
TRIPLICATE DUAL SERIES OF DOUGALL–DIXON THEOREM
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Abstract. Applying the triplicate form of the extended Gould–Hsu inverse
series relations to Dougall’s summation theorem for the well–poised 7F6-series,

we establish, from the dual series, several interesting Ramanujan–like infinite

series expressions for �2 and �˙1 with convergence rate “� 1

27
”.

1. Introduction and Motivation

For an indeterminate x, the shifted factorial is defined by .x/0 � 1 and

.x/n D x.x C 1/ � � � .x C n� 1/ for n 2 N:

This can also be expressed as a quotient .x/n D �.xCn/=�.x/, where the �-function
(see [41, �8] for example) is given by the beta integral

�.x/ D
Z 1

0

ux�1e�udu for <.x/ > 0;

which admits Euler’s reflection property

�.x/�.1 � x/ D �

sin�x
with �.1

2
/ D

p
� (1)

and the following asymptotic formula

�.x C n/ � nx.n � 1/Š as n ! 1: (2)

This last formula is simpler than Stirling’s formula and will frequently be utilized
in this paper to evaluate limits of �-function quotients.

About one century ago, Ramanujan [42] discovered seventeen remarkable infinite
series for 1=� . Three typical ones are reproduced as
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In the same paper, Ramanujan recorded also the formula (see also [3, 8, 45]) below
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2 Xiaojing Chen and Wenchang Chu

which was used by Gosper in 1985 to compute 17 � 106 digits of � , a new world
record at that time. However, a rigorous proof for this formula was provided 70
years later by Borwein brothers [6] in 1987. Afterwards, several faster convergent
series for 1=� were found. Here we highlight the formula due to Chan–Liaw–Tan [11]
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and Chudnovskys’ famous formula [28] (see also [3, 7, 45])

1

�
D 12

1
X

kD0

.�1/k.6k/Š
kŠ3.3k/Š

13591409C 545140134k

6403203kC3=2
:

This latter one enabled Chudnovsky brothers to hold the world record for the
calculation of � -digits from 1989 to 1994.

One of the recent advances in representing � by infinite series was made by
Guillera [37–39]. By making use of the powerful WZ -method, he proved several
beautiful formulae of Ramanujan–like for 1=�2, such as
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More comprehensive investigation has been made by Chu and Zhang [25–27] by
manipulating the classical hypergeometric series.

There exist double series analogues for Ramanujan–like series. For example,
Chan–Tanigawa–Yang–Zudilin [12] found, by deriving new analogues of Clausen’s
product identity, the following formula (see [10, 29] for more series)
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By employing quadratic transformations of hypergeometric series, Zudilin [44] de-
rived the series below for 1=�2
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By manipulating Ramanujan’s Eisenstein series, Baruah and Berndt [4] obtained
more identities of similar type, for instance
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Triplicate Dual Series of Dougall–Dixon Theorem 3

In comparison with the existing methods, this paper will take a totally different
way to approach similar series involving � . Our starting point will be the gen-
eral summation theorem for the terminating well-poised 7F6-series discovered by
Dougall [30, 1907]. By making use of the triplicate form of the extended Gould–Hsu
inverse series relations, we shall investigate the dual series of Dougall’s well-poised
sum, that will lead to a large class of summation formulae for � -related infinite
series. Instead of different convergence rates, such as the series by Ramanujan [42],
Guillera [37–39] and by others [3–5,7,8,10,28,29,45], our series converge exclusively
at the rate “ 1

729
”. According to the bisection series method, most of these series are

then reduced to simpler ones with the same convergence rate “� 1
27

”. We remark
that there are only few series of Ramanujan-like with this convergence rate in the
literature (cf. [24–27]). Five elegant formulae are anticipated as follows:
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: (Example 35)

The rest of the paper will be organized as follows. The next section will serve as
the theoretical part, where the main theorems and proofs will be included. Then
in Section 3, we shall present 35 infinite series expressions for �2 and �˙1 as
applications.

