WEIGHTED COMPOSITION–DIFFERENTIATION OPERATOR OF ORDER n ON THE HARDY AND WEIGHTED BERGMAN SPACES

MAHSA FATEHI

ABSTRACT. In this paper, we consider the weighted composition–differentiation operator $D_{\psi_n,\varphi_n,n}$ on the Hardy and weighted Bergman spaces. We describe the spectrum and the spectral radius of an operator $D_{\psi_n,\varphi_n,n}$. Also the lower estimate and the upper estimate on the norm of the weighted composition–differentiation operator on the Hardy space H^2 are obtained. Furthermore, we determine the norm of some composition–differentiation operators $D_{\varphi,n}$ on the Hardy space H^2 .

1. Preliminaries

Let $\mathbb D$ be the open unit disk in the complex plane. The Hardy space H^2 is the set of all analytic functions f on $\mathbb D$ such that

$$||f|| = \left(\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta\right)^{1/2} < \infty.$$

For $-1 < \alpha < \infty$, the weighted Bergman space A_{α}^2 is the space of all analytic functions f on \mathbb{D} so that

$$||f|| = \left(\int_{\mathbb{D}} |f(z)|^2 (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)\right)^{1/2} < \infty,$$

where dA is the normalized area measure on \mathbb{D} . The case when $\alpha = 0$, usually denoted A^2 , is called the (unweighted) Bergman space. Throughout this paper, we will write \mathcal{H}_{α} to denote the Hardy space H^2 for $\alpha = -1$ or the weighted Bergman space A^2_{α} for $\alpha > -1$.

The weighted Bergman spaces and the Hardy space are reproducing kernel Hilbert spaces. For every $w \in \mathbb{D}$ and each non-negative integer n, let $K_{w,\alpha}^{[n]}$ denote the unique function in \mathcal{H}_{α} that $\langle f, K_{w,\alpha}^{[n]} \rangle = f^{(n)}(w)$ for each $f \in \mathcal{H}_{\alpha}$, where $f^{(n)}$ is the nth derivative of f (note that $f^{(0)} = f$); for convenience, we use the notation $K_{w,\alpha}$ when n = 0. The function $K_{w,\alpha}^{[n]}$ is called the reproducing kernel function. The reproducing kernel functions for evaluation at w are given by $K_{w,\alpha}(z) = 1/(1-\overline{w}z)^{\alpha+2}$ and

$$K_{w,\alpha}^{[n]}(z) = \frac{(\alpha+2)...(\alpha+n+1)z^n}{(1-\overline{w}z)^{n+\alpha+2}}$$

for $z, w \in \mathbb{D}$ and n > 1.

Date: January 9, 2022.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B38; Secondary 30H10, 30H20, 47B33, 47A30

Key words and phrases. Weighted composition operator, Differentiation operator, Spectrum, Norm, Hardy space, Weighted Bergman space.

For an operator T on \mathcal{H}_{α} , we write $||T||_{\alpha}$ to denote the norm of T acting on \mathcal{H}_{α} . Through this paper, the spectrum of T, the point spectrum of T, and the spectral radius of T are denoted by $\sigma_{\alpha}(T)$, $\sigma_{p,\alpha}(T)$, and $r_{\alpha}(T)$, respectively.

We write H^{∞} to denote the space of all bounded analytic functions on \mathbb{D} , with $||f||_{\infty} = \sup\{|f(z)| : z \in \mathbb{D}\}.$

We say that an operator T on a Hilbert space H is hyponormal if $T^*T - TT^* \geq 0$, or equivalently if $||T^*f|| \leq ||Tf||$ for all $f \in H$. Moreover, the operator T is said to be cohyponormal if T^* is hyponormal. Let P denote the projection of $L^2(\partial \mathbb{D})$ onto H^2 . For each $b \in L^2(\partial \mathbb{D})$, we define the Toeplitz operator T_b on H^2 by $T_b(f) = P(bf)$. For φ an analytic self-map of \mathbb{D} , let C_{φ} be the composition operator such that $C_{\varphi}(f) = f \circ \varphi$ for any $f \in \mathcal{H}_{\alpha}$. The composition operator C_{φ} acts boundedly for every φ , with

$$(1.1) \qquad \left(\frac{1}{1-|\varphi(0)|^2}\right)^{(\alpha+2)/2} \le ||C_{\varphi}||_{\alpha} \le \left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{(\alpha+2)/2}.$$

(See [2, Corollary 3.7] and [10, Lemma 2.3].) Let ψ be an analytic function on \mathbb{D} and φ be an analytic self-map of \mathbb{D} . The weighted composition operator $C_{\psi,\varphi}$ is defined by $C_{\psi,\varphi}(f) = \psi \cdot (f \circ \varphi)$ for $f \in \mathcal{H}_{\alpha}$.

