ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

Vol., No., YEAR

https://doi.org/rmj.YEAR..PAGE

2 3 4 5 6 7 8 9 10 11 12 13

14

21 22

25

26 27

28

31

32 33 34

37

40

41 42

(1)

2020 Mathematics Subject Classification. 11A63.

Key words and phrases. happy numbers, generalized happy numbers, gaps, digital problems.

A NOTE ON GAPS BETWEEN HAPPY NUMBERS

HELEN G. GRUNDMAN, BRYN MAWR COLLEGE, PENNSYLVANIA, USA

ABSTRACT. Fix a base $b \ge 2$ and an exponent $e \ge 2$. An e-power b-happy number is a positive integer that reaches 1 under iteration of the function mapping a positive integer to the sum of the eth powers of its base b digits. In this note, we answer the question of how large the gaps between e-power b-happy numbers can be.

1. Introduction

Happy numbers and generalized happy numbers have been a subject of study for over 75 years [2]. ¹⁶ In the second edition of his book *Unsolved Problems in Number Theory* [5], Richard Guy asked how 17 large the gaps between happy numbers can be. This was answered for traditional happy numbers and some generalized happy numbers in [4]. In this note, we answer Guy's question for all generalized 19 happy numbers. Our results derive from those in [6] on sequences of generalized happy numbers, which includes Theorem 3, below, and variations of our initial lemmas.

2. Definitions and Preliminaries

Fix a base $b \ge 2$ and an exponent $e \ge 2$.

Define the generalized happy function $S = S_{e,b} : \mathbb{Z}^+ \to \mathbb{Z}^+$, by

$$S\left(\sum_{i=0}^{n} a_i b^i\right) = \sum_{i=0}^{n} a_i^e,$$

where $a_n \neq 0$ and $0 \leq a_i \leq b-1$, for $0 \leq i \leq n$. For $a \in \mathbb{Z}^+$ and $k \in \mathbb{Z}^+$, let $S^0(a) = a$ and $S^k(a) = a$ $S(S^{k-1}(a))$. A positive integer a is an e-power b-happy number if $S^k(a) = 1$ for some $k \ge 0$.

It is easy to see that *S* has many right inverses. For example, for $s \in \mathbb{Z}^+$, let $C_s : \mathbb{Z}^+ \to \mathbb{Z}^+$ be defined by

$$C_s(n) = b^s \sum_{i=0}^{n-1} b^i$$

and note that for each s and $n \in \mathbb{Z}^+$, $SC_s(n) = n$. The following lemma provides a key property of S and C_s .

Lemma 1. Given $a \in \mathbb{Z}^+$ and $k \ge 0$, for any $n \in \mathbb{Z}^+$ and for each sufficiently large $s \in \mathbb{Z}^+$,

$$S^k(C_s^k(n) + a) = n + S^k(a).$$

Proof. Fix $s \in \mathbb{Z}^+$ such that for each $0 \le i < k$, $b^s > S^i(a)$. Then, since the image of C_s is always a positive multiple of b^s , for each $0 \le i < k$ and $m \in \mathbb{Z}^+$,

$$S(C_s(m) + S^i(a)) = S(C_s(m)) + S(S^i(a)) = m + S^{i+1}(a).$$
Trivially, equation (1) holds for $k = 0$. By induction, assume that, for any n'

$$S^{k-1}(C_s^{k-1}(n') + a) = n' + S^{k-1}(a).$$
The second of the equation of the equation

Trivially, equation (1) holds for k = 0. By induction, assume that, for any $n' \in \mathbb{Z}^+$,

$$S^{k-1}(C_s^{k-1}(n')+a)=n'+S^{k-1}(a).$$

Letting $n' = C_s(n)$, we have

$$S^{k}(C_{s}^{k}(n) + a) = S(S^{k-1}(C_{s}^{k-1}(C_{s}(n)) + a))$$

$$= S(C_{s}(n) + S^{k-1}(a))$$

$$= n + S^{k}(a),$$

 $\overline{13}$ by equation (2). 14 15

16 17

24 25

28

31

36 37 We next show that (as noted in [6]) all e-power b-happy numbers lie in the set $1 + P\mathbb{Z}^+$, where

$$P = P_{e,b} = \prod_{\substack{p \text{ prime} \\ p \mid (b-1) \\ (p-1) \mid (e-1)}} p.$$

Lemma 2. For each $a \in \mathbb{Z}^+$, $S(a) \equiv a \pmod{P}$. In particular, if a is an e-power b-happy number, then $a \equiv 1 \pmod{P}$.