2. Triplicate Inversion of Dougall’s 7F6-Series

A half century ago, Gould and Hsu [36] discovered a useful pair of inverse series
relations, which can equivalently be reproduced below. Let fai ; big be any two
complex sequences such that the �-polynomials defined by

�.xI 0/ � 1 and �.xI n/ D
n�1
Y

kD0

.ak C xbk/ for n 2 N (3)

differ from zero for x; n 2 N0. Then there hold the inverse series relations
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!
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.ai C kbi / g.k/; (4)
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n
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ak C kbk
Qk
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f .k/: (5)
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4 Xiaojing Chen and Wenchang Chu

In terms of �-polynomials, they can be expressed compactly as

f .n/ D
n
X

kD0
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k

!

�.kI n/ g.k/; (4’)
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n
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n

k

!

ak C kbk

�.nI k C 1/
f .k/: (5’)

The following inverse relations are a special case of inverse relations found inde-
pendently by Chu [14,19] and Krattenthaler [40]:
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n

k

!
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Y

j D0

.aj C �bj C kbj /.aj � kbj /
�C 2k

.�C n/kC1

g.k/; (6)
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Qk

j D0.aj C �bj C nbj /.aj � nbj /
.�C k/nf .k/: (7)

By making use of �-polynomials, they can be written in a more symmetric form
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where the ‘adjunct’ factor can be expressed transparently as

.ak C �bk C kbk/.ak � kbk/ D �.�C kI k C 1/�.�kI k C 1/

�.�C kI k/�.�kI k/
:

These inverse series relations have been shown powerful in dealing with termi-
nating hypergeometric series identities [14–17, 19, 33]. Their duplicate forms and
the corresponding q-analogues due to Carlitz [9] with respective applications were
extensively explored in [13, 21, 22] and [1, 18, 20, 23, 31, 32, 34,35].

By employing the above inverse pair, we shall work out several new � -related in-
finite series expressions. Recall the fundamental identity discovered by Dougall [30]
(see also Bailey [2, �4.3]) for very–well–poised terminating 7F6-series

�n.aI b; c; d/ WD .1C a/n.1 C a � b � c/n.1 C a � b � d/n.1 C a � c � d/n
.1C a � b/n.1 C a � c/n.1 C a � d/n.1C a � b � c � d/n

D
n
X

kD0

aC 2k

a

.a/k.b/k.c/k.d/k.e/k.�n/k
kŠ.1C a � b/k.1C a � c/k.1 C a � d/k.1C a � e/k.1C aC n/k

;

(8)
where the series is 2-balanced because 1C 2aC n D b C c C d C e.

For all n 2 N0, it is well known that n D
�

n
3

˘

C
�

1Cn
3

˘

C
�

2Cn
3

˘

, where bxc
denotes the greatest integer not exceeding x. Then it is not difficult to check that
Dougall’s formula (8) is equivalent to the following one

4 Nov 2022 11:07:46 PDT
220221-WenchangChu Version 3 - Submitted to Rocky Mountain J. Math.



Triplicate Dual Series of Dougall–Dixon Theorem 5
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˘
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with its parameters subject to 1C 2a D b C c C d C e .

Reformulate the above equality as a binomial sum
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:

This equality matches exactly to (6) under the assignments � ! a and

�.xI n/ ! .b � aC x/b n

3 c.c � aC x/b 1Cn

3 c.d � a C x/b 2Cn

3 c

as well as

f .n/ ! nŠ .a/n � F.n/;

g.k/ ! .a/k.b/k.c/k.d/k.1C 2a � b � c � d/k

.1 C a � b/k.1C a � c/k.1 C a � d/k.b C c C d � a/k
I
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3 c.c/b 1Cn
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3 c
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�
.d/b 2Cn

3 c.1C a � b � c/b 2Cn

3 c
.b C c C d � a/n

:

(9)

For the sake of brevity, we introduce the  -polynomials by

 .xI n/ D �.a C xI n/�.�xI n/ D .b C x/b n

3
c.c C x/

b
1Cn

3
c
.d C x/

b
2Cn

3
c

�.b � a � x/b n

3
c.c � a � x/

b 1Cn

3
c
.d � a � x/

b 2Cn

3
c
:

(10)

Then the dual relation corresponding to (7) can explicitly be stated, after some
simplifications, in the following lemma.
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6 Xiaojing Chen and Wenchang Chu