Although for each positive integer n, the differentiation operator $D_n(f) = f^{(n)}$ is unbounded on \mathcal{H}_{α} (note that $\lim_{m\to\infty} \|D_n(z^m)\|/\|z^m\| = \infty$), there are some analytic maps $\varphi: \mathbb{D} \to \mathbb{D}$ such that the operator $C_{\varphi}D_n$ is bounded. The bounded and compact operators $C_{\varphi}D_n$ on \mathcal{H}_{α} were determined in [6], [8], [9] and [11]. Recently the author and Hammond [3] obtained the adjoint, norm, and spectrum of some operators $C_{\varphi}D_1$ on the Hardy space. For an analytic self-map φ of \mathbb{D} and a positive integer n, the composition-differentiation operator on \mathcal{H}_{α} is defined by the rule $D_{\varphi,n}(f) = f^{(n)} \circ \varphi$; for convenience, we use the notation D_{φ} when n=1. The operator D_{φ} is guaranteed to be bounded (and in fact compact) on \mathcal{H}_{α} if $\|\varphi\|_{\infty} < 1$ and is guaranteed to be unbounded if φ has finite angular derivative at any point in $\partial \mathbb{D}$ (see [9] and [11]). For an analytic function ψ on \mathbb{D} , the weighted composition-differentiation operator $D_{\psi,\varphi,n}$ on \mathcal{H}_{α} is defined

$$D_{\psi,\varphi,n}f(z) = \psi(z)f^{(n)}(\varphi(z)).$$

Some properties of weighted composition—differentiation operators were considered in [4] and [5].

In the last two years, the weighted composition–differentiation operator has received a lot of attention from authors. In this paper, we determine the spectrum of a compact operator $D_{\psi_n,\varphi_n,n}$ when the fixed point w of φ_n is inside the open unit disk and the function ψ_n has a zero at w of order at least n (Theorem 2.4). The spectral radius of a class of compact weighted composition–differentiation operators is obtained (Theorem 2.5). Then for the compact operator D_{φ} , we find the spectrum of this operator whenever $\varphi'(w) = 0$ that $w \in \mathbb{D}$ is a fixed point of φ (Corollaries 2.6 and 2.7). In addition, we find the lower estimate and the upper estimate for $\|D_{\psi,\varphi,n}\|_{-1}$ (Propositions 3.2 and 3.6). Moreover, the norm of a composition–differentiation operator $D_{\varphi,n}$, acting on the Hardy space H^2 , is determined in the case where $\varphi(z) = bz$ for some complex number b that |b| < 1 (Theorem 3.5).

2. Spectral Properties

To find the spectrum of $D_{\psi_n,\varphi_n,n}$ we need to obtain an invariant subspace of $D_{\psi_n,\varphi_n,n}^*$. To do this, we consider the action of the adjoint of the operator $D_{\psi_n,\varphi_n,n}$ on the reproducing kernel functions.

Lemma 2.1. Let m be a non-negative integer. Suppose that $D_{\psi_n,\varphi_n,n}$ is a bounded operator on \mathcal{H}_{α} and the fixed point w of φ_n is inside the open unit disk. Assume that the function ψ_n has a zero at w of order at least n.

(i) If m > n, then

$$D_{\psi_{n},\varphi_{n},n}^{*}K_{w,\alpha}^{[m]} = \sum_{i=n}^{m-1} \overline{\beta_{i-n}(w)}K_{w,\alpha}^{[i]} + \binom{m}{n} \overline{\psi_{n}^{(n)}(w)(\varphi_{n}'(w))}^{m-n}K_{w,\alpha}^{[m]};$$

(ii) if m = n, then

$$D_{\psi_n,\varphi_n,n}^* K_{w,\alpha}^{[m]} = \overline{\psi_n^{(n)}(w)} K_{w,\alpha}^{[n]};$$

(iii) if m < n, then

$$D_{\psi_n,\varphi_n,n}^* K_{w,\alpha}^{[m]} = 0,$$

where the functions β_i 's consist of some products of the derivatives of ψ_n and φ_n .

Proof. Let f be an arbitrary function in \mathcal{H}_{α} . Let m < n. Since ψ_n has a zero at w of order at least n, we have

$$\langle f, D_{\psi_n, \varphi_n, n}^* K_{w, \alpha}^{[m]} \rangle = (\psi_n \cdot (f^{(n)} \circ \varphi_n))^{(m)}(w)$$

$$= \sum_{i=0}^m {m \choose i} \psi_n^{(m-i)}(w) (f^{(n)} \circ \varphi_n)^{(i)}(w)$$

$$= 0.$$

It shows that $D^*_{\psi_n,\varphi_n,n}K^{[m]}_{w,\alpha}=0.$ Now assume that $m\geq n.$ We obtain

$$\langle f, D_{\psi_{n}, \varphi_{n}, n}^{*} K_{w, \alpha}^{[m]} \rangle = \sum_{i=0}^{m} {m \choose i} \psi_{n}^{(m-i)}(w) (f^{(n)} \circ \varphi_{n})^{(i)}(w)$$

$$= \sum_{i=0}^{m-n} {m \choose i} \psi_{n}^{(m-i)}(w) (f^{(n)} \circ \varphi_{n})^{(i)}(w)$$

$$+ \sum_{i=m-n+1}^{m} {m \choose i} \psi_{n}^{(m-i)}(w) (f^{(n)} \circ \varphi_{n})^{(i)}(w)$$

$$= \sum_{i=0}^{m-n} {m \choose i} \psi_{n}^{(m-i)}(w) (f^{(n)} \circ \varphi_{n})^{(i)}(w).$$

$$(2.1)$$

If m > n, then by (2.1), we get

$$\left\langle f, D_{\psi_n, \varphi_n, n}^* K_{w, \alpha}^{[m]} \right\rangle = \left\langle f, \sum_{i=0}^{m-n-1} \overline{\beta_i(w)} K_{w, \alpha}^{[i+n]} + \binom{m}{m-n} \overline{\psi_n^{(n)}(w) \big(\varphi_n'(w)\big)^{m-n}} K_{w, \alpha}^{[m]} \right\rangle,$$

