Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
— Vol., No., YEAR

https://doi.org/rmj.YEAR..PAGE
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ABSTRACT. A natural problem is to determine, for each value of the integer g > 2, the largest order of a
group that acts on a Riemann surface of genus g. Let N(g) (respectively M(g)) be the largest order of a
group of automorphisms of a Riemann surface of genus g > 2 preserving the orientation (respectively
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possibly reversing the orientation) of the surface.

Let g = 14 3p for a large prime p. It has been established that if p is congruent to 1 (mod 6), then
N(g) =M(g) =24(g—1). Suppose p is congruent to 5 (mod 6). We prove that if p is also congruent
modulo 25to 1, 6, 11 or 16, then N(g) =8(g+ 11) and M(g) = 16(g+ 11); otherwise N(g) =8(g+ 1)
and M(g) =16(g+1).
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- 1. Introduction.

'8 A finite group G can be represented as a group of automorphisms of a compact Riemann surface. In
19 other words, G acts on a Riemann surface. The group actions were required, in most of the classical
20 work, to preserve the orientation of the Riemann surface. It is possible, of course, to allow a group
21 action to reverse the orientation of the surface.

22 Among the most interesting group actions for a particular value of the genus g are those such that
23 the orders of the groups are “large” relative to the genus g. A natural problem, then, is to determine, for
24 each value of the integer g > 2, the largest order of a group that acts on a Riemann surface of genus g.
25 First, let N(g) be the largest order of a group of orientation preserving automorphisms of a Riemann
26 surface of genus g > 2. Also, let M(g) be the largest order of a group of automorphisms of a Riemann
27 surface of genus g > 2 (possibly reversing the orientation of the surface). Clearly, N(g) < M(g).

28 Suppose the group G acts on the Riemann surface X of genus g > 2 (possibly reversing the orientation
29 of X). Let G be the subgroup of G consisting of the orientation preserving automorphisms. Then
30 |GT| < N(g) and

o 1G] <2|G*| <2N(g).

33 Consequently, if |G| = M(g), we obtain the basic inequalities comparing N(g) and M(g),
S ) N(g) <M(g) <2N(g).

z% The classical upper bound of Hurwitz shows that, for all g > 2,

37 (3) N(g) <84(g—1)and M(g) < 168(g—1).

95 The lower bounds for both parameters have also been established. For all g > 2,

@ N(g) > 8(g+1) and M(g) > 16(g+1).

41 2020 Mathematics Subject Classification. Primary: 5TM60; Secondary: 20F38, 20H10.
42 Key words and phrases. Riemann surface, genus, group action, NEC group.
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1 The lower bound for N(g) was established independently by Accola [1] and Maclachlan [13]. The
2> lower bound for M(g) was obtained by constructing, for each g > 2, a group of order 16(g + 1) that
'3 acts on a Riemann surface of genus g [22, Th. 1.1]. Singerman noted this in ([21, p. 24]). Each of the
"4 four bounds in (3) and (4) is the best possible, that is, there are infinitely many g such that the bound is
5 attained.

6 In general, determining N(g) (or M(g)) for a particular g or for all g with a particular form is a very
7 difficult problem. The difficulty is related to the form of the integer g — 1 (which is —1/2 times the
‘g Euler characteristic of a Riemann surface of genus g). Both N(g) and M(g) have been completely
‘9 determined for the simplest case, in which g — 1 is an odd prime. Accola first determined N(1+ p) for
10 all odd primes p > 84 [2, Th. 7.11, p. 84]. Also important here is the work of Belolipetsky and Jones
11 [4] on orientation preserving actions on compact Riemann surfaces of genus p + 1 for an odd prime
12 p. Their work yields another determination of N(1+ p) for all primes p [4, Th. 2]. The analogous
13 result for the parameter M(g) has also been determined. The main result of [16] is the determination
14 of M(1+ p) for all primes p [16, Th. 1].

15 The next natural step is to determine the parameters N(g) and M(g) in case g — 1 is a small multiple
16 of a prime p. First, Accola calculated N(1+ 2p) for all primes p [2, Th. 7.17, p. 93]. In [22, Th. 6.3]
17 it was shown that N(1+2p) = M(1+2p) = 48p for p congruent to 1 (mod 6) and p > (24)2. The
1g parameter M (1+ 2p) has not yet been found for p congruent 5 (mod 6).

19 Our focus here is the next step, finding N(g) and M(g) in case g — 1 is 3 times a prime p. Some of
20 the work has already been done. Let p be a prime such that p =1 (mod 6) and p > (36)?2, and let
21 g = 1+ 3p. Then for any such g, M(g) = N(g) =24(g—1) [22, Th. 5.7]. This surprising result shows
2> that there are infinitely many g such that M(g) = N(g); this result was the focus of [22].

>3 Intuitively, one expects M(g) to “often” be equal to 2N(g). The families of groups for which the
24 lower bounds in (4) are attained provide examples of groups for which M(g) = 2N(g). But it is
o5 certainly possible that M(g) < 2N(g) and even for M(g) = N(g).

26  Inany case, our focus here is to complete the determination of both N(1+3p) and M(1+3p) for a
27 prime p. Our main result is the following.

28 Theorem 1. Let g = 1+ 3p for some prime p > (36)%. If p is congruent to 1 (mod 6), then N(g) =
29 M(g) =24(g—1). Suppose p is congruentto 5 (mod 6). If p is also congruent modulo 25 to 1, 6, 11 or
016, then N(g) = 8(g+11) and M(g) = 16(g+ 11); otherwise N(g) = 8(g+1) and M(g) = 16(g+ 1).