Lemma 1. For the F-quotient of shifted factorials and the  -polynomials defined

respectively in (9) and (10), we have the summation formula

.b/n.c/n.d/n.1C 2a � b � c � d/n
.1 C a � b/n.1 C a � c/n.1C a � d/n.b C c C d � a/n

D
n
X

kD0

F.k/
 .kI k C 1/

 .kI k/
.�n/k.a C n/k

 .nI k C 1/
:

Observe that  .nI k C 1/ is a polynomial of degree 2k C 2 in n with the leading
coefficient equal to .�1/kC1. Now multiply by “n2” across the binomial relation in
Lemma 1 and then let n ! 1. We may evaluate the limits of the left member by (2)
and of the corresponding right member through Weierstrass’s M -test on uniformly
convergent series (cf. Stromberg [43, �3.106]). After some routine simplifications,
the resulting limiting relation can be expressed explicitly as follows.

Proposition 2. Let �.a; b; c; d / stand for the quotient of the �-function given by

�.a; b; c; d / D �.1 C a � b/�.1 C a � c/�.1 C a � d/�.b C c C d � a/
�.b/ �.c/ �.d/ �.1 C 2a � b � c � d/

: (11)

Then for the F-quotient of shifted factorials and the  -polynomials defined respec-

tively in (9) and (10), the following infinite series identity holds:

�.a; b; c; d / D �
1
X

kD0

 .kI k C 1/

 .kI k/
F.k/:

Let " D 0; 1; 2 and T .k/ be the summand with the index k in the last series.
Putting the initial " terms aside and then classifying the remaining terms with
respect to their indices modulo 3, we get the expressions

1
X

kD0

T .k/ D
"�1
X

kD0

T .k/ C
1
X

kD0

2
X

iD0

T ." C i C 3k/

D
"�1
X

kD0

T .k/ C
1
X

kD1

3
X

j D1

T ." � j C 3k/:

Denote further by �."/, �k."/ and rk."/ the sum of initial "-terms and the
“weight functions” (where the latter are clearly rational functions of k):

�."/ D
"�1
X

kD0

�

 .kI k C 1/

� .kI k/

�

F.k/; (12)

�k."/ D
2
X

iD0

�

 ."C i C 3kI 1C "C i C 3k/

� ."C i C 3kI "C i C 3k/

�

F."C i C 3k/

F.3k/
; (13)

rk."/ D
3
X

j D1

�

 ." � j C 3kI 1C " � j C 3k/

� ." � j C 3kI " � j C 3k/

�

F." � j C 3k/

F.3k/
: (14)

Then the identity in Proposition 2 can be restated in the theorem below.

Theorem 3. Assume that �.a; b; c; d /, �."/, �k."/ and rk."/ are as in (11),
(12), (13) and (14) respectively. Then for " D 0; 1; 2 and the F-quotient of shifted
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Triplicate Dual Series of Dougall–Dixon Theorem 7

factorials defined in (9), the following infinite series identities hold:

�.a; b; c; d / D �."/C
1
X

kD0

�k."/F.3k/

D �."/C
1
X

kD1

rk."/F.3k/:

In the above theorem, the series is expressed in two different manners because
it happens frequently that a series with its summation index initiating at k D 0

has better looking than that at k D 1, or vice versa. This will be seen from our
examples in the next section. In the above series, F.3k/ results in the dominant
part

F.3k/ D .b C c � a/2k.b C d � a/2k.c C d � a/2k

.1C a � b/2k.1C a � c/2k.1 C a � d/2k

� .b/k.c/k.d/k.1C a � b � c/k.1C a � b � d/k.1 C a � c � d/k

.3k/Š .b C c C d � a/3k

;

which determines the convergence rate of the series to be “ 1
729

”. Instead, both
�k."/ and rk."/ are perturbing parts consisting of only a few terms. Therefore
for specific values of " and fa; b; c; d g, in order to find the infinite series identity,
it is enough to compute the corresponding �."/ and �k."/ (or rk."/), and then to
simplify the resulting expression.