SO

4

$$D_{\psi_n,\varphi_n,n}^*K_{w,\alpha}^{[m]} = \sum_{i=n}^{m-1} \overline{\beta_{i-n}(w)}K_{w,\alpha}^{[i]} + \binom{m}{n} \overline{\psi_n^{(n)}(w)\big(\varphi_n'(w)\big)^{m-n}}K_{w,\alpha}^{[m]}.$$

If m = n, then by (2.1), we see that

$$\left\langle f, D_{\psi_n, \varphi_n, n}^* K_{w, \alpha}^{[m]} \right\rangle = \psi_n^{(n)}(w) f^{(n)}(w) = \left\langle f, \overline{\psi_n^{(n)}(w)} K_{w, \alpha}^{[n]} \right\rangle.$$

Hence the result follows.

In the next proposition, we identify all possible eigenvalues of $D_{\psi_n,\varphi_n,n}$.

Proposition 2.2. Suppose that $D_{\psi_n,\varphi_n,n}$ is a bounded operator on \mathcal{H}_{α} and the fixed point w of φ_n is inside the open unit disk. If the function ψ_n has a zero at w of order at least n, then

$$\{0\} \bigcup \left\{ \binom{l}{n} \psi_n^{(n)}(w) \left(\varphi_n'(w) \right)^{l-n} : l \in \mathbb{N}_{\geq n} \right\}$$

contains the point spectrum of $D_{\psi_n,\varphi_n,n}$.

Proof. Let λ be an arbitrary eigenvalue for $D_{\psi_n,\varphi_n,n}$ with corresponding eigenvector f. Note that

(2.2)
$$\lambda f(z) = \psi_n(z) f^{(n)} \left(\varphi_n(z) \right)$$

for each $z \in \mathbb{D}$. If $f(w) \neq 0$, then $\lambda = 0$. Let f have a zero at w of order $l \geq 1$. Differentiate (2.2) l times and evaluate it at the point z = w to obtain

(2.3)
$$\lambda f^{(l)}(w) = \sum_{j=0}^{l} {l \choose j} \psi_n^{(l-j)}(w) (f^{(n)} \circ \varphi_n)^{(j)}(w).$$

First assume that l < n. Since ψ_n has a zero at w of order at least n, we have $\lambda = 0$ by (2.3).

Now assume that $l \geq n$. Then $\psi_n^{(l-j)}(w) = 0$ for each j > l - n. Hence (2.3) implies that

$$\lambda f^{(l)}(w) = \sum_{i=0}^{l-n} {l \choose j} \psi_n^{(l-j)}(w) (f^{(n)} \circ \varphi_n)^{(j)}(w)$$

and so

$$\lambda f^{(l)}(w) = \binom{l}{l-n} \psi_n^{(n)}(w) f^{(l)}(w) \left(\varphi_n'(w)\right)^{l-n}.$$

(Note that in case of $\varphi'_n(w) = 0$ and l = n, we set $(\varphi'_n(w))^{l-n} = 1$.) Therefore, in this case, any eigenvalue must have the form

$$\binom{l}{n} \psi_n^{(n)}(w) (\varphi_n'(w))^{l-n}$$

for a natural number l with $l \geq n$.

Proposition 2.3. Suppose that the hypotheses of Proposition 2.2 hold. Then the point spectrum of $D_{\psi_n,\varphi_n,n}^*$ contains

$$\{0\}\bigcup \left\{\binom{l}{n}\overline{\psi_n^{(n)}(w)\big(\varphi_n'(w)\big)^{l-n}}:l\in \mathbb{N}_{\geq n}\right\}.$$

Proof. Let l be a positive integer with $l \geq n$ and K_l denote the span of $\{K_{w,\alpha}, K_{w,\alpha}^{[1]}, ..., K_{w,\alpha}^{[l]}\}$. Note that this spanning set is linearly independent and so is a basis. Let A_l be the matrix of the operator $D_{\psi_n,\varphi_n,n}^*$ restricted to K_l with respect to this basis. We infer from Lemma 2.1 that

$$A_{l} = \begin{bmatrix} 0_{n,n} & * & \dots & * \\ 0 & \overline{\psi_{n}^{(n)}(w)} & \dots & * \\ 0 & 0 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & {n \choose n} \overline{\psi_{n}^{(n)}(w) (\varphi_{n}'(w))^{l-n}} \end{bmatrix},$$

where $0_{n,n}$ is the zero matrix of dimension $n \times n$. Then A_l is an upper triangular matrix. Since the subspace K_l is finite dimensional, it is closed and so the space \mathcal{H}_{α} can be decomposed as $\mathcal{H}_{\alpha} = K_l \oplus K_l^{\perp}$. Then the block matrix of $D_{\psi_n,\varphi_n,n}^*$ with respect to the above decomposition must be of the form

$$\left[\begin{array}{cc} A_l & C_l \\ 0 & El \end{array}\right]$$

(note that K_l is invariant under $D_{\psi_n,\varphi_n,n}^*$ by Lemma 2.1 and so the lower left corner of the above matrix is 0). Since the spectrum of $D_{\psi_n,\varphi_n,n}^*$ is the union of the spectrum of A_l and the spectrum of E_l (see [2, p. 270]), we conclude that $\left\{\binom{t}{n}\overline{\psi_n^{(n)}(w)\big(\varphi_n'(w)\big)^{t-n}}:t\in\mathbb{N}\text{ and }n\leq t\leq l\right\}$ is the subset of $\sigma_{p,\alpha}\big(D_{\psi_n,\varphi_n,n}^*\big)$. Since l is arbitrary, the result follows.