31
s  Alternately, if p is congruent modulo 150 to 11, 41, 101 or 131 and p > (36)2, then N(1+3p) =
4 24p+96=8(g+11) and M(g) = 2N(g).

Z% 2. Background results.

BE Much of the following background information is taken from [15]; also see [7, Section 2]. We shall
37 assume that all surfaces are compact. Group actions on Riemann surfaces have often been studied
38 using non-euclidean crystallographic (NEC) groups . Let .Z denote the group of automorphisms of
39 the open upper half-plane U, and let £ " denote the subgroup of index 2 consisting of the orientation
40 preserving automorphisms. An NEC group is a discrete subgroup I' of . (with the quotient space
41 U /T compact). If ' C £, then I is called a Fuchsian group. Otherwise I' is called a proper NEC

42 group; in this case I has a canonical Fuchsian subgroup I'" =T'N.Z"" of index 2.
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1 Associated with the NEC group I' is its signature, which has the form

% (5) (P,j:,[mh 7mt];{(nl7l7"' 7nl,s1)7"' 7(”]{,17"' 7nk,sk)})-

~, The quotient space U /T is a surface with topological genus p and k holes. The surface is orientable if
5 the plus sign is used and non-orientable otherwise. Associated with the signature (5) is a presentation
"5 for the NEC group I'; see [20, p.234]. Further, the non-euclidean area 1 (I") of a fundamental region
- for I can be calculated directly from its signature. This is shown in [20, p.235], where u(T’) is given in
"5 terms of the topological genus of the quotient surface U /T" and the periods and link periods of T'.

5 An NEC group K is called a surface group if the quotient map from U to U /K is unramified. Let
1o X be a Riemann surface of genus g > 2. Then X can be represented as U /K where K is a Fuchsian
11 surface group with u(K) =4m(g—1). Let G be a group of dianalytic automorphisms of the Riemann
1> surface X. Then there are an NEC group I" and a homomorphism ¢ : I' — G onto G such that kernel
13 ¢ = K and thus the group of automorphisms G is isomorphic to I'/K.

12 If Ais a subgroup of finite index in I', then [I": A] = u(A)/u(T"). Then the genus of the surface X
15 on which G acts is given by

6 (6) g=1+|G|-u(T)/4r.

% The simpler, classical case is that G acts on X preserving orientation. This is the case if and only

9 if I is a Fuchsian group and G is generated by elements a;, b; for 1 <i < h and x; of order m; for
o 1 < j <k with relation x; - --xg[ay,bi] - [ay, by] = 1. Then the application of (6) yields the classical

o Riemann-Hurwitz equation

22 k 1
s (D 2¢—2=G| <2h—2+2(1_)>.

j=1 mj
24
o5 The group G acts reversing the orientation of X in case I' is a proper NEC group. Then it is necessary
o6 to check that the surface group K does not contain orientation-reversing elements, or equivalently, the
,; 1mage o (F‘“) has index two in G [19, Th. 1, p. 52]. If this condition holds, then we will say that G
g has a particular partial presentation with the Singerman subgroup condition. The Riemann-Hurwitz
59 €quation in this case is more complicated and is in [7, p. 274], for instance. In this case, though,
20 |G| =2|G™| and (7) can be employed to calculate the relationship between the genus g and |G].
21 Let ' be a proper NEC group. Then I has a canonical Fuchsian subgroup I'" of index 2. Further,
3> the quotient group I'" /K acts on X preserving orientation. For a particular Fuchsian group A, however,
33 there may be more than one type of NEC group A such that A is isomorphic to A; see [21].
s« Next we quickly survey the Fuchsian groups with relatively small non-euclidean area. We use the
45 hotation of [15]. First, an (¢,m,n) triangle group is a Fuchsian group A with signature

36 (0543 [¢,m,n];{}), where 1 /{+1/m+1/n < 1.

87_1If the group G is a quotient of A by a surface group, then G has a presentation of the form
38

e {_ym _ n__

() X' =y"=(XYy)"'=1.

g We will say that G has partial presentation 7 (¢,m,n).
41 There are two types of NEC groups with a triangle group as canonical Fuchsian subgroup. We are
42 interested in the full (or extended) (¢,m,n) triangle group is an NEC group I" with signature
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(0;4;[]:{(¢,m,n)}), where 1/0+1/m+1/n < 1.
If G is a quotient of I' (by a surface group), then G has a presentation of the form

A2 =B*>=C?>=(AB)' = (BC)" = (CA)" =1,

~
\=}
N

and, further, the subgroup generated by AB and BC (the image of I'") has index 2. The partial
presentation (9) will be denoted FT (¢,m,n).
An (¢,m,n,t) quadrilateral group is a Fuchsian group A with signature

8 (0;+;[¢,m,n,t];{ }), where 1 /0+1/m+1/n+1/t <2.
2 A quotient group G of A has a presentation of the form

10
—(10) Xl=ym"=7"=(XyZ) =1

@|~|ofofsfe|r]|~

12 We will denote this partial presentation Q(¢,m,n,t).
13

14 3. The General Approach.

