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AN ARGUMENT PRINCIPLE FOR REAL FUNCTIONS AND NON-HARMONIC
SINGULARITIES IN THE PLANE

JOEL LANGER

ABSTRACT. A real, rational function r(t) determines an argument function ϑ(t), whose increment ∆ϑ(t)

relates the numbers of distinct, real zeros and poles of r(t). The present expository note derives such a

result, and explains its relevance to the index for a certain class of planar singularities.

1. Introduction

If p(t) is a polynomial of degree d ≥ 1 with real coefficients, its number of distinct, real zeros Z [p]≤ d
may be determined by the classical method of Sturm sequences (which we briefly recall in Remark 2.2).

On the other hand, Z [p] =
1
π

∫
∞

−∞

(p′)2 − pp′′

(p′)2 + p2 dt, as shown in §2.

This note concerns the geometrical interpretation of such a formula. Actually, the topological
meaning will be more fully realized for r(t) = p(t)

q(t) , a real rational function. We may associate with r

two smooth functions of t (see §2 for details): The complex indicatrix r̂ :=
r− ir′

r+ ir′
, and its argument

ϑ(t) := arg r̂(t). Then the numbers Z [r], P[r] of distinct real zeros and poles of r satisfy:

(1) Z [r]−P[r] =
1
π

∫
∞

−∞

(r′)2 − rr′′

(r′)2 + r2 dt =
1

2πi

∫
∞

−∞

r̂′

r̂
dt =

∆ϑ

2π
,

where ∆ϑ = ϑ(∞)−ϑ(−∞).
We call Equation 1 the real argument principle to invite comparison with the argument principle

in complex variables: Z f −Pf =
1

2πi

∫
γ

f ′(z)
f (z)

dz =
∆θ

2π
; here, ∆θ is the net change in θ = arg f (z)

over the closed contour γ . But as usual in complex analysis, Z f and Pf count zeros and poles of the
meromorphic function f (z) with multiplicities, and the zeros/poles lie inside (not on) the contour of
integration γ . So the comparison is a curious one.

That being the case, we devote §3 and §4 to a related topic which gives the real argument principle
much of the same geometric flavor and intuitive appeal of its complex namesake. Namely, we discuss
non-harmonic singularities—a class of planar foliation singularities directly generalizing the zeros
and poles of meromorphic functions. Theorem 3.1 gives the index of such a singularity by a simple
formula which closely resembles Equation 1. To come full circle, we conclude that the index of a
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AN ARGUMENT PRINCIPLE FOR REAL FUNCTIONS 2

non-harmonic singularity may be computed by the method of Sturm sequences (Corollary 3.2). The
concluding section §4 is a brief recapitulation of §3 via the Poincaré-Hopf Theorem and foliations of
the real projective plane by pencils of algebraic curves.

2. The integral formula and real argument principle

We list notation for a real, rational function r, its logarithmic derivative l and complex indicatrix r̂; also
for the above integrand R[r]:

r =
p
q
, l :=

r′

r
, r̂ =

r− ir′

r+ ir′
, R[r] :=

(r′)2 − rr′′

(r′)2 + r2 .

One verifies the following additional expressions for R[r]:

(2) R[r] =− d
dt

arctan l =
1
2i

d
dt

log r̂ =
q2((p′)2 − pp′′)− p2((q′)2 −qq′′)

(pq′−qp′)2 + p2q2 =:
P
Q
.

From the first expression, R[r] is evidently bounded on R, so its real singularities are removable.
Further, the indicated polynomials P,Q satisfy degQ ≥ degP+2, so the improper integral

∫
∞

−∞
R[r]dt

converges.
To evaluate this integral, let t1 < · · · < tm be the sequence of real zeros and poles of r(t). Then∫

∞

−∞
R[r]dt may be computed as a sum of integrals over subintervals (−∞, t1], [t1, t2], . . . , [tm,∞). Write

r = (t − t1)n1 . . .(t − tm)nms(t), where s(t) is a rational function with no real zeros or poles. The poles
of the logarithmic derivative l = r′

r = s′
s +∑

m
j=1

n j
t−t j

are the zeros and poles of r.
Now consider an interval (a,b) not containing any pole of l; that is, for some j, t j < a < b < t j+1

(we allow t j = t0 =−∞ or t j+1 = tm+1 = ∞). Then we may evaluate
∫ t j+1

t j R[r]dt by taking one-sided
limits a ↓ t j, b ↑ t j+1 in the integral

∫ b

a
R[r]dt =−arctan l

∣∣∣b
a
=−arctan

(
s′

s
+

m

∑
k=1

nk

t − tk

)∣∣∣∣∣
b

a

.

