Permutations and woven g-frames

Abbas Askarizadeh ${ }^{1,2^{*}}$ and Ahmad Ahmadi ${ }^{2,1}$
${ }^{1 *}$ Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
${ }^{2}$ Department of Mathematics, University of Hormozgan, Bandar Abbas, Iran.

*Corresponding author(s). E-mail(s): a.askari@vru.ac.ir; Contributing authors: ahmadi_a@hormozgan.ac.ir;

Abstract

Two \boldsymbol{g}-frames $\left\{\boldsymbol{\Lambda}_{\boldsymbol{i}}\right\}_{i \in \mathcal{I}}$ and $\left\{\boldsymbol{\Gamma}_{\boldsymbol{i}}\right\}_{\boldsymbol{i} \in \mathcal{I}}$ for the Hilbert space \boldsymbol{U} are called woven if for each subset $\boldsymbol{\sigma}$ of $\boldsymbol{\mathcal { I }}$ the weaving $\left\{\boldsymbol{\Lambda}_{i}\right\}_{i \in \boldsymbol{\sigma}} \cup$ $\left\{\boldsymbol{\Gamma}_{i}\right\}_{i \in \boldsymbol{\sigma}^{c}}$ is a \boldsymbol{g}-frame for \boldsymbol{U}. The aim of this paper is considering the reordered families of a \boldsymbol{g}-frame $\left\{\boldsymbol{\Lambda}_{\boldsymbol{i}}\right\}_{i \in \mathcal{I}}$ with the various woven problems. First, we state some useful results for exact \boldsymbol{g}-frames and excess of \boldsymbol{g}-frames. Then for $\boldsymbol{\sigma} \subset \mathcal{I}$ we consider the families of weavings $\left\{\boldsymbol{\Lambda}_{i}\right\}_{i \in \sigma} \cup\left\{\boldsymbol{\Lambda}_{\boldsymbol{\pi}(i)}\right\}_{i \in \sigma^{c}}$ where $\boldsymbol{\pi}$ is a permutation function on \mathcal{I} and obtain some new conclusions. At last, we give relations of reordered weavings and operators, especially \boldsymbol{g}-frame operators.

$K e y w o r d s: ~ \boldsymbol{g}$-frame, woven \boldsymbol{g}-frame, permutation function, excess of \boldsymbol{g}-frame.
MSC Classification: 42C15, 46B28

1 Introduction

A powerful tool in the study of many branches of mathematics and other sciences are frames that were introduced first in 1952 [11]. In 1980 Young [19], and after that in 1986 Daubechies, et al. [9] reintroduced frames in Hilbert spaces. A frame in a Hilbert space defined as follows:

Let H be a Hilbert space and let \mathcal{I} be a countable index set. A sequence $\left\{\phi_{i}\right\}_{i \in \mathcal{I}}$ in H is called a frame for H if there exist positive numbers $A \leq B<\infty$
such that

$$
A\|x\|^{2} \leq \sum_{i \in \mathcal{I}}\left|\left\langle x, \phi_{i}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

for all $x \in H$. Some applications of frames in pure and applied mathematics, harmonic analysis, and even quantum communication can be found in $[3-6,8$, 12, 14]. In 2016, Bemrose and et al. introduced a new concept in frame theory which is motivated by a problem in distributed signal processing, particularly in wireless sensor network, and is called woven frames [2]. Two frames $\left\{\phi_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\psi_{i}\right\}_{i \in \mathcal{I}}$ for the Hilbert space H are called woven if there exist universal positive finite bounds A and B such that for each $\sigma \subset \mathcal{I}$ we have

$$
A\|x\|^{2} \leq \sum_{i \in \sigma}\left|\left\langle x, \phi_{i}\right\rangle\right|^{2}+\sum_{i \in \sigma^{c}}\left|\left\langle x, \psi_{i}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

for all $x \in H$. After the woven frames were introduced, Hafshejani and Dehghan introduced P-woven frames. To study P-woven frames the interested reader can refer to [13]. Also, the concept of reordered weavings of a frame is considered in [1].

The subject which we study in this manuscript is related to woven g-frames [10]. A generalization of frames are g-frames which are defined by Sun in 2005 [16]. Sun in [16] introduced a type of frames that are called g-frames, and he showed that most generalizations of frames can be regarded as special cases of g-frames. For more details about g-frames we refer the reader to [15, $17,18,20]$. Some problems such as the restrictions of hardware conditions, particularly in large wireless sensor network cause the network should be split into some sub-networks. Let $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Gamma_{i}\right\}_{i \in \mathcal{I}}$ be g-frames for the space, so we can measure a signal \mathcal{X} with either Λ_{i} or Γ_{i}. In this case a package of information is a set of numbers $\left\{\Lambda_{i} \mathcal{X}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i} \mathcal{X}\right\}_{i \in \sigma^{c}}$ for some subset $\sigma \subset \mathcal{I}$. If $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$ is a g-frame for each $\sigma \subset \mathcal{I}$, the signal \mathcal{X} can be obtained regardless of which measurement is taken [7].

