```
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
Vol., No., YEAR
https://doi.org/rmj.YEAR..PAGE
```


MAXIMAL ORDER GROUP ACTIONS ON RIEMANN SURFACES OF GENUS $1+3 p$

COY L. MAY AND JAY ZIMMERMAN

Abstract

A natural problem is to determine, for each value of the integer $g \geq 2$, the largest order of a group that acts on a Riemann surface of genus g. Let $N(g)$ (respectively $M(g)$) be the largest order of a group of automorphisms of a Riemann surface of genus $g \geq 2$ preserving the orientation (respectively possibly reversing the orientation) of the surface.

Let $g=1+3 p$ for a large prime p. It has been established that if p is congruent to $1(\bmod 6)$, then $N(g)=M(g)=24(g-1)$. Suppose p is congruent to $5(\bmod 6)$. We prove that if p is also congruent modulo 25 to $1,6,11$ or 16 , then $N(g)=8(g+11)$ and $M(g)=16(g+11)$; otherwise $N(g)=8(g+1)$ and $M(g)=16(g+1)$.

1. Introduction.

A finite group G can be represented as a group of automorphisms of a compact Riemann surface. In other words, G acts on a Riemann surface. The group actions were required, in most of the classical work, to preserve the orientation of the Riemann surface. It is possible, of course, to allow a group action to reverse the orientation of the surface.

Among the most interesting group actions for a particular value of the genus g are those such that the orders of the groups are "large" relative to the genus g. A natural problem, then, is to determine, for each value of the integer $g \geq 2$, the largest order of a group that acts on a Riemann surface of genus g.

First, let $N(g)$ be the largest order of a group of orientation preserving automorphisms of a Riemann surface of genus $g \geq 2$. Also, let $M(g)$ be the largest order of a group of automorphisms of a Riemann surface of genus $g \geq 2$ (possibly reversing the orientation of the surface). Clearly, $N(g) \leq M(g)$.

Suppose the group G acts on the Riemann surface X of genus $g \geq 2$ (possibly reversing the orientation of X). Let G^{+}be the subgroup of G consisting of the orientation preserving automorphisms. Then $\left|G^{+}\right| \leq N(g)$ and

$$
|G| \leq 2\left|G^{+}\right| \leq 2 N(g)
$$

Consequently, if $|G|=M(g)$, we obtain the basic inequalities comparing $N(g)$ and $M(g)$,

$$
\begin{equation*}
N(g) \leq M(g) \leq 2 N(g) \tag{2}
\end{equation*}
$$

The classical upper bound of Hurwitz shows that, for all $g \geq 2$,

$$
\begin{equation*}
N(g) \leq 84(g-1) \text { and } \mathrm{M}(\mathrm{~g}) \leq 168(\mathrm{~g}-1) \tag{3}
\end{equation*}
$$

The lower bounds for both parameters have also been established. For all $g \geq 2$,

$$
\begin{equation*}
N(g) \geq 8(g+1) \text { and } \mathrm{M}(\mathrm{~g}) \geq 16(\mathrm{~g}+1) \tag{4}
\end{equation*}
$$

2020 Mathematics Subject Classification. Primary: 57M60; Secondary: 20F38, 20H10.
Key words and phrases. Riemann surface, genus, group action, NEC group.

The lower bound for $N(g)$ was established independently by Accola [1] and Maclachlan [13]. The lower bound for $M(g)$ was obtained by constructing, for each $g \geq 2$, a group of order $16(g+1)$ that acts on a Riemann surface of genus g [22, Th. 1.1]. Singerman noted this in ([21, p. 24]). Each of the four bounds in (3) and (4) is the best possible, that is, there are infinitely many g such that the bound is attained.

In general, determining $N(g)$ (or $M(g)$) for a particular g or for all g with a particular form is a very difficult problem. The difficulty is related to the form of the integer $g-1$ (which is $-1 / 2$ times the Euler characteristic of a Riemann surface of genus g). Both $N(g)$ and $M(g)$ have been completely determined for the simplest case, in which $g-1$ is an odd prime. Accola first determined $N(1+p)$ for all odd primes $p>84$ [2, Th. 7.11, p. 84]. Also important here is the work of Belolipetsky and Jones [4] on orientation preserving actions on compact Riemann surfaces of genus $p+1$ for an odd prime p. Their work yields another determination of $N(1+p)$ for all primes p [4, Th. 2]. The analogous result for the parameter $M(g)$ has also been determined. The main result of [16] is the determination of $M(1+p)$ for all primes $p[16, \mathrm{Th} .1]$.

The next natural step is to determine the parameters $N(g)$ and $M(g)$ in case $g-1$ is a small multiple of a prime p. First, Accola calculated $N(1+2 p)$ for all primes p [2, Th. 7.17, p. 93]. In [22, Th. 6.3] it was shown that $N(1+2 p)=M(1+2 p)=48 p$ for p congruent to $1(\bmod 6)$ and $p>(24)^{2}$. The parameter $M(1+2 p)$ has not yet been found for p congruent $5(\bmod 6)$.

Our focus here is the next step, finding $N(g)$ and $M(g)$ in case $g-1$ is 3 times a prime p. Some of the work has already been done. Let p be a prime such that $p \equiv 1(\bmod 6)$ and $p>(36)^{2}$, and let $g=1+3 p$. Then for any such $g, M(g)=N(g)=24(g-1)$ [22, Th. 5.7]. This surprising result shows that there are infinitely many g such that $M(g)=N(g)$; this result was the focus of [22].

Intuitively, one expects $M(g)$ to "often" be equal to $2 N(g)$. The families of groups for which the lower bounds in (4) are attained provide examples of groups for which $M(g)=2 N(g)$. But it is certainly possible that $M(g)<2 N(g)$ and even for $M(g)=N(g)$.

In any case, our focus here is to complete the determination of both $N(1+3 p)$ and $M(1+3 p)$ for a prime p. Our main result is the following.
Theorem 1. Let $g=1+3 p$ for some prime $p>(36)^{2}$. If p is congruent to $1(\bmod 6)$, then $N(g)=$ $M(g)=24(g-1)$. Suppose p is congruent to $5(\bmod 6)$. If p is also congruent modulo 25 to $1,6,11$ or 16 , then $N(g)=8(g+11)$ and $M(g)=16(g+11)$; otherwise $N(g)=8(g+1)$ and $M(g)=16(g+1)$.

Alternately, if p is congruent modulo 150 to $11,41,101$ or 131 and $p>(36)^{2}$, then $N(1+3 p)=$ $24 p+96=8(g+11)$ and $M(g)=2 N(g)$.

