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MAXIMAL ORDER GROUP ACTIONS ON RIEMANN SURFACES OF GENUS 1+3p

COY L. MAY AND JAY ZIMMERMAN

ABSTRACT. A natural problem is to determine, for each value of the integer g≥ 2, the largest order of a
group that acts on a Riemann surface of genus g. Let N(g) (respectively M(g)) be the largest order of a
group of automorphisms of a Riemann surface of genus g≥ 2 preserving the orientation (respectively
possibly reversing the orientation) of the surface.

Let g = 1+3p for a large prime p. It has been established that if p is congruent to 1 (mod 6), then
N(g) = M(g) = 24(g−1). Suppose p is congruent to 5 (mod 6). We prove that if p is also congruent
modulo 25 to 1, 6, 11 or 16, then N(g) = 8(g+11) and M(g) = 16(g+11); otherwise N(g) = 8(g+1)
and M(g) = 16(g+1).

1. Introduction.

A finite group G can be represented as a group of automorphisms of a compact Riemann surface. In
other words, G acts on a Riemann surface. The group actions were required, in most of the classical
work, to preserve the orientation of the Riemann surface. It is possible, of course, to allow a group
action to reverse the orientation of the surface.

Among the most interesting group actions for a particular value of the genus g are those such that
the orders of the groups are “large” relative to the genus g. A natural problem, then, is to determine, for
each value of the integer g≥ 2, the largest order of a group that acts on a Riemann surface of genus g.

First, let N(g) be the largest order of a group of orientation preserving automorphisms of a Riemann
surface of genus g≥ 2. Also, let M(g) be the largest order of a group of automorphisms of a Riemann
surface of genus g≥ 2 (possibly reversing the orientation of the surface). Clearly, N(g)≤M(g).

Suppose the group G acts on the Riemann surface X of genus g≥ 2 (possibly reversing the orientation
of X). Let G+ be the subgroup of G consisting of the orientation preserving automorphisms. Then
|G+| ≤ N(g) and

(1) |G| ≤ 2|G+| ≤ 2N(g).

Consequently, if |G|= M(g), we obtain the basic inequalities comparing N(g) and M(g),

(2) N(g)≤M(g)≤ 2N(g).

The classical upper bound of Hurwitz shows that, for all g≥ 2,

(3) N(g)≤ 84(g−1) and M(g)≤ 168(g−1).

The lower bounds for both parameters have also been established. For all g≥ 2,

(4) N(g)≥ 8(g+1) and M(g)≥ 16(g+1).
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The lower bound for N(g) was established independently by Accola [1] and Maclachlan [13]. The
lower bound for M(g) was obtained by constructing, for each g≥ 2, a group of order 16(g+1) that
acts on a Riemann surface of genus g [22, Th. 1.1]. Singerman noted this in ([21, p. 24]). Each of the
four bounds in (3) and (4) is the best possible, that is, there are infinitely many g such that the bound is
attained.

In general, determining N(g) (or M(g)) for a particular g or for all g with a particular form is a very
difficult problem. The difficulty is related to the form of the integer g−1 (which is −1/2 times the
Euler characteristic of a Riemann surface of genus g). Both N(g) and M(g) have been completely
determined for the simplest case, in which g−1 is an odd prime. Accola first determined N(1+ p) for
all odd primes p > 84 [2, Th. 7.11, p. 84]. Also important here is the work of Belolipetsky and Jones
[4] on orientation preserving actions on compact Riemann surfaces of genus p+1 for an odd prime
p. Their work yields another determination of N(1+ p) for all primes p [4, Th. 2]. The analogous
result for the parameter M(g) has also been determined. The main result of [16] is the determination
of M(1+ p) for all primes p [16, Th. 1].

The next natural step is to determine the parameters N(g) and M(g) in case g−1 is a small multiple
of a prime p. First, Accola calculated N(1+2p) for all primes p [2, Th. 7.17, p. 93]. In [22, Th. 6.3]
it was shown that N(1+2p) = M(1+2p) = 48p for p congruent to 1 (mod 6) and p > (24)2. The
parameter M(1+2p) has not yet been found for p congruent 5 (mod 6).

Our focus here is the next step, finding N(g) and M(g) in case g−1 is 3 times a prime p. Some of
the work has already been done. Let p be a prime such that p ≡ 1 (mod 6) and p > (36)2, and let
g = 1+3p. Then for any such g, M(g) = N(g) = 24(g−1) [22, Th. 5.7]. This surprising result shows
that there are infinitely many g such that M(g) = N(g); this result was the focus of [22].

Intuitively, one expects M(g) to “often” be equal to 2N(g). The families of groups for which the
lower bounds in (4) are attained provide examples of groups for which M(g) = 2N(g). But it is
certainly possible that M(g)< 2N(g) and even for M(g) = N(g).

In any case, our focus here is to complete the determination of both N(1+3p) and M(1+3p) for a
prime p. Our main result is the following.

Theorem 1. Let g = 1+3p for some prime p > (36)2. If p is congruent to 1 (mod 6), then N(g) =
M(g) = 24(g−1). Suppose p is congruent to 5 (mod 6). If p is also congruent modulo 25 to 1, 6, 11 or
16, then N(g) = 8(g+11) and M(g) = 16(g+11); otherwise N(g) = 8(g+1) and M(g) = 16(g+1).

Alternately, if p is congruent modulo 150 to 11, 41, 101 or 131 and p > (36)2, then N(1+3p) =
24p+96 = 8(g+11) and M(g) = 2N(g).