3. Infinite Series of Ramanujan Type Involving �

By specifying the parameters fa; b; c; d g, we can derive numerous new infinite
series identities of convergence rate “ 1

729
” from Theorem 3 with " D 0; 1; 2. In

general, the presence of complicated weight polynomials in the summands make
the corresponding series look less elegant. However, they may sometimes indicate
that the results are somewhat deeper than the usual. In fact, there exist several
such fast convergent series (cf. [4, 7, 8, 10, 28]) as illustrated in the introduction.

Now we present two examples to illustrate how to derive infinite series identities
by making use of Theorem 3. Letting

" D 0 and
˚

a; b; c; d
	

D
�

1

2
;
1

2
;
1

2
;
1

4

�

;

we can compute with Mathematica commands

F.3k/ D
.1

2
/2k.

1
4
/2
2k

.2k/Š2.5
4
/2k

.1
2
/3
k
.1

4
/k.

3
4
/2
k

.3k/Š .3
4
/3k

.1
2
/k.

1
4
/k.

3
4
/3
k
.1

8
/2
k
.5

8
/k

kŠ3 .1
3
/k.

2
3
/k.

9
8
/k.

7
12
/k.

11
12
/k

� 1

729

�k

;

�k.0/ D .1C 8k/.93184k4 C 154432k3 C 85840k2 C 17484kC 855/

768.1C 3k/.2 C 3k/.7C 12k/
;

�.0/ D 0 and �.1
2
; 1

2
; 1

2
; 1

4
/ D

1

4�
:

Substituting them into Theorem 3 and then multiplying by “4 � 2688” across the
resulting equation, we derive the following infinite series identity.
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Example 1 ( " D 0 W 1
2
; 1

2
; 1

2
; 1

4
).

2688

�
D

1
X

kD0

.1
2
/k.

1
4
/k.

3
4
/3
k
.1

8
/k.

5
8
/k

kŠ3 .4
3
/k.

5
3
/k.

11
12
/k.

19
12
/k

93184k4C154432k3C85840k2C17484kC855

729k
:

Analogously, we have another infinite series identity of similar type.

Example 2 ( " D 1 W 3
2
; 5

6
; 1; 1 ).

20�

3
p
3

D 10C
1
X

kD1

kŠ.� 1
2
/k.

2
3
/k.� 1

3
/2
k
.1

6
/k.� 5

6
/k

.1
3
/k.

4
3
/k.

1
4
/k.

3
4
/k.

4
9
/k.

7
9
/k.

10
9
/k

19656k4�7749k3�3150k2C613kC118

729k
:

When b C c C d � a equals to a half integer, the corresponding series in The-
orem 3 can be reformulated, by means of the bisection series method, as a simpler
series with convergence rate “�1

27
”. In order to show how this approach works, we

present demonstrations in details for two infinite series identities.

We start with the following strange evaluation of a hypergeometric 3F2-series.

Example 3 ( " D 0 W 5
3
; 5

3
; 2

3
; 5

6
).

1
X

kD0

.2
3
/k.

7
3
/k.� 1

6
/k

kŠ2 .k C 1/Š

��1
27

�k

D 81
p
3

28 � 22=3�
:

Proof. By specifying the parameters in Theorem 3

" D 0 and
˚

a; b; c; d
	

D
�

5

3
;
5

3
;
2

3
;
5

6

�

we have

F.3k/ D
.2

3
/2k.

5
6
/2k.� 1

6
/2k

.2k/Š .2/2k.
11
6
/2k

.1
3
/k.

2
3
/k.

5
3
/k.

1
6
/k.

5
6
/k.

7
6
/k

.3k/Š .3
2
/3k

D
.1

3
/k.

5
3
/k.

1
6
/k.

5
6
/k.

5
12
/2
k
.�1

12
/k

kŠ3.1
2
/2
k
.3

2
/k.

17
12
/k

� 1

729

�k

;

�k.0/ D 7.1C 6k/.5 C 12k/.5616k3 C 11358k2 C 7233kC 1465/

78732.1C k/.1 C 2k/2
;

�.0/ D 0 and �.5
3
; 5

3
; 2

3
; 5

6
/ D 15

p
3

8 � 2 2

3�
I

which leads us to the following identity

59049
p
3

14 � 22=3�
D

1
X

kD0

.1
3
/k.