% Let p be an odd prime, and let g = 1+ 3p. Let X be a Riemann surface X of genus g > 2, and let the
— group G act on X preserving orientation. Then, regardless of whether p is congruent to 1 or 5 modulo
17 . 2

o 6, we know that if p > (36)=, then

E(ll) |G| <24(g—1)

20 [22, Th. 5.6]. We also have the basic lower bound N(g) > 8(g+ 1) for all g > 2.
21 Here we will be concerned with primes congruent to 5 modulo 6 and orientation preserving actions
22 such that

- (12) 24(3—1) > |G| > 8(g+1).

25 Most of the work here is showing that, except for four special congruence classes of primes, there
26 are no group actions satisfying (12) (as long as p is not small). Our general approach is to represent
27 X=U /K and G =T/K, where T is a Fuchsian group and K a surface group and then consider two
28 cases, depending upon whether or not |G| is divisible by the prime p.

29 Corresponding to (12) is a restriction on the non-euclidean area of the Fuchsian group I" and the
30 types of partial presentations that I can have. The area restriction is

81 1 1 2

5 (13 —<u)/2 —(1l=——].

Zi A careful check of the signatures gives the following. Here we have added the specific Riemann-

5 Hurwitz equation for each case. For example, if G has the partial presentation 7(2,4,1), then
o u()/2m = (A —4)/4A. Then using (7) gives 8(g— 1) = |G|(A —4)/A.

?z Theorem A. Let G be a group that acts on a Riemann surface of genus g > 2 preserving the orientation
38 of the surface. If 24(g — 1) > |G| > 8(g + 1), then G has one of the following partial presentations.
39 The application of the Riemann-Hurwitz equation is included for each case.

40 1.T(2,3,4), 12(g—1) =|G|(A —6)/A where A > 12,

41 2.T(2,4,1),8(8—1)=|G|(A —4)/A where 6 <A <2(g+1),

42 3.T(2,5,1),20(g—1) =|G|(34 —10)/A where 5 < A < 20,
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[ 4.T(2,6,1), 6(g—1) = |G|(A —3)/A where 6 < A < 12,
2 5.T(2,7,4), 28(g— 1) = |G|(SA — 14) /A where T < A <9,
5 6.T(3,3,1),6(g—1)=|G|(A —3)/A where 4 < A < 12,
% 7.T(3,4,1), 24(g— 1) = |G|(SA — 12) /A where A = 4.5,
58 0(2,2,2,3), 12(g—1) =|G|.
6
7
8

Now let p be an odd prime number and g = 1+ 3p. Let X be a Riemann surface of genus g > 2, and
o let G act on X preserving orientation. If G satisfies the inequality (12), then G has one of the partial
o presentations in Theorem A. For each of the partial presentations in Theorem A, then Riemann-Hurwitz
—— formulas give |G| in terms of A and p. For example, if G has partial presentation 7(2,4,1), then
> |G| =24pA /(A —4). In addition, as long as (A —4)/6 < p, then |G| satisfies inequality (12).

. Next, as long as the value of A is bounded above, applying the Riemann-Hurwitz equation in a
" straightforward way shows that |G| is a multiple of p for large enough values of p. It is also clear that
5 p? does not divide |G|. In cases (3) - (7) in Theorem A, the prime p needs to be larger than 47 in order
.5 to guarantee that p divides the order of G. The exceptional cases 7'(2,3,1) and T'(2,4,1) where A
- does not have an upper bound must be treated separately. In summary, we have the following.

'® Lemma 1. Let p be an odd prime with p > 47, and let g = 1+ 3p. Let G act on a surface of
9 genus g preserving orientation such that |G| satisfies the inequality (12). If G has one of the partial
20 presentations (3) - (8) in Theorem A, then p divides |G]|.

21

z% 4. T(2,3,A) groups.

zz Assume p is a prime, and let g = 3p + 1. Here it is not necessary to assume p =5 (mod 6), but we
25 need to assume that p is not small in order to apply the following useful result of Accola [1, Lemma 5,
26 p. 402]. We use the argument from the proof of [22, Lemma 5.1].

27
-5 Accola’s Lemma. Let G be a non-abelian group with partial presentation T(2,3, ). If G has order

2o MA, then A < u’.

% Lemma 2. Let p be an odd prime, and let g =1+ 3p. Let G act on a surface of genus g preserving
% orientation having partial presentation T (2,3, 1), with A > 12. If the prime p > (36)2, then p divides
—1G|.

3

34 Proof. By Theorem A 1), |G| =36pA /(A —6) so that 72pA = |G|(A —6). Now by Euclid’s Lemma,
35 either p divides |G| or p divides (A —6).

3  Assume that p divides (A — 6) and write A — 6 = mp for some integer m > 1. Now A =mp+6 >
37 p > (36)? (by assumption). But on the other hand, |G| = 36pA /mp = 364 /m. Then the group of
38 orientation preserving automorphisms G is a T(2,3,A) group of order uA, where u = 36/m < 36.
39 Now by Accola’s Lemma, p < A < u? < (36)2, an obvious contradiction. Thus, if Gis a T(2,3,1)
40 group (and p > (36)?), then p divides |G|. O
41

42 Hence, assuming p > (36)* guarantees that p divides |G| in case G has partial presentation 7'(2,3,1).
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1 5. T(2,4,1) groups.

