Real structure in non-commutative L_p -spaces

Sofya MASHARIPOVA and Shukhrat USMANOV

ABSTRACT. Our work is devoted to the construction of real valued non-commutative L_p spaces associated with real W^* -algebras of different types. We construct such real non-commutative L_p -spaces, $1 \leq p < \infty$, and we prove the theorem of isomorphism for real non-commutative L_p -spaces. Finally, we build an approximation of L_p -spaces associated with real W^* -algebras of type III via L_p -spaces associated with finite real W^* -algebras, analogically to the work of U.Haagerup, M.Junge and Q.Xu (see T.A.M.S. 362 (2010), 2125-2165).

Introduction

The theory of real W^* -algebras is a comparatively new branch of the theory of operator algebras. Its development began in the 1970s with the works of E. Stormer, S. Ayupov and other mathematicians (see [ARU] for reference). This theory is closely connected with the theory of complex W^* - algebras and their *-automorphisms. Nevertheless, the structure theory of real W^* - algebras is different from the theory of complex W^* - algebras. Structural theory of real W^* - algebras, the theory of traces and classification by types are now basically completed (see, for example, [ARU] and [L]).

Non-commutative L_p -spaces are the well-known objects of theory of operator algebras and non-commutative integration. In our article we define the real valued non-commutative L_p -spaces associated

²⁰²⁰ Mathematics Subject Classification. Primary 46L52, Secondary 46L10. Key words and phrases. Non-commutative L_p -spaces; Real-valued Banach spaces; W^* - algebras; Real W^* - algebras.

with semi-finite and infinite real W^* -algebras, and study their isomorphisms. Also, we prove a reduction theorem to approximate real non-commutative L_p -space associate with W^* -algebra of type III (in Haagerup's type construction) by an increasing sequence of real non-commutative L_p -spaces which are associated with finite W^* -algebras.

In Section 1 we define the real valued non-commutative L_p -spaces associated with semi-finite and purely infinite real W^* -algebras and provide some examples. Also, we study the connection between real valued and complex valued non-commutative L_p -spaces (Theorem 1.5)

In Section 2 we prove the theorem of isomorphisms for real valued non-commutative L_p -spaces (Theorem 2.1).

In Section 3 we prove a reduction theorem (Theorem 3.2).

Following the development of this paper, the authors intend to devote a separate article to study of duality of real valued non-commutative L_p -spaces, classification of real valued non-commutative L_p -spaces associated with semi-finite hyper-finite real W^* -algebras, and maximal and individual ergodic theorems on it.

Preliminaries

Let M be a W^* -algebra on the complex Hilbert space H. A *-automorphism (*-anti-automorphism) θ of M is defined to be a linear map $\theta: M \to M$, such that:

(i)
$$\theta(x^*) = \theta(x)^*$$
, and

(ii)
$$\theta(xy) = \theta(x)\theta(y)$$
 (respectively, $\theta(xy) = \theta(y)\theta(x)$) for all $x,y \in M$.

The group of all *-automorphisms of M will be denoted by Aut(M) (see [T1], [T2]).

A real W^* -algebra is defined to be a weakly closed real *-subalgebra $R \subset B(H)$ that contains the identity operator and is such that $R \cap \mathbf{i}R = \{0\}$. The least W^* - algebra, containing R (so called enveloping W^* -algebra U(R) for R, has the form $U(R) = R + \mathbf{i}R$. The *-subalgebra R defines on U(R) an involutory *-anti-automorphism α_R (of period 2):

$$\alpha_R(x + \mathbf{i}y) = x^* + \mathbf{i}y^*, x, y \in R.$$

In accordance with this, R can be described as follows:

$$R = \{x \in U(R) : \alpha_R(x) = x^*\}.$$

Let R_1 and R_2 be real W^* -algebras. such that $U(R_1) = U(R_2) = U$. Then R_1 and R_2 are real *-isomorphic if and only if α_{R_1} and α_{R_2} are conjugated in U, that is, there is a *-automorphism $\theta \in Aut(U)$ such that $\alpha_{R_1} \cdot \theta = \theta \cdot \alpha_{R_2}$.

We shall say that a real W^* - algebra is of type $I_{fin}, I_{\infty}, II_1, II_{\infty}$ or $III_{\lambda}, 0 \leq \lambda \leq 1$ if its enveloping W^* - algebra U(R) is of type $I_{fin}, I_{\infty}, II_1, II_{\infty}$ or $III_{\lambda}, 0 \leq \lambda \leq 1$ respectively.