In the following theorem, we characterize the spectrum of an operator $D_{\psi,\varphi,n}$ under the conditions of Proposition 2.2. The spectrum of an operator $D_{\psi,\varphi,n}$ which was obtained in [5, Theorem 3.1] is an example for Theorem 2.4.

Theorem 2.4. Suppose that the hypotheses of Proposition 2.2 hold. If $D_{\psi_n,\varphi_n,n}$ is compact on \mathcal{H}_{α} , then

$$\sigma_{\alpha}(D_{\psi_n,\varphi_n,n}) = \{0\} \bigcup \left\{ \binom{l}{n} \psi_n^{(n)}(w) (\varphi_n'(w))^{l-n} : l \in \mathbb{N}_{\geq n} \right\}.$$

In particular, if $\psi_n^{(n)}(w) = 0$, then the operator $D_{\psi_n,\varphi_n,n}$ is quasinilpotent; that is, its spectrum is $\{0\}$.

In the next theorem, we obtain the spectral radius of a compact operator $D_{\psi,\varphi,n}$.

Theorem 2.5. Suppose that $D_{\psi,\varphi,n}$ is a compact operator on \mathcal{H}_{α} . Assume that the fixed point w of φ is inside the open unit disk and the function ψ has a zero at w of order n. Then

$$r_{\alpha}(D_{\psi,\varphi,n}) = \binom{\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor}{n} |\psi^{(n)}(w)| |\varphi'(w)|^{\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor - n},$$

where $|\cdot|$ denotes the greatest integer function.

Proof. Theorem 2.4 implies that

$$\sigma_{\alpha}(D_{\psi,\varphi,n}) = \left\{ \binom{l}{n} \psi^{(n)}(w) (\varphi'(w))^{l-n} : l \in \mathbb{N}_{\geq n} \right\}$$

and so

6

$$r_{\alpha}(D_{\psi,\varphi,n}) = \sup \left\{ \binom{l}{n} |\psi^{(n)}(w)| |\varphi'(w)|^{l-n} : l \in \mathbb{N}_{\geq n} \right\}.$$

If $\varphi'(w)=0$, then $r_{\alpha}\big(D_{\psi,\varphi,n}\big)=\big|\psi^{(n)}(w)\big|$. Now suppose that $\varphi'(w)\neq 0$. Let the function $h(x)=x(x-1)...(x-n+1)\big|\varphi'(w)\big|^{x-n}$ on $[n,+\infty)$. Since $\big|\varphi'(w)\big|<1$ (see the Grand Iteration Theorem), we conclude that $\lim_{x\to\infty}h(x)=0$. Then h is a bounded function on $[n,+\infty)$ and so it obtains an absolute maximum point. If h'(t)=0 for some $t\in[n,+\infty)$, then $g(t)=-\ln\big|\varphi'(w)\big|$, where $g(x)=\frac{1}{x}+\frac{1}{x-1}+\ldots+\frac{1}{x-n+1}$ for each $x\in[n,+\infty)$. We can easily see that g' is strictly decreasing and so the function h has at most one local extremum on $[n,+\infty)$, which must be its absolute maximum (note that if $h'(t)\neq 0$ for all t, then h has an absolute maximum of n! at n). Therefore, for obtaining $r_{\alpha}\big(D_{\psi,\varphi,n}\big)$, we must find the greatest natural number l such that $l\geq n$ and

$$(l-1)...(l-n)|\varphi'(w)|^{l-n-1} \le l...(l-n+1)|\varphi'(w)|^{l-n}$$

or equivalently $l \leq \frac{n}{1-\left|\varphi'(w)\right|}$ (note that if $n! = n(n-1)...1 \cdot \left|\varphi'(w)\right|^{n-n} > l...(l-1)$

 $|n+1| |\varphi'(w)|^{l-n}$ for each l>n, then we have $n!>(n+1)! |\varphi'(w)|$. It shows that $n<\frac{n}{1-|\varphi'(w)|}< n+1$ and so $\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor =n$). Thus the quantity $\binom{l}{n} |\varphi'(w)|^{l-n}$ is

maximized when
$$l = \left\lfloor \frac{n}{1 - \left| \varphi'(w) \right|} \right\rfloor$$
, so the conclusion follows.

In the following two corollaries, we find the spectrum of the compact operator D_{φ} , whenever $\varphi'(w) = 0$ that $w \in \mathbb{D}$ is a fixed point of φ .

Corollary 2.6. Suppose that D_{φ} is compact on \mathcal{H}_{α} . Assume that $w \in \mathbb{D}$ is a fixed point of φ and $\varphi'(w) = \varphi''(w) = 0$. Then D_{φ} is quasinilpotent.

