The second nonlinear mixed Jordan triple *-derivations on *-algebras

Fangfang Zhao ^{a,*}, Dongfang Zhang ^a, Quanyuan Chen ^b

 $^{\it a}$ School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, P. R. China

Abstract

Let \mathcal{A} be a unital *-algebra. In this paper, under some mild conditions on \mathcal{A} , it is shown that a map $\Phi: \mathcal{A} \to \mathcal{A}$ is the second nonlinear mixed Jordan triple *-derivation if and only if Φ is an additive *-derivation. In particular, we apply the above result to prime *-algebras, von Neumann algebras with no central summands of type I_1 , factor von Neumann algebras and standard operator algebras.

 $Keywords: mixed\ Jordan\ triple *-derivations; *-derivations; von\ Neumann\ algebras.$

2010 Mathematics Subject Classification: 16W25; 16N60

1 Introduction

Let \mathcal{A} be a *-algebra over the complex field \mathbb{C} . For $A, B \in \mathcal{A}$, define the skew Lie product of A and B by $[A, B]_* = AB - BA^*$ and the Jordan *-product of A and B by $A \bullet B = AB + BA^*$. The skew Lie product and the Jordan *-product are fairly meaningful and important in some research topics (see [1, 3, 4, 6, 7, 10-15, 23-25, 28-30, 32]). They were extensively studied because they naturally arise in the problem of representing quadratic functionals with sesquilinear functionals (see [20-22]) and in the problem of characterizing ideals (see [2, 18]).

Recall that an additive map $\Phi : \mathcal{A} \to \mathcal{A}$ is said to be an additive derivation if $\Phi(AB) = \Phi(A)B + A\Phi(B)$ for all $A, B \in \mathcal{A}$. Furthermore, Φ is said to be an

^b College of Information, Jingdezhen Ceramic Institute, Jingdezhen 333403, P. R. China

^{*} Corresponding author. E-mail: wanwanf2@163.com (F. Zhao)

additive *-derivation if it is an additive derivation and satisfies $\Phi(A^*) = \Phi(A)^*$ for all $A \in \mathcal{A}$. A map (without the additivity assumption) $\Phi : \mathcal{A} \to \mathcal{A}$ is said to be a nonlinear skew Lie derivation or a nonlinear Jordan *-derivation if

$$\Phi([A, B]_*) = [\Phi(A), B]_* + [A, \Phi(B)]_*$$

or

$$\Phi(A \bullet B) = \Phi(A) \bullet B + A \bullet \Phi(B)$$

for all $A, B \in \mathcal{A}$. Over the years several works have been published considering Jordan *-derivations, skew Lie derivations and triple derivations, such as Jordan triple *-derivations and skew Lie triple derivations (see [5, 8, 9, 16, 17, 26, 27]).

Recently, many authors have studied derivations corresponding to some mixed products (see [13,19,31,33,34]). Y. Zhou, Z. Yang and J. Zhang [33] proved any map Φ from a unital *-algebra \mathcal{A} containing a non-trivial projection to itself satisfying

$$\Phi([[A,B]_*,C]) = [[\Phi(A),B]_*,C] + [[A,\Phi(B)]_*,C] + [[A,B]_*,\Phi(C)]$$

for all $A, B, C \in \mathcal{A}$, is an additive *-derivation, where [A, B] = AB - BA is the usual Lie product of A and B. Y. Zhou and J. Zhang [34] proved that any map Φ on factor von Neumann algebra \mathcal{A} satisfying

$$\Phi([[A, B], C]_*) = [[\Phi(A), B], C]_* + [[A, \Phi(B)], C]_* + [[A, B], \Phi(C)]_*$$

for all $A, B, C \in \mathcal{A}$, is also an additive *-derivation. X. Zhao and X. Fang [31] gave similar result on finite von Neumann algebra with no central summands of type I_1 . Y. Pang, D. Zhang and D. Ma [19] proved that if Φ is a second nonlinear mixed Jordan triple derivable mapping on a factor von Neumann algebra \mathcal{A} , that is,

$$\Phi(A \circ B \bullet C) = \Phi(A) \circ B \bullet C + A \circ \Phi(B) \bullet C + A \circ B \bullet \Phi(C)$$

for all $A, B, C \in \mathcal{A}$, then Φ is an additive *-derivation, where $A \circ B = AB + BA$ is the usual Jordan product of A and B.