The center of W^* - algebra U is a subalgebra $Z(U) \subset U$ such that $Z(U) = \{x \in U : xy = yx, \ \forall y \in U\}$. Analogically, the center of real W^* - algebra R is the subalgebra $Z(R) = \{x \in R : xy = yx, \ \forall y \in R\} = Z(U) \cap R$. The real W^* - algebra is called the real factor, if its center is trivial: $Z(R) = \{\mathbb{C} \cdot \mathbf{1}\}$ (see [ARU], [L]).

Let φ be a weight on real or complex W^* -algebra M_+ , that is, a linear map $\varphi: M_+ \to [0, +\infty)$ that satisfies the condition $0 \cdot \infty = 0$. A weight is said to be *normal* if it is ultra-weakly continuous. It is said to be *faithful* if the equality $\varphi(x) = 0$ implies that x = 0. It is said to be *semi-finite* if the set $\mathfrak{m}_{\varphi} = \{x - y : x > 0, y > 0, \varphi(x) < +\infty, \varphi(y) < +\infty\}$ is dense in M. A weight φ satisfying the condition $\varphi(xy) = \varphi(yx) \ \forall x, y \in (\mathfrak{m}_{\varphi})_+$ is called a *trace*.

The basic information about the theory of W^* -algebras can be found in [T1], [T2], about real W^* -algebras - in [ARU] and [L].

1. Non-commutative L_p -spaces associated with real W^* -algebras

Consider a W^* -algebra U on a Hilbert space H, with a faithful normal finite or semi-finite trace $\bar{\tau}$. Unbounded closed densely defined operator x with a domain D(x) is affiliated with U (denoted by $x\eta U$) if $u'xu'^* = x$ for all unitary $u' \in U'$. The operations for x, y affiliated with U are following:

- (i) If x, y are linear operators affiliated with U, then x + y with $D(x + y) = D(x) \cap D(y)$ and xy with $D(xy) = \{\xi \in D(y) : y\xi \in D(x) \text{ are affiliated with } U$.
- (ii) If x is densely defined and $x\eta U$, then $x^*\eta U$.
- (iii) If x is closable and $x\eta U$, then for the closure \bar{x} of x we have: $\bar{x}\eta U$.
- (iv) Assume that x is densely defined and closed; then for the polar decomposition x = w|x| and the spectral decomposition $|x| = \int_0^\infty \lambda e_\lambda$

we have: $x\eta U$ if and only if $w, e_{\lambda} \in U$ for all $\lambda \geq 0$. A densely defined closed operator x affiliated with U is called τ -measurable if, for any $\delta > 0$, there exists a projection $e \in U$ such that $eH \subset D(x)$ and $\tau(e^{\perp}) \leq \delta$.

Let \tilde{U} be the space of all τ -measurable operators. For each $x \in \tilde{U}$ consider a p-norm on \tilde{U} :

$$||x||_p = [\bar{\tau}(|x|^p))^{1/p} \in [0, \infty), x \in S.$$

One can show that $||x||_p$ is a norm on S if $1 \le p < \infty$ and a quasi-norm, if 0 .

The trace $\bar{\tau}$ can be extended to a linear functional on \tilde{U} , which will be still denoted by $\bar{\tau}$. A non-commutative L_p -space, associated with $(U,\bar{\tau})$ and denoted by $L_p(U,\bar{\tau})$, is defined as

$$L_p(U) = L_p(U, \bar{\tau}) = \{ a \in \tilde{U} : ||a||_p = \bar{\tau}(|a|^p)^{1/p} < \infty \}, /0 < p \le \infty$$
 (references are in [S], [Y]).

Let $U = U(R) = R + \mathbf{i}R$, where R is a real W^* -algebra generating U. We say that an unbounded closed densely defined operator a is affiliated to R, if for the polar decomposition a = u|a| we have: $u \in R$ and all spectral projections of |a| are contained in R.

Assume that U(R) is finite, and τ is a normal finite faithful trace on R. Consider then a restriction $\tau_0 = \tau|_{R_+}$ of τ on R_+ . It is a normal finite faithful linear functional on A_+ , and we can extend τ_0 from R_+ to a linear functional $\bar{\tau}$ on $U(R)_+$ by the following way: $\bar{\tau}(a+\mathbf{i}b) = \tau_0(a)$, where $a, b \in R$, $a^* = a, b^* = -b$. Then $\bar{\tau}$ is a normal finite faithful α_R -invariant trace on $U(R)_+$ (see [A1]). We use this α -invariant trace for constructing of $L_p(R, \tau)$.

Assume now that U(R) is semi-finite, and τ is a normal semi-finite faithful trace on R_+ . We can extend this trace to a linear functional $\bar{\tau}$ on $U(R)_+$ by the following: $\bar{\tau}(a+ib) = \tau(a)$, where $a,b \in R, a^* = a, b^* = -b$. Then $\bar{\tau}$ is a normal semi-finite faithful α_R -invariant trace on $U(R)_+$ (see [A1]). We use this α -invariant trace for constructing of $L_p(R,\tau)$.

