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ISOMETRIC ACTIONS ARE QUASIDIAGONAL

SAMANTHA PILGRIM

ABSTRACT. We show every isometric action of a discrete group on a compact space is quasidiagonal
in a strong sense. This shows that reduced crossed products by such actions are quasidiagonal or MF
whenever the reduced group C∗-algebra of the acting group is quasidiagonal or MF. We use this to show
new examples of group actions whose crossed products are MF.

We begin with the definition of quasidiagonality for group actions, which describes actions which
are approximated by actions on finite dimensional C∗-algebras.

Definition 1. An action Γ y A of a group on a unital C∗-algebra is quasidiagonal if for all F ⊂ A,
S ⊂ Γ finite, and ε > 0 there exists k > 0, a unital completely positive map φ : A→Mk(C), and an
action Γ y Mk(C) such that

(1): ||φ(ab)−φ(a)φ(b)||< ε for all a,b ∈ F
(2): ||φ(γ ·a)− γ ·φ(a)||< ε for all a ∈ F, γ ∈ S.

Quasidiagonality of group actions was first introduced in [3, 3.2] where it was shown to relate to
quasidiagonality and the MF property when passing to the crossed product C∗-algebra. Our reason
for studying this property is to show general conditions on a group action which imply the crossed
product is MF. Speaking loosely, the MF property means that a C∗-algebra is a generalized inductive
limit of finite dimensional C∗-algebras [1, 3.2.1]. More concretely, this means in the separable case
that such a C∗-algebra embeds inside ∏n Mn(C)/

⊕
n Mn(C) [1, 3.2.2]. One can see this is a weaker

condition than quasidiagonality of C∗-algebras since the latter is equivalent to the existence of such an
embedding with a completely positive lift. While there are general theorems about when a crossed
product C∗-algebra is quasidiagonal, somewhat less is known in this regard about the MF property. We
will show that all isometric actions are quasidiagonal and therefore that their reduced crossed products
are MF whenever the reduced C∗-algebra of the acting group is MF. This can be thought of as a spacial
analog of the Peter-Weyl theorem where we have replaced an isometric representation by an isometric
action.

The proof of the main theorem relies on convolution with an approximate identity having certain
properties. We begin with a construction which applies the Peter-Weyl theorem to produce such
kernels.

Proposition 2. Suppose G is a compact group and G yC(G) the action induced by left multiplication,
that is, the action defined by g · f (h) := f (g−1h). Then there exists a net of functions ki ∈C(G) such
that the following hold:

(1): ki ≥ 0 for all i.
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ISOMETRIC ACTIONS ARE QUASIDIAGONAL 2

(2):
∫

G kidµ = 1 for all i.
(3): ki ∗ f converges uniformly to f for all f ∈C(G).
(4): ki lies in a finite-dimensional G-invariant subspace of C(G) for all i.

Proof. First, consider a neighborhood basis (Ui) for the identity in G and let (hi) be a net of non-
negative, L1(G)-normalized continuous functions with hi supported inside Ui. Then (hi) is an ap-
proximate identity in the sense that f ∗hi→ f uniformly for f ∈C(G). So (hi) satisfies (1), (2), and
(3).

Let Cfin(G) be the collection of functions in C(G) whose G-orbits are contained in a finite-
dimensional subspace. Then Cfin(G) is dense in C(G) by the Peter-Weyl theorem (as it contains
the matrix coefficients of all irreducible unitary representations of G). Also, Cfin(G) is a sub ∗-algebra:
if f and g are linear combinations of { fi}n

i=1 and {g j}m
j=1 respectively, then f g is a linear combination

of { fig j}i, j, and the action G yC(G) respects products so that a product of functions with finite orbits
will also have a finite orbit.

Now, let
√

hi be the pointwise square root of hi. Let li ∈ Cfin(G) be such that ‖li−
√

hi‖C(G) ≤
εi
‖
√

hi‖C(G)
with εi→ 0. Put ki =

lil∗i
‖lil∗i ‖1

.

Note that ki satisfies (1) by construction. Moreover, ‖lil∗i − hi‖C(G) ≤ εi
‖
√

hi‖C(G)
· 2‖
√

hi‖C(G) +

ε2
i

‖
√

hi‖2C(G)

< 3εi → 0 as i→ ∞, so ‖ki− hi‖L1(G) → 0 and so
∣∣∣∫ lil∗i dµ − 1

∣∣∣ < 3εi. But that means

normalizing lil∗i to have integral equal to 1 has the effect of scaling by at most 1
1−3εi

for all i. Thus, (ki)

satisfies (3) since εi→ 0. It also satisfies (4) since each li satisfies (4) and Cfin(G) is a ∗-subalgebra. �

We are now ready to prove the main result. The perturbation argument found on the next page is the
basic idea behind [2, Corollary B.9], although we do not use that directly.