E.g., if t j and t j+1 are both zeros of r, the exponents n j,n j+1 are positive, so limt↓t j
n j

t−t j
= ∞ and,

likewise, limt↑t j
n j+1

t−t j+1
=−∞, while the remaining terms in l have finite limits. Thus,

∫ t j+1
t j R[r]dt =

−arctanu|−∞
∞ = π—each endpoint contributing π

2 . On the other hand, if one or the other endpoint tk is
a pole of r (nk < 0), it contributes −π

2 , while an “endpoint” ±∞ contributes nothing, since l(∞) = 0.
The upshot is that

∫
∞

−∞
R[r]dt, as a sum over subintervals, may be reorganized as a sum over poles

of l, each contributing ±π:
∫

∞

−∞
R[r]dt = π(Z [r]−P[r]). Using Equation 2, the second integral in

Equation 1 now follows as well.
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Remark 2.1. Applying Equation 1 to polynomials p and q, an alternative integral formula now follows

at once: Z [r]−P[r] = Z [p]−Z [q] =
1
π

∫
∞

−∞

(R[p]−R[q])dt (even though R[p]−R[q] ̸= R[ p
q ], as

can be seen from from Equation 2).

Now we turn to the real argument principle for r(t) = p(t)
q(t) . Let t0 ∈ R. Unless t0 is a non-simple

zero of r, the indicatrix r̂ = r−ir′
r+ir′ is a well-defined complex unit. But then even if r(t0) = r′(t0) = 0,

r̂ cannot have a pole at t0 (t0 must be a removable singularity). Thus, r̂ maps the real line smoothly
to the unit circle r̂ : R→ S1 ⊂ C. Consequently, there is also a smooth argument function ϑ(t) along
r̂(t). In fact, it is given by the indefinite integral: ϑ(t) =

∫ t
−∞

2R[r]dτ . Namely, in view of Equation 2
(and the fact that |r̂|= 1), we have: d

dt ϑ = 2R[r] =−i d
dt log r̂ = d

dt arg r̂; further ϑ(−∞) = 0 matches
arg r̂(−∞) = arg 1−il(∞)

1+il(∞) = 0. In particular, ∆ϑ = 2
∫

∞

−∞
R[r]dt = 2π(Z [r]−P[r]).

Remark 2.2. It is interesting to consider the integral formula and argument principle in contrast with
the very different, algebraic method of Sturm sequences. Here we briefly describe the method, whose
full justification may be found in [3, §5.2].

To count zeros of p(x) = xd + cd−1xd−1 + · · ·+ c0, c j ∈ R, first assume p(x) has only simple zeros;
thus, p and its derivative p′ have greatest common divisor (p, p′) = 1. A sequence of polynomials
of decreasing degree, p0 = p, p1 = p′, p2, . . . , pn, n ≤ d, is defined by a variant of the Euclidean
algorithm: p0 = Q1 p1 − p2 with deg p2 < deg p1; p1 = Q2 p2 − p3, deg p3 < deg p2, etc.; until pn−2 =

Qn−1 pn−1 − pn, and finally, pn−1 = Qn pn. Here, pn is a g.c.d of p and p′ (as for the usual Euclidean
algorithm pi−1 = Qi pi + pi+1). But pn is therefore a constant, since we assume (p, p′) = 1.

For x not a zero of p, consider the sequence of real numbers Σ(x) := {p0(x), p1(x), . . . , pn(x)}.
Let σ(x) count the number of sign changes in Σ(x) (ignoring zeros among the pi(x)). Assume
a < b are not zeros of p. Then it can be shown that the number of zeros of p in (a,b) is given by:
Z b

a [p] = σ(a)−σ(b). (The idea is this: As x increases from a to b, σ(x) steps down by one each time
x passes a zero of p, and σ(x) is otherwise constant.)

If p has non-simple zeros, one can always divide out by the g.c.d. of p and p′ and apply the above
to p̃ = p/(p, p′)—which has the same zeros as p, but all simple. Finally, to count all real zeros of p,
one may take (a,b) = (−M,M) for M large enough. For M = max{1, |cn−1|, . . . , |c0|}, say, it may be
shown that |p(x)|> 0 for |x|> M, so Z [p] = σ(−M)−σ(M).