Definition 1.1. A real non-commutative L_p -space, $1 , associated with <math>(R, \tau)$ and denoted by $L_p(R, \tau)$, is defined as

$$L_p(R,\tau) = \{ a \in \tilde{R} : ||a||_p = \tau(|a|^p)^{1/p} < \infty \}.$$

Evidently, $L_p(R,\tau) \subset L_p(U,\bar{\tau})$, $L_p(R,\tau)$ is a $||.||_p$ -closed real Banach linear subspace of $L_p(U,\bar{\tau})$, and $L_p(R,\tau) \cap iL_p(R,\tau) = \{0\}$. Since

 $\mathbf{i}a \notin L_p(U,\tau)$ for any positive a affiliated to R, then the space $L_p(R,\tau)$ is not equal to $L_p(U,\tau)$.

Example 1.2. Commutative real W^* -algebras. Consider a commutative real W^* -algebra $R = L^{\infty}(A, \mu)$ of real valued measurable functions on a measure space (A, μ) . Then, using the integration by μ as normal semi-finite faithful trace τ , we obtain a commutative real L_p -space $L_p(R, \tau)$.

Example 1.3. Non-commutative L_p -spaces associated with a real hyper-finite factor. It is well known that a (unique) hyper-finite factor R_{∞} of type II_{∞} contains only one real hyper-finite factor Q of type II_{∞} , generating R_{∞} (see Theorem 4.1, $[\mathbf{G}]$). Then a (unique) normal semi-finite faithful trace τ on factor $(R_{\infty})_+$ is α_Q -invariant. Consider a normal semi-finite faithful trace $\tau_0 = \tau|_Q$ on Q_+ . Then we have built a complex valued non-commutative L_p -space $L_p(Q,\tau)$ and a real valued non-commutative L_p -space $L_p(Q,\tau) \subset L_p(R_{\infty},\tau)$.

Remark 1.4. If we consider a self-adjoint part of $L_p(R, \tau)$, it will be so called a non-associative L_p -space associated with JW-algebra $A = (R_{sa}, \circ)$ of all self-adjoint elements of R supplied with a Jordan multiplication $x \circ y = (1/2)(xy + yx), x, y \in R_{sa}$ (see [A]).

We define now a non-commutative real L_p -space associated with real W^* -algebra of type III, $1 , and constructed not by trace only but by any normal semi-finite faithful weight. For this we use the Haagerup's method of constructing of <math>L_p$ -spaces associated with W^* -algebras of type III ([H], [Te]).

Let R be a real W^* -algebra of type III, U(R) - its enveloping W^* -algebra of type III, acting on a Hilbert space H, and φ_0 a normal semi-finite faithful α_R -invariant weight on $U(R)_+$ (about existence of an α_R -invariant φ_0 see [U] or [U1]). Let $\sigma_t^{\varphi_0}$, $t \in \mathbb{R}$ be a 1-parametric group of modular *-automorphisms of U(R). Consider a crossed product $N = U(R) \times_{\sigma^{\varphi_0}} \mathbb{R}$ of U(R) on σ^{φ_0} , which is a W^* -algebra generated by $\pi(x), x \in U(R)$ and $\lambda_s, s \in \mathbb{R}$, defined by

$$(\pi(x)\xi)(t) = (\sigma_{-t}^{\varphi_0}(x)\xi)(t), \xi \in L^2(\mathbb{R}, H), t \in \mathbb{R},$$

The dual actions $\{\theta_s\}$ of $\sigma_t^{\varphi_0}$ extend naturally to *-automorphisms on the extended positive part \hat{N}_+ of N (see [H1]), and further its extension to continuous *-automorphisms of \hat{N} . Consider a mapping

$$\Phi(x) = \pi^{-1} \left(\int_{-\infty}^{+\infty} \theta_s(x) ds \right),$$

where $x \in N_+$, and consider also for each normal weight φ on U(R) the weight $\hat{\varphi}$ (an extension of φ to a normal weight on $U(R)_+$, [H1], Prop. 1.10) and a (normal) weight $\tilde{\varphi} = \hat{\varphi} \circ \Phi$. Then the weight $\tilde{\varphi}$ is called the dual weight of φ . There exists a unique normal faithful semi-finite trace τ on N for which we have a Connes' cocycle

$$(\frac{D\tilde{\varphi}_0}{D\tau})_t = \lambda_t, \ t \in \mathbb{R},$$

and $\tau \circ \theta_s = e^{-s}\tau, s \in \mathbb{R}$ (see [H2], Lemma 5.2).