Theorem 3. Suppose G is a compact group. Then the action G yC(G) induced by left multiplication
is quasidiagonal. In fact, the u.c.p. maps can be taken to be approximately equivariant for all γ ∈ G.

Proof. Fix F ⊂ C(G) a finite subset and ε > 0. We can assume each f ∈ F has ‖ f‖C(G) ≤ 1. Let
(ki) be as in the previous proposition. Let Wi be a finite dimensional, G-invariant subspace of C(G)
containing ki.

Denote by Φi the map C(G)→ C(G) given by f 7→ f ∗ ki. This is equivariant for the action
G yC(G). Also the image of Φi lies in Wi. To see this, observe that ( f ∗ki)(g) =

∫
G f (h)ki(h−1g)dh =∫

G f (h)(λhki)(g)dh =
(∫

G f (h)(λhki)dh
)
(g) where λ is the aforementioned action G yC(G) and the

last integral in parentheses is C(G)-valued. This integral is then a limit of linear combinations of (λhki)
for different h ∈ G, and so is contained in Wi since Wi is a closed, invariant subspace. Moreover, since
ki ≥ 0, Φi is positive, hence completely positive as a map C(G)→C(G), since any positive map of
commutative C∗-algebras is completely positive.

Consider Wi now with the L2(G,µ)-inner product where µ is normalized Haar measure. This is a
finite dimensional Hilbert space on which G acts unitarily. Finite-dimensionality implies we can find a
sufficiently large Ei ⊂G such that the map ψi : Wi→CEi given by taking evaluations is an isomorphism
of Wi onto its image and preserves the suprema of functions in (F ∪F2)∗ ki± [(F ∪F2)∗ ki]

2 (and we
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ISOMETRIC ACTIONS ARE QUASIDIAGONAL 3

assume 0 ∈ F), since continuous functions on G achieve their suprema. Then we can conjugate over
the action on Wi to an action on the subspace ψi(Wi)⊂ CEi .

Partition G into measurable sets, Pe each containing exactly one e ∈ Ei. For a suitable choice of Ei
we can ensure, for any neighborhood N of the diagonal in G×G, that Pe×{g} is contained in N for
all e ∈ Ei and all g ∈ G (that is, in the metrizable case, we can ensure the diameters of the Pe are as
small as we wish). This implies elements of F will stay very close to their value at e within Pe. Equip
CEi with the inner product 〈v,w〉i = ∑e∈Ei v(e)w(e)µ(Pe).

Extend the action G y ψi(Wi) to an action (representation) on all of CEi by defining the new action
to be trivial on the orthogonal complement of ψi(Wi) in (CEi ,〈·, ·〉i). Since all of C(G) is mapped by
ψi ◦Φi into ψi(Wi), extending this way won’t affect our estimates later.

Recall the definition of the inner product 〈·, ·〉i and notice that the canonical basis of CEi is still
orthogonal with respect to this inner product, so functions on Ei, thought of as multiplication operators,
are still represented by the same diagonal matrices as they would be with respect to the canonical basis
if we simply choose the appropriate renormalization of the canonical basis as a new orthonormal basis.

Since ψi is not unitary as a map (C(G),〈·, ·〉L2G) → (CEi ,〈·, ·〉i), the representation of G on
(CEi ,〈·, ·〉i) given above is not unitary. However, since G is compact, we can make this represen-
tation unitary by replacing the original inner product with its average, 〈·, ·〉∗i , over G.

We now have a unitary representation of G on (CEi ,〈·, ·〉∗i ), hence an action of G on B(CEi ,〈·, ·〉∗i ).
We can also represent elements of CEi as multiplication operators on (CEi ,〈·, ·〉i) (diagonal matrices)
by the representation CEi → B(CEi ,〈·, ·〉i) mapping v 7→Mv, using the orthonormal basis of (CEi ,〈·, ·〉i)
mentioned earlier. For V an operator which takes this basis to an orthonormal basis of (CEi ,〈·, ·〉∗i ), we
define ψ̃i : Wi→ B(CEi ,〈·, ·〉∗i ) by f 7→V Mψi( f )V−1. The unitary representation of G on (CEi ,〈·, ·〉∗i )
also gives an action on B(CEi ,〈·, ·〉∗i ) by conjugation.