Very recently, C. Li and D. Zhang [13] considered the nonlinear mixed Jordan triple *-derivations. Let \mathcal{A} be a *-algebra. A map $\Phi: \mathcal{A} \to \mathcal{A}$ is said to be a nonlinear mixed Jordan triple *-derivation if

$$\Phi([A \bullet B, C]_*) = [\Phi(A) \bullet B, C]_* + [A \bullet \Phi(B), C]_* + [A \bullet B, \Phi(C)]_*$$

for all $A, B, C \in \mathcal{A}$. Under some mild conditions on a *-algebra \mathcal{A} , C. Li and D. Zhang [13] proved that a map $\Phi : \mathcal{A} \to \mathcal{A}$ is a nonlinear mixed Jordan triple *-derivation if and only if Φ is an additive *-derivation. Similarly, we can give the definition of the second nonlinear mixed Jordan triple *-derivations. A map $\Phi : \mathcal{A} \to \mathcal{A}$ is said to be the second nonlinear mixed Jordan triple *-derivation if

$$\Phi([A,B]_* \bullet C) = [\Phi(A),B]_* \bullet C + [A,\Phi(B)]_* \bullet C + [A,B]_* \bullet \Phi(C)$$

for all $A, B, C \in \mathcal{A}$. In this paper, we will give the structure of the second nonlinear mixed Jordan triple *-derivations on *-algebras. Under some mild conditions on a *-algebra \mathcal{A} , we prove that a map $\Phi : \mathcal{A} \to \mathcal{A}$ is a second nonlinear mixed Jordan triple *-derivation if and only if Φ is an additive *-derivation. In particular, we apply the above result to prime *-algebras, von Neumann algebras with no central summands of type I_1 , factor von Neumann algebras and standard operator algebras.

2 Main result and corollaries

The following is our main result in this paper.

Theorem 2.1. Let \mathcal{A} be a unital *-algebra with the unit I. Assume that \mathcal{A} contains a nontrivial projection P and satisfies

$$(\spadesuit) \quad X\mathcal{A}P = 0 \quad implies \quad X = 0$$

and

$$(\clubsuit)$$
 $XA(I-P)=0$ implies $X=0$.

Then a map $\Phi: \mathcal{A} \to \mathcal{A}$ satisfies

$$\Phi([A, B]_* \bullet C) = [\Phi(A), B]_* \bullet C + [A, \Phi(B)]_* \bullet C + [A, B]_* \bullet \Phi(C)$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive *-derivation.

Recall that an algebra \mathcal{A} is prime if $A\mathcal{A}B = \{0\}$ for $A, B \in \mathcal{A}$ implies either A = 0 or B = 0. It is easy to see that prime *-algebras satisfy (\spadesuit) and (\clubsuit). Applying Theorem 2.1 to prime *-algebras, we have the following corollary.

Corollary 2.2. Let \mathcal{A} be a prime *-algebra with unit I and P be a nontrivial projection in \mathcal{A} . Then a map $\Phi : \mathcal{A} \to \mathcal{A}$ satisfies

$$\Phi([A, B]_* \bullet C) = [\Phi(A), B]_* \bullet C + [A, \Phi(B)]_* \bullet C + [A, B]_* \bullet \Phi(C)$$

for all $A, B, C \in \mathcal{A}$ if and only if Φ is an additive *-derivation.

A von Neumann algebra \mathcal{M} is a weakly closed, self-adjoint algebra of operators on a Hilbert space \mathcal{H} containing the identity operator I. \mathcal{M} is a factor von Neumann algebra if its center only contains the scalar operators. It is well known that a factor von Neumann algebra is prime. Now we have the following corollary.

Corollary 2.3. Let \mathcal{M} be a factor von Neumann algebra with $\dim(\mathcal{M}) \geq 2$. Then a map $\Phi : \mathcal{M} \to \mathcal{M}$ satisfies

$$\Phi([A, B]_* \bullet C) = [\Phi(A), B]_* \bullet C + [A, \Phi(B)]_* \bullet C + [A, B]_* \bullet \Phi(C)$$

for all $A, B, C \in \mathcal{M}$ if and only if Φ is an additive *-derivation.

It is shown in [3] and [8] that if a von Neumann algebra has no central summands of type I_1 , then \mathcal{M} satisfies (\clubsuit) and (\clubsuit) . Now we have the following corollary.

Corollary 2.4. Let \mathcal{M} be a von Neumann algebra with no central summands of type I_1 . Then a map $\Phi: \mathcal{M} \to \mathcal{M}$ satisfies

$$\Phi([A, B]_* \bullet C) = [\Phi(A), B]_* \bullet C + [A, \Phi(B)]_* \bullet C + [A, B]_* \bullet \Phi(C)$$

for all $A, B, C \in \mathcal{M}$ if and only if Φ is an additive *-derivation.

3 The proof of main result

The proof of Theorem 2.1. Let $P_1 = P$ and $P_2 = I - P$. Denote $\mathcal{A}_{jk} = P_j \mathcal{A} P_k$, j, k = 1, 2. Then $\mathcal{A} = \sum_{j,k=1}^2 \mathcal{A}_{jk}$. In all that follows, when we write A_{jk}^* , it means that $A_{jk}^* = (A_{jk})^*$. Clearly, we only need prove the necessity. Now we will complete the proof of Theorem 2.1 by proving several claims.