5
3
/k.

5
6
/k.

7
6
/k.

5
12
/k.

�1
12
/k

kŠ2.2/k.
3
2
/3
k

5616k3C11358k2C7233kC1465

729k
:

We claim that the above series is the bisection of the series below
1
X

kD0

ƒk for ƒk WD
.2

3
/k.

7
3
/k.� 1

6
/k

kŠ2 .2/k

��1
27

�k

:

This can be justified by computing

ƒ2k Cƒ2kC1 D
.1

3
/k.

5
3
/k.

5
6
/k.

7
6
/k.

5
12
/k.

�1
12
/k

kŠ2.2/k.
3
2
/3
k

5616k3C11358k2C7233kC1465

1458 � 729k
:

4 Nov 2022 11:07:46 PDT
220221-WenchangChu Version 3 - Submitted to Rocky Mountain J. Math.



Triplicate Dual Series of Dougall–Dixon Theorem 9

Therefore, we can evaluate the following simpler series

1
X

kD0

ƒk D
1
X

kD0

n

ƒ2k Cƒ2kC1

o

D 1

1458
� 59049

p
3

14 � 22=3�
D 81

p
3

28 � 22=3�
: �

Next, we prove the following elegant formula for a Ramanujan–like series.

Example 4 ( " D 0 W 4
3
; 1; 1; 5

6
).

��2.1
3
/

6�2.5
6
/

D
1
X

kD0

��1
27

�k kŠ.1
2
/k.

2
3
/k

.4
3
/3
k

˚

3C 7k
	

:

Proof. By specializing the parameters in Theorem 3

" D 0 and
˚

a; b; c; d
	

D
�

4

3
; 1; 1;

5

6

�

we can compute

F.3k/ D
.1

2
/2
2k
.2

3
/2k

.3
2
/2k.

4
3
/2
2k

kŠ2.1
2
/2
k
.1

3
/k.

5
6
/k

.3k/Š .3
2
/3k

kŠ.1
2
/k.

1
3
/k.

1
4
/2
k
.3

4
/k.

5
6
/k

.2
3
/3
k
.5

4
/k.

7
6
/3
k

� 1

729

�k

;

�k.0/ D .1 C 4k/.4368k4 C 9742k3 C 7799k2 C 2588k C 283/

72.2C 3k/3
;

�.0/ D 0 and �.4
3
; 1; 1; 5

6
/ D

��2.1
3
/

36�2.5
6
/
I

which gives rise to the following identity

16��2.1
3
/

�2.5
6
/

D
1
X

kD0

kŠ.1
2
/k.

1
3
/k.

1
4
/k.

3
4
/k.

5
6
/k

.5
3
/3
k
.7

6
/3
k

4368k4C9742k3C7799k2C2588kC283

729k
:

For the sequence defined by

ƒk WD .3C 7k/
kŠ.1

2
/k.

2
3
/k

.4
3
/3
k

��1
27

�k

;

it is routine to compute the sum of its two consecutive terms

ƒ2k Cƒ2kC1

kŠ.1
2
/k.

1
3
/k.

1
4
/k.

3
4
/k.

5
6
/k

.5
3
/3
k
.7

6
/3
k

4368k4C9742k3C7799k2C2588kC283

96 � 729k
:

Hence the afore–displayed series is equivalent to the following simpler series

1
X

kD0

ƒk D
1
X

kD0

n

ƒ2k Cƒ2kC1

o

D 1

96
�
16��2.1

3
/

�2.5
6
/

D
��2.1

3
/

6�2.5
6
/
:

This completes the proof of the formula given in Example 4. �

By carrying out the same procedure, we shall evaluate further 31 Ramanujan–like
series in closed forms. Compared of the other existing � -related series of conver-
gence rate “�1

27
” in the literature (cf. [24–27]), all the formulae recorded below are

believed to be new, except for Examples 5, 21 and 22. We shall divide the series
into four classes according to their values and display them as examples. In each

example, the parameter setting " W a; b; c; d and eventual references will be high-

lighted in the header. Furthermore, all the formulae are experimentally checked by
an appropriately devised Mathematica package in order to ensure the accuracy.
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220221-WenchangChu Version 3 - Submitted to Rocky Mountain J. Math.