3. Planar foliations and the index of a non-harmonic singularity

Figure 1 shows standard planar vector field singularities of index n. Namely, wn(z) = u+ iv = zn =

(x+ iy)n defines a vector field on the plane C ≃ R2, for n = 0,1,2, . . . , and on the punctured plane
C \ {0}, for n = −1,−2, . . . . As the point z = εeiθ makes one counterclockwise turn around the
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FIGURE 1. Phase portraits of dz
dt = zn have indices I0(zn) = n at z = 0. Top: n =

−1,−2,−3,−4. Bottom: n = 1,2,3,4.

circle |z|= ε > 0, the vector wn = εneinθ completes n rotations (clockwise, in case n < 0). Thus, the
singularity at the origin has index I0(wn) = n.

For our purposes, a somewhat more general construction is required. To explain the idea, we first
consider the trajectories of wn. Let z = x(t)+ iy(t) solve the ODE: dz

dt = zn. Separation of variables
yields the implicit solution in terms of the complex potential Φ(z) = h+ ik =

∫ dz
zn = 1

1−nz1−n (n ̸= 1).
Then we have d

dt Φ(z(t)) = z−n(t)z′(t) = 1, so, k(x,y) = ℑ(Φ(z)) is constant along trajectories.
Thus, for n ̸= 1, the phase portrait of the ODE consists of algebraic curves arising as level sets

k(x,y) = k0 of a homogeneous, harmonic polynomial or rational function, k(x,y) = g(x,y)
h(x,y) . These

well-known curves are the sinus spirals rm sinmθ = A, which have many interesting properties [7].
We now proceed to define the larger class of singularities of principal interest here. Let g(x,y) =

Π j(A jx+B jy) and h(x,y) = Πk(Ckx+Dky) be a pair of real, binary forms with no common factors.
(Here we depend on the Fundamental Theorem of Algebra, and note that some linear factors may come
in complex conjugate pairs.) Also, we allow h or g to be constant.

Then the level set diagram of k(x,y) = g(x,y)
h(x,y) (including k = ∞) gives a planar foliation F ; that is,

F is the pencil of algebraic curves F : αg+βh, α,β ∈ R. (Strictly speaking, we distinguish the
pencil from its foliation; but we use F to denote both.) When g and h are forms, as they are here,
we refer to F : αg+βh as a tangent pencil, with the following interpretation in mind: If we start
with a general pencil of algebraic curves F̃ : α g̃+β h̃ with singularity at p, we can form a new pencil
F : αg+βh by replacing g̃, h̃ by all their (real and complex) tangent lines at p. Then F is a kind of
“first approximation” of F̃ at p.
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FIGURE 2. Indices: Ip(F1) = 4, Ip(F2) =−2, Ip(F3) = Ip(F4) = 1.

Figure 2 shows tangent pencils F1, . . . ,F4 for the four rational functions:

k1 =
(3x2y− y3)

(x2 + y2)2 , k2 =
x2 + y2

3x2y− y3 , k3 =
xy

(x2 − y2)(x2 + y2)
, k4 =

(y− x)(2x+ y)
(y+ x)(3y− x)(x2 + y2)

Here we use proper rational functions k = g/h (degg < degh), noting k and 1/k define the same
foliation. (We allow degg = degh; but then F is indistinguishable, as a foliation, from the standard
pencil of lines αx+βy.)

Each such foliation F has one finite singularity p= (0,0) (along with singularities “at infinity”—see
§4). Further, F is divided into sectors of various types by the real lines of g and h. E.g., in Figure 2, p
is seen to be the meeting point of: The E = 6 elliptic sectors in F1; the H = 6 hyperbolic sectors
in F2; the P = 8 parabolic sectors in F3; sectors of all three types in F4. (The nomenclature is
standard [1], but Figure 2 should suffice to indicate the meanings of the italicized terms.)

Relative to Figure 1, what’s new here is that p is a non-harmonic singularity, in general. We note
that F1 and F2 are qualitatively similar to the respective phase portraits for dz

dt = z4 and dz
dt = z−2. On

the other hand, F3 and F4 show behaviors which do not occur above; in particular, when k(x,y) is
harmonic, all sectors at a point p are of the same type, and are never parabolic. By comparison, the
non-harmonic singularities of tangent pencils exhibit greater variety.

Nevertheless, we can still write down simple formulas for index Ip(F ). To make the most explicit
connection to the ideas of §1–2, we use the following terminology. The zeros of forms g and h
are the corresponding real or complex lines through the origin—respectively, (A jx+B jy) = 0 and
(Ckx+Dky) = 0. We will be especially interested in the numbers of distinct real zeros of g and h—their
visible lines. These numbers will be denoted Z [g] and Z [h]. Further, the poles of k(x,y) = g(x,y)

h(x,y) are
the zeros of h; so k has P[k] = Z [h] distinct real poles.