Claim 1.
$$\Phi(0) = 0$$
.

Indeed, we have

$$\Phi(0) = \Phi([0,0]_* \bullet 0) = [\Phi(0),0]_* \bullet 0 + [0,\Phi(0)]_* \bullet 0 + [0,0]_* \bullet \Phi(0) = 0.$$

Claim 2. For every $A_{11} \in A_{11}, B_{12} \in A_{12}, C_{21} \in A_{21}, D_{22} \in A_{22}$, we have

$$\Phi(A_{11} + B_{12} + C_{21} + D_{22}) = \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22}).$$

Let

$$T = \Phi(A_{11} + B_{12} + C_{21} + D_{22}) - \Phi(A_{11}) - \Phi(B_{12}) - \Phi(C_{21}) - \Phi(D_{22}).$$

It follows from Claim 1 that

$$\begin{split} &[\Phi(P_2), A_{11} + B_{12} + C_{21} + D_{22}]_* \bullet P_1 + [P_2, \Phi(A_{11} + B_{12} + C_{21} + D_{22})]_* \bullet P_1 \\ &+ [P_2, A_{11} + B_{12} + C_{21} + D_{22}]_* \bullet \Phi(P_1) \\ &= \Phi([P_2, A_{11} + B_{12} + C_{21} + D_{22}]_* \bullet P_1) \\ &= \Phi([P_2, C_{21}]_* \bullet P_1) \\ &= \Phi([P_2, C_{21}]_* \bullet P_1) + \Phi([P_2, B_{12}]_* \bullet P_1) + \Phi([P_2, C_{21}]_* \bullet P_1) + \Phi([P_2, D_{22}]_* \bullet P_1) \\ &= [\Phi(P_2), A_{11} + B_{12} + C_{21} + D_{22}]_* \bullet P_1 + [P_2, \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22})]_* \\ &\bullet P_1 + [P_2, A_{11} + B_{12} + C_{21} + D_{22}]_* \bullet \Phi(P_1). \end{split}$$

From this, we get $T_{21} + T_{21}^* = [P_2, T]_* \bullet P_1 = 0$. So $T_{21} = 0$. Similarly, we can prove $T_{12} = 0$.

For every $S_{21} \in \mathcal{A}_{21}$, we have

$$\begin{split} &[\Phi(S_{21}), A_{11} + B_{12} + C_{21} + D_{22}]_{*} \bullet P_{1} + [S_{21}, \Phi(A_{11} + B_{12} + C_{21} + D_{22})]_{*} \bullet P_{1} \\ &+ [S_{21}, A_{11} + B_{12} + C_{21} + D_{22}]_{*} \bullet \Phi(P_{1}) \\ &= \Phi([S_{21}, A_{11} + B_{12} + C_{21} + D_{22}]_{*} \bullet P_{1}) \\ &= \Phi([S_{21}, A_{11}]_{*} \bullet P_{1}) \\ &= \Phi([S_{21}, A_{11}]_{*} \bullet P_{1}) + \Phi([S_{21}, B_{12}]_{*} \bullet P_{1}) + \Phi([S_{21}, C_{21}]_{*} \bullet P_{1}) + \Phi([S_{21}, D_{22}]_{*} \bullet P_{1}) \\ &= [\Phi(S_{21}), A_{11} + B_{12} + C_{21} + D_{22}]_{*} \bullet P_{1} + [S_{21}, \Phi(A_{11}) + \Phi(B_{12}) + \Phi(C_{21}) + \Phi(D_{22})]_{*} \\ &\bullet P_{1} + [S_{21}, A_{11} + B_{12} + C_{21} + D_{22}]_{*} \bullet \Phi(P_{1}), \end{split}$$

which implies $S_{21}T_{11} + T_{11}^*S_{21}^* = [S_{21}, T]_* \bullet P_1 = 0$. Hence $T_{11}^*S_{21}^* = 0$ for every $S_{21} \in \mathcal{A}_{21}$. It follows from the condition (\clubsuit) that $T_{11} = 0$. Similarly, we can prove $T_{22} = 0$, proving the claim.