10 Xiaojing Chen and Wenchang Chu

�3.1. Series for �2.

Example 5 (Chu and Zhang [26, 27]: " D 0 W 3
2
; 1; 1; 1 ).

�2

2
D

1
X

kD0

��1
27

�k kŠ2

.4
3
/k.

5
3
/k

5C 7k

1C 2k
:

Example 6 ( " D 1 W 3
2
; 1; 1; 1 ).

9�2 D 89C
1
X

kD1

��1
27

�k .1
2
/k kŠ.3/k

.5
2
/k.

5
3
/k.

7
3
/k

˚

17C 14k
	

:

Example 7 ( " D 2 W 5
2
; 1; 1; 2 ).

1575�2

8
D 1960 �

1
X

kD0

��1
27

�k .1
2
/k kŠ.5/k

.9
2
/k.

7
3
/k.

8
3
/k

˚

17C 7k
	

:

Example 8 ( " D 2 W 3
2
; 1; 1; 1 ).

675�2 D 6600C
1
X

kD0

��1
27

�k .3
2
/k kŠ.3/k

.7
2
/k.

7
3
/k.

8
3
/k

˚

63C 59k C 14k2
	

:

�3.2. Series for �2=�3.

Example 9 ( " D 0 W 1
2
; 1

3
; 1

3
; 1

3
).

2�2

�3.2
3
/

D
1
X

kD0

��1
27

�k .2
3
/2
k
.1

6
/k

kŠ .4
3
/k.

7
6
/k

˚

8C 21k
	

:

Example 10 ( " D 1 W 1
2
; 2

3
; 2

3
; �1

3
).

2�2

�3.1
3
/

D
1
X

kD0

��1
27

�k .1
3
/2
k
.� 1

6
/k

kŠ .2
3
/k.

5
6
/k

˚

1C 21k
	

:

Example 11 ( " D 0 W 3
2
; 2

3
; 2

3
; 5

3
).

45�2

�3.1
3
/

D
1
X

kD0

��1
27

�k .1
3
/k.

7
3
/k.� 1

6
/k

kŠ .5
3
/k.

11
6
/k

˚

23C 42k
	

:

Example 12 ( " D 1 W 1
2
; 1

3
; 1

3
; 1

3
).

5�2

3�3.2
3
/

D
1
X

kD0

��1
27

�k .5
3
/k.� 1

3
/k.� 5

6
/k

kŠ .1
3
/k.

7
6
/k

˚

5 � 42k
	

:

Example 13 ( " D 0 W 3
2
; �1

3
; 2

3
; 5

3
).

55�2

2�3.1
3
/

D
1
X

kD0

��1
27

�k .10
3
/k.� 2

3
/k.� 7

6
/k

kŠ .2
3
/k.

17
6
/k

˚

16C 21k
	

:
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Triplicate Dual Series of Dougall–Dixon Theorem 11

Example 14 ( " D 2 W 3
2
; 1

3
; 1

3
; 4

3
).

91�2

16�3.2
3
/

D
1
X

kD0

��1
27

�k .11
3
/k.� 1

3
/k.� 5

6
/k

kŠ .4
3
/k.

19
6
/k

˚

23C 21k
	

:

Example 15 ( " D 1 W 3
2
; 4

3
; 1

3
; 1

3
).

175�2

36�3.2
3
/

D
1
X

kD0

��1
27

�k .5
3
/2
k
.� 5

6
/2
k

kŠ .1
3
/k.

7
6
/k.

13
6
/k

˚

25C 42k
	

:

Example 16 ( " D 0 W 5
2
; 2

3
; 5

3
; 5

3
).

825�2

8�3.1
3
/

D
1
X

kD0

��1
27

�k .7
3
/2
k
.� 1

6
/2
k

kŠ .5
3
/k.

11
6
/k.

17
6
/k

˚

53C 42k
	

:

Example 17 ( " D 1 W 3
2
; 5

3
; 2

3
; 2

3
).