Let U(R) be a set of all τ -measurable operators affiliated with U(R). For $0 the Haagerup <math>L_p$ -space $L_p(U(R), \varphi_0)$ is defined by

$$L_p(U(R), \varphi) = \{ a \in \tilde{U(Q)} : \theta_s(a) = \hat{\sigma}_s = e^{-s/p}a, \quad s \in \mathbb{R} \}.$$

It was shown in Proposition 3.1 (ii)[U1] that on N there exists an involutory *-anti-automorphism $\hat{\alpha}_R$ which is an extension of the involutory *-anti-automorphism α_R on R. Also, it was shown there that $\hat{\alpha}_R$ and $\theta = \hat{\sigma}$ commute on N, and that $\Phi \circ \hat{\alpha}_R = \Phi$ and $\tau \circ \hat{\alpha}_R = \tau$.

Let us denote by Q a real W^* -subalgebra of N defined by an involutory *-anti-automorphism $\hat{\alpha_R}$. Then N = U(Q), and the Radon-Nikodym derivative

$$h_{\varphi} = \frac{d\tilde{\varphi}}{d\tau}$$

is affiliated with Q (see Theorem 2.1 [U1]). The set of all τ -measurable operators affiliated with Q we denote by \tilde{Q} .

Definition 1.5. The set

$$L_p(R,\varphi) = \{ a \in \tilde{Q} : \theta_s(a) = e^{-s/p}a, s \in \mathbb{R} \}$$

is called the real valued Haagerup's non-commutative L_p -space, or just the real L_p -space 1 , associated with <math>R.

Remark 1.6. Since all $\hat{\alpha}_R$ -invariant normal semi-finite faithful weights are connected via Radon-Nikodym derivatives, affiliated to R (Theorem 2.1 [U]), then all dual actions θ of modular groups associated with $\bar{\alpha}_R$ -invariant normal semi-finite faithful weights on $U(R)_+$ are commuting with $\bar{\alpha}_Q$ and conjugated in Q, and then all real L_p -spaces defined by such dual actions are isometrically *-isomorphic as real valued Banach spaces.

Consider now a semi-finite normal faithful trace τ on real W^* -algebra Q, the enveloping W^* -algebra $U(R) = R + \mathbf{i}R$ of R, an involutory *-anti-automorphism α of U(R), generating R, and a trace $\bar{\tau}$ which is a linear extension of the trace τ on R to U(R). We know that $L_p(R,\tau) \subset L_p(U(R),\bar{\tau})$ by definition of $L_p(R,\tau)$.

Theorem 1.7. If an extended trace $\bar{\tau}$ on U(R) is α -invariant, then

$$L_p(U(R), \bar{\tau}) = L_p(R, \tau) + \mathbf{i}L_p(R, \tau).$$

Proof. Consider an unbounded operator $x = a + \mathbf{i}b$, $a, b \in Q$, affiliated to U(R). Assume that $x \geq 0$. Then $a^* = a \geq 0$, $b^* = -b$, and x has a spectral decomposition $\int_0^\infty \lambda dP_\lambda$, where $\{P_\lambda\}$ is an spectral family of projectors from U(R). By spectral theorem and by continuity of α in strong topology, $\alpha(x) = \int_0^\infty \lambda d\alpha(P_\lambda)$. If $x \in L_p(U(R), \bar{\tau})$, then

$$||x||_p^p = \bar{\tau}(|x|^p) = \bar{\tau}(x^p) = \int_0^\infty \lambda^p d\bar{\tau}(P_\lambda) < \infty,$$

and then

$$||\alpha(x)||_p^p = \bar{\tau}((\alpha(x))^p) = \int_0^\infty \lambda^p d\bar{\tau}(\alpha(P_\lambda)).$$

Since $\bar{\tau}$ is α -invariant, then

$$\bar{\tau}(\alpha(P_{\lambda})) = \bar{\tau}(P_{\lambda}), \quad \lambda \in \mathbb{R}.$$

Thus, $||\alpha(x)||_p^p < \infty$, too, and then $\alpha(x)$ is also contained in $L_p(U(R), \bar{\tau})$. So,

$$a = 1/2(x + \alpha(x)) = 1/2(a + \mathbf{i}b + a - \mathbf{i}b) \in L_p(U(R), \bar{\tau}),$$

and

$$b = \frac{1}{\mathbf{i}}(x - a) \in L_p(U(R), \bar{\tau}).$$

Consider now a self-adjoint unbounded operator k, affiliated with U(R). We know that $k = k_1 - k_2$,

$$k_1 = \int_0^\infty \lambda dP_{\lambda}^{(1)}, \ k_2 = \int_0^\infty \lambda dP_{\lambda}^{(2)},$$

 $supp(k_1)$ and $supp(k_2)$ are orthogonal. Then we can prove similarly that if $k \in L_p(U(R), \bar{\tau})$, then $\alpha(k) \in L_p(U(R), \bar{\tau})$.