Claim 3. For every $A_{jk}, B_{jk} \in \mathcal{A}_{jk}, 1 \leq j \neq k \leq 2$, we have

$$\Phi(A_{jk} + B_{jk}) = \Phi(A_{jk}) + \Phi(B_{jk}).$$

Since

$$[-\frac{i}{2}I, i(P_j + A_{jk})]_* \bullet (P_k + B_{jk}) = (A_{jk} + B_{jk}) + A_{jk}^* + B_{jk}A_{jk}^*,$$

we get from Claim 2 that

$$\begin{split} &\Phi(A_{jk}+B_{jk})+\Phi(A_{jk}^*)+\Phi(B_{jk}A_{jk}^*)\\ &=\Phi([-\frac{i}{2}I,i(P_j+A_{jk})]_*\bullet(P_k+B_{jk}))\\ &=[\Phi(-\frac{i}{2}I),i(P_j+A_{jk})]_*\bullet(P_k+B_{jk})+[-\frac{i}{2}I,\Phi(i(P_j+A_{jk}))]_*\bullet(P_k+B_{jk})\\ &+[-\frac{i}{2}I,i(P_j+A_{jk})]_*\bullet\Phi(P_k+B_{jk})\\ &=[\Phi(-\frac{i}{2}I),i(P_j+A_{jk})]_*\bullet(P_k+B_{jk})+[-\frac{i}{2}I,\Phi(iP_j)+\Phi(iA_{jk})]_*\bullet(P_k+B_{jk})\\ &+[-\frac{i}{2}I,i(P_j+A_{jk})]_*\bullet(\Phi(P_k)+\Phi(B_{jk}))\\ &=\Phi([-\frac{i}{2}I,iP_j]_*\bullet P_k)+\Phi([-\frac{i}{2}I,iP_j]_*\bullet B_{jk})+\Phi([-\frac{i}{2}I,iA_{jk}]_*\bullet P_k)\\ &+\Phi([-\frac{i}{2}I,iA_{jk}]_*\bullet B_{jk})\\ &=\Phi(B_{jk})+\Phi(A_{jk}+A_{jk}^*)+\Phi(B_{jk}A_{jk}^*)\\ &=\Phi(B_{jk})+\Phi(A_{jk})+\Phi(A_{jk}^*)+\Phi(B_{jk}A_{jk}^*). \end{split}$$

Hence $\Phi(A_{jk} + B_{jk}) = \Phi(A_{jk}) + \Phi(B_{jk})$.

Claim 4. For every $A_{jj}, B_{jj} \in \mathcal{A}_{jj}, 1 \leq j \leq 2$, we have

$$\Phi(A_{jj} + B_{jj}) = \Phi(A_{jj}) + \Phi(B_{jj}).$$

Let
$$T = \Phi(A_{11} + B_{11}) - \Phi(A_{11}) - \Phi(B_{11})$$
. Then
$$[\Phi(P_2), A_{11} + B_{11}]_* \bullet P_1 + [P_2, \Phi(A_{11} + B_{11})]_* \bullet P_1 + [P_2, A_{11} + B_{11}]_* \bullet \Phi(P_1)$$

$$= \Phi([P_2, A_{11} + B_{11}]_* \bullet P_1)$$

$$= \Phi([P_2, A_{11}]_* \bullet P_1) + \Phi([P_2, B_{11}]_* \bullet P_1)$$

$$= [\Phi(P_2), A_{11} + B_{11}]_* \bullet P_1 + [P_2, \Phi(A_{11}) + \Phi(B_{11})]_* \bullet P_1$$

$$+ [P_2, A_{11} + B_{11}]_* \bullet \Phi(P_1).$$

From this, we get $T_{21} + T_{21}^* = [P_2, T]_* \bullet P_1 = 0$. So $T_{21} = 0$. Similarly, we can prove $T_{12} = 0$.

For every $S_{12} \in \mathcal{A}_{12}$, we obtain that

$$[\Phi(S_{12}), A_{11} + B_{11}]_* \bullet P_2 + [S_{12}, \Phi(A_{11} + B_{11})]_* \bullet P_2 + [S_{12}, A_{11} + B_{11}]_* \bullet \Phi(P_2)$$

$$= \Phi([S_{12}, A_{11} + B_{11}]_* \bullet P_2)$$

$$= \Phi([S_{12}, A_{11}]_* \bullet P_2) + \Phi([S_{12}, B_{11}]_* \bullet P_2)$$

$$= [\Phi(S_{12}), A_{11} + B_{11}]_* \bullet P_2 + [S_{12}, \Phi(A_{11}) + \Phi(B_{11})]_* \bullet P_2$$

$$+ [S_{12}, A_{11} + B_{11}]_* \bullet \Phi(P_2),$$

which implies that $S_{12}T_{22} + T_{22}^*S_{12}^* = [S_{12}, T]_* \bullet P_2 = 0$. So $T_{22}^*S_{12}^* = 0$ for all $S_{12} \in \mathcal{A}_{12}$. It follows from the condition (\spadesuit) that $T_{22} = 0$.

