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Abstract. Let n ∈ N and α ∈ (n − 1, n). Under uniqueness and continuity conditions, we
show that solutions to Caputo fractional differential equations depend continuously upon the
boundary conditions. We also provide sufficient conditions on interval length between the
boundary points in a specific case for α ∈ (1, 2).
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1. Introduction

Let α ∈ (n − 1, n) with n ∈ N and a < t0 < b in R. We consider the Caputo differential
equation

(1.1) Dα
∗t0x(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)), a < t0 < t < b,

where Dα
∗t0x is the Caputo fractional derivative of order α of the function x.

For i = 0, 1, . . . , n− 1, let ci ∈ R and define initial conditions for (1.1) at t0 by

(1.2) x(i)(t0) = ci.

Let a < t0 ≤ t1 < t2 < . . . < tn < b and for i = 1, 2, . . . , n, xi ∈ R. Define boundary
conditions for (1.1) as

(1.3) x(ti) = xi.

Throughout this work, we make use of the following assumptions:

(1) f : (a, b)× Rn → R is continuous;
(2) solutions to initial value problems for (1.1) are unique on (a, b);
(3) given points a < t0 ≤ t1 < t2 < . . . < tn < b, if y and z are solutions of (1.1) such that

for i = 1, 2, . . . , n, y(ti) = z(ti), then y(t) = z(t) on (a, b).

We will explore sufficient conditions for hypothesis (3) in section 3 with n = 2.

In this article, we provide a boundary value problem analog of the recent result of Eloe and
Masthay [10]. In this work, the authors proved that solutions of initial value problems depend
continuously upon initial values when two assumptions are made; namely that f is continuous
and that of solutions of Caputo fractional initial value problems are unique. Assumptions (1)
and (2) above are those sufficient for the results in [10] and (3) is an additional uniqueness
assumption for solutions of Caputo fractional boundary value problems. Also, the authors
showed continuous dependence on the initial point from the left when a sequence of uniformly
continuous functions converge to f .
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Research into fractional differential equations has seen an explosion of results, [1, 2, 3, 4, 9,
19, 24, 26], to name a small fraction. In fact, there seem to be a limitless number of different
ways to define a fractional derivative. However, two definitions have become the source of focus
amongst a broad range of researchers in the field; namely the Riemann-Liouville and Caputo
fractional derivatives. For expository material on fractional differential equations, we refer the
reader to [5, 17, 18, 21].

The novel results presented in this article have broad implications in that much research done
for boundary value problems in the ordinary differential equation context over the past 50 years
may be translated over to Caputo fractional differential equation. These include uniqueness
implies existence results [7, 8, 12, 14, 15, 20] and continuous dependence upon boundary data
results [6, 11, 13, 16, 23]. We posit that this result is critical and opens up a wide range of
study of Caputo fractional boundary values problems akin to their ordinary differential equation
counterparts some of which are listed above.

The remainder of the paper is organized as follows. In Section 2, we introduce fractional
integrals and derivatives with specific focus upon Caputo fractional derivatives. Section 3
provides sufficient conditions to invoke hypothesis (3) with a Lipschitz continuous function
and α ∈ (1, 2). To conclude, section 4 is where one finds Eloe and Masthay’s results and
also contains the main results of this work; a boundary value problem analog to continuous
dependence of initial value problems.

2. Preliminaries

Let α > 0. The Riemann-Liouville fractional integral of a function x of order α, denoted
Iαt0x, is defined as

Iαt0x(t) =
1

Γ(α)

∫ t

t0

(t− s)α−1x(s)ds, t0 ≤ t,

provided the right-hand side exists. Moreover, let n denote a positive integer and assume
n − 1 < α ≤ n. The Riemann-Liouville fractional derivative of order α of the function x,
denoted Dα

t0
x, is defined as

Dα
t0
x(t) = DnIn−α

t0
x(t),

provided the right-hand side exists. If a function x is such that

Dα
t0

(
x(t)−

n−1∑
i=0

x(i)(t0)
(t− t0)

i

i!

)
exists, then the Caputo fractional derivative of order α of x is defined by

Dα
∗t0x(t) = Dα

t0

(
x(t)−

n−1∑
i=0

x(i)(t0)
(t− t0)

i

i!