Some care is needed here since, although the averaged inner product is equivalent to the original,
a priori the constants could increase as i increases so that our errors are amplified. However, if
we assume Ei is sufficiently large and that diameters of the Pe are sufficiently small, we have that
〈 f ,g〉 ≈ε 〈ψi( f ),ψi(g)〉i for all f ,g ∈ B2(Wi) (the ball of radius 2 centered at the origin in Wi). In
other words, ψi, and hence the action on (CEi ,〈·, ·〉), is ‘almost unitary’. Assume ε < 1 so that the
pullback of the unit ball by ψi is contained in B2(Wi). Then for γ ∈ G and ψi( f ),ψi(g) ∈ B1(ψi(Wi)),
〈γ ·ψi( f ),γ ·ψi(g)〉i = 〈ψi(γ · f ),ψi(γ · g)〉i ≈ε 〈γ · f ,γ · g〉i = 〈 f ,g〉i ≈ε 〈ψi( f ),ψi(g)〉. This shows
〈v,w〉∗i ≈2ε 〈v,w〉i for v,w ∈ B1(CEi) (since the two are the same on the orthogonal complement of
ψi(Wi)⊂ (CEi ,〈·, ·〉i)) and so errors are only amplified by a constant multiple which tends to 1 as Ei
becomes larger.

A second issue arises since the canonical basis of CEi is no longer orthogonal with respect to 〈·, ·〉∗i .
We therefore have to choose a new basis, which means the multiplication operators coming from CEi

are represented by different matrices. This means the map ψ̃i : Wi→ B(CEi ,〈·, ·〉∗i ) may not be ∗-linear,
since ψ̃i( f ) =V Mψi( f )V−1 where V is invertible, but not unitary. Notice that, for an appropriate choice
of Ei, V takes a basis which is orthonormal (with respect to 〈·, ·〉i) to a basis which is orthonormal with
respect to 〈·, ·〉∗i and hence has 〈e j,ek〉∗i ≈2ε 0 and 〈e j,e j〉∗i ≈2ε 1. This implies V is ‘almost unitary’
in the sense that 〈V v,Vu〉∗i ≈4ε 〈v,u〉∗i . Recall that we can write V = AU in a unique way where A is
a positive matrix and U is a unitary. Since V is invertible and bounded below and above by 1−4ε

and 1+4ε respectively, the same is true for A. Thus, A is within 4ε of the identity. The matrix U is
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therefore a unitary such that ‖V −U‖< 4ε . To simplify things later, we can go back and choose Ei so
that ‖V −U‖ is sufficiently small so that ‖V ψi( f )V−1−Uψi( f )U∗‖< ε for all f with ‖ f‖C(G) ≤ 1.

Defining Ψi( f ) :=Uψi( f ∗ ki)U∗ now gives a map C(G)→ B(CEi ,〈·, ·〉∗i ) which is a composition
of a unital, completely positive map and a unital ∗-homomorphism and hence u.c.p.. Since Ψi is an
ε-perturbation of an equivariant map, ‖Ψi(γ · f )− γ ·Ψi( f )‖B(CEi ,〈·,·〉∗) < ε for all f ∈ F and γ ∈ G.
Notice that this approximation works for all of G rather than just a finite subset.

Moreover, for f ∈ F , we can choose i and Ei so that

‖ f‖C(G) ≈ε ‖ψi( f ∗ ki)‖C(G) = ‖ψi( f ∗ ki)‖B(CEi ,〈·,·〉) ≈ε ‖V ψi( f ∗ ki)V−1‖B(CEi ,〈·,·〉∗)

≈ε ‖Uψi( f ∗ ki)U∗‖B(CEi ,〈·,·〉∗) = ‖Ψi( f ∗ ki)‖B(CEi ,〈·,·〉∗)

for all f ∈ F .
Also, if we choose i large enough that f ,g, and f g are all approximated to within ε by their

convolutions with ki, we have, using that ψi and conjugation by U are both multiplicative and that the
moduli of f and g are bounded above by 1,

‖Uψi(( f g)∗ ki)U∗−Uψi( f ∗ ki)U∗Uψi( f ∗ ki)U∗‖B(CEi ,〈·,·〉∗i )

= ‖Uψi(( f g)∗ ki)−ψi( f ∗ ki)ψi(g∗ ki)U∗‖B(CEi ,〈·,·〉∗i )

= ‖Uψi(( f g)∗ ki− ( f ∗ ki)(g∗ ki))U∗‖B(CEi ,〈·,·〉∗i )

= ‖( f g)∗ ki− ( f ∗ ki)(g∗ ki)‖C(G)

= ‖((( f g)∗ ki− f g)+ f g)− (( f ∗ ki− f )+ f )((g∗ ki−g)+g)‖C(G)

≤ ε +‖ f g− (( f ∗ ki− f )(g∗ ki−g)+( f ∗ ki− f )g+(g∗ ki−g) f + f g)‖C(G)

≤ ε + ε
2 + ε + ε < 4ε

Observing that B(CEi ,〈·, ·〉∗i ) identifies with M|Ei|(C) now completes the proof. �

It is now more or less straightforward to extend the previous theorem and obtain our main result.