To discuss the index Ip(F ), we remark that F is the phase portrait of a polynomial vector
field V = ui+ vj with unique zero p, as is not hard to show. Thus we can define Ip(F ) := ∆φε

2π
,

where φε(θ), 0 ≤ θ < 2π is a continuous argument function for V along a circle x2 + y2 = ε2:
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AN ARGUMENT PRINCIPLE FOR REAL FUNCTIONS 6

V(ε cosθ ,ε sinθ) = r(θ)(cosφ i+ sinφ j). Although the argument function φε(θ) obviously depends
on the radius ε , it will be seen that ∆φε = φε(2π)−φε(0) does not, so Ip(F ) is well-defined.

Theorem 3.1. Let F be the planar foliation defined by a homogeneous, proper rational function
k(x,y) = g(x,y)

h(x,y) . Then the index of F at p = (0,0) is given by:

(3) Ip(F ) :=
∆φε

2π
= 1+Z [k]−P[k]

Proof. It might seem natural to consider the standard integral formula for index of a vector field

V = ui+ vj at a point p: Ip(V) =
1

2π

∫
Cε

dφ =
1

2π

∫
Cε

udv− vdu
u2 + v2 . But it turns out that this leads to a

different, more complicated, integral than in Equation 1. Instead, we invoke the classical formula for
index in terms of elliptic and hyperbolic sectors: Ip(F ) = 1+ E−H

2 (see [1]).
We can easily explain the heuristics of the latter formula by referring to the arrows in Figure 2.

Along an arc of Cε in an elliptic sector, the net rotation of V relative to the standard pencil of lines
L : sinθx−cosθy is ∆(φ −θ) = π; the corresponding increments for hyperbolic and parabolic sectors
are ∆(φ −θ) =−π and ∆(φ −θ) = 0. If there are E elliptic sectors and H hyperbolic sectors, the
net relative increment is ∆(φ −θ) = π(E −H ). Thus, ∆φ = ∆θ +π(E −H ) = 2π +π(E −H )

as claimed. E.g., Ip(F1) = 1+ 6−0
2 = 4, Ip(F2) = 1+ 0−6

2 = −2, Ip(F3) = 1, and Ip(F4) =

1+ 2−2
2 = 1.

Now we turn to a brief explanation of sector types. Let sectors of a tangent pencil F : αg+βh
be labelled gg, hh, and gh, according to their bounding line pairs—see Figure 2 (right). Since d < e,
the shape of F is dominated by g near p and by h far from p. In fact, the real lines of h (dashed) are
asymptotes for curves in hh and gh sectors, while curves in gh and gg sectors approach p (in one or
both directions), where they are asymptotically tangent to lines of g.

The last equality in Equation 3 now follows by the same logic as employed to prove the first equality
in §1. Namely, we have regarded ∆φε as a sum over sectors, each contributing π,−π or 0; but this sum
may be re-organized as a sum over real lines of g and h. Each line borders four sectors, and altogether
contributes ±4π

2 =±2π—depending on whether the line belongs to g or h. □

Corollary 3.2. The index of a tangent pencil foliation at p = (0,0) may be computed algorithmically
by the method of Sturm sequences.

Proof. We dehomogenize binary forms g,h to get polynomials in one variable t = y
x : g(x,y) =

xdg(1, t), h(x,y) = xeh(1, t), where d = degg, e = degh. We use the Sturm method, as in Remark 2.2,
to find the numbers of distinct real zeros Z [g(1, t)] and Z [h(1, t)]. Also, we check if g(0,1) = 0 or
h(0,1) = 0. Then Ip(F ) = 1+Z [g(1, t)]−Z [h(1, t)]+σ , where σ = 1,−1, or 0, depending on
whether g(0,1) = 0, h(0,1) = 0, or neither. □

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

14 Mar 2023 10:58:36 PDT
220107-Langer Version 2 - Submitted to Rocky Mountain J. Math.



AN ARGUMENT PRINCIPLE FOR REAL FUNCTIONS 7

FIGURE 3. Tangent pencils F1,F2,F3 and F4 in the disk D (and in Ĉ).

4. Tangent pencil foliations of the real projective plane

In this section, we place Equation 3 into a larger context. Figure 3 shows the same pencils F1, . . . ,F4

as above, but in the disk model of the real projective plane, D≃ RP2. By applying the Poincaré-Hopf
Theorem to such foliations of RP2, we obtain an alternate proof and a visually appealing interpretation
of Equation 3.