)
.

Remark 2.1. A sufficient condition to guarantee the existence of the Caputo fractional de-
rivative is the absolute continuity of the (n− 1)st derivative of x. See Theorem 3.1 in [5] and
discussion thereafter.
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3. Hypothesis (3)

We present sufficient conditions to satisfy hypothesis (3) when n = 2, i.e. α ∈ (1, 2].

For a < t0 ≤ t1 < t2 < b and continuous f : (a, b) × R → R, we consider the Caputo
fractional boundary value problem

(3.1) Dα
∗t0x(t) = f(t, x(t)),

(3.2) x(t1) = x1 x(t2) = x2.

Lemma 3.1. Let g : (a, b) → R be continuous. A function x is a solution of the fractional
integral equation

x(t) = Iαt0g(t)−
t− t1
t2 − t1

Iαt0g(t2)−
t2 − t

t2 − t1
Iαt0g(t1) + x1

(
t2 − t

t2 − t1

)
+ x2

(
t− t1
t2 − t1

)
if and only if x is a solution of the Caputo fractional boundary value problem

Dα
∗t0x(t) = g(t), a < t0 < t < b,

x(t1) = x1 x(t2) = x2.

Proof. (⇒) First note that for α ∈ (1, 2] that the Caputo fractional derivative of order α of a
linear function is 0.

Apply Dα
∗t0 to both sides of the integral equation to get

Dα
∗t0x(t) =Dα

∗t0

[
Iαt0g(t)−

t− t1
t2 − t1

Iαt0g(t2)−
t2 − t

t2 − t1
Iαt0g(t1) + x1

(
t2 − t

t2 − t1

)
+ x2

(
t− t1
t2 − t1

)]
=g(t)

Now, it is clear that x(t1) = x1 and x(t2) = x2. Therefore, x(t) solves the Caputo fractional
boundary value problem.

(⇐) Next, apply Iαt0 to both sides of Dα
∗t0x(t) = g(t) to get

Iαt0
(
Dα

∗t0x(t)
)
= Iαt0(g(t)).

From Lemma 2.4 [25], we have

x(t) + c0 + c1(t− t0) = Iαt0g(t)

or
x(t) = Iαt0g(t)− c0 − c1(t− t0).

Set t = t1 and replace x(t1) = x1 to see

x1 = Iαt0g(t1)− c0 − c1(t1 − t0).

Similarly, we have
x2 = Iαt0g(t2)− c0 − c1(t2 − t0).

Subtract the two equations to get

x2 − x1 = Iαt0g(t2)− Iαt0g(t1)− c1(t2 − t1).

Thus,

c1 =
Iαt0g(t2)− Iαt0g(t1)

t2 − t1
− x2 − x1

t2 − t1
.
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Substituting back, we find, in terms of c1, that

c0 = Iαt0g(t2)− x2 − c1(t2 − t0).

Substituting c0 and c1, simplification, and rearrangement yield the desired integral equation
x(t). □

A standard application of the Banach fixed point theorem is used to prove the following.

Theorem 3.1. Let f : (a, b)× R → R be a continuous function satisfying

(A1) |f(t, u)− f(t, v)| ≤ L|u− v| for t ∈ [t0, t2] and u, v ∈ R and

(A2)
(2 + T )L(t2 − t0)

α

Γ(α + 1)
< 1

where L is a Lipschitz constant and T :=
t2 − t0
t2 − t1

≥ 1. Then, (3.1), (3.2) has a unique solution

on [t0, t2].

Proof. We transform the problem into a fixed point problem to apply the Banach fixed point
theorem. Set

M := sup
t∈[t0,t2]

|f(t, 0)|, Λ :=
(2 + T )(t2 − t0)

α

Γ(α + 1)
,

and choose r satisfying

r ≥ ΛM + T |x1|+ |x2|
1− ΛL

> 0.

Define the operator T : C([t0, t2],R) → C([t0, t2],R) by

(Tx)(t) =Iαt0f(t, x(t))−
t− t1
t2 − t1

Iαt0f(t2, x(t2))

− t2 − t

t2 − t1
Iαt0f(t1, x(t1)) + x1

(
t2 − t

t2 − t1

)
+ x2

(
t− t1
t2 − t1

)
.