In some applications, it is better to recover a signal \mathcal{X} with the families of g frames $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$ where π is a permutation function on \mathcal{I} and $\sigma \subset \mathcal{I}$. For example, some coefficients may be erased when a signal is transmitted or some coefficients are shifted together. Therefore, those g-frames are useful that are resistant to these events and do not show much change during signal reconstruction. This manuscript is devoted to the reordered families of a g frame $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ which are of the forms $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$ where π is a permutation function on \mathcal{I}, and the authors are concentrated on the weavings $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup$ $\left\{\Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$. The outline of the rest of the paper is organized as follows:

In section 2 we review the basic definitions of g-frames, and we give some results about g-frames that are used in other sections. In section 3 we focus on reordered weavings of a g-frame. At the first of section 3, to clarify the our motivation we present some examples and after that we solve some problems that are designed and are initiative. In section 4 we consider the woven g-frame operators and study some relations with reordered weavings of a g-frame.

2 Preliminaries

In this section, first we review the definition of a g-frame and other subjects that we need in this paper [16]. Then we study the exact g-frames and provide some requierd content.

For the Hilbert spaces \mathcal{U} and $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$, let $B\left(\mathcal{U}, \mathcal{V}_{i}\right)$ be the Banach space of all bounded linear operators from \mathcal{U} in to \mathcal{V}_{i} and consider $\Lambda_{i} \in B\left(\mathcal{U}, \mathcal{V}_{i}\right)$, $i \in \mathcal{I}$. The sequence $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is called a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$ if there exist two positive constants A and B, that are called the lower and upper g-frame bounds, respectively such that:

$$
A\|f\|^{2} \leq \sum_{i \in \mathcal{I}}\left\|\Lambda_{i} f\right\|^{2} \leq B\|f\|^{2}, \quad \forall f \in \mathcal{U}
$$

A g-frame is said to be a tight g-frame if $A=B$, and also it is said Parseval if $A=1$. When the sequence $\left\{\mathcal{V}_{i}: i \in \mathcal{I}\right\}$ is clear, $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is called a g-frame for \mathcal{U}. Also it is called $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} with respect to \mathcal{V} whenever $\mathcal{V}_{i}=\mathcal{V}$ for each $i \in \mathcal{I}$. A sequence $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is called a g-Bessel sequence with bound B if it satisfies in right hand side in the definition of a g-frame. If a g-frame ceases to be a g-frame whenever anyone of its elements is removed, it is called exact g-frame. A sequence $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is called g-complete if $\left\{f \in \mathcal{U}: \Lambda_{i} f=0, i \in \mathcal{I}\right\}=\{0\}$. If $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is g-complete and there are $0<A \leq B<\infty$ such that

$$
A \sum_{i \in \mathcal{I}_{1}}\left\|g_{i}\right\|^{2} \leq\left\|\sum_{i \in \mathcal{I}_{1}} \Lambda_{i}^{*} g_{i}\right\|^{2} \leq B \sum_{i \in \mathcal{I}_{1}}\left\|g_{i}\right\|^{2}
$$

for any finite subsset $\mathcal{I}_{1} \subset \mathcal{I}$ and $g_{i} \in \mathcal{V}_{i}, i \in \mathcal{I}_{1}$, then $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is called a g-Riesz basis for \mathcal{U}. Now, we are going to reviwe the g-frame operators.

The space $\left(\sum_{i \in \mathcal{I}} \oplus \mathcal{V}_{i}\right)_{l_{2}}$ is defined by

$$
\left(\sum_{i \in \mathcal{I}} \oplus \mathcal{V}_{i}\right)_{l_{2}}=\left\{\left\{f_{i}\right\}_{i \in \mathcal{I}}: f_{i} \in \mathcal{V}_{i}, \quad i \in \mathcal{I} \quad \text { and } \quad \sum_{i \in \mathcal{I}}\left\|f_{i}\right\|^{2}<\infty\right\}
$$

and has the inner product

$$
\left\langle\left\{f_{i}\right\},\left\{g_{i}\right\}\right\rangle=\sum_{i \in \mathcal{I}}\left\langle f_{i}, g_{i}\right\rangle .
$$

It is clear that $\left(\sum_{i \in \mathcal{I}} \oplus \mathcal{V}_{i}\right)_{l_{2}}$ is a Hilbert space. By consider

$$
\mathcal{V}_{i}^{\prime}=\left(\ldots, 0,0,0, \mathcal{V}_{i}, 0,0,0, \ldots\right)
$$

without lose of generality we can assume that for each $i \in \mathcal{I}, \mathcal{V}_{i}$ is a subspace of $\left(\sum_{i \in \mathcal{I}} \oplus \mathcal{V}_{i}\right)_{l_{2}}$.