2 We need to examine the structure of a general T(2,4,4) group. Let G be a group with partial
2 presentation T'(2,4,4) of order n = uA. Let G = (a,b) with a> = b* = (ab)* =1, and set ¢ = ab and
— d = ba. Note that G = (a,c) and that d is a conjugate of ¢. Also u is the index of (c) in G.

Let J = (c) N (d). Then J = (c*) for some k that divides A. Also J is normal in G, and G/J is a
T(2,4,k) group of order pik.

The notation, Z, is the cyclic group of order n, D,, is the dihedral group of order 2n and S,, is the
— symmetric group on n elements, will be used throughout this section. For k < 5, T'(2,4,k) is a full
o presentation of a well-known finite group. Specifically, 7(2,4,1) = Z,, T(2,4,2) = D4, T(2,4,3) =S4
o and 7'(2,4,5) = Ss. So for k = 1, it follows that G is an extension of Z; by Z, and has order 2A. Using
. the Riemann-Hurwitz equation from Theorem A, we see that A = 4g and therefore, |G| = 8g. By
o~ Theorem A, this group will not have maximal order. So k > 1 for the groups in which we are interested.
v Next, if k = 2, then T(2,4,2) = D4 and so u = 4. Also T'(2,4,3) = S4, with u =8 and T (2,4,5) =
o Ss, with 4 = 24.

. Since G = (a, c), the subgroup (c,d) has index one or two in G. Thus there are two cases. Let £ be
- the index of (c¢,d) in G so that £ is 1 or 2. Since u is the index of (c) in G, it follows that /¢ is the
o index of (c) in (c,d).

E Lemma 3. Let G be a group with partial presentation T (2,4,A) of order n = uA. Let k = A/|J

20 where J = (c) N (d) as defined above. Then [/l > k.

21
5> Proof. Consider the group (c,d)/J of order puk/¢. Accola [1, p. 401] has shown this group has k*

o5 distinct elements of the form (cJ)(dJ)/, where i and j are between 0 and k — 1. So uk/¢ > k* and we

5, are done. O

% Lemma 4. Suppose G = (c,d). If 4 divides kp, then A < u?.

26

22 Proof. The following proof comes directly from Accola [1, Lemma 4, p. 401]. Since G = (c,d), J
28 is central in G. By Lemma 3, it > k. Now, the transfer map into J is g — g"*. Since 4 divides kg,
29 this map takes both a and b to the identity and so it is the zero map. Hence A divides kut and we are
30 done. O

31
5  Now we focus on orientation preserving actions on surfaces of genus g = 1+ 3p, where p is an odd

53 prime. We begin by applying the Riemann-Hurwitz equation and Euclid’s Lemma, as in the proof of

” Lemma 2.

>

% Lemma 5. Let p be an odd prime, and let g = 1+ 3p. Let G act on a surface of genus g preserving
% orientation having partial presentation T (2,4,1) with 6 < A < 2(g+1). Then either p divides |G| or

87 G has one of the four partial presentations T (2,4, mp +4) with 1 <m < 4.
38

39 Proof. By Theorem A 2), |G| =24pA /(A —4) so that

a4 24pA = |G|(2 — 4).

ﬁg Now by Euclid’s Lemma, either p divides |G| or p divides (A —4).
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Assume that p divides (A —4) and write A —4 = mp for some integer m > 1. Now A = mp +4,
and A divides |G|. Write |G| = uA. Now we have |G| =24Ap/mp = 241 /m and u = 24 /m. Hence

1
2

'3 mdivides 24 and, since A <2(g+1)=6p+4,m<6. Thusmis 1,2, 3, or4. O
4 Thus, if p does not divide |G|, G has one of four partial presentations. We exhibit these possibilities.
° Ttis also clear that if G has one of these partial presentations, then p does not divide |G|.

6

7 TABLE 1. Partial Presentations of G

8

9 m Lambda Order Mu

10 m=1| A=p+4 | |G|=241=8(g+11) | u=24

" m=2|A=2p+4| |G|=12L=8(g+5) |u=12

12 m=3|A=3p+4| |G|=81=8(g+3) | u=38

13 m=4|A=4p+4| |G|=6A=8(g+2) | u=6

—
»

-

15 As we shall see, there are group actions of the first type for infinitely many p =5 (mod 6). There

16 are no actions of the three remaining types at all, as long as p is not small.
17 One of the four possibilities requires special treatment.

% Lemma 6. Let p be an odd prime, and let g =1+ 3p. Let G act on a surface of genus g preserving
o orientation having partial presentation T (2,4, 1). If G has order 6A (L = 6), then A < 36.

21 Proof. First k <3 is not possible so that k > 4. By Lemma 3, 6/¢ > k. Hence ¢ # 2. This means { = 1,
22 G ={c,d),and k must be 4, 5 or 6. If k is 4 or 6, then 4 divides kyt = 6k and A < 36 by Lemma 4.

23 Suppose k = 5. Then the quotient group G/J would be a non-abelian 7'(2,4,5) group of order 30.
24 Each of the three non-abelian groups of order 30 is obviously not generated by an involution and an
o5 element of order 4. Thus k # 5 and A < 36. (]

% Now we consider the general case in which G = (c,d). As in the previous section, we assume that p

27_is not small and apply Lemma 4.
28

oo Lemma 7. Let p be an odd prime, and let g = 1+ 3p. Let G act on a surface of genus g preserving
a0 orientation. Suppose G has partial presentation T (2,4, ), with6 < A < 2(g+1). Suppose G = (c,d).
a1 Ifthe prime p > (24)?, then p divides |G|.