2. Background results.

Much of the following background information is taken from [15]; also see [7, Section 2]. We shall assume that all surfaces are compact. Group actions on Riemann surfaces have often been studied using non-euclidean crystallographic (NEC) groups . Let \mathscr{L} denote the group of automorphisms of the open upper half-plane U, and let \mathscr{L}^{+}denote the subgroup of index 2 consisting of the orientation preserving automorphisms. An NEC group is a discrete subgroup Γ of \mathscr{L} (with the quotient space U / Γ compact). If $\Gamma \subseteq \mathscr{L}^{+}$, then Γ is called a Fuchsian group. Otherwise Γ is called a proper NEC group; in this case Γ has a canonical Fuchsian subgroup $\Gamma^{+}=\Gamma \cap \mathscr{L}^{+}$of index 2.

Associated with the NEC group Γ is its signature, which has the form

The quotient space U / Γ is a surface with topological genus p and k holes. The surface is orientable if the plus sign is used and non-orientable otherwise. Associated with the signature (5) is a presentation for the NEC group Γ; see [20, p.234]. Further, the non-euclidean area $\mu(\Gamma)$ of a fundamental region for Γ can be calculated directly from its signature. This is shown in [20, p.235], where $\mu(\Gamma)$ is given in terms of the topological genus of the quotient surface U / Γ and the periods and link periods of Γ.

An NEC group K is called a surface group if the quotient map from U to U / K is unramified. Let X be a Riemann surface of genus $g \geq 2$. Then X can be represented as U / K where K is a Fuchsian surface group with $\mu(K)=4 \pi(g-1)$. Let G be a group of dianalytic automorphisms of the Riemann surface X. Then there are an NEC group Γ and a homomorphism $\phi: \Gamma \rightarrow G$ onto G such that kernel $\phi=K$ and thus the group of automorphisms G is isomorphic to Γ / K.

If Δ is a subgroup of finite index in Γ, then $[\Gamma: \Delta]=\mu(\Delta) / \mu(\Gamma)$. Then the genus of the surface X on which G acts is given by

$$
\begin{equation*}
g=1+|G| \cdot \mu(\Gamma) / 4 \pi \tag{6}
\end{equation*}
$$

The simpler, classical case is that G acts on X preserving orientation. This is the case if and only if Γ is a Fuchsian group and G is generated by elements a_{i}, b_{i} for $1 \leq i \leq h$ and x_{j} of order m_{j} for $1 \leq j \leq k$ with relation $x_{1} \cdots x_{k}\left[a_{1}, b_{1}\right] \cdots\left[a_{h}, b_{h}\right]=1$. Then the application of (6) yields the classical Riemann-Hurwitz equation

$$
\begin{equation*}
2 g-2=|G|\left(2 h-2+\sum_{j=1}^{k}\left(1-\frac{1}{m_{j}}\right)\right) . \tag{7}
\end{equation*}
$$

The group G acts reversing the orientation of X in case Γ is a proper NEC group. Then it is necessary to check that the surface group K does not contain orientation-reversing elements, or equivalently, the image $\alpha\left(\Gamma^{+}\right)$has index two in $G[19$, Th. 1, p. 52]. If this condition holds, then we will say that G has a particular partial presentation with the Singerman subgroup condition. The Riemann-Hurwitz equation in this case is more complicated and is in [7, p. 274], for instance. In this case, though, $|G|=2\left|G^{+}\right|$and (7) can be employed to calculate the relationship between the genus g and $|G|$.

Let Γ be a proper NEC group. Then Γ has a canonical Fuchsian subgroup Γ^{+}of index 2. Further, the quotient group Γ^{+} / K acts on X preserving orientation. For a particular Fuchsian group Λ, however, there may be more than one type of NEC group Δ such that Δ^{+}is isomorphic to Λ; see [21].

Next we quickly survey the Fuchsian groups with relatively small non-euclidean area. We use the notation of [15]. First, an (ℓ, m, n) triangle group is a Fuchsian group Λ with signature

$$
(0 ;+;[\ell, m, n] ;\{ \}), \text { where } 1 / \ell+1 / m+1 / n<1 .
$$

If the group G is a quotient of Λ by a surface group, then G has a presentation of the form

$$
\begin{equation*}
X^{\ell}=Y^{m}=(X Y)^{n}=1 \tag{8}
\end{equation*}
$$

We will say that G has partial presentation $T(\ell, m, n)$.
There are two types of NEC groups with a triangle group as canonical Fuchsian subgroup. We are interested in the full (or extended) (ℓ, m, n) triangle group is an NEC group Γ with signature

$$
(0 ;+;[] ;\{(\ell, m, n)\}), \text { where } 1 / \ell+1 / m+1 / n<1
$$

If G is a quotient of Γ (by a surface group), then G has a presentation of the form

$$
\begin{equation*}
A^{2}=B^{2}=C^{2}=(A B)^{\ell}=(B C)^{m}=(C A)^{n}=1 \tag{9}
\end{equation*}
$$

and, further, the subgroup generated by $A B$ and $B C$ (the image of Γ^{+}) has index 2 . The partial presentation (9) will be denoted $F T(\ell, m, n)$.

An (ℓ, m, n, t) quadrilateral group is a Fuchsian group Λ with signature

$$
(0 ;+;[\ell, m, n, t] ;\{ \}), \text { where } 1 / \ell+1 / m+1 / n+1 / t<2
$$

A quotient group G of Λ has a presentation of the form

$$
\begin{equation*}
X^{\ell}=Y^{m}=Z^{n}=(X Y Z)^{t}=1 \tag{10}
\end{equation*}
$$

We will denote this partial presentation $Q(\ell, m, n, t)$.

3. The General Approach.

Let p be an odd prime, and let $g=1+3 p$. Let X be a Riemann surface X of genus $g \geq 2$, and let the group G act on X preserving orientation. Then, regardless of whether p is congruent to 1 or 5 modulo 6 , we know that if $p \geq(36)^{2}$, then

$$
\begin{equation*}
|G| \leq 24(g-1) \tag{11}
\end{equation*}
$$

[22, Th. 5.6]. We also have the basic lower bound $N(g) \geq 8(g+1)$ for all $g \geq 2$.
Here we will be concerned with primes congruent to 5 modulo 6 and orientation preserving actions such that

$$
\begin{equation*}
24(g-1) \geq|G|>8(g+1) \tag{12}
\end{equation*}
$$

Most of the work here is showing that, except for four special congruence classes of primes, there are no group actions satisfying (12) (as long as p is not small). Our general approach is to represent $X=U / K$ and $G=\Gamma / K$, where Γ is a Fuchsian group and K a surface group and then consider two cases, depending upon whether or not $|G|$ is divisible by the prime p.