Proof. Suppose that D_{φ} is compact on \mathcal{H}_{α} . Then $D_{\varphi'\circ\varphi,\varphi_2,2}=D_{\varphi}D_{\varphi}$ is compact. Let $w\in\mathbb{D}$ be a fixed point of φ . If λ is an eigenvalue for D_{φ} corresponding to the eigenvector f, then λ^2 is an eigenvector for $D_{\varphi'\circ\varphi,\varphi_2,2}$ corresponding to eigenvector f. Since $\varphi'(w)=\varphi''(w)=0$, Theorem 2.4 dictates that $D_{\varphi'\circ\varphi,\varphi_2,2}$ is quasinilpotent. Hence D_{φ} is quasinilpotent. \square

Corollary 2.7. Suppose that D_{φ} is compact on \mathcal{H}_{α} . Assume that $w \in \mathbb{D}$ is a fixed point of φ , $\varphi'(w) = 0$, and $\varphi''(w) \neq 0$. Then

$$\sigma_{\alpha}(D_{\varphi}) = \{0, \varphi''(w)\}.$$

Proof. Suppose that $\varphi'(w) = 0$ and $\varphi''(w) \neq 0$. Then $D_{\varphi}^* K_{w,\alpha}^{[2]} = \overline{\varphi''(w)} K_{w,\alpha}^{[2]}$ by [4, Lemma 1]. Hence $\varphi''(w)$ is an eigenvalue for D_{φ} and so D_{φ} is not quasinilpotent. We can see that $D_{\varphi'\circ\varphi,\varphi_2,2} = D_{\varphi}D_{\varphi}$ is compact. Using Theorem 2.4 for $D_{\varphi'\circ\varphi,\varphi_2,2}$ shows that $\sigma_{\alpha}(D_{\varphi'\circ\varphi,\varphi_2,2}) = \{0, (\varphi''(w))^2\}$, so

$$\{0, \varphi''(w)\} \subseteq \sigma_{\alpha}(D_{\varphi}) \subseteq \{0, \varphi''(w), -\varphi''(w)\}.$$

Suppose that $-\varphi''(w)$ is an eigenvalue for D_{φ} with corresponding eigenvector f. Note that

$$(2.4) f'(\varphi(z)) = -\varphi''(w)f(z).$$

Differentiate both sides of (2.4) to obtain

(2.5)
$$f^{(2)}(\varphi(z))\varphi'(z) = -\varphi''(w)f'(z).$$

Indeed, letting z = w in (2.5) gives f'(w) = 0, so putting z = w in (2.4) shows that f(w) = 0. Now by differentiating both sides of (2.5), we have

(2.6)
$$f^{(3)}(\varphi(z))(\varphi'(z))^2 + f^{(2)}(\varphi(z))\varphi''(z) = -\varphi''(w)f''(z).$$

Hence letting z = w in (2.6) implies that $f^{(2)}(w) = 0$. It is not hard to see that $f^{(3)}(w) = 0$ by differentiating both sides of (2.6) and letting z = w. Now assume that f has a zero at w of order m, where m > 2. Then $f(w) = f^{(1)}(w) = f^{(2)}(w) = \dots = f^{(m-1)}(w) = 0$. Differentiate both sides of (2.5) m-1 times to see that

(2.7)
$$\sum_{k=0}^{m-1} {m-1 \choose k} (f'' \circ \varphi)^{(m-1-k)}(w) (\varphi')^{(k)}(w) = -\varphi''(w) f^{(m)}(w).$$

Since $\varphi'(w) = 0$ and f has a zero at w of order m, we can see that

$$\sum_{k=0}^{m-1} {m-1 \choose k} (f'' \circ \varphi)^{(m-1-k)}(w) (\varphi')^{(k)}(w) = (f'' \circ \varphi)^{(m-1)}(w) \varphi'(w)$$

$$+ (m-1) (f'' \circ \varphi)^{(m-2)}(w) \varphi''(w)$$

$$+ \sum_{k=2}^{m-1} {m-1 \choose k} (f'' \circ \varphi)^{(m-1-k)}(w) (\varphi')^{(k)}(w)$$

$$= (m-1) (f'' \circ \varphi)^{(m-2)}(w) \varphi''(w).$$

$$(2.8)$$

Since m>2, we have $(f''\circ\varphi)^{(m-2)}(w)=f^{(m)}(w)\big(\varphi'(w)\big)^{m-2}+\sum_{k=0}^{m-1}f^{(k)}(w)g_k(w)$, where g_k 's are functions which consist of various products of the derivatives of φ . It follows that $(f''\circ\varphi)^{(m-2)}(w)=0$ because $\varphi'(w)=0$ and f has a zero of order m at w. Then $\sum_{k=0}^{m-1}{m-1 \choose k}(f''\circ\varphi)^{(m-1-k)}(w)\big(\varphi'\big)^{(k)}(w)=0$ by (2.8) and so (2.7) implies that $f^{(m)}(w)=0$ which is a contradiction. Then

$$\sigma_{\alpha}(D_{\varphi}) = \{0, \varphi''(w)\}.$$

We can see that [3, Example 6] is an example for Corollary 2.7.

Remark 2.8. Assume that $\varphi \equiv a$, where a is constant with |a| < 1 so that $D_{\psi,\varphi,n}$ is bounded on \mathcal{H}_{α} . Since $\|\varphi\|_{\infty} < 1$, the operator $D_{\psi,\varphi,n}$ is compact (see [8] and [11]). The spectra of some of such operators $D_{\psi,\varphi,n}$ were found in [5, Theorem 3.2] and [5, Theorem 3.3], but by the same idea which was stated in the proof of [5, Theorem 3.2], we can easily see that for these operators, we obtain

$$\sigma_{\alpha}(D_{\psi,\varphi,n}) := \begin{cases} \{0\} \cup \{\psi^{(n)}(a)\}, & \psi^{(n)}(a) \neq 0, \\ \{0\}, & \psi^{(n)}(a) = 0; \end{cases}$$

moreover, if $\psi^{(n)}(a) \neq 0$, then ψ is an eigenvector for $D_{\psi,\varphi,n}$ with corresponding eigenvalue $\psi^{(n)}(a)$.