2. Background results.

Much of the following background information is taken from [15]; also see [7, Section 2]. We shall
assume that all surfaces are compact. Group actions on Riemann surfaces have often been studied
using non-euclidean crystallographic (NEC) groups . Let L denote the group of automorphisms of
the open upper half-plane U , and let L + denote the subgroup of index 2 consisting of the orientation
preserving automorphisms. An NEC group is a discrete subgroup Γ of L (with the quotient space
U/Γ compact). If Γ⊆L +, then Γ is called a Fuchsian group. Otherwise Γ is called a proper NEC
group; in this case Γ has a canonical Fuchsian subgroup Γ+ = Γ∩L + of index 2.
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Associated with the NEC group Γ is its signature, which has the form

(5) (p;±; [m1, · · · ,mt ];{(n1,1, · · · ,n1,s1), · · · ,(nk,1, · · · ,nk,sk)}).

The quotient space U/Γ is a surface with topological genus p and k holes. The surface is orientable if
the plus sign is used and non-orientable otherwise. Associated with the signature (5) is a presentation
for the NEC group Γ; see [20, p.234]. Further, the non-euclidean area µ(Γ) of a fundamental region
for Γ can be calculated directly from its signature. This is shown in [20, p.235], where µ(Γ) is given in
terms of the topological genus of the quotient surface U/Γ and the periods and link periods of Γ.

An NEC group K is called a surface group if the quotient map from U to U/K is unramified. Let
X be a Riemann surface of genus g≥ 2. Then X can be represented as U/K where K is a Fuchsian
surface group with µ(K) = 4π(g−1). Let G be a group of dianalytic automorphisms of the Riemann
surface X . Then there are an NEC group Γ and a homomorphism φ : Γ→ G onto G such that kernel
φ = K and thus the group of automorphisms G is isomorphic to Γ/K.

If ∆ is a subgroup of finite index in Γ, then [Γ : ∆] = µ(∆)/µ(Γ). Then the genus of the surface X
on which G acts is given by

(6) g = 1+ |G| ·µ(Γ)/4π.

The simpler, classical case is that G acts on X preserving orientation. This is the case if and only
if Γ is a Fuchsian group and G is generated by elements ai, bi for 1 ≤ i ≤ h and x j of order m j for
1≤ j ≤ k with relation x1 · · ·xk[a1,b1] · · · [ah,bh] = 1. Then the application of (6) yields the classical
Riemann-Hurwitz equation

(7) 2g−2 = |G|

(
2h−2+

k

∑
j=1

(
1− 1

m j

))
.

The group G acts reversing the orientation of X in case Γ is a proper NEC group. Then it is necessary
to check that the surface group K does not contain orientation-reversing elements, or equivalently, the
image α(Γ+) has index two in G [19, Th. 1, p. 52]. If this condition holds, then we will say that G
has a particular partial presentation with the Singerman subgroup condition. The Riemann-Hurwitz
equation in this case is more complicated and is in [7, p. 274], for instance. In this case, though,
|G|= 2|G+| and (7) can be employed to calculate the relationship between the genus g and |G|.

Let Γ be a proper NEC group. Then Γ has a canonical Fuchsian subgroup Γ+ of index 2. Further,
the quotient group Γ+/K acts on X preserving orientation. For a particular Fuchsian group Λ, however,
there may be more than one type of NEC group ∆ such that ∆+ is isomorphic to Λ; see [21].

Next we quickly survey the Fuchsian groups with relatively small non-euclidean area. We use the
notation of [15]. First, an (`,m,n) triangle group is a Fuchsian group Λ with signature

(0;+; [`,m,n];{}), where 1/`+1/m+1/n < 1.
If the group G is a quotient of Λ by a surface group, then G has a presentation of the form

(8) X ` = Y m = (XY )n = 1.

We will say that G has partial presentation T (`,m,n).
There are two types of NEC groups with a triangle group as canonical Fuchsian subgroup. We are

interested in the full (or extended) (`,m,n) triangle group is an NEC group Γ with signature
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(0;+; [ ];{(`,m,n)}), where 1/`+1/m+1/n < 1.
If G is a quotient of Γ (by a surface group), then G has a presentation of the form

(9) A2 = B2 =C2 = (AB)` = (BC)m = (CA)n = 1,

and, further, the subgroup generated by AB and BC (the image of Γ+) has index 2. The partial
presentation (9) will be denoted FT (`,m,n).

An (`,m,n, t) quadrilateral group is a Fuchsian group Λ with signature
(0;+; [`,m,n, t];{ }), where 1/`+1/m+1/n+1/t < 2.

A quotient group G of Λ has a presentation of the form

(10) X ` = Y m = Zn = (XY Z)t = 1

We will denote this partial presentation Q(`,m,n, t).

3. The General Approach.

Let p be an odd prime, and let g = 1+3p. Let X be a Riemann surface X of genus g≥ 2, and let the
group G act on X preserving orientation. Then, regardless of whether p is congruent to 1 or 5 modulo
6, we know that if p≥ (36)2, then

(11) |G| ≤ 24(g−1)

[22, Th. 5.6]. We also have the basic lower bound N(g)≥ 8(g+1) for all g≥ 2.
Here we will be concerned with primes congruent to 5 modulo 6 and orientation preserving actions

such that

(12) 24(g−1)≥ |G|> 8(g+1).