82 Proof. As in the proof of Lemma 5, if p does not divide |G|, then A —4 = mp for where m is 1,2,3 or
33 4and pu =24/m. Then A = mp+4 > p > (24)? (by assumption). Assume m # 4. Then by Accola’s
3 Lemmad, p<A<pu*< (24)2, an obvious contradiction. Finally, Lemma 6 immediately rules out the
35 case with m =4 and u = 6. Hence p must divide |G|. O

36
- Thus,if GisaT(2,4,1) group with G = (c,d) (and p > (24)%), then p divides |G|.
~—  We still must consider the case in which G # (c,d). Lemma 5 still applies so that either p divides
- |G| or G has one of four partial presentations. We focus on these partial presentations.

g Lemma 8. Assume that G is a (2,4,1) group of order n = UA with > 4. Let a,b € G with o(a) =2
41 and o(b) = 4 and let c = ab and d = ba. Suppose that G # (c,d). Then there is a number k which
42 divides A satisfying 2 <k < /2.
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1 Proof. Since G = (a,c), we have that N = (c¢,d) has index 2 in G. Next define J = (¢) N (d). Since
2 conjugation by a interchanges ¢ and d, the subgroup J is normal in G. Define k = 1 /|J| and so k
"5 divides A. Now let ¢ and d be the image of ¢ and d in G/J. Since &"d" for m,n=0,1,---(k— 1) are
4 distinct elements in N/J, we have that k> <k /2and k < /2. O

At this point, we assume that the prime p is congruent to 5 modulo 6 and that p is not small.

03‘0'1

- Lemma9. Let p be a prime satisfying p=35 (mod 6) with p > (24)°. Let g = 1 +3p and let G act on
‘s a surface of genus g preserving orientation with partial presentation T (2,4,mp +4) with 1 <m < 4.
9 Thenm =1 and p+4 is divisible by 5 but not divisible by 25. Further, the group G contains a cyclic
10 normal subgroup J of odd order with G /J = Ss.

"' Proof. Since G acts with one of the four partial presentations, p does not divide |G]. Since p > (24)?,
"2 then we must have G # (c,d) by Lemma 7. Now, as in the proof of Lemma 8, G contains a cyclic

'® normal subgroup J of order A /k for some integer k. Notice that the quotient group G/J is a (2,4,k)

> First suppose that A = 4p +4 so that |G| = 6A. By the proof of Lemma 6, G = (c,d), an obvious
'® contradiction. Hence, it is not possible for G to act on a surface of genus g = 3p + 1 with this partial
7 presentation.

'®  Next, consider A = 3p +4 and |G| = 8A. Since 1 is odd, so is k. Also by Lemma 8 we have that
9 k < 4. Therefore, k = 3. Now A is divisible by 3, by Lemma 8 and this case does not occur.

20 Now suppose A = 2p +4 so that |G| = 12A4. Then k < 6. Since p =5 (mod 6), we see that A = 2
! (mod 6) and so 3 and 6 do not divide A. If k = 2, then G/J is a (2,4,2) group and hence dihedral
?2 of order 8. Thus |G/J| # 24 = 12k. Therefore, k = 4 or k = 5. However, a search using Magma
25 shows that there are no (2,4,4) groups of order 48 and no (2,4,5) groups of order 60. It follows that
2 A #£2p+4

%> Finally, suppose A = p +4, the only remaining possibility. Since A is odd, so is k. We have
5 |G| = 24A so that k < 12. Further, |G/J| = 24k and G/J is a (2,4,k) group. Now k = 3 gives that
27 G/J =S4 and |G/J| = 72. Likewise, if k = 9, then a MAGMA search shows that there are no (2,4,9)
%8 groups of order 216 and for k = 11, there are no (2,4,11) groups of order 264. Therefore, k = 5 or
2 k=1

%0 Suppose that k = 7. It follows that Q = G/J is a (2,4,7) group of order 168. A MAGMA search
*1 reveals that Q must be PSL(2,7), the only (2,4,7) group of order 168. Therefore, G is an extension of
%2 an odd order cyclic group J by the simple group Q. Since Q must act trivially on the cyclic group, we
% have a central extension. The equivalence class of central extensions is in one to one correspondence
% with the second cohomology group H>(Q,J) [18, Th. 11.4.10]. The Schur multiplier of the group Q is
% relevant to this central extension (See [18, p. 347]). The simple group PSL(2,7) has Schur Multiplier

% M (Q) = Z,. The Universal Coefficients Theorem [18, Th. 11.4.18] says that

37

% (15) H*(Q,J) = Hom(M(Q),J) x Ext(Qap,J),

39 where Q) = Q/(' is the abelianization of Q. Thus, the second cohomology group is trivial and so G
40 must be a direct product. This is impossible and k # 7.