Since any unbounded operator x in $L_p(U(R), \bar{\tau})$ represents a linear combination of self-adjoint operators:

$$x = \frac{1}{2}(x + x^*) + \frac{1}{2\mathbf{i}}(\mathbf{i}x - \mathbf{i}x^*),$$

then $\alpha(x) \in L_p(U(R), \bar{\tau})$ for any $x \in L_p(U(R), \bar{\tau})$, and for $x = a + \mathbf{i}b, a, b \in R$ if $x \in L_p(U(R), \bar{\tau})$ then $a, b \in L_p(U(R), \bar{\tau})$. Since $\bar{\tau}|_R = \tau$, then $a, b \in L_p(R, \tau)$.

So,

$$L_p(U(R), \bar{\tau}) \subset L_p(R, \tau) + \mathbf{i}L_p(R, \tau),$$

and then

$$L_p(U(R), \bar{\tau}) = L_p(R, \tau) + \mathbf{i}L_p(R, \tau).\square$$

2. Isomorphisms of real non-commutative L_p -spaces associated with real semi-finite W^* -algebras

The following theorem is a real-valued version of the theorem of K. Watanabe (see [W], Theorem 3.6):

Theorem 2.1. Let $1 , <math>p \neq 2$. Let R_1 and R_2 be σ -finite W^* - algebras with normal semi-finite faithful traces τ_1 and τ_2 correspondingly. Let T be a *-preserving linear isometry from $L_p(R_1, \tau_1)$ to $L_p(R_2, \tau_2)$. Then there exists a Jordan *-isomorphism from R_1 to R_2 .

Proof. We begin the proof from a technical lemma 2.2:

Lemma 2.2. Let $1 . Consider a <math>\sigma$ -finite real W^* - algebra R. Then for any two equivalent projections $e, f \in R$, $e = u^*u$ and $f = uu^*$ for some partial isometry $u \in R$, we can find an element $a \in L_p(R, \tau)$, $\tau \circ \alpha_R = \tau$, such that the right support r(a) of a is equal to e and left support l(a) of e is equal to e.

Proof. Since R is σ -finite, there is a faithful normal state φ on R, such that $\varphi \circ \alpha_R = \varphi$. Consider a finite normal functional $\varphi(u^*.u)$ with a support uu^* . Then

$$\varphi(u^*(\mathbf{1} - uu^*u) = 0.$$

Also, if $q \in R$ is any projection such that $\varphi(u^*(\mathbf{1}-q)u) = 0$ we have: $u^*(\mathbf{1}-q)u = 0$, and then $uu^* \leq q$. Define an element $a \in L_p(R, \tau)$ by $a = u^*(uh_0u^*)^{1/p}$, where $h_0 = \frac{d\varphi}{d\tau} > 0$ is a Radon-Nikodym derivative of φ with respect to τ . Since φ and τ both are α_R -invariant, then h_0 is affiliated to R (see [U], Theorem 2.1). Then $a = u^*(uh_0u^*)^{1/p}$ is also a polar decomposition of a, and then $r(a) = uu^* = f$ and $l(a) = u^*u = e$. The proof is completed. \square

Corollary 2.3. Let 1 , and let <math>R be a σ -finite real W^* - algebra. Then for any projection e there exists an element $a \in L_p(R, \tau)_+$ such that the support s(a) of a is equal to e.

Let P(R) be a set of all projections in R.

Definition 2.4. A projection ortho-isomorphism between R_1 and R_2 is the map $\theta: P(R_1) \to P(R_2)$ which is one to one, onto, and such that ef = 0 if and only if $\theta(e)\theta(f) = 0$ for $e, f \in R_1$.

Lemma 2.5. Let $1 , <math>p \neq 2$, and let R_1 and R_2 are σ -finite real W^* - algebras. Assume that T is a *-preserving linear isometry from $a \in L_p(R_1, \tau_1)$ onto $a \in L_p(R_2, \tau_2)$. Then there exists an orthoisomorphism between $U(R_1)$ and $U(R_2)$ such that $\theta(P(R_1)) = P(R_2)$.