For every $S_{21} \in \mathcal{A}_{21}$, it follows from Claim 2 and Claim 3 that

$$\begin{split} &[\Phi(S_{21}), A_{11} + B_{11}]_* \bullet P_1 + [S_{21}, \Phi(A_{11} + B_{11})]_* \bullet P_1 + [S_{21}, A_{11} + B_{11}]_* \bullet \Phi(P_1) \\ &= \Phi([S_{21}, A_{11} + B_{11}]_* \bullet P_1) \\ &= \Phi(S_{21}(A_{11} + B_{11})) + \Phi((A_{11} + B_{11})^* S_{21}^*) \\ &= \Phi(S_{21}A_{11}) + \Phi(S_{21}B_{11}) + \Phi(A_{11}^* S_{21}^*) + \Phi(B_{11}^* S_{21}^*) \\ &= \Phi(S_{21}A_{11} + A_{11}^* S_{21}^*) + \Phi(S_{21}B_{11} + B_{11}^* S_{21}^*) \\ &= \Phi([S_{21}, A_{11}]_* \bullet P_1) + \Phi([S_{21}, B_{11}]_* \bullet P_1) \\ &= [\Phi(S_{21}), A_{11} + B_{11}]_* \bullet P_1 + [S_{21}, \Phi(A_{11}) + \Phi(B_{11})]_* \bullet P_1 \\ &+ [S_{21}, A_{11} + B_{11}]_* \bullet \Phi(P_1). \end{split}$$

Hence $S_{21}T_{11} + T_{11}^*S_{21}^* = [S_{21}, T]_* \bullet P_1 = 0$, and then $T_{11}^*S_{21}^* = 0$ for all $S_{21} \in \mathcal{A}_{21}$. It follows from the condition (\clubsuit) that $T_{11} = 0$. Now we have proved that $\Phi(A_{11} + B_{11}) = \Phi(A_{11}) + \Phi(B_{11})$. Similarly, we can prove $\Phi(A_{22} + B_{22}) = \Phi(A_{22}) + \Phi(B_{22})$. Claim 5. Φ is additive.

By Claims 2, 3 and 4, it is easy to show the additivity of Φ .

Claim 6. (1)
$$\Phi(iI)^* = \Phi(iI) \in \mathcal{Z}(\mathcal{A});$$

$$(2) \ \Phi(I)^* = \Phi(I) \in \mathcal{Z}(\mathcal{A}).$$

On using Claim 5, we get

$$\begin{aligned}
-4\Phi(iI) &= \Phi([iI, iI]_* \bullet (iI)) \\
&= [\Phi(iI), iI]_* \bullet (iI) + [iI, \Phi(iI)]_* \bullet (iI) + [iI, iI]_* \bullet \Phi(iI) \\
&= 4\Phi(iI)^* - 8\Phi(iI).
\end{aligned}$$

So $\Phi(iI)^* = \Phi(iI)$. From here, for all $A \in \mathcal{A}$, we have

$$0 = \Phi([iI, I]_* \bullet A)$$

$$= [\Phi(iI), I]_* \bullet A + [iI, \Phi(I)]_* \bullet A + [iI, I]_* \bullet \Phi(A)$$

$$= (2i\Phi(I)) \bullet A$$

$$= 2i(\Phi(I)A - A\Phi(I)^*).$$

Let A = I. Then $\Phi(I)^* = \Phi(I)$. So $\Phi(I)A = A\Phi(I)$ for all $A \in \mathcal{A}$, which implies that $\Phi(I) \in \mathcal{Z}(\mathcal{A})$. Similarly, by replacing iI with A in above equation, we can prove (1).

Claim 7. For $1 \le j \ne k \le 2$, we have

(1)
$$P_i\Phi(P_i)P_k = -P_i\Phi(P_k)P_k$$
 and $P_i\Phi(P_k)P_i = 0$;

(2)
$$P_i \Phi(iP_i) P_k = -P_i \Phi(iP_k) P_k$$
 and $P_i \Phi(iP_k) P_i = 0$.

In view of Claim 6, we have

$$0 = \Phi([iI, P_j]_* \bullet P_k)$$

$$= [iI, \Phi(P_j)]_* \bullet P_k + [iI, P_j]_* \bullet \Phi(P_k)$$

$$= 2i(\Phi(P_j)P_k - P_k\Phi(P_j)^* + P_j\Phi(P_k) - \Phi(P_k)P_j).$$

Multiplying by P_j from the left and by P_k from the right, we obtain that $P_j\Phi(P_j)P_k = -P_j\Phi(P_k)P_k$. On the other hand, we also have

$$\begin{split} 0 &= \Phi([iP_j, iI]_* \bullet P_k) \\ &= [\Phi(iP_j), iI]_* \bullet P_k + [iP_j, iI]_* \bullet \Phi(P_k) \\ &= i(\Phi(iP_j)P_k - \Phi(iP_j)^*P_k - P_k\Phi(iP_j)^* + P_k\Phi(iP_j)) - 2P_j\Phi(P_k) - 2\Phi(P_k)P_j. \end{split}$$

Multiplying by P_j from the both sides, we obtain that $P_j\Phi(P_k)P_j=0$.