41 Therefore k = 5 and G has a cyclic normal subgroup J with G/J is a (2,4,5) group of order 120. A
42 Magma search shows that Ss is the only such group. Thus G/J = Ss.
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1 Suppose that 25 divides p +4. Now G is an extension of a cyclic group Z, by Ss, where 5 divides n.
2> Let 7: G — S5 be the surjection. There is an element g of order p +4 in the group G. Now 7(g) is an
5 element of order 5 in Ss. Therefore, 7(g) € As. Consider the group H = 7' (As). So H is a central
4 extension of Z, by As. The group H cannot be a direct product, since the direct product has no element
‘5 of order 25 and H does have such an element. However, the Schur Multiplier M(As) = Z, and by the
6 Universal Coefficients Theorem (15), the second cohomology group is trivial. Therefore, H must be
7 the direct product and we have a contradiction. Thus, 25 does not divide p + 4. O

% Now we construct a family of groups with partial presentation T(2,4,p+4) and order 24(p+4)

2 that act on a surface of genus g = 3p + 1, preserving its orientation.
10

11 Lemma 10. Let p be a prime satisfying p=75 (mod 6). Suppose A = p+4 is divisible by 5 but not
12 divisible by 25. Let G = Z) /5 X ¢ S5 be the semidirect product of Z;, ;5 and the symmetric group Ss, with
13 the action ¢ being inversion. Then G is a (2,4, p+4) group of order 8(g+ 11) that acts on a surface
14 of genus g = 1+ 3p preserving orientation. Consequently, for such a value of g, N(g) > 8(g+11).

% Proof. Let
17 (16) G, = (a,b,cla® = b° = (ab)* =[a,b*)> = M) = [b,c] = (ca)* = 1).

'® First, note that S5 = (a,b) and (c) is a normal subgroup of G;. Now G; = Zy )5 x¢ S5 with the
E action being inversion. Let x = ca and y = ab. Next, xy = cb has order A. Since (xy)> = ¢ and
205 does not divide the order of ¢, we see that G = (x,y) and so G is a (2,4, p+4) group of order

'41241:8(g+11). O
2

o3 Combining the last two lemmas gives the following.

** Theorem 2. Let p be a prime satisfying p=15 (mod 6) with p > (24)?, and let g = 1+ 3p. Suppose
® that Gisa (2,4,mp +4) group of order larger than 8(g + 1). Then if G acts on a surface of genus g
26 preserving orientation, then m = 1, A = p+4 is divisible by 5 and not by 25. Furthermore, if p+4 is

27 divisible by 5 and not by 25, then there exists a group G that is a (2,4, p+4) group of order 8(g+11).
28

20 Next, we show that groups G with order greater than 8(g + 1) and p divides |G| cannot act on a
30 surface of genus ¢ = 3p+ 1 preserving its orientation.
31

32 6. p divides |G]|.

“ Let p be an odd prime with p =5 (mod 6) , and let g = 1+ 3p. Let G act on a surface X of genus g
% preserving orientation such that |G| satisfies the inequality (12). Now we assume that p divides |G|
— and p > 72. We show that in this case, none of the partial presentations in Theorem A are possible. We
Z— let the Sylow p-subgroup act on X and follow the approach in [22, Section 5].

38 Lemma 11. The Sylow p-subgroup of G is a cyclic normal subgroup in G isomorphic to Z,.
i% Proof. We have |G| < 24(g— 1) =24-3p = 72p. Obviously, p> does not divide |G|, we are done. [

E Now let the Sylow p-subgroup S act on X with Y = X /S the quotient space, y the genus of ¥ and
42 1 :X — Y the quotient map. For a detailed proof of the following, see [22, Lemma 5.3].
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1 Lemma 12. The quotient map 7 is unramified, and the quotient space Y = X /S has genus y = 4.
o Further, the quotient group Q = G/S is a group of orientation-preserving automorphisms of Y with
3 40< |0 <72
* " Orientation preserving group actions on Riemann surfaces of genus 4 are well understood. These
% group actions were considered in determining the groups of strong symmetric genus 4 [14, Table 1].
— The groups with order larger than 36 are groups of reflexible regular maps [14, Lemma 1]. There are
— three possibilities for the quotient group Q here, and they are presented in Table 2. The regular maps
S of genus 4 were first classified by Garbe [10, p. 53]. These maps also appear in [6, Table 1]. In Table
2 2, we give the group number in the MAGMA small groups library. Map symbols are from [6].

o TABLE 2. Group Actions on Surfaces of Genus 4

— Group | Order | Library Partial Map | G/G’
ol Number | Presentation | Symbol

% Z3 X Sy 72 42 T(2,3,12) R4.1 Zs
- (2,4,6;2) | 72 40 T(2,4,6) | R43 | (2)°
. As 60 5 T(2,5,5) R4.6 1

19
20 The group G is an extension of Z, by Q. Since |Q| is relatively prime to p, the group G is a

21 semidirect product, by the Schur-Zassenhaus Lemma.
22
o Lemma 13. G=Z, x4 0.

24 The following is important here. The proof is an exercise using the definition of semidirect product.
25

o6 Lemma 14. Let H be the semidirect product K x 4 Q, and let L = kernel(¢). Then L is normal in the
27 big group H.

28 s . .
—  For each of the possibilities for Q, we show that G cannot have the relevant partial presentation.

* " First suppose there were such a group G of order 72p with partial presentation 7'(2,3,12). Let A be
30 . N .
o Fuchsian group with signature (0;+;[2,3,12];{}) and presentation

s2 (17) X’=yv=(xr)?=1.

* Then G A/K and is generated by two elements of orders 2 and 3. Let o : A — G be the quotient
ja map.

