A NOTE ON GAPS BETWEEN HAPPY NUMBERS

HELEN G. GRUNDMAN, BRYN MAWR COLLEGE, PENNSYLVANIA, USA

Abstract

Fix a base $b \geq 2$ and an exponent $e \geq 2$. An e-power b-happy number is a positive integer that reaches 1 under iteration of the function mapping a positive integer to the sum of the e th powers of its base b digits. In this note, we answer the question of how large the gaps between e-power b-happy numbers can be.

1. Introduction

Happy numbers and generalized happy numbers have been a subject of study for over 75 years [2]. In the second edition of his book Unsolved Problems in Number Theory [5], Richard Guy asked how large the gaps between happy numbers can be. This was answered for traditional happy numbers and some generalized happy numbers in [4]. In this note, we answer Guy's question for all generalized happy numbers. Our results derive from those in [6] on sequences of generalized happy numbers, which includes Theorem 3, below, and variations of our initial lemmas.

2. Definitions and Preliminaries

Fix a base $b \geq 2$ and an exponent $e \geq 2$.
Define the generalized happy function $S=S_{e, b}: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, by

$$
S\left(\sum_{i=0}^{n} a_{i} b^{i}\right)=\sum_{i=0}^{n} a_{i}^{e}
$$

where $a_{n} \neq 0$ and $0 \leq a_{i} \leq b-1$, for $0 \leq i \leq n$. For $a \in \mathbb{Z}^{+}$and $k \in \mathbb{Z}^{+}$, let $S^{0}(a)=a$ and $S^{k}(a)=$ $S\left(S^{k-1}(a)\right)$. A positive integer a is an e-power b-happy number if $S^{k}(a)=1$ for some $k \geq 0$.

It is easy to see that S has many right inverses. For example, for $s \in \mathbb{Z}^{+}$, let $C_{s}: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$be defined by

$$
C_{s}(n)=b^{s} \sum_{i=0}^{n-1} b^{i}
$$

and note that for each s and $n \in \mathbb{Z}^{+}, S C_{s}(n)=n$. The following lemma provides a key property of S and C_{s}.

Lemma 1. Given $a \in \mathbb{Z}^{+}$and $k \geq 0$, for any $n \in \mathbb{Z}^{+}$and for each sufficiently large $s \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
S^{k}\left(C_{s}^{k}(n)+a\right)=n+S^{k}(a) . \tag{1}
\end{equation*}
$$

2020 Mathematics Subject Classification. 11A63.
Key words and phrases. happy numbers, generalized happy numbers, gaps, digital problems.

Proof. Fix $s \in \mathbb{Z}^{+}$such that for each $0 \leq i<k, b^{s}>S^{i}(a)$. Then, since the image of C_{s} is always a positive multiple of b^{s}, for each $0 \leq i<k$ and $m \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
S\left(C_{s}(m)+S^{i}(a)\right)=S\left(C_{s}(m)\right)+S\left(S^{i}(a)\right)=m+S^{i+1}(a) . \tag{2}
\end{equation*}
$$

Trivially, equation (1) holds for $k=0$. By induction, assume that, for any $n^{\prime} \in \mathbb{Z}^{+}$,

$$
S^{k-1}\left(C_{s}^{k-1}\left(n^{\prime}\right)+a\right)=n^{\prime}+S^{k-1}(a) .
$$

Letting $n^{\prime}=C_{s}(n)$, we have

$$
\begin{aligned}
S^{k}\left(C_{s}^{k}(n)+a\right) & =S\left(S^{k-1}\left(C_{s}^{k-1}\left(C_{s}(n)\right)+a\right)\right) \\
& =S\left(C_{s}(n)+S^{k-1}(a)\right) \\
& =n+S^{k}(a),
\end{aligned}
$$

by equation (2).
We next show that (as noted in [6]) all e-power b-happy numbers lie in the set $1+P \mathbb{Z}^{+}$, where

$$
P=P_{e, b}=\prod_{\substack{p \text { prime } \\ p|(b-1) \\(p-1)|(e-1)}} p .
$$

Lemma 2. For each $a \in \mathbb{Z}^{+}, S(a) \equiv a(\bmod P)$. In particular, if a is an e-power b-happy number, then $a \equiv 1(\bmod P)$.