The Poincaré-Hopf Theorem [1, 6] relates indices of a singular foliation F on a compact surface S
to its Euler characteristic: ∑Ip j(F ) = χ(S). E.g., if F is the foliation of the sphere by parallels of
latitude (or by meridians), the polar singularities have index one, and ∑Ip j(F ) = χ(S2) = 2. On the
other hand, the theorem does not directly apply, say, to the phase portrait of a planar dynamical system,
since R2 is not compact. Hence the idea of Poincaré compactification of the phase plane to capture
“behavior at infinity” [1].

Thus, we consider pencil foliations of the projective plane RP2 = R2 ∪RP1—the compact space
obtained from R2 by adding ideal points. RP2 may be defined as the set of lines through the origin
in R3 = {(x1,x2,x3)}; for any non-zero λ ∈ R, (λx1 : λx2 : λx3) ∈ RP2 represents the same point in
homogeneous coordinates. Non-horizontal lines correspond to points in the affine plane x3 = 1 (by
intersection); horizontal lines represent ideal points (x1 : x2 : 0).

Now we consider a pencil F : αG+βH of projective curves of degree m. By Bézout’s Theorem,
there are at most m2 intersection points q—where G(q) = H(q) = 0—assuming G,H have no common
factors [2]; these are the base point singularities of F . Any other point q lies on a unique curve
Fq := H(q)G−G(q)H = 0. Such a point may also be a singularity of F—e.g., if q is a node or cusp on
Fq. Typically, the latter singularities are also isolated—e.g., if F is a regular pencil—so Poincaré-Hopf
may be applied [4].
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Likewise for a tangent pencil F : αg + βh (which is regular only for d ≤ 1). We introduce
homogenous coordinates to consider the corresponding pencil of projective curves:

F : αxe−d
3 G̃+βH, G̃(x1,x2,x3) := xd

3g(
x1

x3
,
x2

x3
), H(x1,x2,x3) := xe

3h(
x1

x3
,
x2

x3
)

Thus, to form the “first curve” G = xe−d
3 G̃, in the projective setting, amounts to augmenting the d (real

and complex) lines of g by (e−d copies of) the ideal line x3.
Now let us consider how the Poincaré-Hopf Theorem applies to Figure 3. Here we use the disk model

D≃ RP2 merely as a visual aid; we simply note that D= D∪ (S1/±) contains points in the interior
of the unit disk D ⊂ Ĉ= C∪{∞}, as well as antipodal pairs ±eiθ on the unit circle S1, representing
ideal points. Besides the singularity of Fk at p0 = p, as in Figure 2, “new” singularities appear at ideal
points p j ∈ S1/±. (The lighter foliation extends F to the disk exterior E, by antipodal symmetry on
Ĉ, and helps to identify types of such ideal singularities.)

Of course, each example must satisfy: ∑Ip j(F ) = χ(D) = χ(RP2) = 1. On S1/±, F1 has three
saddles (self-intersections of G), F2 has three sources (base points in G∩H), F3 has two of each, and
F4 has four of each. Using also the known values of Ip(F j), the full index sums Sk = ∑Ip j(Fk)

are seen to be: S1 = 4−3 = 1, S2 =−2+3 = 1, S3 = 1+0 = 1, and S4 = 1+2−2 = 1.
In these examples, the pattern of simple singularities on the ideal line x3 = 0 reflects the more

complicated singularity at p, in a predictable way. Namely, F has Z [h] ideal base points in RP2—the
intersections of the real lines of h with x3 = 0; These simple base points of F are singularities of
index I (F ) = 1. Further, there are Z [g] ideal self intersections of G—where the real lines of g meet
x3 = 0. These nodes of G give saddle singularities of index I (F ) =−1.

Turning things around, if we had not already known Ip(F ), the index of the more complicated
singularity at the origin, we could have solved for it in the Poincaré-Hopf formula: S = ∑Ip j(F ) =

Ip(F )+Z [h]−Z [g] = χ(D) = 1. That is, we recover Equation 3, Ip(F ) = 1+Z [g]−Z [h], by
a totally different route. It is perhaps unusual to derive a local formula from a global theorem; but the
graphics in Figure 3 reveal this relationship almost at a glance.

Finally, it is tempting to ask how far such ideas could be pushed for other classes of pencil
singularities. We note that even for regular pencils of cubics, e.g., the theory of pencil singularities
is more complicated; these and their configurations have been extensively investigated in modern
algebraic geometry because of their connection to the theory of rational elliptic surfaces [5]. But the
index of a singularity in the real setting—as discussed here and in [4]—is a coarser invariant. For this,
a Sturm-like algorithm might suffice.
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