First, we show that TBr ⊂ Br for Br = {x ∈ C[t0, t2] : ||x|| ≤ r}. Let x ∈ Br. Then,

||Tx|| =
∣∣∣∣ 1

Γ(α)

∫ t

t0

(t− s)α−1f(s, x(s))ds− t− t1
Γ(α)(t2 − t1)

∫ t2

t0

(t2 − s)α−1f(s, x(s))ds

− t2 − t

Γ(α)(t2 − t1)

∫ t1

t0

(t1 − s)α−1f(s, x(s))ds+ x1

(
t2 − t

t2 − t1

)
+ x2

(
t− t1
t2 − t1

)∣∣∣∣
≤ 1

Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))|ds+ t2 − t1
(t2 − t1)Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))|ds

+
T

Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))|ds+ T |x1|+ |x2|

=
2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))− f(s, 0) + f(s, 0)|ds+ T |x1|+ |x2|

≤2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))− f(s, 0)|ds+ 2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, 0)|ds

+ T |x1|+ |x2|
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≤2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1L|x(s)− 0|ds+ 2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1Mds+ T |x1|+ |x2|

≤2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1L||x||ds+ 2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1Mds+ T |x1|+ |x2|

=
(2 + T )(L||x||+M)

Γ(α)

∫ t2

t0

(t2 − s)α−1ds+ T |x1|+ |x2|

=
(2 + T )(t2 − t0)

α

Γ(α + 1)
(L||x||+M) + T |x1|+ |x2|

<Λ(Lr +M) + T |x1|+ |x2| ≤ r.

Therefore, TBr ⊂ Br.

Now, we show that T is a contraction. For any x, y ∈ Br and for each t ∈ [t0, t2], we have

||Tx− Ty|| =
∣∣∣∣ 1

Γ(α)

∫ t

t0

(t− s)α−1[f(s, x(s))− f(s, y(s))]ds

− t− t1
(t2 − t1)Γ(α)

∫ t2

t0

(t2 − s)α−1[f(s, x(s))− f(s, y(s))]ds

− t2 − t

(t2 − t1)Γ(α)

∫ t1

t0

(t1 − s)α−1[f(s, x(s))− f(s, y(s))]ds

∣∣∣∣
≤ 1

Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))− f(s, y(s))|ds

+
t2 − t1

(t2 − t1)Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))− f(s, y(s))|ds

+
t2 − t0

(t2 − t1)Γ(α)

∫ t2

t0

(t2 − s)α−1|f(s, x(s))− f(s, y(s))|ds

≤2 + T

Γ(α)

∫ t2

t1

(t2 − s)α−1|f(s, x(s))− f(s, y(s))|ds

≤2 + T

Γ(α)

∫ t2

t0

(t2 − s)α−1L|x(s)− y(s)|ds

≤(2 + T )L||x− y||
Γ(α)

∫ t2

t0

(t2 − s)α−1ds

≤(2 + T )L(t2 − t0)
α

Γ(α + 1)
||x− y||

=LΛ||x− y|| < ||x− y||.
Thus, T is a contraction. Therefore, there is a unique fixed point which is a solution to the
Caputo fractional boundary value problem (3.1), (3.2). □

Remark 3.1. Assumption (A2) is not sharp and could be improved.

Using assumption (A2) in Theorem 3.1 to find values t0, t1, and t2 looks daunting at first.
So, we present the following to make it easier to see sufficient choices.

7 Feb 2023 11:18:47 PST
220531-Lyons Version 6 - Submitted to Rocky Mountain J. Math.



6 J. W. LYONS

Choose 0 < B < 1, α ∈ (1, 2], and t0 ∈ R. Assume f is continuous with Lipschitz constant
L.

To satisfy (A2), choose

t2 < t0 +

[
BΓ(α + 1)

2L

]1/α
and

t1 < t2 −
B(t2 − t0)

2(1−B)
.

Note that you could choose t0 ≤ t1 < t2 in R and then, seek a function with a suitable
Lipschitz constant L. This is easily seen when solving for L in assumption (A2).

Remark 3.2. What we presented thus far in this section corresponds to t0 ≤ t1. However,
it is worth noting that the results simplify if you do impose equality. Having t0 = t1 is a
typical scenario in a Caputo fractional boundary value problem. One may want the fractional
integral to begin at the left most boundary condition. We present two corollaries to show this
simplification.