Next, it follows from Claim 6 that

$$0 = \Phi([iI, iP_j]_* \bullet (iP_k))$$

$$= [iI, \Phi(iP_j)]_* \bullet (iP_k) + [iI, iP_j]_* \bullet \Phi(iP_k)$$

$$= -2\Phi(iP_j)P_k + 2P_k\Phi(iP_j)^* - 2P_j\Phi(iP_k) - 2\Phi(iP_k)P_j.$$

Multiplying by P_j from the left and by P_k from the right, we have $P_j\Phi(iP_j)P_k = -P_j\Phi(iP_k)P_k$. Multiplying by P_j from the both sides, we also have $P_j\Phi(iP_k)P_j = -P_j\Phi(iP_k)P_j$

0.

Claim 8. $P_i\Phi(P_i)P_i = P_i\Phi(iP_i)P_i = 0, j = 1, 2.$

For any $A_{jk} \in \mathcal{A}_{jk}$, $1 \leq j \neq k \leq 2$, using Claims 5 and 6, we have

$$\begin{split} 2\Phi(iA_{jk}) &= \Phi([iI, P_j]_* \bullet A_{jk}) \\ &= [iI, \Phi(P_j)]_* \bullet A_{jk} + [iI, P_j]_* \bullet \Phi(A_{jk}) \\ &= 2i(\Phi(P_j)A_{jk} - A_{jk}\Phi(P_j)^* + P_j\Phi(A_{jk}) - \Phi(A_{jk})P_j). \end{split}$$

Multiplying by P_j from the left and by P_k from the right, by Claim 7 (1), we get

$$P_{j}\Phi(iA_{jk})P_{k} = i(P_{j}\Phi(P_{j})A_{jk} + P_{j}\Phi(A_{jk})P_{k}). \tag{3. 1}$$

On the other hand, we also have

$$-2\Phi(A_{jk}) = \Phi([iI, P_j]_* \bullet (iA_{jk}))$$

$$= [iI, \Phi(P_j)]_* \bullet (iA_{jk}) + [iI, P_j]_* \bullet \Phi(iA_{jk})$$

$$= -2(\Phi(P_j)A_{jk} - A_{jk}\Phi(P_j)^* - iP_j\Phi(iA_{jk}) + i\Phi(iA_{jk})P_j).$$

Multiplying by P_j from the left and by P_k from the right, by Claim 7 (1), we obtain that $P_j\Phi(A_{jk})P_k = P_j\Phi(P_j)A_{jk} - iP_j\Phi(iA_{jk})P_k$. So

$$P_j \Phi(iA_{jk}) P_k = i(P_j \Phi(A_{jk}) P_k - P_j \Phi(P_j) A_{jk}).$$
 (3. 2)

Now, from Eqs. (3. 1) and (3. 2), we have $P_j\Phi(P_j)A_{jk}=0$ for any $A_{jk}\in\mathcal{A}_{jk}$. It follows from (\spadesuit) and (\clubsuit) that $P_j\Phi(P_j)P_j=0$.

Moreover, using Claims 5 and 6, we find that

$$-2\Phi(A_{jk}) = \Phi([iI, iP_j]_* \bullet A_{jk})$$

$$= [iI, \Phi(iP_j)]_* \bullet A_{jk} + [iI, iP_j]_* \bullet \Phi(A_{jk})$$

$$= 2i\Phi(iP_j)A_{jk} - 2iA_{jk}\Phi(iP_j)^* - 2P_j\Phi(A_{jk}) - 2\Phi(A_{jk})P_j.$$

Multiplying by P_j from the left and by P_k from the right, by Claim 7 (2), we obtain that $P_j\Phi(iP_j)A_{jk}=0$. Thus, it follows from (\clubsuit) and (\clubsuit) that $P_j\Phi(iP_j)P_j=0$. Claim 9. $\Phi(I)=\Phi(iI)=0$.

By Claims 5, 7 and 8, we have

$$\Phi(I) = \Phi(P_1 + P_2) = \Phi(P_1) + \Phi(P_2)$$

$$= P_1 \Phi(P_1) P_2 + P_2 \Phi(P_1) P_1 + P_1 \Phi(P_2) P_2 + P_2 \Phi(P_2) P_1$$

$$= 0$$

and

$$\begin{split} \Phi(iI) &= \Phi(i(P_1 + P_2)) = \Phi(iP_1) + \Phi(iP_2) \\ &= P_1 \Phi(iP_1) P_2 + P_2 \Phi(iP_1) P_1 + P_1 \Phi(iP_2) P_2 + P_2 \Phi(iP_2) P_1 \\ &= 0. \end{split}$$

Claim 10. For any $A \in \mathcal{A}$, $\Phi(iA) = i\Phi(A)$.