Example 2.9. Suppose that $\varphi(z) = w + c_2(z - w)^2 + ... + c_n(z - w)^n$, where $n \ge 2$, $w \in \mathbb{D}$ and $c_2, ..., c_n$ are constant with $|w| + |c_2| (1 + |w|)^2 + ... + |c_n| (1 + |w|)^n < 1$. (i) If $c_i = 0$ for each $i \ge 2$, then $\sigma_{\alpha}(D_{\varphi}) = \{0\}$ by Remark 2.8.

(i) If $c_2 = 0$ and there is an integer i > 2 such that $c_i \neq 0$, then Corollary 2.6 implies that $\sigma_{\alpha}(D_{\varphi}) = \{0\}$.

(iii) Assume that $c_2 \neq 0$. Invoking Corollary 2.7, we see that $\sigma_{\alpha}(D_{\varphi}) = \{0, 2c_2\}$.

3. Norms

We begin this section with an example which is a starting point for estimating a lower bound for $||D_{\psi,\varphi,n}||_{-1}$.

Example 3.1. Suppose that $\varphi(z) = bz^3 + az^2$ with $\frac{1}{2} < |a| < 1$ and |a| + |b| < 1. We can see that $\varphi(0) = \varphi'(0) = 0$ and $\varphi''(0) = 2a$. By Corollary 2.7, we have $r_{\alpha}(D_{\varphi}) = 2|a|$ and so $||D_{\varphi}||_{\alpha} \ge 2|a| > 1$. Compare 2|a| with the lower bound for $||D_{\varphi}||_{-1}$ which was found in [3, Proposition 4] (note that [3, Proposition 4] implies that $||D_{\varphi}||_{-1} \ge 1$).

The preceding example leads to obtain the lower estimate on the norm of $D_{\psi,\varphi,n}$ on the Hardy space by using the spectrum of a weighted composition–differentiation operator which was obtained in Proposition 2.3.

Proposition 3.2. Suppose that $D_{\psi,\varphi,n}$ is a bounded operator on H^2 . Assume that the fixed point w of φ is inside the open unit disk.

(i) If
$$\varphi'(w) \neq 0$$
, then

$$||D_{\psi,\varphi,n}||_{-1} \ge |\phi^{(n)}(w)| \binom{\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor}{n} |\varphi'(w)|^{\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor - n};$$

(ii) if
$$\varphi'(w) = 0$$
, then

$$||D_{\psi,\varphi,n}||_{-1} \ge |\phi^{(n)}(w)|;$$

(iii) if
$$\varphi'(w) = 0$$
, $\psi''(w) = 0$ and $n = 1$, then

$$||D_{\psi,\varphi,1}||_{-1} \ge \max \left\{ |\phi'(w)|, |\psi(w)\varphi''(w)| \right\},$$

where

8

where
$$\phi(z) := \begin{cases} \psi(z), & \psi^{(0)}(w) = \dots = \psi^{(n-1)}(w) = 0, \\ \psi(z) \left(\frac{w-z}{1-\overline{w}z}\right)^{n-m}, & \psi^{(0)}(w) = \dots = \psi^{(m-1)}(w) = 0, \ \psi^{(m)}(w) \neq 0 \ and \ 1 \leq m < n, \\ \psi(z) \left(\frac{w-z}{1-\overline{w}z}\right)^{n}, & \psi(w) \neq 0. \end{cases}$$

Proof. First suppose that $\psi^{(0)}(w) = \dots = \psi^{(n-1)}(w) = 0$. Proposition 2.3 and the idea which was used in the proof of Theorem 2.5 imply that

(Note that in case of $\varphi'(w) = 0$, we set $|\varphi'(w)|^{\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor - n} = 1$.) Now assume that $\psi(z) = (w-z)^m g(z)$, where $1 \leq m < n$ and $g(w) \neq 0$. Let

Now assume that $\psi(z) = (w-z)^m g(z)$, where $1 \le m < n$ and $g(w) \ne 0$. Let $\phi(z) = \psi(z) \left(\frac{w-z}{1-\overline{w}z}\right)^{n-m}$. Since $T_{\frac{w-z}{1-\overline{w}z}}$ is an isometry on H^2 and the *n*th derivative

of $\psi(z) \left(\frac{w-z}{1-\overline{w}z}\right)^{n-m}$ at the point w is $\frac{(-1)^n n! g(w)}{\left(1-|w|^2\right)^{n-m}}$, by replacing ϕ with ψ in (3.1), we obtain

$$\left\|D_{\psi,\varphi,n}\right\|_{-1} = \left\|D_{\phi,\varphi,n}\right\|_{-1} \ge \frac{n!|g(w)|}{\left(1-|w|^2\right)^{n-m}} \binom{\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor}{n} |\varphi'(w)|^{\left\lfloor \frac{n}{1-|\varphi'(w)|} \right\rfloor-n}.$$

Now suppose that $\psi(w) \neq 0$ and $\phi(z) = \psi(z) \left(\frac{w-z}{1-\overline{w}z}\right)^n$. By replacing ϕ with ψ in (3.1), we have

$$\left\|D_{\psi,\varphi,n}\right\|_{-1} = \left\|D_{\phi,\varphi,n}\right\|_{-1} \ge \frac{n! |\psi(w)|}{\left(1 - |w|^2\right)^n} \binom{\left\lfloor \frac{n}{1 - |\varphi'(w)|} \right\rfloor}{n} |\varphi'(w)|^{\left\lfloor \frac{n}{1 - |\varphi'(w)|} \right\rfloor - n}.$$

Note that if $\varphi'(w) = 0$ and $\psi''(w) = 0$, then $D_{\psi,\varphi,1}^*K_{w,-1}^{[2]} = \overline{\psi(w)\varphi''(w)}K_{w,-1}^{[2]}$ by [4, Lemma 1]. Therefore, we conclude that $\|D_{\psi,\varphi,1}\|_{-1} \ge |\psi(w)\varphi''(w)|$. Hence the result follows.