Corresponding to (12) is a restriction on the non-euclidean area of the Fuchsian group Γ and the types of partial presentations that Γ can have. The area restriction is

$$
\begin{equation*}
\frac{1}{12} \leq \mu(\Gamma) / 2 \pi<\frac{1}{4}\left(1-\frac{2}{g+1}\right) \tag{13}
\end{equation*}
$$

A careful check of the signatures gives the following. Here we have added the specific RiemannHurwitz equation for each case. For example, if G has the partial presentation $T(2,4, \lambda)$, then $\mu(\Gamma) / 2 \pi=(\lambda-4) / 4 \lambda$. Then using (7) gives $8(g-1)=|G|(\lambda-4) / \lambda$.

Theorem A. Let G be a group that acts on a Riemann surface of genus $g \geq 2$ preserving the orientation of the surface. If $24(g-1) \geq|G|>8(g+1)$, then G has one of the following partial presentations. The application of the Riemann-Hurwitz equation is included for each case.

1. $T(2,3, \lambda), 12(g-1)=|G|(\lambda-6) / \lambda$ where $\lambda \geq 12$,
2. $T(2,4, \lambda), 8(g-1)=|G|(\lambda-4) / \lambda$ where $6 \leq \lambda<2(g+1)$,
3. $T(2,5, \lambda), 20(g-1)=|G|(3 \lambda-10) / \lambda$ where $5 \leq \lambda<20$,
```
4. T(2,6,\lambda), 6(g-1)=|G|(\lambda-3)/\lambda where }6\leq\lambda<12
5. T(2,7,\lambda), 28(g-1)=|G|(5\lambda-14)/\lambda where 7\leq\lambda\leq9,
6. T(3,3,\lambda), 6(g-1)=|G|(\lambda-3)/\lambda where 4\leq\lambda<12,
7. T(3,4,\lambda), 24(g-1)=|G|(5\lambda-12)/\lambda where }\lambda=4,5\mathrm{ ,
8. Q(2,2,2,3),12(g-1)=|G|.
```

Now let p be an odd prime number and $g=1+3 p$. Let X be a Riemann surface of genus $g \geq 2$, and let G act on X preserving orientation. If G satisfies the inequality (12), then G has one of the partial presentations in Theorem A. For each of the partial presentations in Theorem A, then Riemann-Hurwitz formulas give $|G|$ in terms of λ and p. For example, if G has partial presentation $T(2,4, \lambda)$, then $|G|=24 p \lambda /(\lambda-4)$. In addition, as long as $(\lambda-4) / 6<p$, then $|G|$ satisfies inequality (12).

Next, as long as the value of λ is bounded above, applying the Riemann-Hurwitz equation in a straightforward way shows that $|G|$ is a multiple of p for large enough values of p. It is also clear that p^{2} does not divide $|G|$. In cases (3) - (7) in Theorem A, the prime p needs to be larger than 47 in order to guarantee that p divides the order of G. The exceptional cases $T(2,3, \lambda)$ and $T(2,4, \lambda)$ where λ does not have an upper bound must be treated separately. In summary, we have the following.

Lemma 1. Let p be an odd prime with $p>47$, and let $g=1+3 p$. Let G act on a surface of genus g preserving orientation such that $|G|$ satisfies the inequality (12). If G has one of the partial presentations (3) - (8) in Theorem A, then p divides $|G|$.

4. $T(2,3, \lambda)$ groups.

Assume p is a prime, and let $g=3 p+1$. Here it is not necessary to assume $p \equiv 5(\bmod 6)$, but we need to assume that p is not small in order to apply the following useful result of Accola [1, Lemma 5, p. 402]. We use the argument from the proof of [22, Lemma 5.1].

Accola's Lemma. Let G be a non-abelian group with partial presentation $T(2,3, \lambda)$. If G has order $\mu \lambda$, then $\lambda \leq \mu^{2}$.

Lemma 2. Let p be an odd prime, and let $g=1+3 p$. Let G act on a surface of genus g preserving orientation having partial presentation $T(2,3, \lambda)$, with $\lambda \geq 12$. If the prime $p>(36)^{2}$, then p divides $|G|$.

Proof. By Theorem A 1), $|G|=36 p \lambda /(\lambda-6)$ so that $72 p \lambda=|G|(\lambda-6)$. Now by Euclid's Lemma, either p divides $|G|$ or p divides $(\lambda-6)$.

Assume that p divides $(\lambda-6)$ and write $\lambda-6=m p$ for some integer $m \geq 1$. Now $\lambda=m p+6>$ $p>(36)^{2}$ (by assumption). But on the other hand, $|G|=36 p \lambda / m p=36 \lambda / m$. Then the group of orientation preserving automorphisms G is a $T(2,3, \lambda)$ group of order $\mu \lambda$, where $\mu=36 / m \leq 36$. Now by Accola's Lemma, $p<\lambda \leq \mu^{2} \leq(36)^{2}$, an obvious contradiction. Thus, if G is a $T(2,3, \lambda)$ group (and $p>(36)^{2}$), then p divides $|G|$.

Hence, assuming $p>(36)^{2}$ guarantees that p divides $|G|$ in case G has partial presentation $T(2,3, \lambda)$. $T(2,4, k)$ group of order μk.

The notation, Z_{n} is the cyclic group of order n, D_{n} is the dihedral group of order $2 n$ and S_{n} is the symmetric group on n elements, will be used throughout this section. For $k \leq 5, T(2,4, k)$ is a full presentation of a well-known finite group. Specifically, $T(2,4,1) \cong Z_{2}, T(2,4,2) \cong D_{4}, T(2,4,3) \cong S_{4}$ and $T(2,4,5) \cong S_{5}$. So for $k=1$, it follows that G is an extension of Z_{λ} by Z_{2} and has order 2λ. Using the Riemann-Hurwitz equation from Theorem A, we see that $\lambda=4 g$ and therefore, $|G|=8 g$. By Theorem A, this group will not have maximal order. So $k>1$ for the groups in which we are interested.

Next, if $k=2$, then $T(2,4,2) \cong D_{4}$ and so $\mu=4$. Also $T(2,4,3) \cong S_{4}$, with $\mu=8$ and $T(2,4,5) \cong$ S_{5}, with $\mu=24$.