60�2

�3.1
3
/

D
1
X

kD0

��1
27

�k .4
3
/k.� 2

3
/k.� 1

6
/k

kŠ .2
3
/k.

11
6
/k

˚

32C 111k C 126k2
	

:

Example 18 ( " D 0 W 3
2
; 1

3
; 4

3
; 4

3
).

21�2

�3.2
3
/

D
1
X

kD0

��1
27

�k .5
3
/k.� 1

3
/k.

1
6
/k

kŠ .4
3
/k.

13
6
/k

˚

83C 195kC 126k2
	

:

Example 19 ( " D 1 W 3
2
; 2

3
; �1

3
; 5

3
).

715�2

12�3.1
3
/

D
1
X

kD0

��1
27

�k .13
3
/k.� 5

3
/k.� 13

6
/k

kŠ .2
3
/k.

17
6
/k

˚

13C 51k � 126k2
	

:

Example 20 ( " D 1 W 3
2
; 2

3
; 2

3
; 2

3
).

35�2

12�3.1
3
/

D
1
X

kD0

��1
27

�k .1
3
/k.

7
3
/k.� 7

6
/k

kŠ .2
3
/k.

11
6
/k

7 � 75k � 126k2

.1 � 6k/.5C 6k/
:

�3.3. Series for ��1.

Example 21 (Chu [25,26]: " D 0 W 1
3
; 1

3
; 1

3
; 1

6
).

9
p
3

2
4

3�
D

1
X

kD0

��1
27

�k .1
3
/k.

2
3
/k.

1
6
/k

kŠ3

˚

2C 21k
	

:

Example 22 (Chu [25,26]: " D 0 W 2
3
; 2

3
; 2

3
; 5

6
).

27
p
3

2
5

3�
D

1
X

kD0

��1
27

�k .1
3
/k.

2
3
/k.

5
6
/k

kŠ3

˚

5C 42k
	

:

Example 23 ( " D 1 W 1
3
; 1

6
; 1

3
; 1

3
).

729
p
3

20
3
p
2�

D
1
X

kD0

��1
27

�k .1
3
/k.

8
3
/k.

1
6
/k

kŠ.2/2
k

˚

16C 21k
	

:
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12 Xiaojing Chen and Wenchang Chu

Example 24 ( " D 2 W 5
3
; 5

6
;� 1

3
; 5

3
).

2673
p
3

14
3
p
4�

D
1
X

kD0

��1
27

�k .2
3
/k.

13
3
/k.

5
6
/k.� 7

6
/k

kŠ2.3/k.
17
6
/k

˚

65C 42k
	

:

Example 25 ( " D 1 W 2
3
; 2

3
; 2

3
; �1

6
).

3
p
3

�
3
p
4

D
1
X

kD0

��1
27

�k .1
3
/k.� 1

3
/k.� 1

6
/k

kŠ3

˚

1� 63k2
	

:

Example 26 ( " D 0 W 4
3
; 1

3
; 4

3
; 7

6
).

81
p
3

2
1

3�
D

1
X

kD0

��1
27

�k .1
3
/k.� 1

3
/k.

7
6
/k

kŠ2.2/k

˚

35C 90k C 63k2
	

:

Example 27 ( " D 1 W 2
3
; 5

6
; 2

3
; 2

3
).

2187
p
3

10
3
p
4�

D
1
X

kD0

��1
27

�k .1
3
/k.

2
3
/k.

11
6
/k

kŠ.2/2
k

˚

77C 144k C 63k2
	

:

Example 28 ( " D 1 W 1
3
; 7

6
; 1

3
; 1

3
).

2187
p
3

14
3
p
2�

D
1
X

kD0

��1
27

�k .4
3
/k.� 1

3
/k.

13
6
/k

kŠ.2/2
k

˚

65C 195kC 126k2
	

:

Example 29 ( " D 1 W 4
3
; 7

6
; 1

3
; 4

3
).

6561
p
3

40
3
p
2�

D
1
X

kD0

��1
27

�k .4
3
/k.

11
3
/k.

1
6
/k

kŠ.2/k.3/k

143C 285k C 126k2

.1 � 3k/.2 C 3k/
:

Example 30 ( " D 1 W 4
3
; 1

6
; 1

3
; 4

3
).