Let $N = -N^* \in \mathcal{A}$. Using Claims 5 and 9, we have

$$-4\Phi(N) = \Phi([iI, N]_* \bullet (iI)) = [iI, \Phi(N)]_* \bullet (iI) = -2\Phi(N) + 2\Phi(N)^*,$$

which implies that

$$\Phi(N)^* = -\Phi(N).$$

From this, we get

$$4\Phi(iN) = \Phi([N, iI]_* \bullet I) = [\Phi(N), iI]_* \bullet I = 4i\Phi(N).$$

So

$$\Phi(iN) = i\Phi(N).$$

For any $A \in \mathcal{A}$, we have $A = A_1 + iA_2$, where $A_1^* = -A_1$ and $A_2^* = -A_2$. It follows that

$$\Phi(iA) = \Phi(i(A_1 + iA_2)) = \Phi(iA_1 - A_2) = \Phi(iA_1) - \Phi(A_2)$$

$$= i\Phi(A_1) - \Phi(A_2) = i(\Phi(A_1) + i\Phi(A_2))$$

$$= i(\Phi(A_1) + \Phi(iA_2)) = i\Phi(A_1 + iA_2)$$

$$= i\Phi(A).$$

Claim 11. For any $A, B \in \mathcal{A}$, we have $\Phi(A \bullet B) = \Phi(A) \bullet B + A \bullet \Phi(B)$. In view of Claims 5, 9 and 10, we have

$$\begin{aligned} -2\Phi(A \bullet B) &= \Phi([iI, iA]_* \bullet B) \\ &= [iI, i\Phi(A)]_* \bullet B + [iI, iA]_* \bullet \Phi(B) \\ &= -2(\Phi(A) \bullet B + A \bullet \Phi(B)), \end{aligned}$$

which yields that $\Phi(A \bullet B) = \Phi(A) \bullet B + A \bullet \Phi(B)$.

Claim 12. For any $A \in \mathcal{A}$, $\Phi(A^*) = \Phi(A)^*$.

Let $A \in \mathcal{A}$. It follows from Claims 5, 9 and 11 that

$$\Phi(A) + \Phi(A^*) = \Phi(A + A^*) = \Phi(A \bullet I) = \Phi(A) \bullet I = \Phi(A) + \Phi(A)^*.$$

Hence $\Phi(A^*) = \Phi(A)^*$.

Claim 13. Φ is a derivation.

By Claims 5 and 11, we have

$$\Phi(AB) + \Phi(BA^*) = \Phi(AB + BA^*) = \Phi(A \bullet B)$$

$$= \Phi(A) \bullet B + A \bullet \Phi(B)$$

$$= \Phi(A)B + B\Phi(A)^* + A\Phi(B) + \Phi(B)A^*. \tag{3. 3}$$

On the other hand, by Claims 5, 10 and 11, we have

$$-\Phi(AB) + \Phi(BA^*) = \Phi(-AB + BA^*) = \Phi((iA) \bullet (iB))$$
$$= (i\Phi(A)) \bullet (iB) + (iA) \bullet (i\Phi(B))$$
$$= -\Phi(A)B + B\Phi(A)^* - A\Phi(B) + \Phi(B)A^*. \tag{3.4}$$

From Eqs. (3. 3) and (3. 4), we obtain that

$$\Phi(AB) = \Phi(A)B + A\Phi(B).$$

Now, from Claims 5, 12 and 13, we can conclude that Φ is an additive *-derivation. This completes the proof of Theorem 2.1.

References

- [1] Z. Bai, S. Du, Maps preserving products $XY YX^*$ on von Neumann algebras, Journal of Mathematical Analysis and Applications 386 (2012) 103-109.
- [2] M. Brešar, A. Fošner, On ring with involution equipped with some new product, Publicationes Mathematicae-Debrecen 57 (2000) 121-134.
- [3] L. Dai, F. Lu, Nonlinear maps preserving Jordan *-products, Journal of Mathematical Analysis and Applications 409 (2014) 180-188.
- [4] D. Huo, B. Zheng, H. Liu, Nonlinear maps preserving Jordan triple η -*-products, Journal of Mathematical Analysis and Applications 430 (2015) 830-844.