Since $G=\langle a, c\rangle$, the subgroup $\langle c, d\rangle$ has index one or two in G. Thus there are two cases. Let ℓ be the index of $\langle c, d\rangle$ in G so that ℓ is 1 or 2 . Since μ is the index of $\langle c\rangle$ in G, it follows that μ / ℓ is the index of $\langle c\rangle$ in $\langle c, d\rangle$.

Lemma 3. Let G be a group with partial presentation $T(2,4, \lambda)$ of order $n=\mu \lambda$. Let $k=\lambda /|J|$, where $J=\langle c\rangle \cap\langle d\rangle$ as defined above. Then $\mu / \ell \geq k$.

Proof. Consider the group $\langle c, d\rangle / J$ of order $\mu k / \ell$. Accola [1, p. 401] has shown this group has k^{2} distinct elements of the form $(c J)^{i}(d J)^{j}$, where i and j are between 0 and $k-1$. So $\mu k / \ell \geq k^{2}$ and we are done.

Lemma 4. Suppose $G=\langle c, d\rangle$. If 4 divides $k \mu$, then $\lambda \leq \mu^{2}$.
Proof. The following proof comes directly from Accola [1, Lemma 4, p. 401]. Since $G=\langle c, d\rangle, J$ is central in G. By Lemma 3, $\mu \geq k$. Now, the transfer map into J is $g \mapsto g^{k \mu}$. Since 4 divides $k \mu$, this map takes both a and b to the identity and so it is the zero map. Hence λ divides $k \mu$ and we are done.

Now we focus on orientation preserving actions on surfaces of genus $g=1+3 p$, where p is an odd prime. We begin by applying the Riemann-Hurwitz equation and Euclid's Lemma, as in the proof of Lemma 2.

Lemma 5. Let p be an odd prime, and let $g=1+3 p$. Let G act on a surface of genus g preserving orientation having partial presentation $T(2,4, \lambda)$ with $6 \leq \lambda<2(g+1)$. Then either p divides $|G|$ or G has one of the four partial presentations $T(2,4, m p+4)$ with $1 \leq m \leq 4$.

Proof. By Theorem A 2$),|G|=24 p \lambda /(\lambda-4)$ so that

$$
\begin{equation*}
24 p \lambda=|G|(\lambda-4) \tag{14}
\end{equation*}
$$

Now by Euclid's Lemma, either p divides $|G|$ or p divides $(\lambda-4)$. orientation. Suppose G has partial presentation $T(2,4, \lambda)$, with $6<\lambda<2(g+1)$. Suppose $G=\langle c, d\rangle$. If the prime $p>(24)^{2}$, then p divides $|G|$.

Proof. As in the proof of Lemma 5, if p does not divide $|G|$, then $\lambda-4=m p$ for where m is $1,2,3$ or 4 and $\mu=24 / m$. Then $\lambda=m p+4>p>(24)^{2}$ (by assumption). Assume $m \neq 4$. Then by Accola's Lemma $4, p<\lambda \leq \mu^{2} \leq(24)^{2}$, an obvious contradiction. Finally, Lemma 6 immediately rules out the case with $m=4$ and $\mu=6$. Hence p must divide $|G|$.

Thus, if G is a $T(2,4, \lambda)$ group with $G=\langle c, d\rangle$ (and $p>(24)^{2}$), then p divides $|G|$.
We still must consider the case in which $G \neq\langle c, d\rangle$. Lemma 5 still applies so that either p divides $|G|$ or G has one of four partial presentations. We focus on these partial presentations.
Lemma 8. Assume that G is $a(2,4, \lambda)$ group of order $n=\mu \lambda$ with $\mu>4$. Let $a, b \in G$ with $o(a)=2$ and $o(b)=4$ and let $c=a b$ and $d=b a$. Suppose that $G \neq\langle c, d\rangle$. Then there is a number k which divides λ satisfying $2 \leq k \leq \mu / 2$.

Proof. Since $G=\langle a, c\rangle$, we have that $N=\langle c, d\rangle$ has index 2 in G. Next define $J=\langle c\rangle \cap\langle d\rangle$. Since conjugation by a interchanges c and d, the subgroup J is normal in G. Define $k=\lambda /|J|$ and so k divides λ. Now let \bar{c} and \bar{d} be the image of c and d in G / J. Since $\bar{c}^{m} \bar{d}^{n}$ for $m, n=0,1, \cdots(k-1)$ are distinct elements in N / J, we have that $k^{2} \leq k \mu / 2$ and $k \leq \mu / 2$.

At this point, we assume that the prime p is congruent to 5 modulo 6 and that p is not small.
Lemma 9. Let p be a prime satisfying $p \equiv 5(\bmod 6)$ with $p>(24)^{2}$. Let $g=1+3 p$ and let G act on a surface of genus g preserving orientation with partial presentation $T(2,4, m p+4)$ with $1 \leq m \leq 4$. Then $m=1$ and $p+4$ is divisible by 5 but not divisible by 25 . Further, the group G contains a cyclic normal subgroup J of odd order with $G / J \cong S_{5}$.

Proof. Since G acts with one of the four partial presentations, p does not divide $|G|$. Since $p>(24)^{2}$, then we must have $G \neq\langle c, d\rangle$ by Lemma 7. Now, as in the proof of Lemma 8, G contains a cyclic normal subgroup J of order λ / k for some integer k. Notice that the quotient group G / J is a $(2,4, k)$ group.

First suppose that $\lambda=4 p+4$ so that $|G|=6 \lambda$. By the proof of Lemma $6, G=\langle c, d\rangle$, an obvious contradiction. Hence, it is not possible for G to act on a surface of genus $g=3 p+1$ with this partial presentation.

Next, consider $\lambda=3 p+4$ and $|G|=8 \lambda$. Since λ is odd, so is k. Also by Lemma 8 we have that $k \leq 4$. Therefore, $k=3$. Now λ is divisible by 3 , by Lemma 8 and this case does not occur.

Now suppose $\lambda=2 p+4$ so that $|G|=12 \lambda$. Then $k \leq 6$. Since $p \equiv 5(\bmod 6)$, we see that $\lambda \equiv 2$ $(\bmod 6)$ and so 3 and 6 do not divide λ. If $k=2$, then G / J is a $(2,4,2)$ group and hence dihedral of order 8 . Thus $|G / J| \neq 24=12 k$. Therefore, $k=4$ or $k=5$. However, a search using Magma shows that there are no $(2,4,4)$ groups of order 48 and no $(2,4,5)$ groups of order 60. It follows that $\lambda \neq 2 p+4$.