Proof. Let p be a prime dividing P. Then, given $0 \leq a_{i} \leq b-1$, with $a_{n} \neq 0$,

$$
S\left(\sum_{i=0}^{n} a_{i} b^{i}\right)=\sum_{i=0}^{n} a_{i}^{e} \equiv \sum_{i=0}^{n} a_{i} \equiv \sum_{i=0}^{n} a_{i} b^{i} \quad(\bmod p) .
$$

Since P is a product of distinct primes, the result follows.
Hence, the length of the largest gap between e-power b-happy number is at least $P-1$. Further, if there exists a positive integer in $1+P \mathbb{Z}^{+}$that is not an e-power b-happy number, then the length of the largest gap is strictly larger than $P-1$.

A P-consecutive sequence is an arithmetic sequence with constant difference P. In [6] it is shown that there exist P-consecutive sequences of every finite length in which every number is an e-power b-happy numbers.
Theorem 3 (Zhou \& Cai). There exist arbitrarily long finite P-consecutive sequences of e-power b-happy numbers.

3. Main Theorem

Theorem 4 demonstrates that the size of gaps between e-power b-happy numbers is determined by the size of the set

$$
U_{1}=\left\{u \in 1+P \mathbb{Z}^{+} \mid S^{k}(u)=u \text { for some } k \in \mathbb{Z}^{+}\right\},
$$

which always contains 1 .

Theorem 4. If $\left|U_{1}\right|>1$, then there exist arbitrarily long finite gaps between e-power b-happy numbers. If $\left|U_{1}\right|=1$, then the length of the largest gap between e-power b-happy numbers is $P-1$.

Proof. Assume that $\left|U_{1}\right|>1$. Let $v \in U_{1}-\{1\}$. Let $\ell \in \mathbb{Z}^{+}$be arbitrary. By Theorem 3 , there exists a set, T, of ℓP-consecutive e-power b-happy numbers. Since T is finite, there exists some $k \in \mathbb{Z}^{+}$such that for each $t \in T, S^{k}(t)=1$.

By Lemma 1, for any sufficiently large s,

$$
S^{k}\left(C_{s}^{k}(v-1)+t\right)=(v-1)+S^{k}(t)=v .
$$

Hence the elements of $C_{s}^{k}(v-1)+T$ form a P-consecutive sequence of numbers congruent to 1 modulo P none of which is an e-power b-happy number. Further, by Lemma 2, all e-power b-happy numbers are congruent to 1 modulo P and so none of the ℓP consecutive positive integers beginning with the smallest element of T is an e-power b-happy number. Hence there exists a gap of length at least ℓP where ℓ is arbitrary, proving the first part of the theorem.

Now assume that $\left|U_{1}\right|=1$. Then $U_{1}=\{1\}$ and, therefore, every positive integer congruent to 1 modulo P is an e-power b-happy number. Hence, by Lemma 2, the set of e-power b-happy number is precisely the set $1+P \mathbb{Z}^{+}$, and the second part of the theorem follows.

As is well-known, and easily proven, for $e \geq 2$, every positive integer is an e-power 2-happy numbers. Hence for $b=2$ and any $e \geq 2, U_{1}=\{1\}$ and, since $P=1$, Theorem 4 correctly gives that the length of the largest gap between e-power 2-happy numbers is $P-1=0$. This is also the case for 2-power 4-happy numbers.

Perhaps of greater interest is the case $e=5$ and $b=4$. Here, $P=3$ and $U_{1}=\{1\}$. Thus every positive integer in $1+3 \mathbb{Z}$ is a 5 -power 4-happy number and the length of the largest gap between these numbers (in fact, the length of the gap between each pair of neighboring 5-power 4-happy numbers) is $P-1=2$.

In Table 1, we list the numbers P and the sets U_{1} for small values of e and b. (These values are straightforward to compute using [2, Theorem 1], though many can be deduced from tables in that paper or in papers cited therein.) Note that by Theorem 4 , for $2 \leq e \leq 5$ and $3 \leq b \leq 7$, there exist arbitrarily long finite gaps between e-power b-happy numbers, except when $(e, b)=(2,4)$ or $(e, b)=(5,4)$, as noted above.