Most of the work here is showing that, except for four special congruence classes of primes, there
are no group actions satisfying (12) (as long as p is not small). Our general approach is to represent
X =U/K and G = Γ/K, where Γ is a Fuchsian group and K a surface group and then consider two
cases, depending upon whether or not |G| is divisible by the prime p.

Corresponding to (12) is a restriction on the non-euclidean area of the Fuchsian group Γ and the
types of partial presentations that Γ can have. The area restriction is

(13)
1

12
≤ µ(Γ)/2π <

1
4

(
1− 2

g+1

)
.

A careful check of the signatures gives the following. Here we have added the specific Riemann-
Hurwitz equation for each case. For example, if G has the partial presentation T (2,4,λ ), then
µ(Γ)/2π = (λ −4)/4λ . Then using (7) gives 8(g−1) = |G|(λ −4)/λ .

Theorem A. Let G be a group that acts on a Riemann surface of genus g≥ 2 preserving the orientation
of the surface. If 24(g−1) ≥ |G| > 8(g+1), then G has one of the following partial presentations.
The application of the Riemann-Hurwitz equation is included for each case.
1. T (2,3,λ ), 12(g−1) = |G|(λ −6)/λ where λ ≥ 12,
2. T (2,4,λ ), 8(g−1) = |G|(λ −4)/λ where 6≤ λ < 2(g+1),
3. T (2,5,λ ), 20(g−1) = |G|(3λ −10)/λ where 5≤ λ < 20,
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MAX ORDER ACTIONS ON SURFACES 5

4. T (2,6,λ ), 6(g−1) = |G|(λ −3)/λ where 6≤ λ < 12,
5. T (2,7,λ ), 28(g−1) = |G|(5λ −14)/λ where 7≤ λ ≤ 9,
6. T (3,3,λ ), 6(g−1) = |G|(λ −3)/λ where 4≤ λ < 12,
7. T (3,4,λ ), 24(g−1) = |G|(5λ −12)/λ where λ = 4,5,
8. Q(2,2,2,3), 12(g−1) = |G|.

Now let p be an odd prime number and g = 1+3p. Let X be a Riemann surface of genus g≥ 2, and
let G act on X preserving orientation. If G satisfies the inequality (12), then G has one of the partial
presentations in Theorem A. For each of the partial presentations in Theorem A, then Riemann-Hurwitz
formulas give |G| in terms of λ and p. For example, if G has partial presentation T (2,4,λ ), then
|G|= 24pλ/(λ −4). In addition, as long as (λ −4)/6 < p, then |G| satisfies inequality (12).

Next, as long as the value of λ is bounded above, applying the Riemann-Hurwitz equation in a
straightforward way shows that |G| is a multiple of p for large enough values of p. It is also clear that
p2 does not divide |G|. In cases (3) - (7) in Theorem A, the prime p needs to be larger than 47 in order
to guarantee that p divides the order of G. The exceptional cases T (2,3,λ ) and T (2,4,λ ) where λ

does not have an upper bound must be treated separately. In summary, we have the following.

Lemma 1. Let p be an odd prime with p > 47, and let g = 1+ 3p. Let G act on a surface of
genus g preserving orientation such that |G| satisfies the inequality (12). If G has one of the partial
presentations (3) - (8) in Theorem A, then p divides |G|.

4. T (2,3,λ ) groups.

Assume p is a prime, and let g = 3p+1. Here it is not necessary to assume p≡ 5 (mod 6), but we
need to assume that p is not small in order to apply the following useful result of Accola [1, Lemma 5,
p. 402]. We use the argument from the proof of [22, Lemma 5.1].

Accola’s Lemma. Let G be a non-abelian group with partial presentation T (2,3,λ ). If G has order
µλ , then λ ≤ µ2.

Lemma 2. Let p be an odd prime, and let g = 1+3p. Let G act on a surface of genus g preserving
orientation having partial presentation T (2,3,λ ), with λ ≥ 12. If the prime p > (36)2, then p divides
|G|.

Proof. By Theorem A 1), |G|= 36pλ/(λ −6) so that 72pλ = |G|(λ −6). Now by Euclid’s Lemma,
either p divides |G| or p divides (λ −6).

Assume that p divides (λ −6) and write λ −6 = mp for some integer m≥ 1. Now λ = mp+6 >
p > (36)2 (by assumption). But on the other hand, |G| = 36pλ/mp = 36λ/m. Then the group of
orientation preserving automorphisms G is a T (2,3,λ ) group of order µλ , where µ = 36/m ≤ 36.
Now by Accola’s Lemma, p < λ ≤ µ2 ≤ (36)2, an obvious contradiction. Thus, if G is a T (2,3,λ )
group (and p > (36)2), then p divides |G|. �

Hence, assuming p> (36)2 guarantees that p divides |G| in case G has partial presentation T (2,3,λ ).
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5. T (2,4,λ ) groups.

We need to examine the structure of a general T (2,4,λ ) group. Let G be a group with partial
presentation T (2,4,λ ) of order n = µλ . Let G = 〈a,b〉 with a2 = b4 = (ab)λ = 1, and set c = ab and
d = ba. Note that G = 〈a,c〉 and that d is a conjugate of c. Also µ is the index of 〈c〉 in G.

Let J = 〈c〉∩ 〈d〉. Then J = 〈ck〉 for some k that divides λ . Also J is normal in G, and G/J is a
T (2,4,k) group of order µk.