Finally, suppose $\lambda=p+4$, the only remaining possibility. Since λ is odd, so is k. We have $|G|=24 \lambda$ so that $k \leq 12$. Further, $|G / J|=24 k$ and G / J is a $(2,4, k)$ group. Now $k=3$ gives that $G / J \cong S_{4}$ and $|G / J|=72$. Likewise, if $k=9$, then a MAGMA search shows that there are no $(2,4,9)$ groups of order 216 and for $k=11$, there are no $(2,4,11)$ groups of order 264. Therefore, $k=5$ or $k=7$.

Suppose that $k=7$. It follows that $Q=G / J$ is a $(2,4,7)$ group of order 168. A MAGMA search reveals that Q must be $\operatorname{PSL}(2,7)$, the only $(2,4,7)$ group of order 168 . Therefore, G is an extension of an odd order cyclic group J by the simple group Q. Since Q must act trivially on the cyclic group, we have a central extension. The equivalence class of central extensions is in one to one correspondence with the second cohomology group $H^{2}(Q, J)$ [18, Th. 11.4.10]. The Schur multiplier of the group Q is relevant to this central extension (See [18, p. 347]). The simple group $\operatorname{PSL}(2,7)$ has Schur Multiplier $M(Q) \cong Z_{2}$. The Universal Coefficients Theorem [18, Th. 11.4.18] says that

$$
\begin{equation*}
H^{2}(Q, J) \cong H o m(M(Q), J) \times \operatorname{Ext}\left(Q_{a b}, J\right), \tag{15}
\end{equation*}
$$

where $Q_{a b} \cong Q / Q^{\prime}$ is the abelianization of Q. Thus, the second cohomology group is trivial and so G must be a direct product. This is impossible and $k \neq 7$.

Therefore $k=5$ and G has a cyclic normal subgroup J with G / J is a $(2,4,5)$ group of order 120. A Magma search shows that S_{5} is the only such group. Thus $G / J \cong S_{5}$. extension of Z_{n} by A_{5}. The group H cannot be a direct product, since the direct product has no element of order 25 and H does have such an element. However, the Schur Multiplier $M\left(A_{5}\right) \cong Z_{2}$ and by the Universal Coefficients Theorem (15), the second cohomology group is trivial. Therefore, H must be the direct product and we have a contradiction. Thus, 25 does not divide $p+4$.

Now we construct a family of groups with partial presentation $T(2,4, p+4)$ and order $24(p+4)$ that act on a surface of genus $g=3 p+1$, preserving its orientation.

Lemma 10. Let p be a prime satisfying $p \equiv 5(\bmod 6)$. Suppose $\lambda=p+4$ is divisible by 5 but not divisible by 25 . Let $G_{\lambda}=Z_{\lambda / 5} \times_{\phi} S_{5}$ be the semidirect product of $Z_{\lambda / 5}$ and the symmetric group S_{5}, with the action ϕ being inversion. Then G_{λ} is a $(2,4, p+4)$ group of order $8(g+11)$ that acts on a surface of genus $g=1+3$ p preserving orientation. Consequently, for such a value of $g, N(g) \geq 8(g+11)$.

Proof. Let

$$
\begin{equation*}
G_{\lambda}=\left\langle a, b, c \mid a^{2}=b^{5}=(a b)^{4}=\left[a, b^{2}\right]^{2}=c^{(\lambda / 5)}=[b, c]=(c a)^{2}=1\right\rangle . \tag{16}
\end{equation*}
$$

First, note that $S_{5} \cong\langle a, b\rangle$ and $\langle c\rangle$ is a normal subgroup of G_{λ}. Now $G_{\lambda}=Z_{\lambda / 5} \times{ }_{\phi} S_{5}$ with the action being inversion. Let $x=c a$ and $y=a b$. Next, $x y=c b$ has order λ. Since $(x y)^{5}=c^{5}$ and 5 does not divide the order of c, we see that $G=\langle x, y\rangle$ and so G is a $(2,4, p+4)$ group of order $24 \lambda=8(g+11)$.

Combining the last two lemmas gives the following.
Theorem 2. Let p be a prime satisfying $p \equiv 5(\bmod 6)$ with $p>(24)^{2}$, and let $g=1+3 p$. Suppose that G is a $(2,4, m p+4)$ group of order larger than $8(g+1)$. Then if G acts on a surface of genus g preserving orientation, then $m=1, \lambda=p+4$ is divisible by 5 and not by 25 . Furthermore, if $p+4$ is divisible by 5 and not by 25 , then there exists a group G that is a $(2,4, p+4)$ group of order $8(g+11)$.

Next, we show that groups G with order greater than $8(g+1)$ and p divides $|G|$ cannot act on a surface of genus $g=3 p+1$ preserving its orientation.

6. p divides $|G|$.

Let p be an odd prime with $p \equiv 5(\bmod 6)$, and let $g=1+3 p$. Let G act on a surface X of genus g preserving orientation such that $|G|$ satisfies the inequality (12). Now we assume that p divides $|G|$ and $p>72$. We show that in this case, none of the partial presentations in Theorem A are possible. We let the Sylow p-subgroup act on X and follow the approach in [22, Section 5].

Lemma 11. The Sylow p-subgroup of G is a cyclic normal subgroup in G isomorphic to Z_{p}. Proof. We have $|G| \leq 24(g-1)=24 \cdot 3 p=72 p$. Obviously, p^{2} does not divide $|G|$, we are done.

Now let the Sylow p-subgroup S act on X with $Y=X / S$ the quotient space, γ the genus of Y and $\pi: X \rightarrow Y$ the quotient map. For a detailed proof of the following, see [22, Lemma 5.3].

Lemma 12. The quotient map π is unramified, and the quotient space $Y=X / S$ has genus $\gamma=4$. Further, the quotient group $Q=G / S$ is a group of orientation-preserving automorphisms of Y with $40<|Q| \leq 72$.

Orientation preserving group actions on Riemann surfaces of genus 4 are well understood. These group actions were considered in determining the groups of strong symmetric genus 4 [14, Table 1]. The groups with order larger than 36 are groups of reflexible regular maps [14, Lemma 1]. There are three possibilities for the quotient group Q here, and they are presented in Table 2. The regular maps of genus 4 were first classified by Garbe [10, p. 53]. These maps also appear in [6, Table 1]. In Table 2, we give the group number in the MAGMA small groups library. Map symbols are from [6].