Corollary 3.1. Let g : (a, b) → R be continuous. A function x is a solution of the fractional
integral equation

x(t) =
1

Γ(α)

∫ t

t1

(t− s)α−1g(s)ds

− t− t1
Γ(α)(t2 − t1)

∫ t2

t1

(t2 − s)α−1g(s)ds+ x1

(
1− t− t1

t2 − t1

)
+ x2

(
t− t1
t2 − t1

)
if and only if x is a solution of the fractional boundary value problem

Dα
∗t1x(t) = g(t), a < t1 < t < b,

x(t1) = x1 x(t2) = x2.

Corollary 3.2. Let f : [a, b]× R → R be a continuous function satisfying

(A1) |f(t, u)− f(t, v)| ≤ L|u− v| for all t ∈ [t1, t2] and u, v ∈ R and

(A2)
2L(t2 − t1)

α

Γ(α + 1)
< 1

where L is a Lipschitz constant. Then,

Dα
∗t1x(t) = f(t, x(t)),

x(t1) = x1 x(t2) = x2.

has a unique solution on [t1, t2].

Remark 3.3. The proofs of these two corollaries follow the same style as that of the more
generalized theorems. Of note, when t0 = t1, the constant T = t2−t0

t2−t1
= 1. By Theorem 3.1, one

may then expect condition (A2) of the last corollary to have 2 + T = 2 + 1 = 3. However, it
clearly does not. So, condition (A2) of this last corollary is indeed sharper.
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4. Main Result

We establish and prove that under assumptions (1)-(3) that solutions of (1.1), (1.3) depend
continuously upon the boundary conditions.

Let [c, d] ⊂ R and for x ∈ C[c, d], define

∥x∥0,[c,d] = max
t∈[c,d]

|x(t)|.

If k ∈ N, for x ∈ Ck[c, d], define

∥x∥k,[c,d] = max{∥x∥0,[c,d], ∥x′∥0,[c,d], . . . , ∥x(k)∥0,[c,d]}.

The following result from [10], Corollary 2.4, establishes the continuous dependence on initial
values for initial value problems.

Lemma 4.1. Assume E ⊂ R × Rn is open, connected, and convex, and let f : E → R be
continuous. Assume that solutions of initial value problems for (1.1) with initial conditions
in E are unique. Given any (t0, z0, z1, . . . , zn−1) ∈ E, let x(t; t0, z) denote the solution of
(1.1) with initial conditions x(i)(t0) = zi, i = 0, 1, . . . , n − 1 and maximal interval of existence
[t0, ωz). Then, for all ϵ > 0 and each compact [c, d] ⊂ [t0, ωz), there exists a δ > 0 such that
if (t0, v0, v1, . . . , vn−1) ∈ E and max

i=0,1,...,n−1
|zi − vi| < δ, then [c, d] ⊂ [t0, ωv), the right maximal

interval of existence of the solution x(t; t0,v), and

∥x(t; t0, z)− x(t; t0,v)∥n−1,[c,d] < ϵ.

We now present the first of two main results. This result establishes the continuous depen-
dence on boundary conditions whenever the Caputo fractional operator begins left of the first
boundary condition, i.e. t0 < t1.

Theorem 4.1 (Case when t0 < t1). Assume that hypotheses (1)-(3) hold. Let x(t) be a solution
of (1.1) on [t0, b), [c, d] ⊂ [t0, b) with points c < t1 < t2 < . . . < tn < d, and ϵ > 0. Then, there
exists a δ(ϵ, [c, d]) > 0 such that, if for i = 1, 2 . . . , n, |ti − τi| < δ with c < τ1 < τ2 < τ3 <
. . . , τn < d and |x(ti)− yi| < δ with yi ∈ R, then there exists a solution y(t) of (1.1) satisfying
y(τi) = yi. Also,

||x(t)− y(t)||n−1,[c,d] < ϵ.