In the next example, we show that for some operators D_{φ} , Proposition 3.2 is more useful than [3, Proposition 4] for estimating the lower bound for $||D_{\varphi}||_{-1}$.

Example 3.3. Suppose that $\varphi(z) = az^n + bz$, where $\frac{1}{2} < |b| < 1 - |a|$ and n is a positive integer that $n \ge 2$. Proposition 3.2 implies that

$$||D_{\varphi}||_{-1} \ge \left[\frac{1}{1-|b|}\right] |b|^{\lfloor 1/(1-|b|)\rfloor-1} > 1$$

and so this lower bound is greater than the lower bound for $||D_{\varphi}||_{-1}$ which was estimated in [3, Proposition 4].

In the following proposition, we obtain $||D_{\psi,\varphi,n}||_{\alpha}$, when $D_{\psi,\varphi,n}$ is a cohyponormal operator which satisfies the hypotheses of Proposition 2.2.

Proposition 3.4. Suppose that ψ is not identically zero and φ is a nonconstant analytic self-map of $\mathbb D$ so that $D_{\psi,\varphi,n}$ is bounded on $\mathcal H_\alpha$. Assume that $w \in \mathbb D$ is the fixed point of φ and ψ has a zero at w of order at least n. Then $D_{\psi,\varphi,n}$ is cohyponormal on $\mathcal H_\alpha$ if and only if $\psi(z) = az^n$ and $\varphi(z) = bz$, where $a \in \mathbb C \setminus \{0\}$ and $b \in \mathbb D \setminus \{0\}$; moreover, in this case

$$||D_{\psi,\varphi,n}||_{\alpha} = n!|a| {\lfloor \frac{n}{1-|b|} \rfloor \choose n} |b|^{\lfloor \frac{n}{1-|b|} \rfloor - n}.$$

Proof. Suppose that $D_{\psi,\varphi,n}$ is cohyponormal. Lemma 2.1 shows that $D_{\psi,\varphi,n}^*K_{w,\alpha}=0$. Hence $K_{w,\alpha}$ is an eigenvector for $D_{\psi,\varphi,n}^*$ corresponding to eigenvalue 0. Since $D_{\psi,\varphi,n}$ is cohyponormal, we conclude that $D_{\psi,\varphi,n}K_{w,\alpha}(z)=\frac{(\alpha+2)\dots(\alpha+n+1)\overline{w}^n\psi(z)}{(1-\overline{w}\varphi(z))^{\alpha+2+n}}=0$ and so w=0. Lemma 2.1 implies that

$$D_{\psi,\varphi,n}^* K_{0,\alpha}^{[n]}(z) = \overline{\psi^{(n)}(0)} K_{0,\alpha}^{[n]}(z) = \overline{\psi^{(n)}(0)}(\alpha+2)...(\alpha+n+1)z^n.$$

Since $D_{\psi,\varphi,n}$ is cohyponormal, it follows that

$$D_{\psi,\varphi,n}K_{0,\alpha}^{[n]}(z) = \psi^{(n)}(0)(\alpha+2)...(\alpha+n+1)z^n.$$

Because $D_{\psi,\varphi,n}K_{0,\alpha}^{[n]}=n!(\alpha+2)...(\alpha+n+1)\psi$, we conclude that $\psi(z)=\frac{\psi^{(n)}(0)}{n!}z^n$, where $\psi^{(n)}(0)\neq 0$ (note that ψ is not identically zero). Then $\psi^{(m)}(0)=0$ for each $m\neq n$. Hence Lemma 2.1 shows that

$$D_{\psi,\varphi,n}^* K_{0,\alpha}^{[n+1]} = (n+1) \overline{\psi^{(n)}(0) \varphi'(0)} K_{0,\alpha}^{[n+1]}.$$

Therefore, we have

(3.2)
$$D_{\psi,\varphi,n}K_{0,\alpha}^{[n+1]} = (n+1)\psi^{(n)}(0)\varphi'(0)K_{0,\alpha}^{[n+1]}.$$

On the other hand, we obtain

$$D_{\psi,\varphi,n}K_{0,\alpha}^{[n+1]}(z) = (n+1)!(\alpha+2)...(\alpha+n+2)\psi(z)\varphi(z)$$

$$= (n+1)!(\alpha+2)...(\alpha+n+2)\frac{\psi^{(n)}(0)}{n!}z^{n}\varphi(z)$$
(3.3)

for each $z \in \mathbb{D}$. Since $D_{\psi,\varphi,n}$ is cohyponormal and bounded, (3.2) and (3.3) imply that $\varphi(z) = \varphi'(0)z$, where $|\varphi'(0)| < 1$.