TABLE 2. Group Actions on Surfaces of Genus 4

Group	Order	Library Number	Partial Presentation	Map Symbol	$\mathrm{G}^{\prime} \mathrm{G}^{\prime}$
$Z_{3} \times S_{4}$	72	42	$T(2,3,12)$	R 4.1	Z_{6}
$(2,4,6 ; 2)$	72	40	$T(2,4,6)$	R 4.3	$\left(Z_{2}\right)^{3}$
A_{5}	60	5	$T(2,5,5)$	R 4.6	1

The group G is an extension of Z_{p} by Q. Since $|Q|$ is relatively prime to p, the group G is a semidirect product, by the Schur-Zassenhaus Lemma.

Lemma 13. $G \cong Z_{p} \times_{\phi} Q$.
The following is important here. The proof is an exercise using the definition of semidirect product.
Lemma 14. Let H be the semidirect product $K \times_{\phi} Q$, and let $L=\operatorname{kernel}(\phi)$. Then L is normal in the big group H.

For each of the possibilities for Q, we show that G cannot have the relevant partial presentation.
First suppose there were such a group G of order $72 p$ with partial presentation $T(2,3,12)$. Let Δ be a Fuchsian group with signature $(0 ;+;[2,3,12] ;\{ \})$ and presentation

$$
\begin{equation*}
X^{2}=Y^{3}=(X Y)^{12}=1 . \tag{17}
\end{equation*}
$$

Then $G \cong \Delta / K$ and is generated by two elements of orders 2 and 3 . Let $\alpha: \Delta \longrightarrow G$ be the quotient map.

We have $G \cong Z_{p} \times_{\phi} Q$, where $Q \cong Z_{3} \times S_{4}$. Let $L=\operatorname{kernel}(\phi)$. Since $\phi: Q \rightarrow \operatorname{Aut}\left(Z_{p}\right) \cong Z_{p-1}$, Q / L is cyclic. It follows that $Q^{\prime} \subset L \subset Q$. Now the commutator quotient group $Q / Q^{\prime} \cong Z_{6}$. Thus L must have index 1,2,3 or 6 in Q, and L is normal in G by Lemma 14. Let $T=G / L$ and let $\rho: G \longrightarrow T$ be the quotient map of G onto T. Also let $\theta=\rho \circ \alpha$ be the composition of α and ρ so that $\theta: \Delta \longrightarrow T$ maps Δ onto T. We eliminate all the possibilities for the quotient group T.

The following preliminary results will be helpful. Let Δ have presentation (17).
Lemma 15. The only nontrivial odd order quotient of Δ is Z_{3}.

Proof. Let $\beta: \Delta \longrightarrow W$ be a homomorphism of Δ onto the nontrivial odd-order group W. If J is an involution in Δ, then $\beta(J)=1$. In particular, $\beta(X)=1$ and hence $W=\langle\beta(X), \beta(Y)\rangle=\langle\beta(Y)\rangle \cong$ Z_{3}.

Lemma 16. Let p be an odd prime, $p>3$. Then D_{p} is not a quotient of Δ.
Proof. Write $D \cong D_{p}$, and assume that $\beta: \Delta \longrightarrow D$ be a homomorphism of Δ onto D. Then $D=$ $\langle\beta(X), \beta(Y)\rangle$ so that $\beta(X)$ and $\beta(Y)$ must be non-identity elements of D. But D has no elements of order 3 so that $\beta(Y)=1$. Hence $D \cong D_{p}$ is not a quotient of Δ.

Now we consider the possible indices of L in Q. First suppose $L=Q$ so that $G \cong Z_{p} \times Q$. Then G and hence Δ would have Z_{p} as a quotient which is not possible by Lemma 15 .

Next assume $[Q: L]=2$ so that the quotient group $T=G / L$ has order $2 p$. Then T is isomorphic to either $Z_{2 p}$ or the dihedral group D_{p}. Suppose $T=Z_{2 p}$. Then T and hence Δ would have Z_{p} as a quotient, which is not possible by Lemma 15. But D_{p} is not a quotient either, by Lemma 16.

Suppose $[Q: L]=3$ so that the quotient group G / L has odd order $3 p$. This is not possible by Lemma 15.

Finally, suppose $[Q: L]=6$. Then the quotient group G / L has order $6 p$, and there are four possibilities for the group G / L, since 3 does not divide $p-1$. (There are two additional groups of order $6 p$ if 3 divides $p-1$.) There are the cyclic group $Z_{6 p}$, the dihedral group $D_{3 p}$, and the direct products $Z_{3} \times D_{p}$ and $Z_{p} \times D_{3}$.

We have to consider the four possibilities for the quotient group $T=G / L$. First suppose $T=Z_{6 p}$. Then T and hence Δ would have Z_{p} as a quotient, which is not possible by Lemma 15.

Assume next that $T \cong D_{3 p}$. Then T has a characteristic subgroup V of order 3 with $T / V \cong D_{p}$. This is not possible by Lemma 16. Lemma 16 also eliminates the direct product $Z_{3} \times D_{p}$ which has D_{p} as a quotient, and Lemma 15 eliminates the direct product $Z_{p} \times D_{3}$, which has a nontrivial odd order quotient.

In summary, there is no group of order $72 p$ with partial presentation $T(2,3,12)$.
Next suppose there were such a group G of order $72 p$ with partial presentation $T(2,4,6)$. Let Γ be a Fuchsian group with signature $(0 ;+;[2,4,6] ;\{ \})$ and presentation

$$
\begin{equation*}
X^{2}=Y^{4}=(X Y)^{6}=1 \tag{18}
\end{equation*}
$$

Then $G \cong \Gamma / K$ and is generated by two elements of orders 2 and 4 . Let $\alpha: \Gamma \longrightarrow G$ be the quotient map.

We have $G \cong Z_{p} \times_{\phi} Q$, where the quotient group $Q \cong(2,4,6 ; 2)$ (see [9, p. 142] for a presentation). Let $L=\operatorname{kernel}(\phi)$. Since $\phi: Q \rightarrow \operatorname{Aut}\left(Z_{p}\right) \cong Z_{p-1}, Q / L$ is cyclic. It follows that $Q^{\prime} \subset L \subset Q$. Now a calculation shows that the commutator quotient group $Q / Q^{\prime} \cong\left(Z_{2}\right)^{2}$. Thus L must have index 1 or 2 in Q, and L is normal in G by Lemma 14. Let $T=G / L$ and let $\rho: G \longrightarrow T$ be the quotient map of G onto T. Also let $\theta=\rho \circ \alpha$ be the composition of α and ρ so that $\theta: \Gamma \longrightarrow T$ maps Γ onto T. We eliminate all the possibilities for the quotient group T.