The notation, Zn is the cyclic group of order n, Dn is the dihedral group of order 2n and Sn is the
symmetric group on n elements, will be used throughout this section. For k ≤ 5, T (2,4,k) is a full
presentation of a well-known finite group. Specifically, T (2,4,1)∼= Z2, T (2,4,2)∼= D4, T (2,4,3)∼= S4
and T (2,4,5)∼= S5. So for k = 1, it follows that G is an extension of Zλ by Z2 and has order 2λ . Using
the Riemann-Hurwitz equation from Theorem A, we see that λ = 4g and therefore, |G| = 8g. By
Theorem A, this group will not have maximal order. So k > 1 for the groups in which we are interested.

Next, if k = 2, then T (2,4,2)∼= D4 and so µ = 4. Also T (2,4,3)∼= S4, with µ = 8 and T (2,4,5)∼=
S5, with µ = 24.

Since G = 〈a,c〉, the subgroup 〈c,d〉 has index one or two in G. Thus there are two cases. Let ` be
the index of 〈c,d〉 in G so that ` is 1 or 2. Since µ is the index of 〈c〉 in G, it follows that µ/` is the
index of 〈c〉 in 〈c,d〉.

Lemma 3. Let G be a group with partial presentation T (2,4,λ ) of order n = µλ . Let k = λ/|J|,
where J = 〈c〉∩ 〈d〉 as defined above. Then µ/`≥ k.

Proof. Consider the group 〈c,d〉/J of order µk/`. Accola [1, p. 401] has shown this group has k2

distinct elements of the form (cJ)i(dJ) j, where i and j are between 0 and k−1. So µk/`≥ k2 and we
are done. �

Lemma 4. Suppose G = 〈c,d〉. If 4 divides kµ , then λ ≤ µ2.

Proof. The following proof comes directly from Accola [1, Lemma 4, p. 401]. Since G = 〈c,d〉, J
is central in G. By Lemma 3, µ ≥ k. Now, the transfer map into J is g 7→ gkµ . Since 4 divides kµ ,
this map takes both a and b to the identity and so it is the zero map. Hence λ divides kµ and we are
done. �

Now we focus on orientation preserving actions on surfaces of genus g = 1+3p, where p is an odd
prime. We begin by applying the Riemann-Hurwitz equation and Euclid’s Lemma, as in the proof of
Lemma 2.

Lemma 5. Let p be an odd prime, and let g = 1+3p. Let G act on a surface of genus g preserving
orientation having partial presentation T (2,4,λ ) with 6≤ λ < 2(g+1). Then either p divides |G| or
G has one of the four partial presentations T (2,4,mp+4) with 1≤ m≤ 4.

Proof. By Theorem A 2), |G|= 24pλ/(λ −4) so that

(14) 24pλ = |G|(λ −4).

Now by Euclid’s Lemma, either p divides |G| or p divides (λ −4).
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MAX ORDER ACTIONS ON SURFACES 7

Assume that p divides (λ − 4) and write λ − 4 = mp for some integer m ≥ 1. Now λ = mp+ 4,
and λ divides |G|. Write |G|= µλ . Now we have |G|= 24λ p/mp = 24λ/m and µ = 24/m. Hence
m divides 24 and, since λ < 2(g+1) = 6p+4, m < 6. Thus m is 1, 2, 3, or 4. �

Thus, if p does not divide |G|, G has one of four partial presentations. We exhibit these possibilities.
It is also clear that if G has one of these partial presentations, then p does not divide |G|.

TABLE 1. Partial Presentations of G

m Lambda Order Mu
m = 1 λ = p+4 |G|= 24λ = 8(g+11) µ = 24
m = 2 λ = 2p+4 |G|= 12λ = 8(g+5) µ = 12
m = 3 λ = 3p+4 |G|= 8λ = 8(g+3) µ = 8
m = 4 λ = 4p+4 |G|= 6λ = 8(g+2) µ = 6

As we shall see, there are group actions of the first type for infinitely many p≡ 5 (mod 6). There
are no actions of the three remaining types at all, as long as p is not small.

One of the four possibilities requires special treatment.

Lemma 6. Let p be an odd prime, and let g = 1+3p. Let G act on a surface of genus g preserving
orientation having partial presentation T (2,4,λ ). If G has order 6λ (µ = 6), then λ ≤ 36.

Proof. First k≤ 3 is not possible so that k≥ 4. By Lemma 3, 6/`≥ k. Hence ` 6= 2. This means `= 1,
G = 〈c,d〉, and k must be 4, 5 or 6. If k is 4 or 6, then 4 divides kµ = 6k and λ ≤ 36 by Lemma 4.

Suppose k = 5. Then the quotient group G/J would be a non-abelian T (2,4,5) group of order 30.
Each of the three non-abelian groups of order 30 is obviously not generated by an involution and an
element of order 4. Thus k 6= 5 and λ ≤ 36. �

Now we consider the general case in which G = 〈c,d〉. As in the previous section, we assume that p
is not small and apply Lemma 4.

Lemma 7. Let p be an odd prime, and let g = 1+3p. Let G act on a surface of genus g preserving
orientation. Suppose G has partial presentation T (2,4,λ ), with 6≤ λ < 2(g+1). Suppose G = 〈c,d〉.
If the prime p > (24)2, then p divides |G|.