Theorem 4. Suppose Γ y X is an isometric action by a countable discrete group on a compact space.
Then Γ y X is quasidiagonal. In fact, the u.c.p. maps can be taken to be approximately equivariant
for all γ ∈ Γ.

Proof. Consider first a minimal action Γ y X . Let G be the closure of Γ⊂ Isom(X). Then picking any
x ∈ X and taking the orbit map G→ Gx gives a continuous, equivariant map h : G→ X . Then the map
which sends f ∈C(X) to f ◦h is an equivariant homomorphism C(X)→C(G), and minimality and
the definition of h imply this map preserves the supremum norm. The previous theorem now shows
Γ y X is quasidiagonal with completely positive maps as in the previous theorem, as any such map
can be pulled back to such a map from C(X).

If Γ y X is not minimal, for any fixed δ > 0 we can find a finite collection {Oi} of orbits so that the
union of all their closures, Y , is δ -dense in X . Then the map ψ : C(X)→C(Y ) given by restriction is an
equivariant homomorphism, and for any finite subset F ⊂C(X), δ can be chosen small enough so that
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ISOMETRIC ACTIONS ARE QUASIDIAGONAL 5

ψ decreases the norms of elements of F by less than any ε > 0. Composing with ψ : C(Y )→⊕iC(Oi)
and using the previous paragraph now finishes the proof. �

The theorem above essentially implies that crossed products by isometric actions have finite dimen-
sional approximations as nice as those of the acting group’s C∗-algebra. More precisely, we have the
following corollary.

Corollary 5. Suppose Γ y X is an isometric action by a countable discrete group. Then C(X)or Γ is
quasidiagonal or MF exactly when C∗r (Γ) is. �

This can be combined with [5, 3.9] to show that many group actions (by non-amenable groups) have
MF crossed products.

Corollary 6. Let Γi, i ∈ I be a finite or countable collection of discrete abelian groups with a common
subgroup H and let Γ = ?HΓi be their amalgamated product. Suppose Γ y X is an isometric action.
Then C(X)or Γ is MF. �

Corollary 7. Suppose Γ is virtually free and Γ y X is an isometric action. Then C(X)or Γ is MF.

Proof. We will show C∗r (Γ) is MF. If Λ < Γ is a free normal subgroup and F := Γ/Λ is finite, we have
B(l2Γ)∼= B(l2(Λ×F))∼= B(l2Λ⊗ l2F)∼= B(l2Λ)⊗B(l2F), so C∗r (Γ) can be realized as an algebra of
|F |× |F | matrices with entries in C∗r (Λ). Thus, C∗r (Γ) is MF since C∗r (Λ) is MF by [5, 3.9] and since it
is straightforward to show using [3, 3.1] that matrix algebras over MF algebras are themselves MF. �

To show more concretely that these results advance our understanding of the MF property, we finish
with an example.

Example 8. Consider the amalgamated product Γ = ?i,ZZ for i ∈ I and I finite or countable where
Z is embedded into the i-th copy of Z via multiplication by ki ∈ Z. This is the group 〈z1,z2, . . . |zk1 =
zk2 = · · · 〉. Choose any n≥ 1 and let vi ∈U(n) be unitaries with order dividing ki (e.g. permutation
matrices or diagonal matrices with ±1 in each diagonal entry). Let u ∈U(n) be any other unitary.
Functional calculus allows us to find u1/ki for all ki, so we can define zi · x = (vi⊗ u1/ki)x for x ∈
U(Mn(C)⊗Mn(C))∼=U(n2). This defines an action Γ yU(n2) which is implemented by translations
and therefore isometric. The crossed products C(U(n2))or Γ are therefore MF by the previous
corollary.

When |I| ≥ 2, k1 ≥ 2, and k2 ≥ 3, the subgroup Z?ZZ contains a free group on two generators by
[4, 2.8] and is therefore not amenable. We can also construct similar examples where Γ is not virtually
free taking a free product of Γ with Z⊕Z and defining each factor of Z⊕Z to act via multiplication
by one of two commuting unitaries.
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