The following preliminary results will be helpful. Let Γ have presentation (18).
Lemma 17. The group Γ has no nontrivial odd order quotients at all.
Lemma 18. Let p be an odd prime. Then D_{p} is not a quotient of Γ.

Proof. Write $D \cong D_{p}$, and assume that $\beta: \Gamma \longrightarrow D$ be a homomorphism of Γ onto D. Then $D=$ $\langle\beta(X), \beta(Y)\rangle$ so that $\beta(X)$ and $\beta(Y)$ must be non-identity elements of D. The dihedral group D has reflections and rotations of order p. Then $\beta(X), \beta(Y)$ must be reflections so that the product $\beta(X) \beta(Y)$ is a rotation of order p. But $[\beta(X Y)]^{6}=1$. This means $\beta(X)=\beta(Y)$ and D would be abelian. Hence $D \cong D_{p}$ is not a quotient of Γ.

Now we consider the two possible indices of L in Q. First suppose $L=Q$ so that $G \cong Z_{p} \times Q$. Then G and hence Γ would have Z_{p} as a quotient which is not possible by Lemma 17.

Next assume $[Q: L]=2$ so that the quotient group $T=G / L$ has order $2 p$. Then T is isomorphic to either $Z_{2 p}$ or the dihedral group D_{p}. Suppose $T=Z_{2 p}$. Then T and hence Γ would have Z_{p} as a quotient, which is not possible by Lemma 17. But D_{p} is not a quotient either, by Lemma 18.

In summary, there is no group of order $72 p$ with partial presentation $T(2,4,6)$.
Finally suppose there were such a group G of order $60 p$ with partial presentation $T(2,5,5)$. Let Λ be a Fuchsian group with signature $(0 ;+;[2,5,5] ;\{ \})$ and presentation

$$
\begin{equation*}
X^{2}=Y^{5}=(X Y)^{5}=1 \tag{19}
\end{equation*}
$$

Then $G \cong \Lambda / K$ and is generated by two elements of orders 2 and 5 . Let $\alpha: \Lambda \longrightarrow G$ be the quotient map.

We have $G \cong Z_{p} \times_{\phi} Q$, where the quotient group $Q \cong A_{5}$. Since A_{5} is simple, this means $G \cong Z_{p} \times A_{5}$.
Lemma 19. The only nontrivial odd order quotient of Λ is Z_{5}.
Proof. Let $\beta: \Lambda \longrightarrow W$ be a homomorphism of Λ onto the nontrivial odd-order group W. If J is an involution in Λ, then $\beta(J)=1$. In particular, $\beta(X)=1$ and so $W=\langle\beta(X), \beta(Y)\rangle=\langle\beta(Y)\rangle \cong Z_{5}$.

But the group G and hence Λ have Z_{p} as quotients, with $p>5$. Thus there is no group of order $60 p$ with partial presentation $T(2,5,5)$.

Therefore, in this case, none of the partial presentations in Theorem A are possible, and consequently, $|G| \leq 8(g+1)$. In summary, we have the following.

Lemma 20. Let p be an odd prime with $p \equiv 5(\bmod 6)$, and let $g=1+3 p$. Let G act on a surface X of genus g preserving orientation. If p divides $|G|$ and $p>72$, then $|G| \leq 8(g+1)$.
Theorem 3. Let $g=1+3 p$ for some prime $p>(36)^{2}$. Suppose p is congruent to $5(\bmod 6)$. If p is also congruent modulo 25 to $1,6,11$ or 16, then $N(g)=8(g+11)$; otherwise $N(g)=8(g+1)$.

Finally, we check that the maximal order groups that give an orientation preserving action can be extended to a maximal order orientation reversing action.

7. Extensions to Orientation Reversing Actions

Next, we want to determine if G_{λ} has an extension to a group of order $48 \lambda=16(g+11)$. In order to do this, we need a presentation of G_{λ} as a $(2,4, \lambda)$ group. In the cases that we are interested in, λ is odd, divisible by 5 and not divisible by 25 . Therefore, $\lambda \equiv 5,15,35,45(\bmod 50)$.

For $\lambda \equiv \pm 15(\bmod 50)$, define

$$
\begin{equation*}
H_{\lambda}=\left\langle x, y \mid x^{2}=y^{4}=(x y)^{\lambda}=y^{-1}(x y)^{5} y(x y)^{5}=\left[y,(x y)^{\lambda / 5}\right]^{2}=1\right\rangle . \tag{20}
\end{equation*}
$$

For $\lambda \equiv \pm 5(\bmod 50)$, define

$$
\begin{equation*}
H_{\lambda}=\left\langle x, y \mid x^{2}=y^{4}=(x y)^{\lambda}=y^{-1}(x y)^{5} y(x y)^{5}=\left[y,(x y)^{\lambda / 5}\right]^{3}=1\right\rangle . \tag{21}
\end{equation*}
$$

Notice that since $(x y)^{5}$ is inverted by conjugation by y and centralized by $(x y),\left\langle(x y)^{5}\right\rangle$ is a normal subgroup of H_{λ} in both cases. Next, modifying the presentations (20) and (21) by setting (xy) ${ }^{5}=1$ and putting them in Magma, we see that the quotient is isomorphic to S_{5} and hence G_{λ} and H_{λ} have the same order.

Theorem 4. For $\lambda \equiv 5,15,35,45(\bmod 50), G_{\lambda} \cong H_{\lambda}$. A group H_{λ}^{*} of order $16(g+11)$ acting on a surface of genus g reversing orientation exists. Consequently, for such a value of $g, M(g) \geq 16(g+11)$.
Proof. We will use the presentation for H_{λ} in equations (20) and (21) and for G_{λ} in (16). Define $v: H_{\lambda} \rightarrow G_{\lambda}$ by $v(x)=c a$ and $v(y)=a b$. Clearly, x^{2}, y^{4} and $(x y)^{\lambda}$ are all mapped to the identity by v. Next, $(x y)^{5}$ is mapped to c^{5}. Therefore, v maps $y^{-1}(x y)^{5} y(x y)^{5}$ to $\left(b^{-1} a^{-1}\right) c^{5}(a b) c^{5}$ which is the identity in G_{λ}. Now, we need to consider two cases depending on whether H_{λ} has presentation (20) or (21).