Proof. Let p be a prime dividing P. Then, given $0 \le a_i \le b-1$, with $a_n \ne 0$,

$$S\left(\sum_{i=0}^n a_i b^i\right) = \sum_{i=0}^n a_i^e \equiv \sum_{i=0}^n a_i \equiv \sum_{i=0}^n a_i b^i \pmod{p}.$$

Since *P* is a product of distinct primes, the result follows.

Hence, the length of the largest gap between e-power b-happy number is at least P-1. Further, if there exists a positive integer in $1 + P\mathbb{Z}^+$ that is not an e-power b-happy number, then the length of the largest gap is strictly larger than P-1.

A P-consecutive sequence is an arithmetic sequence with constant difference P. In [6] it is shown that there exist P-consecutive sequences of every finite length in which every number is an e-power b-happy numbers.

Theorem 3 (Zhou & Cai). There exist arbitrarily long finite P-consecutive sequences of e-power b-happy numbers.

3. Main Theorem

Theorem 4 demonstrates that the size of gaps between e-power b-happy numbers is determined by the size of the set

$$U_1 = \{ u \in 1 + P\mathbb{Z}^+ | S^k(u) = u \text{ for some } k \in \mathbb{Z}^+ \},$$

42 which always contains 1.

Theorem 4. If $|U_1| > 1$, then there exist arbitrarily long finite gaps between e-power b-happy numbers. If $|U_1| = 1$, then the length of the largest gap between e-power b-happy numbers is P - 1.

Proof. Assume that $|U_1| > 1$. Let $v \in U_1 - \{1\}$. Let $\ell \in \mathbb{Z}^+$ be arbitrary. By Theorem 3, there exists a set, T, of ℓ P-consecutive e-power b-happy numbers. Since T is finite, there exists some $k \in \mathbb{Z}^+$ such that for each $t \in T$, $S^k(t) = 1$.

By Lemma 1, for any sufficiently large s,

17

21

25

$$S^{k}(C_{s}^{k}(v-1)+t)=(v-1)+S^{k}(t)=v.$$

Hence the elements of $C_s^k(v-1)+T$ form a P-consecutive sequence of numbers congruent to 1 modulo P none of which is an e-power b-happy number. Further, by Lemma 2, all e-power b-happy numbers are congruent to 1 modulo P and so none of the ℓP consecutive positive integers beginning with the smallest element of T is an e-power b-happy number. Hence there exists a gap of length at least ℓP where ℓ is arbitrary, proving the first part of the theorem.

Now assume that $|U_1| = 1$. Then $U_1 = \{1\}$ and, therefore, every positive integer congruent to 1 modulo P is an e-power b-happy number. Hence, by Lemma 2, the set of e-power b-happy number is precisely the set $1 + P\mathbb{Z}^+$, and the second part of the theorem follows.

As is well-known, and easily proven, for $e \ge 2$, every positive integer is an e-power 2-happy numbers. Hence for b = 2 and any $e \ge 2$, $U_1 = \{1\}$ and, since P = 1, Theorem 4 correctly gives that the length of the largest gap between e-power 2-happy numbers is P - 1 = 0. This is also the case for 2-power 4-happy numbers.

Perhaps of greater interest is the case e = 5 and b = 4. Here, P = 3 and $U_1 = \{1\}$. Thus every positive integer in $1 + 3\mathbb{Z}$ is a 5-power 4-happy number and the length of the largest gap between these numbers (in fact, the length of the gap between each pair of neighboring 5-power 4-happy numbers) is P - 1 = 2.