33 We have G = Z, x4 Q, where Q = Z3 x S4. Let L = kernel(¢). Since ¢ : Q — Aut(Z,) = Z,_,
7 Q/L is cyclic. It follows that Q' C L C Q. Now the commutator quotient group Q/Q’ = Zs. Thus L
3— must have index 1, 2, 3 or 6 in Q, and L is normal in G by Lemma 14. Let T =G/Landletp : G— T
*_ be the quotient map of G onto T. Also let @ = p o & be the composition of & and p sothat 0 : A — T
39

— maps A onto 7. We eliminate all the possibilities for the quotient group T'.

% The following preliminary results will be helpful. Let A have presentation (17).

ﬁg Lemma 15. The only nontrivial odd order quotient of A is Zs.
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1 Proof. Let B : A — W be a homomorphism of A onto the nontrivial odd-order group W. If J is an
2 involution in A, then B(J) = 1. In particular, $(X) = 1 and hence W = (B(X),B(Y)) = (B(Y)) =
3 Z3. O

* Lemma 16. Let p be an odd prime, p > 3. Then D), is not a quotient of A.
5

‘6 Proof. Write D = D, and assume that 8 : A — D be a homomorphism of A onto D. Then D =

7 (B(X),B(Y)) so that B(X) and B(Y) must be non-identity elements of D. But D has no elements of
‘g order 3 so that B(Y) = 1. Hence D = D,, is not a quotient of A. O
°  Now we consider the possible indices of L in Q. First suppose L = Q so that G = Z,x Q. Then G
' and hence A would have Z,, as a quotient which is not possible by Lemma 15.

" Next assume [Q : L] = 2 so that the quotient group T = G/L has order 2p. Then T is isomorphic
12 to either Z, p or the dihedral group D). Suppose T = Z,,. Then T and hence A would have Z, as a

'3 quotient, which is not possible by Lemma 15. But D, is not a quotient either, by Lemma 16.

* " Suppose [Q : L] = 3 so that the quotient group G/L has odd order 3p. This is not possible by Lemma
15

> 15.

® " Finally, suppose [Q : L] = 6. Then the quotient group G/L has order 6p, and there are four
7 possibilities for the group G/L, since 3 does not divide p — 1. (There are two additional groups of
'® order 6p if 3 divides p — 1.) There are the cyclic group Zgp, the dihedral group D3, and the direct

19 products Z3 x D, and Z, x Dj.
29 We have to consider the four possibilities for the quotient group T = G/L. First suppose T = Zep.
21 Then T and hence A would have Z, as a quotient, which is not possible by Lemma 15.

22 Assume next that T = D3 p- Then T has a characteristic subgroup V of order 3 with 7 /V = D,,. This

% is not possible by Lemma 16. Lemma 16 also eliminates the direct product Z3 x D, which has D,
2 asa quotient, and Lemma 15 eliminates the direct product Z, x D3, which has a nontrivial odd order

% quotient.

%6 In summary, there is no group of order 72p with partial presentation T(2,3,12).

27 Next suppose there were such a group G of order 72p with partial presentation T(2,4,6). LetI'bea
8 Fuchsian group with signature (0;+;[2,4,6];{}) and presentation
29

50 (18) X2=v*=(xY)°=1.
:Z Then G = T'/K and is generated by two elements of orders 2 and 4. Let o : I' — G be the quotient
32 map.

33 We have G = Z, x4 Q, where the quotient group Q == (2,4,6;2) (see [9, p. 142] for a presentation).
34 Let L =kernel(¢). Since ¢ : Q — Aut(Z,) = Z,_1, Q/L is cyclic. It follows that ' C L C Q. Now a
35 calculation shows that the commutator quotient group Q/Q’ = (Z,)?. Thus L must have index 1 or 2
36 in Q, and L is normal in G by Lemma 14. Let T = G/L and let p : G — T be the quotient map of
37 Gonto T. Also let 6 = p o & be the composition of @ and p so that 6 : I' — T maps I" onto 7. We
38 eliminate all the possibilities for the quotient group 7.

39 The following preliminary results will be helpful. Let I" have presentation (18).
40
e Lemma 17. The group I has no nontrivial odd order quotients at all.

ﬁg Lemma 18. Let p be an odd prime. Then D), is not a quotient of I'.
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1 Proof. Write D = D, and assume that B : T'— D be a homomorphism of I" onto D. Then D =
2 (B(X),B(Y)) so that B(X) and B(Y) must be non-identity elements of D. The dihedral group D has
‘3 reflections and rotations of order p. Then B(X), B(Y) must be reflections so that the product 3(X)B(Y)
"4 is arotation of order p. But [B(XY)]® = 1. This means B(X) = B(Y) and D would be abelian. Hence
5 D= D, isnotaquotient of I'. O

Now we consider the two possible indices of L in Q. First suppose L = Q so that G = Z, x Q. Then
G and hence I" would have Z), as a quotient which is not possible by Lemma 17.

Next assume [Q : L] = 2 so that the quotient group 7' = G/L has order 2p. Then T is isomorphic
— to either Z,, or the dihedral group D,. Suppose T' = Z,,. Then T and hence I" would have Z,, as a
10 quotient, which is not possible by Lemma 17. But D), is not a quotient either, by Lemma 18.

" In summary, there is no group of order 72p with partial presentation 7'(2,4,6).

2 Finally suppose there were such a group G of order 60p with partial presentation 7'(2,5,5). Let A

'3 be a Fuchsian group with signature (0;+;[2,5,5];{}) and presentation
14

5 (19) X?=v>=(Xy)°=1.
16 Then G = A/K and is generated by two elements of orders 2 and 5. Let & : A — G be the quotient
17 map.