Conversely is obvious by [7, Proposition 3.2] (note that an analogue of [7, Proposition 3.2] holds in H^2 by the similar idea).

Due to the cohyponormality of $D_{\psi,\varphi,n}$, invoking Theorem 2.5, it follows that

$$\left\|D_{\psi,\varphi,n}\right\|_{\alpha}=r_{\alpha}(D_{\psi,\varphi,n})=n!|a|\binom{\left\lfloor\frac{n}{1-|b|}\right\rfloor}{n}|b|^{\left\lfloor\frac{n}{1-|b|}\right\rfloor-n}.$$

From now on we consider φ with $\|\varphi\|_{\infty} < 1$; this assumption guarantees that $D_{\varphi,n}$ is bounded on H^2 (see [8] and [9]). In Theorem 3.5, we extend [3, Theorem 2].

Theorem 3.5. If $\varphi(z) = bz$ for some $b \in \mathbb{D} \setminus \{0\}$, then

(3.4)
$$||D_{\varphi,n}||_{-1} = n! \binom{\left\lfloor \frac{n}{1-|b|} \right\rfloor}{n} |b|^{\left\lfloor \frac{n}{1-|b|} \right\rfloor - n}.$$

Proof. The result follows immediately from Proposition 3.4 and the fact that T_{z^n} is an isometry on H^2 .

In view of Theorem 3.5, we can see that $||D_{\varphi,n}||_{-1} = n!$ for $0 < |b| \le \frac{1}{n+1}$ and $||D_{\varphi,n}||_{-1} > n!$ for $\frac{1}{n+1} < |b| < 1$. Since C_{z^k} is an isometry on H^2 , (3.4) holds for $\varphi(z) = bz^k$ where k is a positive integer.

In the next proposition, we estimate an upper bound for $||D_{\psi,\varphi,n}||_{-1}$.

Proposition 3.6. If φ is a nonconstant analytic self-map of \mathbb{D} with $\|\varphi\|_{\infty} < 1$ and the function ψ belongs to H^{∞} , then

$$||D_{\psi,\varphi,n}||_{-1} \le n! ||\psi||_{\infty} \sqrt{\frac{b + |\varphi(0)|}{b - |\varphi(0)|}} {\binom{\left\lfloor \frac{n}{1-b} \right\rfloor}{n}} b^{\left\lfloor \frac{n}{1-b} \right\rfloor - n}$$

whenever $\|\varphi\|_{\infty} \le b < 1$. In particular, $\|D_{\varphi,n}\|_{-1} = n!$ whenever both $\|\varphi\|_{\infty} \le \frac{1}{n+1}$ and $\varphi(0) = 0$.

Proof. Suppose that $\|\varphi\|_{\infty} \leq b < 1$ and $\psi \in H^{\infty}$. We define $\varphi_b = (1/b)\varphi$ and $\rho(z) = bz$ (see [3, p. 2898]). Since $\|D_{\psi,\varphi,n}\|_{-1} \leq \|\psi\|_{\infty} \|C_{\varphi_b}\|_{-1} \|D_{\rho,n}\|_{-1}$, we can see that

by Theorem 3.5 and (1.1). Now suppose that $\|\varphi\|_{\infty} \leq \frac{1}{n+1}$ and $\varphi(0) = 0$. By the Cauchy–Bunyakowsky–Schwarz Inequality, we have $|\varphi'(0)| \leq \|\varphi\| \|K_{0,-1}^{[1]}\| \leq$

 $\|\varphi\|_{\infty} \leq \frac{1}{n+1}$. Consequently $\|D_{\varphi,n}\|_{-1} \geq n!$ by Proposition 3.2. On the other hand, (3.5) implies that $\|D_{\varphi,n}\|_{-1} \leq n!$. Therefore $\|D_{\varphi,n}\|_{-1} = n!$.

References

- [1] J. B. Conway, The Theory of Subnormal Operators, Amer. Math. Soc., Providence, 1991.
- [2] C. C. COWEN AND B. D. MACCLUER, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
- [3] M. FATEHI AND C. N. B. HAMMOND, Composition-differentiation operators on the Hardy space, Proc. Amer. Math. Soc. 148 (2020), 2893–2900.
- [4] M. FATEHI AND C. N. B. HAMMOND, Normality and self-adjointness of weighted compositiondifferentiation operators, Complex Anal. Oper. Theory 15 (2021), 13.
- [5] K. HAN AND M. WANG, Weighted composition-differentiation operators on the Bergman space, Complex Anal. Oper. Theory 15 (2021), 17.
- [6] R. A. HIBSCHWEILER AND N. PORTNOY, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain. J. Math. 35 (2005), 843–855.
- [7] M. MORADI AND M. FATEHI, Complex symmetric weighted composition—differentiation operators of order n on the weighted Bergman spaces, arXiv:2101.04911.
- [8] M. MORADI AND M. FATEHI, Products of composition and differentiation operators on the Hardy space, arXiv:2108.06774
- [9] S. Ohno, Products of composition and differentiation between Hardy spaces, Bull. Austral. Math. Soc. 73 (2006), no. 2, 235–243.
- [10] A. E. RICHMAN, Subnormality and composition operators on the Bergman space, Integr. Equ. Oper. Theory 45 (2003), 105–124.
- [11] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), 623–635.

DEPARTMENT OF MATHEMATICS, SHIRAZ BRANCH, ISLAMIC AZAD UNIVERSITY, SHIRAZ, IRAN $Email\ address$: fatehimahsa@yahoo.com