2187
p
3

440
3
p
2�

D
1
X

kD0

��1
27

�k .1
3
/k.

14
3
/k.� 5

6
/k

kŠ.2/k.3/k

196C 333k C 126k2

.7 C 6k/.13C 6k/
:

�3.4. Series for � .

Example 31 ( " D 1 W 2
3
; 1

6
; 1; 1 ).

9��2.2
3
/

�2.1
6
/

D 1C
1
X

kD1

��1
27

�k .3/k.
1
2
/k.� 2

3
/k

.2
3
/k.

5
3
/2
k

˚

13C 21k
	

:

Example 32 ( " D 1 W 4
3
; 5

6
; 1; 1 ).

4��2.1
3
/

�2.5
6
/

D 71C
1
X

kD1

��1
27

�k .3/k.
1
2
/k.

2
3
/k

.4
3
/k.

7
3
/2
k

˚

23C 21k
	

:

Example 33 ( " D 0 W 2
3
; 1; 1; 1

6
).

3��2.2
3
/

�2.1
6
/

D
1
X

kD1

��1
27

�k kŠ.1
2
/k.� 2

3
/k

.2
3
/2
k
.5

3
/k

k
˚

13C 21k
	

:
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Triplicate Dual Series of Dougall–Dixon Theorem 13

Example 34 ( " D 0 W 1
3
; 1; 1; �1

6
).

��2.1
3
/

12�2.5
6
/

D
1
X

kD0

��1
27

�k kŠ.1
2
/k.� 4

3
/k

.1
3
/2
k
.4

3
/k

˚

21k2 C 8k � 3
	

:

Example 35 ( " D 0 W 5
3
; 1; 1; 7

6
).

48��2.2
3
/

�2.1
6
/

D
1
X

kD0

��1
27

�k kŠ.1
2
/k.

1
3
/k

.5
3
/3
k

˚

9C 28k C 21k2
	

:

Concluding Comments. There exist different ways to invert Dougall’s 7F6-sum
through (6) and (7). However, all the dual series that we detected by Mathematica

are ugly because of the presence of very complicated weight polynomials. Here is a
couple of discouraging examples.

By examining another triplicate form of Dougall’s 7F6-sum

�n

�

aI bC
�

1Cn
3

˘

; c; d C
�

1C2n
3

˘ �

D
.1C a � c � d/b 1Cn

3 c.b C c � a/b 1Cn

3 c
.1 C a � d/b 1Cn

3 c.b � a/b 1Cn

3 c

� .1C a/n.b C d � a/n
.1 C a � c/n.b C c C d � a/n

.1C a � b � c/b 1C2n

3 c.c C d � a/b 1C2n

3 c
.1 C a � b/b 1C2n

3 c.d � a/b 1C2n

3 c
;

we can arrive, under the parameter setting " D 1 and fa; b; c; d g D
n

5
2
; 2; 5

4
; 1
o

and

after a long and tedious computations, at the following series for � :

75�

8
D 30C

1
X

kD1

� 16

729

�k kŠ.� 1
2
/k.

1
6
/k.� 1

6
/k.

1
8
/k.� 1

8
/k.� 3

8
/k.� 5

8
/k

.1
3
/k.

2
3
/k.

3
4
/k.

5
4
/k.

7
12
/k.

11
12
/k.

13
12
/k.

17
12
/k

�
n

60 � 101k C 1075k2 � 4840k3 � 49360k4 C 136896k5
o

:

Analogously, by specifying parameters " D 0 and fa; b; c; d g D
n

1
2
; 1

2
; 1

2
; 1

3

o

, we

get another series for ��1:

1485
p
3

�
D

1
X

kD0

� 16

729

�k .1
2
/k.

2
3
/k.

1
4
/k.

3
4
/k.

1
6
/k.

1
9
/k.

4
9
/k.

7
9
/k

kŠ3.4
3
/2
k
.17

18
/k.

23
18
/k.

29
18
/k

�
n

812C 20373kC 169774k2 C 634857k3 C 1091016k4 C 693036k5
o

:
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