For the g-frame $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ the well-defined operators $T_{\Lambda}, T_{\Lambda}^{*}$ and S_{Λ} are considered as follows:

$$
\begin{array}{ll}
T_{\Lambda}: \mathcal{U} \rightarrow\left(\sum_{i \in \mathcal{I}} \oplus \mathcal{V}_{i}\right)_{l_{2}}, & T_{\Lambda}(f)=\left\{\Lambda_{i} f\right\}_{i \in \mathcal{I}} \\
T_{\Lambda}^{*}:\left(\sum_{i \in \mathcal{I}} \oplus \mathcal{V}_{i}\right)_{l_{2}} \rightarrow \mathcal{U}, & T_{\Lambda}^{*}\left(\left\{f_{i}\right\}_{i \in \mathcal{I}}\right)=\sum_{i \in \mathcal{I}} \Lambda_{i}^{*} f_{i} \\
S_{\Lambda}: \mathcal{U} \rightarrow \mathcal{U}, & S_{\Lambda} f=T_{\Lambda}^{*} T_{\Lambda} f=\sum_{i \in \mathcal{I}} \Lambda_{i}^{*} \Lambda_{i} f
\end{array}
$$

Usually $T_{\Lambda}, T_{\Lambda}^{*}$ and S_{Λ} are called analysis, synthesis and g-frame operators. It is well-known that S is bounded, invertible and positive. Also, the g-frame $\left\{\Lambda_{i} S^{-1}\right\}_{i \in \mathcal{I}}$ is called canonical dual g-frame of $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$.

2.1 Exact \boldsymbol{g}-frames

In this subsection, we give some results that are useful in the rest of this paper. It is well-known that every g-Riesz basis is exact g-frame, but the converse is not true. Now, we state a theorem which is in fact about exact g-frames.

Theorem 1 [16, Theorem 3.5] Let $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ be a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$, and $\left\{\Theta_{i}\right\}_{i \in \mathcal{I}}$ be the canonical dual g-frame.
(1) If there exists $g_{0} \in \mathcal{V}_{i_{0}} \backslash 0$ such that $\Theta_{i_{0}} \Lambda_{i_{0}}^{*} g_{0}=g_{0}$, then $\left\{\Lambda_{i}: i \in \mathcal{I}, i \neq i_{0}\right\}$ is not g-complete.
(2) If there exists $f_{0} \in \mathcal{U} \backslash 0$ such that $\Lambda_{i_{0}}^{*} \Theta_{i_{0}} f_{0}=f_{0}$, then $\left\{\Lambda_{i}: i \in \mathcal{I}, i \neq i_{0}\right\}$ is not g-complete.
(3) If $I-\Lambda_{i_{0}} \Theta_{i_{0}}^{*}$ or $I-\Theta_{i_{0}} \Lambda_{i_{0}}^{*}$ is bounded invertible on $\mathcal{V}_{i_{0}}$, then $\left\{\Lambda_{i}: i \in \mathcal{I}, i \neq i_{0}\right\}$ is a g-frame for \mathcal{U}.

The proof of the next proposition follows from Theorem 1, and the fact that, if $\operatorname{dim} \mathcal{V}_{\mathrm{i}}<\infty$, then

$$
\begin{aligned}
\operatorname{ker}\left(\mathrm{I}_{\mathcal{V}_{\mathrm{i}}}-\Theta_{\mathrm{i}} \Lambda_{\mathrm{i}}^{*}\right)=0 & \Leftrightarrow \operatorname{range}\left(\mathrm{I}_{\mathcal{V}_{\mathrm{i}}}-\Theta_{\mathrm{i}} \Lambda_{\mathrm{i}}^{*}\right)=\mathcal{U} \\
& \Leftrightarrow \overline{\operatorname{range}}\left(I_{\mathcal{V}_{i}}-\Theta_{i} \Lambda_{i}^{*}\right)=\mathcal{U},
\end{aligned}
$$

where $I_{\mathcal{V}_{i}}$ is the identity operator on \mathcal{V}_{i}.