Proof. As in the proof of Lemma 5, if p does not divide |G|, then λ −4 = mp for where m is 1,2,3 or
4 and µ = 24/m. Then λ = mp+4 > p > (24)2 (by assumption). Assume m 6= 4. Then by Accola’s
Lemma 4, p < λ ≤ µ2 ≤ (24)2, an obvious contradiction. Finally, Lemma 6 immediately rules out the
case with m = 4 and µ = 6. Hence p must divide |G|. �

Thus, if G is a T (2,4,λ ) group with G = 〈c,d〉 (and p > (24)2), then p divides |G|.
We still must consider the case in which G 6= 〈c,d〉. Lemma 5 still applies so that either p divides

|G| or G has one of four partial presentations. We focus on these partial presentations.

Lemma 8. Assume that G is a (2,4,λ ) group of order n = µλ with µ > 4. Let a,b ∈ G with o(a) = 2
and o(b) = 4 and let c = ab and d = ba. Suppose that G 6= 〈c,d〉. Then there is a number k which
divides λ satisfying 2≤ k ≤ µ/2.
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MAX ORDER ACTIONS ON SURFACES 8

Proof. Since G = 〈a,c〉, we have that N = 〈c,d〉 has index 2 in G. Next define J = 〈c〉∩ 〈d〉. Since
conjugation by a interchanges c and d, the subgroup J is normal in G. Define k = λ/|J| and so k
divides λ . Now let c̄ and d̄ be the image of c and d in G/J. Since c̄md̄n for m,n = 0,1, · · ·(k−1) are
distinct elements in N/J, we have that k2 ≤ kµ/2 and k ≤ µ/2. �

At this point, we assume that the prime p is congruent to 5 modulo 6 and that p is not small.

Lemma 9. Let p be a prime satisfying p≡ 5 (mod 6) with p > (24)2. Let g = 1+3p and let G act on
a surface of genus g preserving orientation with partial presentation T (2,4,mp+4) with 1≤ m≤ 4.
Then m = 1 and p+4 is divisible by 5 but not divisible by 25. Further, the group G contains a cyclic
normal subgroup J of odd order with G/J ∼= S5.

Proof. Since G acts with one of the four partial presentations, p does not divide |G|. Since p > (24)2,
then we must have G 6= 〈c,d〉 by Lemma 7. Now, as in the proof of Lemma 8, G contains a cyclic
normal subgroup J of order λ/k for some integer k. Notice that the quotient group G/J is a (2,4,k)
group.

First suppose that λ = 4p+4 so that |G|= 6λ . By the proof of Lemma 6, G = 〈c,d〉, an obvious
contradiction. Hence, it is not possible for G to act on a surface of genus g = 3p+1 with this partial
presentation.

Next, consider λ = 3p+4 and |G|= 8λ . Since λ is odd, so is k. Also by Lemma 8 we have that
k ≤ 4. Therefore, k = 3. Now λ is divisible by 3, by Lemma 8 and this case does not occur.

Now suppose λ = 2p+4 so that |G|= 12λ . Then k ≤ 6. Since p≡ 5 (mod 6), we see that λ ≡ 2
(mod 6) and so 3 and 6 do not divide λ . If k = 2, then G/J is a (2,4,2) group and hence dihedral
of order 8. Thus |G/J| 6= 24 = 12k. Therefore, k = 4 or k = 5. However, a search using Magma
shows that there are no (2,4,4) groups of order 48 and no (2,4,5) groups of order 60. It follows that
λ 6= 2p+4.

Finally, suppose λ = p+ 4, the only remaining possibility. Since λ is odd, so is k. We have
|G| = 24λ so that k ≤ 12. Further, |G/J| = 24k and G/J is a (2,4,k) group. Now k = 3 gives that
G/J ∼= S4 and |G/J|= 72. Likewise, if k = 9, then a MAGMA search shows that there are no (2,4,9)
groups of order 216 and for k = 11, there are no (2,4,11) groups of order 264. Therefore, k = 5 or
k = 7.

Suppose that k = 7. It follows that Q = G/J is a (2,4,7) group of order 168. A MAGMA search
reveals that Q must be PSL(2,7), the only (2,4,7) group of order 168. Therefore, G is an extension of
an odd order cyclic group J by the simple group Q. Since Q must act trivially on the cyclic group, we
have a central extension. The equivalence class of central extensions is in one to one correspondence
with the second cohomology group H2(Q,J) [18, Th. 11.4.10]. The Schur multiplier of the group Q is
relevant to this central extension (See [18, p. 347]). The simple group PSL(2,7) has Schur Multiplier
M(Q)∼= Z2. The Universal Coefficients Theorem [18, Th. 11.4.18] says that

(15) H2(Q,J)∼= Hom(M(Q),J)×Ext(Qab,J),

where Qab
∼= Q/Q′ is the abelianization of Q. Thus, the second cohomology group is trivial and so G

must be a direct product. This is impossible and k 6= 7.
Therefore k = 5 and G has a cyclic normal subgroup J with G/J is a (2,4,5) group of order 120. A

Magma search shows that S5 is the only such group. Thus G/J ∼= S5.
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MAX ORDER ACTIONS ON SURFACES 9

Suppose that 25 divides p+4. Now G is an extension of a cyclic group Zn by S5, where 5 divides n.
Let τ : G→ S5 be the surjection. There is an element g of order p+4 in the group G. Now τ(g) is an
element of order 5 in S5. Therefore, τ(g) ∈ A5. Consider the group H = τ−1(A5). So H is a central
extension of Zn by A5. The group H cannot be a direct product, since the direct product has no element
of order 25 and H does have such an element. However, the Schur Multiplier M(A5)∼= Z2 and by the
Universal Coefficients Theorem (15), the second cohomology group is trivial. Therefore, H must be
the direct product and we have a contradiction. Thus, 25 does not divide p+4. �

Now we construct a family of groups with partial presentation T (2,4, p+4) and order 24(p+4)
that act on a surface of genus g = 3p+1, preserving its orientation.