In Table 1, we list the numbers P and the sets U_1 for small values of e and b. (These values are straightforward to compute using [2, Theorem 1], though many can be deduced from tables in that paper or in papers cited therein.) Note that by Theorem 4, for $2 \le e \le 5$ and $3 \le b \le 7$, there exist arbitrarily long finite gaps between e-power b-happy numbers, except when (e,b) = (2,4) or (e,b) = (5,4), as noted above.

Finally, we provide two examples of infinite families of pairs (e,b) for which we demonstrate that there exist arbitrarily long finite gaps between e-power b-happy numbers.

Corollary 5. For $b \ge 3$ with b odd, there exist arbitrarily long finite gaps between 2-power b-happy numbers. Further, for $b \ge 4$ with $b \equiv 1 \pmod{3}$, there exist arbitrarily long finite gaps between 3-power b-happy numbers.

Proof. Let e = 2 and let $b \ge 3$ and odd be given. As observed in [1, Theorem 7], the integer $(b^2 + 1)/2$ is a fixed point of S. Since P = 2 and $(b^2 + 1)/2 \equiv 1 \pmod{2}$, $(b^2 + 1)/2 \in U_1$. The first result now follows from Theorem 4.

Now let e=3 and let $b \ge 4$ satisfy $b \equiv 1 \pmod{3}$. It is easy to verify that $(b^3+b^2+b)/3$ is a fixed point of S and that $(b^3+b^2+b)/3 \equiv 1 \pmod{3}$. Hence, $(b^3+b^2+b)/3 \in U_1$ and the result follows.

A NOTE ON GAPS BETWEEN HAPPY NUMBERS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20 21
22
23
24
 25
26
27
28
29
30

e	b	P	U_1
2	2	1	{1}
	3	2	{1,5}
	4	1	{1}
	5	2	{1,13}
	6	1	{1,5,13,17,20,25,26,29,41}
	7	2	{1,13,17,25,29,37,45}
3	2	1	{1}
	3	2	{1,17}
	4	3	{1,28,43,55}
	5	2	{1,9,35,65}
	6	1	{1,9,28,62,73,99,128,190,251}
	7	6	{1,91,133,217}
4	2	1	{1}
	3	2	{1,17,33}
	4	1	{1,3,81,83,243}
	5	2	{1,339,369,419,499,593,595,609,769,849}
	6	1	$\{1,3,4,17,81,82,98,114,164,256,258,259,273,288,$
			338,353,609,641,963,978,1218,1251,1331,1522}
	7	1	{1,1543,1753,3613,4183,4393,6493,8299,10099}
5	2	1	{1}
	3	2	{1,33,65}
	4	3	{1}
	5	2	{1,309,551,1057,1089,1543}
	6	1	{1,2081,2566,4636,5416,7276}
	7	6	{1,1543,1753,3613,4183,4393,6493,8299,10099}

TABLE 1. The values of P and U_1 for small e and b.

References

- [1] Baker Swart, B., Crook, S., Grundman, H. G., Hall-Seelig, L. L., "Gaussian happy numbers," *Rocky Mountain Journal of Mathematics*, **52** (2022), 415–429.
- [2] Grundman, H. G., Hall-Seelig, L. L., "Happy numbers, happy functions, and their variations: a survey," *Matematica* **1** (2022), 404–430.
- [3] Grundman H. G., Teeple E. A., "Iterated sums of fifth powers of digits," *Rocky Mountain J. Math.* **38** (2008), 1139–1146.
- [4] Grundman H. G., Teeple E. A., "Sequences of consecutive happy numbers," *Rocky Mountain J. Math.* **37** (2007), 1905–1916.
- [5] Guy R. K., Unsolved Problems in Number Theory, 2nd Edn., Springer-Verlag, New York, 1994.
- [6] Zhou X., Cai T., "On e-power b-happy numbers," Rocky Mountain J. Math. 39 (2009), 2073–2081. Email address: grundman@brynmawr.edu

40 41

31 32

33

34

35

36

37

38

39