Proposition 2 Assume that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$, $\left\{\Theta_{i}\right\}_{i \in \mathcal{I}}$ is the canonical g-dual frame for $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}, i_{0} \in \mathcal{I}$ is arbitrary and $\operatorname{dim} \mathcal{V}_{i}<\infty$ for each $i \in \mathcal{I}$. The following statements are equivalent:
(1) $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is an exact g-frame for \mathcal{U}.
(2) $I-\Theta_{i_{0}} \Lambda_{i_{0}}^{*}$ is not an injective operator on $\mathcal{V}_{i_{0}}$.
(3) $I-\Theta_{i_{0}} \Lambda_{i_{0}}^{*}$ is not a surjective operator on $\mathcal{V}_{i_{0}}$.
(4) $\left\{\Lambda_{i}: i \in \mathcal{I}, i \neq i_{0}\right\}$ is not g-complete.

In the next, we define the excess of a g-frame which play a basic role in this paper.

Definition 1 Assume that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$. Consider Ψ as follows:

$$
\Psi=\left\{\mathcal{J} \subset \mathcal{I}:\left\{\Lambda_{i}\right\}_{i \in \mathcal{I} \backslash \mathcal{J}} \text { is a } g \text {-frame for } \mathcal{U}\right\}
$$

Set $\kappa=\sup \{|\mathcal{J}|: \mathcal{J} \in \Psi\}$, where $|\mathcal{J}|$ is the cardinal number of \mathcal{J}. Now for each $\mathcal{J}_{0} \in \Psi$ with $\kappa=\left|\mathcal{J}_{0}\right|$, we say $\left\{\Lambda_{i}\right\}_{i \in \mathcal{J}_{0}}$ is excess of $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$.

A result about excess of g-frames and exact g-frames is given in following theorem.

Theorem 3 Assume that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$, $\left\{\Theta_{i}\right\}_{i \in \mathcal{I}}$ is the canonical g-dual frame, $\mathcal{J} \subset \mathcal{I}$ and $\operatorname{dim} \mathcal{V}_{\mathrm{i}}<\infty$ for each $i \in \mathcal{I}$. The following statements are equivalent:
(1) $I-\Theta_{i} \Lambda_{i}^{*}$ is an invertible operator on \mathcal{V}_{i} for all $i \in \mathcal{J}$.
(2) $\left\{\Lambda_{i}: i \in \mathcal{I} \backslash \mathcal{J}\right\}$ is a g-frame for \mathcal{U}.
(3) $\left\{\Lambda_{i}\right\}_{i \in \mathcal{J}}$ is a nonempty subset of excess of $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$.

Proof If for $i_{0} \in \mathcal{J}$ the operator $I-\Theta_{i_{0}} \Lambda_{i_{0}}^{*}$ is invertible on $\mathcal{V}_{i_{0}}$, then by the use of Proposition 2, the sequence $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I} \backslash\left\{i_{0}\right\}}$ is a g-frame for \mathcal{U}. So (1) \rightarrow (2) is proved. The proof of $\mathbf{(2)} \rightarrow \mathbf{(3)}$ is a result of Definition 1. Now, assume $I-\Theta_{i_{0}} \Lambda_{i_{0}}^{*}$ is not an invertible operator on $\mathcal{V}_{i_{0}}$ for some $i_{0} \in \mathcal{J}$. So Proposition 2 implies that, $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I} \backslash\left\{i_{0}\right\}}$ is not g-complete, and so is not a g-frame for \mathcal{U}. Thus, $\Lambda_{i_{0}}$ is not in the excess of $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$, and this proves (3) \rightarrow (1).

3 Weavings and permutations

In this section, we consider the relation of the families $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$ of a g-frame $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and permutaion functions on \mathcal{I}. At first, we mention some examples that are motivations for us. Then we state and prove a theorem which gives an equivalance condition for the reordered weavings of a g-frame. Throughout the paper, reordered weavings of $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ are families of the form $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$ where $\sigma \subset \mathcal{I}$ and π is a permutation function on \mathcal{I}.

Example 1 Suppose $\left\{\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{M}\right\}$ and $\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{M}\right\}$ are g-Riesz bases for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i=1}^{M}$ such that

$$
\Gamma_{i}= \begin{cases}\Lambda_{j_{0}} & i=i_{0} \\ \Lambda_{i_{0}} & i=j_{0} \\ \Lambda_{i} & i \neq i_{0}, j_{0} .\end{cases}
$$

Then $\left\{\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{M}\right\}$ and $\left\{\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{M}\right\}$ are not woven.