Proof. Consider an extension \bar{T} of T by linearity: $\bar{T}: L_p(U(R_1), \bar{\tau}_1) \to L_p(U(R_2), \bar{\tau}_1)$. Then it is a *-preserving linear isometry \bar{T} from $L_p(U(R_1), \bar{\tau}_1)$ onto $L_p(U(R_2), \bar{\tau}_2)$. For \bar{T} in Proposition 3.5 ([**W**]) it was defined a mapping $J: P(U(R_1))$ to $P(U(R_2))$:

$$J(s(a)) = s(T(a)), a \in L_p(U(R_1), \bar{\tau}_1)_{sa}.$$

Then if a is affiliated to R_1 , then $\bar{T}(a) = T(a)$ by construction of the linear *-isometry \bar{T} , and then $s(T(a)) \in R_2$. Thus, $J(s(a)) = s(\bar{T}(a)) = s(T(a)) \in P(R_2)$, if a is affiliated to R_1 . So, by Proposition 3.5 ([**W**]), J is an ortho-isomorphism, and $J(P(R_1)) = P(R_2)$. \square

By Theorem 3.6 and Lemma 6 and 7, and also by Theorem 1 and Corollary from the article of H. Dye (see $[\mathbf{D}]$), there exists a Jordan *-isomorphism ρ between $U(R_1)$ and $U(R_2)$. By construction of ρ (see Lemma 6 of $[\mathbf{D}]$), $\rho(R_1) = R_2$, which is completing the proof of Theorem 2.1.

Corollary 2.6. If R_1 and R_2 are not *isomorphic, then there exists no *-preserving surjective linear isometry from $L_p(R_1, \tau_1)$ to $L_p(R_2, \tau_2)$, 1 .

Moreover, consider now a σ -finite factor M of type III_{λ} , where $0 < \lambda < 1$. In [Sta] P. J. Stacey proved that M contains only two non-isomorphic real factors R_1 and R_2 , generating M. Let ϕ_1 be a normal semi-finite faithful weight on R_1 and ϕ_2 - a normal semi-finite faithful weight on R_2 .

Corollary 2.7. There exists no *-preserving surjective linear isometry from $L_p(R_1, \phi_1)$ to $L_p(R_2, \phi_2)$, $1 , <math>p \neq 2$.

Thus, we have two non-isomorphic real L_p -spaces associated with real sub-factors generating the same factor of type III_{λ} .

3. Reduction to L_p -spaces affiliated with finite real W^* -algebras

In this section we are constructing an approximation of Haagerup's real L_p spaces, built in Section 1, by L_p -spaces associated with finite real W^* -algebras, as a real valued analogy of Theorem 2.1 [HJX].

Let G be a discrete subgroup $\bigcup_{n>0} 2^{-n}\mathbb{Z}$ of \mathbb{R} . Let M be a σ -finite W^* -algebra with real W^* -subalgebra of M, generated by α_R , such that M = U(R), and with normal faithful α_R -invariant state φ . Consider the crossed product $M = U(R) \times_{\sigma^{\varphi}} \mathbb{R}$, where the modular group σ_t^{φ} is an automorphic representation of G on U (see [HJX], p. 2131). Let $\hat{\varphi}$ denote a dual weight of φ , which is α_1 -invariant (see [U]). Let Q be a real W^* -subalgebra generated by α_1 in N, $N = U(Q) = Q + \mathbf{i}Q$.

Theorem 3.1. There exists an increasing sequence $\{Q_n\}_{n>0}$ of finite real W^* -subalgebras of Q such that:

- (i) $\bigcup_{n\geq 1} Q_n$ is w^* -dense in Q;
- (ii) For every $n \in N$ there exists a normal faithful conditional expectation Φ_n from Q to Q_n such that

$$\hat{\varphi} \circ \Phi_n = \hat{\varphi}$$

and

$$\sigma_t^{\varphi} \circ \Phi_n = \Phi_n \circ \sigma_t^{\varphi}. \ t \in R$$

Proof. It is well known that since M = U(R) is a W^* -algebra of type III, then N = U(Q) is a semi-finite W^* -algebra, by Takesaki's duality (see [T3]). Then

$$\sigma_s^{\hat{\varphi}}(x) = \lambda(s)x\lambda(s)^*, \quad x \in M, s \in \mathbb{R},$$

where $\{\lambda(s)\}$ are unitary operators from N. Following the Lemma 2.3 from $[\mathbf{HJX}]$, define the unique element

$$b_n = -\mathbf{i} \log(\lambda(2^{-n})),$$

where $0 < Im(\log z) < 2\pi, \ z \in C \ \{0\}$. Then $0 \le b_n \le 2\pi \mathbf{1}, \ e^{\mathbf{i}b_n} = \lambda(2^{-n})$ and $b_n \in Z(M_{\hat{\varphi}}) = \{x \in M : \sigma_s^{\hat{\varphi}}(x) = x\}$. Define now

$$\varphi_n(x) = \hat{\varphi}(e^{2^n b_n} x), \quad x \in M, \ n \ge 1.$$

By Lemma 2.4 from [HJX], $\sigma_s^{\varphi_n}$ is 2^{-n} periodic, and for $N_n = N_{\varphi_n}$ there exists a unique normal faithful conditional expectation Φ_n from N onto N_n such that