- [5] W. Jing, Nonlinear *-Lie derivations of standard operator algebras, Quaestiones Mathematicae 39 (2016) 1037-1046.
- [6] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple *-product on von Neumann algebras, Annals of Functional Analysis 7 (2016) 496-507.
- [7] C. Li, F. Lu, X. Fang, Mappings preserving new product $XY+YX^*$ on factor von Neumann algebras, Linear Algebra and its Applications 438 (2013) 2339-2345.
- [8] C. Li , F. Lu, X. Fang, Nonlinear ξ -Jordan *-derivations on von Neumann algebras, Linear and Multilinear Algebra 62 (2014) 466-473.
- [9] C. Li, F. Zhao, Q. Chen, Nonlinear skew Lie triple derivations between factors, Acta Mathematica Sinica, English Series 32 (2016) 821-830.
- [10] C. Li, Q. Chen, Strong skew commutativity preserving maps on rings with involution, Acta Mathematica Sinica, English Series 32 (2016) 745-752.
- [11] C. Li, Q. Chen, T. Wang, Nonlinear maps preserving the Jordan triple *-product on factors, Chinese Annals of Mathematics, Series B 39 (2018) 633-642.
- [12] C. Li, F. Lu, Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras, Complex Analysis and Operator Theory 11 (2017) 109-117.
- [13] C. Li, D. Zhang, Nonlinear mixed Jordan triple *-derivations on *-algebras, Siberian Mathematical Journal, 63 (2022) 735-742.
- [14] C. Li, Y. Zhao, F. Zhao, Nonlinear maps preserving the mixed product $[A \bullet B, C]_*$ on von Neumann algebras, Filomat 35 (2021) 2775-2781.
- [15] C. Li, Y. Zhao, F. Zhao, Nonlinear *-Jordan-type derivations on *-algebras, Rocky Mountain Journal of Mathematics 51 (2021) 601-612.
- [16] W. Lin, Nonlinear *-Lie-type derivations on von Neumann algebras, Acta Mathematica Hungarica 156 (2018) 112-131.
- [17] W. Lin, Nonlinear *-Lie-type derivations on standard operator algebras, Acta Mathematica Hungarica 154 (2018) 480-500.

- [18] L. Molnár, A condition for a subspace of $\mathcal{B}(H)$ to be an ideal, Linear Algebra and its Applications 235 (1996) 229-234.
- [19] Y. Pang, D. Zhang, D. Ma, The second nonlinear mixed Jordan triple derivable mapping on factor von Neumann algebras. Bulletin of the Iranian Mathematical Society (2021) https://doi.org/10.1007/s41980-021-00555-1.
- [20] P. Šemrl, Quadratic functionals and Jordan *-derivations, Studia Mathematica 97 (1991) 157-165.
- [21] P. Šemrl, Quadratic and quasi-quadratic functionals, Proceedings of the American Mathematical Society 119 (1993) 1105-1113.
- [22] P. Šemrl, On Jordan *-derivations and an application, Colloquium Mathematicum 59 (1990) 241-251.
- [23] A. Taghavi, M. Nouri, M. Razeghi, V. Darvish, Non-linear λ -Jordan triple *-derivation on prime *-algebras, Rocky Mountain Journal of Mathematics 48 (2018) 2705-2716.
- [24] A. Taghavi, H. Rohi and V. Darvish, Non-linear *-Jordan derivations on von Neumann algebras, Linear and Multilinear Algebra 64 (2016) 426-439.
- [25] A. Taghavi, F. Kolivand, E. Tavakoli, A note on strong (skew) η -Lie products preserving maps on some algebras, Linear and Multilinear Algebra 67 (2019) 886-895.
- [26] W. Yu, J. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra and its Applications 437 (2012) 1979-1991.
- [27] F. Zhang, Nonlinear skew Jordan derivable maps on factor von Neumann algebras, Linear and Multilinear Algebra 64 (2016) 2090-2103.
- [28] F. Zhang, Nonlinear ξ -Jordan triple *-derivation on prime *-algebras, Rocky Mountain Journal of Mathematics 52 (2022) 323-333.
- [29] F. Zhao, C. Li, Nonlinear *-Jordan triple derivations on von Neumann algebras, Mathematica Slovaca 68 (2018) 163-170.
- [30] F. Zhao, C. Li, Nonlinear maps preserving the Jordan triple *-product between factors, Indagationes Mathematicae 29 (2018) 619-627.

- [31] X. Zhao, X. Fang, The second nonlinear mixed Lie triple derivations on finite von Neumann algebras, Bulletin of the Iranian Mathematical Society 47 (2021) 237-254.
- [32] Y. Zhao, C. Li, Q. Chen, Nonlinear maps preserving the mixed product on factors, Bulletin of the Iranian Mathematical Society 47 (2021) 1325-1335.
- [33] Y. Zhou, Z. Yang, J. Zhang, Nonlinear mixed Lie triple derivations on prime *-algebras, Communications in Algebra 47 (2019) 4791-4796.
- [34] Y. Zhou, J. Zhang, The second mixed nonlinear Lie triple derivations on factor von Neumann algebras, Advances In Mathematics (China) 48 (2019) 441-449.