y) \rangle = \langle \beta(Y) \rangle \cong \mathbb{Z}_5$. \Box 23 But the group G and hence A have Z_p as quotients, with p > 5. Thus there is no group of order 60p 24 with partial presentation T(2,5,5). 25 Therefore, in this case, none of the partial presentations in Theorem A are possible, and consequently, 26 $|G| \leq 8(g+1)$. In summary, we have the following. 27 **Lemma 20.** Let p be an odd prime with $p \equiv 5 \pmod{6}$, and let g = 1 + 3p. Let G act on a surface X 29 of genus g preserving orientation. If p divides |G| and p > 72, then $|G| \le 8(g+1)$. 30 **Theorem 3.** Let g = 1 + 3p for some prime $p > (36)^2$. Suppose p is congruent to 5 (mod 6). If p is 31 also congruent modulo 25 to 1, 6, 11 or 16, then N(g) = 8(g+11); otherwise N(g) = 8(g+1). 32 33 Finally, we check that the maximal order groups that give an orientation preserving action can be 34 extended to a maximal order orientation reversing action. 35 36 7. Extensions to Orientation Reversing Actions 37 Next, we want to determine if G_{λ} has an extension to a group of order $48\lambda = 16(g+11)$. In order to 38 do this, we need a presentation of G_{λ} as a $(2,4,\lambda)$ group. In the cases that we are interested in, λ is 39 odd, divisible by 5 and not divisible by 25. Therefore, $\lambda \equiv 5, 15, 35, 45 \pmod{50}$. 40 For $\lambda \equiv \pm 15 \pmod{50}$, define 41 $H_{\lambda} = \langle x, y | x^2 = y^4 = (xy)^{\lambda} = y^{-1} (xy)^5 y (xy)^5 = [y, (xy)^{\lambda/5}]^2 = 1 \rangle.$ **42** (20)

For $\lambda \equiv \pm 5 \pmod{50}$, define

 $H_{\lambda} = \langle x, y | x^2 = y^4 = (xy)^{\lambda} = y^{-1} (xy)^5 y (xy)^5 = [y, (xy)^{\lambda/5}]^3 = 1 \rangle.$ (21)

1 2 3 4 5 Notice that since $(xy)^5$ is inverted by conjugation by y and centralized by (xy), $\langle (xy)^5 \rangle$ is a normal subgroup of H_{λ} in both cases. Next, modifying the presentations (20) and (21) by setting $(xy)^5 = 1$ and putting them in Magma, we see that the quotient is isomorphic to S_5 and hence G_{λ} and H_{λ} have 7 the same order.

Theorem 4. For $\lambda \equiv 5, 15, 35, 45 \pmod{50}$, $G_{\lambda} \cong H_{\lambda}$. A group H_{λ}^* of order 16(g+11) acting on a 9 10 surface of genus g reversing orientation exists. Consequently, for such a value of g, $M(g) \ge 16(g+11)$.

¹¹ *Proof.* We will use the presentation for H_{λ} in equations (20) and (21) and for G_{λ} in (16). Define 12 $v: H_{\lambda} \to G_{\lambda}$ by v(x) = ca and v(y) = ab. Clearly, x^2, y^4 and $(xy)^{\lambda}$ are all mapped to the identity by 13 v. Next, $(xy)^5$ is mapped to c^5 . Therefore, v maps $y^{-1}(xy)^5 y(xy)^5$ to $(b^{-1}a^{-1})c^5(ab)c^5$ which is the identity in G_{λ} . Now, we need to consider two cases depending on whether H_{λ} has presentation (20) or 15 (21).

16

To Case 1: Suppose $\lambda \equiv \pm 15 \pmod{50}$. So H_{λ} has presentation (20). The image of $[y, (xy)^{\lambda/5}]^2$ under vis the identity and so v is an isomorphism by Van Dyke's Theorem.

Now suppose that $\phi: H_{\lambda} \to H_{\lambda}$ by $\phi(x) = x^{-1} = x$ and $\phi(y) = y^{-1}$. The image of all relators of H_{λ} 19 under ϕ is the identity. Therefore, ϕ is an isomorphism of order 2 and so the extension H_{λ}^* exists by 20 Singerman [21, Th. 2]. The group H_{λ}^* has partial presentation $FT(2,4,\lambda)$. 21

22

Case 2: Suppose $\lambda \equiv \pm 5 \pmod{50}$. So H_{λ} has presentation (21). The image of $[y, (xy)^{\lambda/5}]^3$ under v23 is the identity and so v is an isomorphism by Van Dyke's Theorem. 24

Now suppose that $\kappa: H_{\lambda} \to H_{\lambda}$ by $\kappa(x) = x^{-1} = x$ and $\kappa(y) = y^{-1}$. As in case 1 all relators map to 25 the identity. Therefore, κ is an isomorphism of order 2 and again the extension H_{λ}^* exists by Singerman 26 27 [21, Th. 2].

28 29

> 30 31

32

Since $M(g) \ge 16(g+1)$ in all cases, the proof of Theorem 1 is complete.