Finally, we provide two examples of infinite families of pairs (e, b) for which we demonstrate that there exist arbitrarily long finite gaps between e-power b-happy numbers.

Corollary 5. For $b \geq 3$ with b odd, there exist arbitrarily long finite gaps between 2-power b-happy numbers. Further, for $b \geq 4$ with $b \equiv 1(\bmod 3)$, there exist arbitrarily long finite gaps between 3-power b-happy numbers.
Proof. Let $e=2$ and let $b \geq 3$ and odd be given. As observed in [1, Theorem 7], the integer $\left(b^{2}+1\right) / 2$ is a fixed point of S. Since $P=2$ and $\left(b^{2}+1\right) / 2 \equiv 1(\bmod 2),\left(b^{2}+1\right) / 2 \in U_{1}$. The first result now follows from Theorem 4.

Now let $e=3$ and let $b \geq 4$ satisfy $b \equiv 1(\bmod 3)$. It is easy to verify that $\left(b^{3}+b^{2}+b\right) / 3$ is a fixed point of S and that $\left(b^{3}+b^{2}+b\right) / 3 \equiv 1(\bmod 3)$. Hence, $\left(b^{3}+b^{2}+b\right) / 3 \in U_{1}$ and the result follows.

1	e	b	P	U_{1}
2	2	2	1	\{1\}
3		3	2	\{1,5\}
4		4	1	\{1\}
5		5	2	\{1,13\}
6		6	1	\{1,5,13,17,20,25,26,29,41\}
7		7	2	\{1,13,17,25,29,37,45\}
8	3	2	1	\{1\}
9		3	2	\{1,17\}
$\frac{10}{11}$		4	3	\{1,28,43,55\}
11		5	2	\{1,9,35,65\}
12		6	1	$\{1,9,28,62,73,99,128,190,251\}$
$\underline{13}$		7	6	\{1,91,133,217\}
$\frac{14}{15}$	4	2	1	\{1\}
$\frac{16}{16}$		3	2	\{1,17,33\}
$\frac{16}{17}$		4	1	\{1,3,81,83,243\}
$\frac{18}{18}$		5	2	\{1,339,369,419,499,593,595,609,769,849\}
$\frac{19}{19}$		6	1	$\begin{array}{r} \{1,3,4,17,81,82,98,114,164,256,258,259,273,288 \\ 338,353,609,641,963,978,1218,1251,1331,1522\} \end{array}$
21		7	1	\{1,1543,1753,3613,4183,4393,6493,8299,10099\}
22	5	2	1	\{1\}
23		3	2	\{1,33,65\}
24		4	3	\{1\}
25		5	2	\{1,309,551,1057,1089,1543\}
26		6	1	\{1,2081,2566,4636,5416,7276\}
27		7	6	$\{1,1543,1753,3613,4183,4393,6493,8299,10099\}$

TABLE 1. The values of P and U_{1} for small e and b.

References

[1] Baker Swart, B., Crook, S., Grundman, H. G., Hall-Seelig, L. L., "Gaussian happy numbers," Rocky Mountain Journal of Mathematics, 52 (2022), 415-429.
[2] Grundman, H. G., Hall-Seelig, L. L., "Happy numbers, happy functions, and their variations: a survey," Matematica 1 (2022), 404-430.
[3] Grundman H. G., Teeple E. A., "Iterated sums of fifth powers of digits," Rocky Mountain J. Math. 38 (2008), 1139-1146.
[4] Grundman H. G., Teeple E. A., "Sequences of consecutive happy numbers," Rocky Mountain J. Math. 37 (2007), 1905-1916.
[5] Guy R. K., Unsolved Problems in Number Theory, 2nd Edn., Springer-Verlag, New York, 1994.
[6] Zhou X., Cai T., "On e-power b-happy numbers," Rocky Mountain J. Math. 39 (2009), 2073-2081.
Email address: grundman@brynmawr.edu