$$\hat{\varphi} \circ \Phi_n = \hat{\varphi}$$

and

$$\sigma_s^{\hat{\varphi}} \circ \Phi_n = \Phi_n \circ \sigma_s^{\hat{\varphi}}, \quad t \in \mathbb{R}, n \ge 1,$$

together with $N_n \subset N_{n+1}$. Now let us note that $\hat{\varphi}$ is α_Q -invariant (see $[\mathbf{U}\mathbf{1}]$), and then $\lambda(s)$ could be represented as $\lambda(s) = h^{\mathbf{i}s}$, where h is affiliated to real W^* -algebra $Q = \{x \in N : \alpha_Q(x) = x^*\}$, associated with involutory *-anti-automorphism α_Q .

By construction of b_n and by spectral theorem we can see that $b_n \in Q$, and then φ_n is α_Q -invariant for every $n \geq 1$. From Proposition 3.1 [U1] we can see that Φ_n are commuting with α_Q (which means that we can correctly reduce the action of Φ_n to the conditional expectation from Q to Q_n), and also that $N_n = Q_n + \mathbf{i}Q_n$, where $Q_n = N_n \cap Q$. Also, we have $Q_n \subset Q_{n+1}$. Really, $\varphi_{n+1}(x) = \varphi(h_n x)$ (see Lemma 2.4 from [HJX]), and $h_n = e^{-(2^{-(n+1}b_{n+1}-2^{-n}b_n)}) \in N_n$, and easy to check that $h_n \in Q_n = N_n \cap Q$. Finally, by Theorem 2.1 from [HJX], $\bigcup_{\leq 1} N_n$ is w*-dense in N, so, $\bigcup_{n \leq 1} Q_n$ is dense in Q. The proof of Theorem is completed. \square

Theorem 3.2. Let R be a σ -finite real W^* -algebra and $1 \leq p < \infty$. Let $L_p(R)$ be a Haagerup's type real non-commutative L_p -space associated with R. Then there exist a real valued Banach space X_p , a sequence Q_n of finite real W^* -algebras, each equipped with a finite normal faithful trace τ_n , and for each $n \geq 1$ an isometric embedding

 $J_n: L_p(Q_n, \tau_n) \to Y_p$ such that

- (i) the sequence $\{J_n(L_p(Q_n, \tau_n))\}$ is increasing;
- (ii) $\bigcup_{n\leq 1} J_n(L_p(Q_n,\tau_n))$ is dense in Y_p ;
- (iii) $L_p(R)$ is isometric to a subspace of $\tilde{Y_p}$ of Y_p .

Proof. Consider a normal faithful α_R -invariant state on M. Let us build the Banach space $Y_p = L_p(Q,\hat{\varphi})$, and a sequence of Banach spaces $L_p(Q_n,\hat{\varphi})|_{Q_n} = L_p(Q_n,\tau_n)$, which we constructed in the proof of Theorem 3.1. Its satisfy properties of (i)-(iii) of Corollary 3.2, and it follows from Theorem 3.1 [**HJX**] that $\bigcup_{n\geq 1} L_p(N_n,\hat{\varphi}_n)$ is dense in $L_p(N,\hat{\varphi})$. Then it follows from Theorem 1.5 that $\bigcup_{n\geq 1} L_p(Q_n,\hat{\varphi})|_{Q_n} = \bigcup_{n\geq 1} L_p(Q_n,\tau_n)$ is dense in $L_p(Q,\tau)$.

Presented construction of real non-commutative L_p -spaces allows to state few structural problems, resolved in 2000-2004 for (complex) non-commutative L_p -spaces:

Questions: 1. Is the Dichotomy Principle of Kadec-Pelczynski for closed linear subspaces ([**KP**]) correct for all non-isomorphic real non-commutative L_p -spaces, p > 2, generating the isomorphic (complex) non-commutative L_p -space (for the complex non-commutative L_p spaces refer [**RX**])?

- 2. Is the Subsequence Splitting Lemma for bounded sequences in non-commutative L_p -spaces, $0 (see [R], [R1]) correct for the real non-commutative <math>L_p$ spaces?
- 3. Build a full classification of real L_p spaces, $1 , associated with real semi-finite <math>W^*$ -algebras (refer [HRS]).

References

- [A] Sh. Ayupov: Integration on Jordan algebras; Math. USSR-Izv., 22:1 (1984), 1–21.
- [A1] Sh. Ayupov: Extension of traces and type criterions for Jordan algebras of self-adjoint operators; Math. Zeirschrift, 181 (1982), p.253-268.
- [ARU] Sh. Ayupov, A. Rakhimov, Sh. Usmanov: Jordan, Real and Lie structures in operator algebras; Ser. MIA no. 418, Kluwer, Dordreht 1998, p.235. 977), p.473-575.