18 Wehave G=Z, x4 Q, where the quotient group Q = As. Since As is simple, this means G = Z, X As.
19
o Lemma 19. The only nontrivial odd order quotient of A is Zs.

21 Proof. Let B : A — W be a homomorphism of A onto the nontrivial odd-order group W. If J is an
22 involution in A, then (/) = 1. In particular, B(X) =1landso W = (B(X),B(Y)) = (B(Y)) =Zs. O

23
e But the group G and hence A have Z, as quotients, with p > 5. Thus there is no group of order 60p
o5 With partial presentation T(2,5,5).

o Therefore, in this case, none of the partial presentations in Theorem A are possible, and consequently,

o |G| < 8(g+ 1). In summary, we have the following.

2E Lemma 20. Let p be an odd prime with p =5 (mod 6), and let g =1+ 3p. Let G act on a surface X
29 of genus g preserving orientation. If p divides |G| and p > 72, then |G| < 8(g+1).

30
5, Theorem 3. Let g = 1+ 3p for some prime p > (36)2. Suppose p is congruent to 5 (mod 6). If p is

55 also congruent modulo 25 to 1, 6, 11 or 16, then N(g) = 8(g+ 11); otherwise N(g) = 8(g+1).

33 Finally, we check that the maximal order groups that give an orientation preserving action can be

34 extended to a maximal order orientation reversing action.
35

36 7. Extensions to Orientation Reversing Actions

37
45 Next, we want to determine if G, has an extension to a group of order 484 = 16(g+ 11). In order to

4 do this, we need a presentation of Gy, as a (2,4,4) group. In the cases that we are interested in, 4 is
— odd, divisible by 5 and not divisible by 25. Therefore, A = 5,15,35,45 (mod 50).

40

,; ForA==£15 (mod 50), define

2 (20) Hy = (xyle =y* = (op)h =y (0 y () = [y (eop) P2 = 1),
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1 For A =45 (mod 50), define

5 @b Hy = (el = y* = (o) =y~ () y(0p)” = [y, ()P = 1),

Notice that since (xy)? is inverted by conjugation by y and centralized by (xy), ((xy)’) is a normal
subgroup of H, in both cases. Next, modifying the presentations (20) and (21) by setting (xy)> = 1
and putting them in Magma, we see that the quotient is isomorphic to S5 and hence G, and H) have

° Theorem 4. For A =5,15,35,45 (mod 50), Gy, = H,,. A group Hy of order 16(g+ 11) acting on a
2 surface of genus g reversing orientation exists. Consequently, for such a value of g, M(g) > 16(g+11).
10

11 Proof. We will use the presentation for H; in equations (20) and (21) and for G, in (16). Define
12 V:Hj, — G, by v(x) = ca and v(y) = ab. Clearly, x, y* and (xy)* are all mapped to the identity by
13 v. Next, (xy)° is mapped to ¢. Therefore, v maps y~! (xy)>y(xy)> to (b~'a~")c> (ab)c® which is the
14 identity in G;. Now, we need to consider two cases depending on whether H; has presentation (20) or
15 (21).

16

17 Case 1: Suppose A = 15 (mod 50). So H; has presentation (20). The image of [y, (xy)
18 is the identity and so V is an isomorphism by Van Dyke’s Theorem.

19 Now suppose that ¢ : H; — H; by ¢(x) =x~! =xand ¢(y) = y~!. The image of all relators of Hj
20 under ¢ is the identity. Therefore, ¢ is an isomorphism of order 2 and so the extension H. 1 exists by
21 Singerman [21, Th. 2]. The group H; has partial presentation FT(2,4,1).

22

23 Case 2: Suppose A = £5 (mod 50). So H,, has presentation (21). The image of [y, (xy)
24 is the identity and so V is an isomorphism by Van Dyke’s Theorem.

25 Now suppose that k : Hy — Hj by k(x) =x~' =xand k(y) = y~'. Asin case 1 all relators map to
26 the identity. Therefore, k is an isomorphism of order 2 and again the extension Hj exists by Singerman
27 [21, Th. 2].

28 O

/512 under v

A/5)3 under v

2% Since M(g) > 16(g+ 1) in all cases, the proof of Theorem 1 is complete.

% 8. Recent Related Results

33 We end by mentioning some recent results on related topics. A compact Riemann surface is called
34 psuedo-real if it admits anticonformal automorphisms, but none of order 2. In [5], some limitations on
35 the order of the largest group of automorphisms of a psuedo-real surface are obtained. For orientation
36 preserving actions on Riemann surfaces, the paper [3] determines N(g) for g = gp™ + 1 where g and p
37 are certain primes. This result gives some information on the asymptotics of N(g). If S is a compact
38 Riemann surface of genus p + 1 where p is a prime and G < Aut(S) of order p(g — 1) where p > 3,
39 then [12, Th. 1] classifies the groups G that can occur. As a corollary, the authors classify the maps
40 and hypermaps corresponding to the cases in [12, Th. 1]. The paper [17, Th. 1] classifies the surfaces
41 of genus p — 1 for a prime p which have a group of automorphisms of order p(g + 1) for some p > 1.
42 Similar problems for complex one-dimensional families were studied in [8], and these results were
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1 recently extended to the higher dimensional case in [11].

2
'3 We would like to thank the referee for several helpful suggestions and for calling our attention to the
"4 research in this section.
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