Proof. Define the set

G = {(t1, t2, . . . , tn, C0, C1, . . . , Cn−1)|c < t1 < t2 < · · · < tn < b and C0, C1, . . . , Cn−1 ∈ R}.
The set G is an open subset of R2n. Next, define a mapping ϕ : G → R2n by

ϕ(t1, t2, . . . , tn, C0, C1, . . . , Cn−1) = (t1, t2, . . . , tn, u(t1), u(t2), . . . , u(tn)),

where u(t) is the solution of (1.1) satisfying the initial conditions u(t0) = C0, u
′(t0) = C1,

. . . , u(n−1)(t0) = Cn−1. Assumptions (1)-(2) and Lemma 4.1 imply the continuity of solutions
of initial value problems for (1.1) with respect to initial conditions. Thus, ϕ is continuous.
Moreover, assumption (3) implies that ϕ is one-to-one. It follows from the Brouwer Invariance
of Domain Theorem, page 199 in [22], that ϕ(G) is an open subset of R2n and that ϕ is a
homeomorphism from G to ϕ(G). Thus, we have the result since ϕ−1 is continuous and the fact
that ϕ(G) is open. □

7 Feb 2023 11:18:47 PST
220531-Lyons Version 6 - Submitted to Rocky Mountain J. Math.



8 J. W. LYONS

As mentioned before, it is often the case the we want the Caputo fractional derivative and
left most boundary condition to start at the same value, i.e. t0 = t1. To that end, we present
Corollary 2.3 from [10] to establish continuous dependence upon initial points and initial values.
The added hypothesis is namely that there must exist a sequence of continuous functions fk
that converge uniformly to f .

Lemma 4.2. Assume E ⊂ R× Rn is open, connected, and convex, and let fk : E → R denote
a sequence of functions that converge uniformly to a function f on every compact subset of E.
Assume (t0, c0, c1, . . . , cn−1) ∈ E and for each k ≥ 1, consider an initial value problem

Dα
∗tk0

x(t) = fk(t, x(t), x
′(t), . . . , x(n−1)(t)), a < tk0 < t < ωk,

x(i)(tk0) = cki , i = 0, 1, . . . , n− 1,

and let xk(t) denote the solution on right maximal interval Ik. Further, assume tk0 is an increas-
ing sequence and tk0 ↑ t−0 and (tk0, c

k
0, . . . , c

k
n−1) → (t0, c0, . . . , cn−1) as k → ∞. Assume the solu-

tion x(t) of (1.1), (1.2) is unique with maximal interval of existence [t0, ω). Let [c, d] ⊂ [t0, ω).
Then, there exists K such that if k ≥ K, then [c, d] ⊂ Ik, and

||xk(t)− x(t)||n−1,[c,d] → 0 as k → ∞.

Now, we present the second main result establishing the continuous dependence of boundary
conditions whenever the Caputo fractional operator begins at the first boundary condition, i.e.
t0 = t1.

Theorem 4.2 (Case when t0 = t1). Assume that hypotheses (1)-(3) hold. Let x(t) be a solution
of (1.1) on [t1, b), [c, d] ⊂ [t1, b) with points t1 = c < t2 < . . . < tn < d, and ϵ > 0. Then, there
exists a δ(ϵ, [c, d]) > 0 such that, if for i = 2, 3, . . . , n, |ti−τi| < δ with c < τ2 < τ3 < . . . , τn < d
and for i = 1, 2, . . . , n, |x(ti) − yi| < δ with yi ∈ R, then there exists a solution y(t) of (1.1)
satisfying y(t1) = y1 and for i = 2, 3, . . . , n, y(τi) = yi. Also,

||x(t)− y(t)||n−1,[c,d] < ϵ.

Additionally, if fk : (a, b) × Rn → R is a sequence of continuous functions that converge
uniformly to f on compact subsets of [c, d] × Rn and for k ≥ 1, tk1 is an increasing sequence
such that tk1 ↑ t−1 as k → ∞, then there exists a K such that if k ≥ K, then

||xk(t)− x(t)||n−1,[c,d] → 0 as k → ∞.

The proof of the first part is identical except for the omission of t1 in the definition of the set
G as this is now fixed due to the operator and that t0 = t1. Next, with the added condition, we
may apply Lemma 4.2 to establish the continuous dependence of t0 = t1 from the left as well.

Acknowledgment. The author truly appreciates the dedication of the referees. This paper is
a much more well-rounded work with the addition of section 3 and full investigation of t0 < t1
and t0 = t1.
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