8. Recent Related Results

³³ We end by mentioning some recent results on related topics. A compact Riemann surface is called ³⁴ *psuedo-real* if it admits anticonformal automorphisms, but none of order 2. In [5], some limitations on ³⁵ the order of the largest group of automorphisms of a psuedo-real surface are obtained. For orientation ³⁶ preserving actions on Riemann surfaces, the paper [3] determines N(g) for $g = qp^m + 1$ where q and p ³⁷ are certain primes. This result gives some information on the asymptotics of N(g). If S is a compact 38 Riemann surface of genus p+1 where p is a prime and $G \leq Aut(S)$ of order $\rho(g-1)$ where $\rho \geq 3$, ³⁹ then [12, Th. 1] classifies the groups G that can occur. As a corollary, the authors classify the maps 40 and hypermaps corresponding to the cases in [12, Th. 1]. The paper [17, Th. 1] classifies the surfaces 41 of genus p-1 for a prime p which have a group of automorphisms of order $\rho(g+1)$ for some $\rho \ge 1$.

42 Similar problems for complex one-dimensional families were studied in [8], and these results were

1 recently extended to the higher dimensional case in [11]. 2 3 We would like to thank the referee for several helpful suggestions and for calling our attention to the 4 5 6 7 8 9 research in this section. References 10 [1] R. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398 -11 407. 12 [2] R. Accola, Topics in the Theory of Riemann Surfaces, LNM 1595, Springer-Verlag, Berlin, Heidelberg, 1994. 13 [3] C. Bagiński, and G. Gromadzki, On the orders of largest groups of automorphisms of compact Riemann surfaces, Journal of Pure and Applied Algebra, 225, No. 12(2021), Paper No. 106758, 14 pp. 14 [4] M. Belolipetsky and G. Jones, Automorphism groups of Riemann surfaces of genus p + 1, where p is prime, Glasgow 15 Math. J. 47 (2005), 379-393. 16 [5] E. Bujalance, F.J. Cirre and M.D.E. Conder, Bounds on the orders of groups of automorphisms of a psuedo-real surface 17 of a given genus, J. London Math. Soc. (2) 101 (2020), No. 2, 877 - 906. 18 [6] M.D.E. Conder and P. Dobcsanyi, Determination of all regular maps of small genus, Journal of Combinatorial Theory 19 (Series B), 81, No. 2, (2001), 224-242. [7] M.D.E. Conder and T.W. Tucker, The symmetric genus spectrum of finite groups, Ars Math. Contemp., 4 No. 2 (2011), 20 271 - 289. 21 [8] A.F. Costa, M. Izquierdo, One-dimensional families of Riemann surfaces of genus g with 4g+4 automorphims, 22 RACSAM 112, 623-631 (2018). https://doi.org/10.1007/s13398-017-0429-0 23 [9] H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, 4th Edition, Springer-Verlag, New York, 24 Heidelberg, Berlin, Tokyo, 1980. [10] D. Garbe, Uber die regularen Zerlegungen geschlossener orientierbarer Flachen, J. Reine Angew. Math. 237 (1969), 25 39-55. 26 [11] M. Izquierdo, S. Reyes - Carocca and A. Rojas, On families of Riemann surfaces with automorphisms, J. Pure Appl. 27 Algebra 225, No. 10 (2021) Paper No. 106704, 21 pp. 28 [12] M. Izquierdo, G. Jones and S. Reyes - Carocca, Groups of automorphisms of Riemann surfaces and maps of genus p + 29 1 where p is a prime, Ann. Fenn. Math. 46, No. 2 (2021), 839 - 867. [13] C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. London Math. Soc. (2) 44 30 (1968), 265-272. 31 [14] C.L. May and J. Zimmerman, Groups of strong symmetric genus 4, Houston J. Math. 31(2005), 21-35. 32 [15] C.L. May, J. Zimmerman, The groups of symmetric genus $\sigma < 8$, Communications in Algebra 36 (2008), 4078 - 4095. 33 [16] C.L. May, J. Zimmerman, Maximal order group actions on Riemann surfaces of genus 1 + p, to appear. 34 [17] S. Reyes - Carocca and A. Rojas, On large prime actions on Riemann surfaces, J. Group Theory 25, No. 5 (2022), 887 -35 940. 36 [18] D.J.S. Robinson, A Course in the Theory of Groups, 2nd ed., Graduate Texts in Mathematics 80, Springer-Verlag, New 37 York, 1996. [19] D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50-59. 38 [20] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 39 233-240. 40 [21] D. Singerman, Symmetries of Riemann surfaces with large automorphism group, Math. Ann. 210 (1974), 17-32. 41 [22] J. Zimmerman and C. L. May, Maximal order group actions on Riemann surfaces, Ars Math. Contemp. 22 (2022), 42 doi:10.26493/1855-3974.2257.6de.

1 DEPARTMENT OF MATHEMATICS, 7800 YORK ROAD, TOWSON UNIVERSITY, TOWSON, MD 21252, U.S.A.

2 Email address: cmay@towson.edu

DEPARTMENT OF MATHEMATICS, 7800 YORK ROAD, TOWSON UNIVERSITY, TOWSON, MD 21252, U.S.A. *Email address*: jzimmerman@towson.edu