- [D] H. A. Dye: On the geometry of projections in certain operator algebras, Annals of Mathematics, **61** (1955), p. 73-88.
- [G] T. Giordano: Antiautomorphismes involutifs des facteurs de W^* injectifs. I; Journal of Operator Theory, 19, (1983), p.251-287.
- [H] U. Haagerup: Non-commutative L_p -spaces associated with an arbitrary von Neumann algebra; Colloq. Inter. C.N.R.S., **274** (1979), 175-184.
- [H1] U. Haagerup: Operator-valued weights in W^* algebras. I: J. Funct. Anal., **32** (1979), p.175-206.
- [H2] U. Haagerup: Operator-valued weights in W^* algebras. II: J. Funct. Anal., **33** (1979), p.339-361.
- [HRS] U. Haagerup, H. Rosenthal, F. Sukochev, F. A.: Banach embedding properties of non-commutative Lp-spaces; Mem. Amer. Math. Soc. **163** (2003), no. 776, vi+68 pp.
- [HJX] U. Haagerup, M. Junge, Q. Xu: A reduction theorem for non-commutative L_p -spaces and applications, Trans. Amer. Mat. Soc., **362** No. 4 (2010), p.2125 2165.
- [KP] M. Kadec, A. Pelczynski: Bases, lacunary sequences and complemented subspaces in the spaces L_p ; Studia Math. **21** (1961/62), 161–176.
- B. R. Li: Real Operator Algebras, World Scientific Publishers, 2003, p.256.
- [PX] G. Pisier, Q. Xu: Non-commutative L_p -spaces, Handbook of the Geometry of Banach Spaces, Vol.2, North-Holland, Amsterdam (2003), p.1459 1517.
- [R] N. Randrianantoanina: Kadec-Pe?czy?ski decomposition for Haagerup Lp-spaces): Math. Proc. Cambridge Philos. Soc. **132** (2002), no. 1, 137–154.
- [R1] N. Randrianantoanina: Non-commutative subsequence principles; Math. Z. **245** (2003), no. 4, 625–644
- [RX] Y. Raynohd, Q. Xu: On subspaces of non-commutative Lp-spaces; J. Funct. Anal. 203 (2003), no. 1, 149–196.
- [S] I. E. Segal: A non-commutative extension of abstract integration; Ann. Math., 57 (1953), p.401 457.
- [Sta] P.J. Stacey: Real structure in σ -finite facteurs of type III_{λ} where $0 < \lambda < 1$; Proc. London Math. Soc. (1983), 47, p.275-284.
- [Sto] E. Stormer: Real strucrure in the hyperfinite factor; Duke Math. Journal, 47 (1980), p. 145-153.
- [T1] M. Takesaki: Theory of operator algebras. I; Springer, Berlin, 1979.
- [T2] M. Takesaki: Theory of operator algebras. II; Springer, Berlin, 1981.
- [T3] M. Takesaki: Duality for crossed products and the structure of von Neomann algebras of type III, Acta Math., 131 (1973), p.249-310.
- [Te] M. Terp: Non-commutative L_p -spaces associated with W^* algebras; Notes, Copenhagen University, 1981.
- [U] Sh. Usmanov: Operator-valued weights on real W^* -algebras and reversible JW-algebras, Sbornik: Mathematics., **190**, No.10 (1999), p.105-122.
- [U1] Sh. Usmanov: Takesaki's duality theorem and continuous decomposition of real factors of type III; Izvestiya: Mathematics, **64**, No.4, p.827-845.
- [U2] Sh. Usmanov: Continuous decomposition of real factors of type III; Algebra and Operator Theory, Proc. Coll., Tashkent Sept-Oct. 1997, Kluwer, 1998, p. 111-116.

SOFYA MASHARIPOVA AND SHUKHRAT USMANOV

- [W] K. Watanabe: On isometries between non-commutative L_p spaces associated with arbitray W^* -algebras, Journal of Operator Theory, 28 (1992), p. 267-279.
- [Y] F. J. Yeadon: Non-commutative L_p -spaces; Math. Proc. Camb. Phil. Soc., 77 (1975), p.91-102.

University of Pittsburgh - Johnstown, Department of Mathematics, 450 Schoolhouse Rd, Johnstown, PA 15904, U.S.A.

 $Email\ address{:}\ {\tt ssm57@pitt.edu}$

14

SLIPPERY ROCK UNIVERSITY OF PENNSYLVANIA, DEPARTMENT OF MATHEMATICS AND STATISTICS, SLIPPERY ROCK, PA 16057, U.S.A.

Email address: shukhrat.usmanov@sru.edu