Lemma 10. Let p be a prime satisfying p≡ 5 (mod 6). Suppose λ = p+4 is divisible by 5 but not
divisible by 25. Let Gλ = Zλ/5×φ S5 be the semidirect product of Zλ/5 and the symmetric group S5, with
the action φ being inversion. Then Gλ is a (2,4, p+4) group of order 8(g+11) that acts on a surface
of genus g = 1+3p preserving orientation. Consequently, for such a value of g, N(g)≥ 8(g+11).

Proof. Let

(16) Gλ = 〈a,b,c|a2 = b5 = (ab)4 = [a,b2]2 = c(λ/5) = [b,c] = (ca)2 = 1〉.

First, note that S5 ∼= 〈a,b〉 and 〈c〉 is a normal subgroup of Gλ . Now Gλ = Zλ/5×φ S5 with the
action being inversion. Let x = ca and y = ab. Next, xy = cb has order λ . Since (xy)5 = c5 and
5 does not divide the order of c, we see that G = 〈x,y〉 and so G is a (2,4, p+ 4) group of order
24λ = 8(g+11). �

Combining the last two lemmas gives the following.

Theorem 2. Let p be a prime satisfying p≡ 5 (mod 6) with p > (24)2, and let g = 1+3p. Suppose
that G is a (2,4,mp+4) group of order larger than 8(g+1). Then if G acts on a surface of genus g
preserving orientation, then m = 1, λ = p+4 is divisible by 5 and not by 25. Furthermore, if p+4 is
divisible by 5 and not by 25, then there exists a group G that is a (2,4, p+4) group of order 8(g+11).

Next, we show that groups G with order greater than 8(g+ 1) and p divides |G| cannot act on a
surface of genus g = 3p+1 preserving its orientation.

6. p divides |G|.

Let p be an odd prime with p≡ 5 (mod 6) , and let g = 1+3p. Let G act on a surface X of genus g
preserving orientation such that |G| satisfies the inequality (12). Now we assume that p divides |G|
and p > 72. We show that in this case, none of the partial presentations in Theorem A are possible. We
let the Sylow p-subgroup act on X and follow the approach in [22, Section 5].

Lemma 11. The Sylow p-subgroup of G is a cyclic normal subgroup in G isomorphic to Zp.

Proof. We have |G| ≤ 24(g−1) = 24 ·3p = 72p. Obviously, p2 does not divide |G|, we are done. �

Now let the Sylow p-subgroup S act on X with Y = X/S the quotient space, γ the genus of Y and
π : X → Y the quotient map. For a detailed proof of the following, see [22, Lemma 5.3].
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MAX ORDER ACTIONS ON SURFACES 10

Lemma 12. The quotient map π is unramified, and the quotient space Y = X/S has genus γ = 4.
Further, the quotient group Q = G/S is a group of orientation-preserving automorphisms of Y with
40 < |Q| ≤ 72.

Orientation preserving group actions on Riemann surfaces of genus 4 are well understood. These
group actions were considered in determining the groups of strong symmetric genus 4 [14, Table 1].
The groups with order larger than 36 are groups of reflexible regular maps [14, Lemma 1]. There are
three possibilities for the quotient group Q here, and they are presented in Table 2. The regular maps
of genus 4 were first classified by Garbe [10, p. 53]. These maps also appear in [6, Table 1]. In Table
2, we give the group number in the MAGMA small groups library. Map symbols are from [6].

TABLE 2. Group Actions on Surfaces of Genus 4

Group Order Library Partial Map G/G′

Number Presentation Symbol
Z3×S4 72 42 T (2,3,12) R4.1 Z6

(2,4,6;2) 72 40 T (2,4,6) R4.3 (Z2)
3

A5 60 5 T (2,5,5) R4.6 1

The group G is an extension of Zp by Q. Since |Q| is relatively prime to p, the group G is a
semidirect product, by the Schur-Zassenhaus Lemma.

Lemma 13. G∼= Zp×φ Q.

The following is important here. The proof is an exercise using the definition of semidirect product.

Lemma 14. Let H be the semidirect product K×φ Q, and let L = kernel(φ). Then L is normal in the
big group H.

For each of the possibilities for Q, we show that G cannot have the relevant partial presentation.
First suppose there were such a group G of order 72p with partial presentation T (2,3,12). Let ∆ be

a Fuchsian group with signature (0;+; [2,3,12];{}) and presentation

(17) X2 = Y 3 = (XY )12 = 1.

Then G∼= ∆/K and is generated by two elements of orders 2 and 3. Let α : ∆−→ G be the quotient
map.

We have G ∼= Zp×φ Q, where Q ∼= Z3× S4. Let L = kernel(φ). Since φ : Q→ Aut(Zp) ∼= Zp−1,
Q/L is cyclic. It follows that Q′ ⊂ L⊂ Q. Now the commutator quotient group Q/Q′ ∼= Z6. Thus L
must have index 1, 2, 3 or 6 in Q, and L is normal in G by Lemma 14. Let T = G/L and let ρ : G−→ T
be the quotient map of G onto T . Also let θ = ρ ◦α be the composition of α and ρ so that θ : ∆−→ T
maps ∆ onto T . We eliminate all the possibilities for the quotient group T .