Case 1: Suppose $\lambda \equiv \pm 15(\bmod 50)$. So H_{λ} has presentation (20). The image of $\left[y,(x y)^{\lambda / 5}\right]^{2}$ under v is the identity and so v is an isomorphism by Van Dyke's Theorem.

Now suppose that $\phi: H_{\lambda} \rightarrow H_{\lambda}$ by $\phi(x)=x^{-1}=x$ and $\phi(y)=y^{-1}$. The image of all relators of H_{λ} under ϕ is the identity. Therefore, ϕ is an isomorphism of order 2 and so the extension H_{λ}^{*} exists by Singerman [21, Th. 2]. The group H_{λ}^{*} has partial presentation $F T(2,4, \lambda)$.

Case 2: Suppose $\lambda \equiv \pm 5(\bmod 50)$. So H_{λ} has presentation (21). The image of $\left[y,(x y)^{\lambda / 5}\right]^{3}$ under v is the identity and so v is an isomorphism by Van Dyke's Theorem.

Now suppose that $\kappa: H_{\lambda} \rightarrow H_{\lambda}$ by $\kappa(x)=x^{-1}=x$ and $\kappa(y)=y^{-1}$. As in case 1 all relators map to the identity. Therefore, κ is an isomorphism of order 2 and again the extension H_{λ}^{*} exists by Singerman [21, Th. 2].

Since $M(g) \geq 16(g+1)$ in all cases, the proof of Theorem 1 is complete.

8. Recent Related Results

We end by mentioning some recent results on related topics. A compact Riemann surface is called psuedo-real if it admits anticonformal automorphisms, but none of order 2. In [5], some limitations on the order of the largest group of automorphisms of a psuedo-real surface are obtained. For orientation preserving actions on Riemann surfaces, the paper [3] determines $N(g)$ for $g=q p^{m}+1$ where q and p are certain primes. This result gives some information on the asymptotics of $N(g)$. If S is a compact Riemann surface of genus $p+1$ where p is a prime and $G \leq \operatorname{Aut}(S)$ of order $\rho(g-1)$ where $\rho \geq 3$, then [12, Th. 1] classifies the groups G that can occur. As a corollary, the authors classify the maps and hypermaps corresponding to the cases in [12, Th. 1]. The paper [17, Th. 1] classifies the surfaces of genus $p-1$ for a prime p which have a group of automorphisms of order $\rho(g+1)$ for some $\rho \geq 1$. Similar problems for complex one-dimensional families were studied in [8], and these results were
recently extended to the higher dimensional case in [11].
We would like to thank the referee for several helpful suggestions and for calling our attention to the research in this section.

References

[1] R. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398 407.
[2] R. Accola, Topics in the Theory of Riemann Surfaces, LNM 1595, Springer-Verlag, Berlin, Heidelberg, 1994.
[3] C. Bagiński, and G. Gromadzki, On the orders of largest groups of automorphisms of compact Riemann surfaces, Journal of Pure and Applied Algebra, 225, No. 12(2021), Paper No. 106758, 14 pp.
[4] M. Belolipetsky and G. Jones, Automorphism groups of Riemann surfaces of genus $p+1$, where p is prime, Glasgow Math. J. 47 (2005), 379-393.
[5] E. Bujalance, F.J. Cirre and M.D.E. Conder, Bounds on the orders of groups of automorphisms of a psuedo-real surface of a given genus, J. London Math. Soc. (2) 101 (2020), No. 2, 877-906.
[6] M.D.E. Conder and P. Dobcsanyi, Determination of all regular maps of small genus, Journal of Combinatorial Theory (Series B), 81, No. 2, (2001), 224-242.
[7] M.D.E. Conder and T.W. Tucker, The symmetric genus spectrum of finite groups, Ars Math. Contemp., 4 No. 2 (2011), 271-289.
[8] A.F. Costa, M. Izquierdo, One-dimensional families of Riemann surfaces of genus g with $4 \mathrm{~g}+4$ automorphims, RACSAM 112, 623-631 (2018). https://doi.org/10.1007/s13398-017-0429-0
[9] H.S.M. Coxeter, W.O.J. Moser, Generators and Relations for Discrete Groups, 4th Edition, Springer-Verlag, New York, Heidelberg, Berlin, Tokyo, 1980.
[10] D. Garbe, Uber die regularen Zerlegungen geschlossener orientierbarer Flachen, J. Reine Angew. Math. 237 (1969), 39-55.
[11] M. Izquierdo, S. Reyes - Carocca and A. Rojas, On families of Riemann surfaces with automorphisms, J. Pure Appl. Algebra 225, No. 10 (2021) Paper No. 106704, 21 pp.
[12] M. Izquierdo, G. Jones and S. Reyes - Carocca, Groups of automorphisms of Riemann surfaces and maps of genus p + 1 where p is a prime, Ann. Fenn. Math. 46, No. 2 (2021), $839-867$.
[13] C. Maclachlan, A bound for the number of automorphisms of a compact Riemann surface, J. London Math. Soc. (2) 44 (1968), 265-272.
[14] C.L. May and J. Zimmerman, Groups of strong symmetric genus 4, Houston J. Math. 31(2005), 21-35.
[15] C.L. May, J. Zimmerman, The groups of symmetric genus $\sigma \leq 8$, Communications in Algebra 36 (2008), 4078-4095.
[16] C.L. May, J. Zimmerman, Maximal order group actions on Riemann surfaces of genus $1+p$, to appear.
[17] S. Reyes - Carocca and A. Rojas, On large prime actions on Riemann surfaces, J. Group Theory 25, No. 5 (2022), 887 940.
[18] D.J.S. Robinson, A Course in the Theory of Groups, 2nd ed., Graduate Texts in Mathematics 80, Springer-Verlag, New York, 1996.
[19] D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50-59.
[20] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc. 76 (1974), 233-240.
[21] D. Singerman, Symmetries of Riemann surfaces with large automorphism group, Math. Ann. 210 (1974), 17-32.
[22] J. Zimmerman and C. L. May, Maximal order group actions on Riemann surfaces, Ars Math. Contemp. 22 (2022), doi:10.26493/1855-3974.2257.6de.

Department of Mathematics, 7800 York Road, Towson University, Towson, MD 21252, U.S.A.
Email address: cmay@towson.edu
Department of Mathematics, 7800 York Road, Towson University, Towson, MD 21252, U.S.A.
Email address: jzimmerman@towson.edu