The following preliminary results will be helpful. Let ∆ have presentation (17).

Lemma 15. The only nontrivial odd order quotient of ∆ is Z3.
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MAX ORDER ACTIONS ON SURFACES 11

Proof. Let β : ∆−→W be a homomorphism of ∆ onto the nontrivial odd-order group W . If J is an
involution in ∆, then β (J) = 1. In particular, β (X) = 1 and hence W = 〈β (X),β (Y )〉 = 〈β (Y )〉 ∼=
Z3. �

Lemma 16. Let p be an odd prime, p > 3. Then Dp is not a quotient of ∆.

Proof. Write D ∼= Dp, and assume that β : ∆ −→ D be a homomorphism of ∆ onto D. Then D =
〈β (X),β (Y )〉 so that β (X) and β (Y ) must be non-identity elements of D. But D has no elements of
order 3 so that β (Y ) = 1. Hence D∼= Dp is not a quotient of ∆. �

Now we consider the possible indices of L in Q. First suppose L = Q so that G∼= Zp×Q. Then G
and hence ∆ would have Zp as a quotient which is not possible by Lemma 15.

Next assume [Q : L] = 2 so that the quotient group T = G/L has order 2p. Then T is isomorphic
to either Z2p or the dihedral group Dp. Suppose T = Z2p. Then T and hence ∆ would have Zp as a
quotient, which is not possible by Lemma 15. But Dp is not a quotient either, by Lemma 16.

Suppose [Q : L] = 3 so that the quotient group G/L has odd order 3p. This is not possible by Lemma
15.

Finally, suppose [Q : L] = 6. Then the quotient group G/L has order 6p, and there are four
possibilities for the group G/L, since 3 does not divide p− 1. (There are two additional groups of
order 6p if 3 divides p−1.) There are the cyclic group Z6p, the dihedral group D3p, and the direct
products Z3×Dp and Zp×D3.

We have to consider the four possibilities for the quotient group T = G/L. First suppose T = Z6p.
Then T and hence ∆ would have Zp as a quotient, which is not possible by Lemma 15.

Assume next that T ∼= D3p. Then T has a characteristic subgroup V of order 3 with T/V ∼= Dp. This
is not possible by Lemma 16. Lemma 16 also eliminates the direct product Z3×Dp which has Dp
as a quotient, and Lemma 15 eliminates the direct product Zp×D3, which has a nontrivial odd order
quotient.

In summary, there is no group of order 72p with partial presentation T (2,3,12).
Next suppose there were such a group G of order 72p with partial presentation T (2,4,6). Let Γ be a

Fuchsian group with signature (0;+; [2,4,6];{}) and presentation

(18) X2 = Y 4 = (XY )6 = 1.

Then G∼= Γ/K and is generated by two elements of orders 2 and 4. Let α : Γ−→ G be the quotient
map.

We have G∼= Zp×φ Q, where the quotient group Q∼= (2,4,6;2) (see [9, p. 142] for a presentation).
Let L = kernel(φ). Since φ : Q→ Aut(Zp)∼= Zp−1, Q/L is cyclic. It follows that Q′ ⊂ L⊂ Q. Now a
calculation shows that the commutator quotient group Q/Q′ ∼= (Z2)

2. Thus L must have index 1 or 2
in Q, and L is normal in G by Lemma 14. Let T = G/L and let ρ : G−→ T be the quotient map of
G onto T . Also let θ = ρ ◦α be the composition of α and ρ so that θ : Γ−→ T maps Γ onto T . We
eliminate all the possibilities for the quotient group T .

The following preliminary results will be helpful. Let Γ have presentation (18).

Lemma 17. The group Γ has no nontrivial odd order quotients at all.

Lemma 18. Let p be an odd prime. Then Dp is not a quotient of Γ.
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Proof. Write D ∼= Dp, and assume that β : Γ −→ D be a homomorphism of Γ onto D. Then D =
〈β (X),β (Y )〉 so that β (X) and β (Y ) must be non-identity elements of D. The dihedral group D has
reflections and rotations of order p. Then β (X),β (Y ) must be reflections so that the product β (X)β (Y )
is a rotation of order p. But [β (XY )]6 = 1. This means β (X) = β (Y ) and D would be abelian. Hence
D∼= Dp is not a quotient of Γ. �

Now we consider the two possible indices of L in Q. First suppose L = Q so that G∼= Zp×Q. Then
G and hence Γ would have Zp as a quotient which is not possible by Lemma 17.

Next assume [Q : L] = 2 so that the quotient group T = G/L has order 2p. Then T is isomorphic
to either Z2p or the dihedral group Dp. Suppose T = Z2p. Then T and hence Γ would have Zp as a
quotient, which is not possible by Lemma 17. But Dp is not a quotient either, by Lemma 18.

In summary, there is no group of order 72p with partial presentation T (2,4,6).
Finally suppose there were such a group G of order 60p with partial presentation T (2,5,5). Let Λ

be a Fuchsian group with signature (0;+; [2,5,5];{}) and presentation

(19) X2 = Y 5 = (XY )5 = 1.

Then G∼= Λ/K and is generated by two elements of orders 2 and 5. Let α : Λ−→ G be the quotient
map.

We have G∼= Zp×φ Q, where the quotient group Q∼=A5. Since A5 is simple, this means G∼= Zp×A5.

Lemma 19. The only nontrivial odd order quotient of Λ is Z5.

Proof. Let β : Λ−→W be a homomorphism of Λ onto the nontrivial odd-order group W . If J is an
involution in Λ, then β (J) = 1. In particular, β (X) = 1 and so W = 〈β (X),β (Y )〉= 〈β (Y )〉 ∼= Z5. �

But the group G and hence Λ have Zp as quotients, with p > 5. Thus there is no group of order 60p
with partial presentation T (2,5,5).

Therefore, in this case, none of the partial presentations in Theorem A are possible, and consequently,
|G| ≤ 8(g+1). In summary, we have the following.

Lemma 20. Let p be an odd prime with p≡ 5 (mod 6), and let g = 1+3p. Let G act on a surface X
of genus g preserving orientation. If p divides |G| and p > 72, then |G| ≤ 8(g+1).

Theorem 3. Let g = 1+3p for some prime p > (36)2. Suppose p is congruent to 5 (mod 6). If p is
also congruent modulo 25 to 1, 6, 11 or 16, then N(g) = 8(g+11); otherwise N(g) = 8(g+1).

Finally, we check that the maximal order groups that give an orientation preserving action can be
extended to a maximal order orientation reversing action.

7. Extensions to Orientation Reversing Actions

Next, we want to determine if Gλ has an extension to a group of order 48λ = 16(g+11). In order to
do this, we need a presentation of Gλ as a (2,4,λ ) group. In the cases that we are interested in, λ is
odd, divisible by 5 and not divisible by 25. Therefore, λ ≡ 5,15,35,45 (mod 50).

For λ ≡±15 (mod 50), define

(20) Hλ = 〈x,y|x2 = y4 = (xy)λ = y−1(xy)5y(xy)5 = [y,(xy)λ/5]2 = 1〉.
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For λ ≡±5 (mod 50), define

(21) Hλ = 〈x,y|x2 = y4 = (xy)λ = y−1(xy)5y(xy)5 = [y,(xy)λ/5]3 = 1〉.

Notice that since (xy)5 is inverted by conjugation by y and centralized by (xy), 〈(xy)5〉 is a normal
subgroup of Hλ in both cases. Next, modifying the presentations (20) and (21) by setting (xy)5 = 1
and putting them in Magma, we see that the quotient is isomorphic to S5 and hence Gλ and Hλ have
the same order.

Theorem 4. For λ ≡ 5,15,35,45 (mod 50), Gλ
∼= Hλ . A group H∗

λ
of order 16(g+11) acting on a

surface of genus g reversing orientation exists. Consequently, for such a value of g, M(g)≥ 16(g+11).

Proof. We will use the presentation for Hλ in equations (20) and (21) and for Gλ in (16). Define
ν : Hλ → Gλ by ν(x) = ca and ν(y) = ab. Clearly, x2, y4 and (xy)λ are all mapped to the identity by
ν . Next, (xy)5 is mapped to c5. Therefore, ν maps y−1(xy)5y(xy)5 to (b−1a−1)c5(ab)c5 which is the
identity in Gλ . Now, we need to consider two cases depending on whether Hλ has presentation (20) or
(21).

Case 1: Suppose λ ≡±15 (mod 50). So Hλ has presentation (20). The image of [y,(xy)λ/5]2 under ν

is the identity and so ν is an isomorphism by Van Dyke’s Theorem.
Now suppose that φ : Hλ → Hλ by φ(x) = x−1 = x and φ(y) = y−1. The image of all relators of Hλ

under φ is the identity. Therefore, φ is an isomorphism of order 2 and so the extension H∗
λ

exists by
Singerman [21, Th. 2]. The group H∗

λ
has partial presentation FT (2,4,λ ).

Case 2: Suppose λ ≡±5 (mod 50). So Hλ has presentation (21). The image of [y,(xy)λ/5]3 under ν

is the identity and so ν is an isomorphism by Van Dyke’s Theorem.
Now suppose that κ : Hλ → Hλ by κ(x) = x−1 = x and κ(y) = y−1. As in case 1 all relators map to

the identity. Therefore, κ is an isomorphism of order 2 and again the extension H∗
λ

exists by Singerman
[21, Th. 2].

�

Since M(g)≥ 16(g+1) in all cases, the proof of Theorem 1 is complete.

8. Recent Related Results

We end by mentioning some recent results on related topics. A compact Riemann surface is called
psuedo-real if it admits anticonformal automorphisms, but none of order 2. In [5], some limitations on
the order of the largest group of automorphisms of a psuedo-real surface are obtained. For orientation
preserving actions on Riemann surfaces, the paper [3] determines N(g) for g = qpm +1 where q and p
are certain primes. This result gives some information on the asymptotics of N(g). If S is a compact
Riemann surface of genus p+1 where p is a prime and G≤ Aut(S) of order ρ(g−1) where ρ ≥ 3,
then [12, Th. 1] classifies the groups G that can occur. As a corollary, the authors classify the maps
and hypermaps corresponding to the cases in [12, Th. 1]. The paper [17, Th. 1] classifies the surfaces
of genus p−1 for a prime p which have a group of automorphisms of order ρ(g+1) for some ρ ≥ 1.
Similar problems for complex one-dimensional families were studied in [8], and these results were
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recently extended to the higher dimensional case in [11].

We would like to thank the referee for several helpful suggestions and for calling our attention to the
research in this section.
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