Proof Set $\sigma=\left\{i_{0}\right\}$. The family $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$ is not a g-frame for \mathcal{U}, because $\left\{\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{M}\right\}$ is a g-Riesz basis for \mathcal{U} and $\Lambda_{j_{0}}$ does not appear in $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup$ $\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$. Thus, the conclusion is desired.

In the above example, $\Gamma_{i}=\Lambda_{\pi(i)}$ where π is a permutation function on $\{1, \ldots, M\}$ defined by

$$
\pi(i)=\left\{\begin{array}{rl}
i_{0}, i & i=j_{0} \\
j_{0}, & i=i_{0} \\
i, i \neq i_{0}, j_{0}
\end{array}\right.
$$

Example 2 Assume that $\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}, \ldots\right\}$ is a g-Riesz basis for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathbb{N}}$, and consider the family

$$
\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \ldots\right\}=\left\{\Lambda_{3}, \Lambda_{1}, \Lambda_{5}, \Lambda_{2}, \Lambda_{7}, \Lambda_{4}, \Lambda_{9}, \Lambda_{6}, \ldots\right\}
$$

for \mathcal{U}. Then for some $\sigma \subset \mathbb{N}$ the family $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$ is a g-frame for \mathcal{U}, but for each $\sigma \subset \mathbb{N}$ the family $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$ is not a g-Riesz basis for \mathcal{U}.

Proof Let $\sigma \subset \mathbb{N}$ with $\sigma \neq \emptyset, \mathbb{N}$. The following cases occure:
(1) If $\sigma=\{1,3,5,7, \ldots\}$, then Λ_{1} appear twice in $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$.
(2) When $\sigma \subsetneq\{1,3,5,7, \ldots\}$, put $i_{0}=\min \sigma$. Then $\Lambda_{i_{0}}$ appear twice in $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup$ $\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$.
(3) If $\sigma=\{2,4,6,8, \ldots\}$, then $\Lambda_{1} \notin\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$.
(4) When $\sigma \subsetneq\{2,4,6,8, \ldots\}$, the proof is similar to the proof of case (2).
(5) If $\sigma \subsetneq \mathbb{N}$ contains both of even and odd numbers, by the proof of the above caces we can deduce that $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$ is not a g-Riesz basis for \mathcal{U}.
Thus in cases (1) and (2), $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$ is a g-frame for \mathcal{U} but in all of the above cases $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{i}\right\}_{i \in \sigma^{c}}$ is not a g-Riesz basis for \mathcal{U}, and the proof is finished.

Example 3 Let $\left\{E_{1}, E_{2}, \ldots, E_{r}\right\}$ be a g -orthonormal basis for \mathbb{C}^{n} with respect to \mathbb{C}^{m} and $r>1$. Define a g-frame $\left\{\Lambda_{i}\right\}_{i \in \mathbb{Z}}$ for \mathbb{C}^{n} by

$$
\Gamma_{i}=\left\{\begin{array}{cl}
2^{-\left|\frac{k}{2}\right|} E_{1}, & i=r k \\
2^{-\left|\frac{k}{2}\right|} E_{2}, & i=r k+1 \\
\vdots \\
2^{-\left|\frac{k}{2}\right|} E_{r}, & i=r k+r-1,
\end{array}\right.
$$

where $k \in \mathbb{Z}$. Let $S_{l}(i)=i+l$ be the l-shift operator on \mathbb{Z} for $l \in \mathbb{Z}$. Then $\left\{\Gamma_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Gamma_{S_{l}(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathbb{C}^{n} if and only if $l=r q$ for some $q \in \mathbb{Z}$.

Proof First assume that $\left\{\Gamma_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Gamma_{S_{l}(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathbb{C}^{n}, where $S_{l}(i)=l+i$ for each $i \in \mathbb{Z}$. By the way of contradiction, let $l \neq r q$ for all $q \in \mathbb{Z}$. So there exist $k, s \in \mathbb{Z}$ with $1 \leq s \leq r-1$ such that $l=r k+s$. Put $\sigma=\{i \in$ $\mathbb{Z}: i \neq r p, \quad \forall p \in \mathbb{Z}\}$. Thus, $S_{l}(i)$ is not a multiple of r for each $i \in \sigma^{c}$. Now $E_{1} \notin\left\{\Gamma_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{S_{l}(i)}\right\}_{i \in \sigma^{c}}$, and the proof of this case is finished. Conversely, assume that $l=r q$ for some $q \in \mathbb{Z}$. Let $\sigma \subset \mathbb{Z}$ be arbitrary. So $\{r k+s\}_{s=0}^{r-1} \subset \sigma \cup S_{l}\left(\sigma^{c}\right)$ for some $k \in \mathbb{Z}$, and hence

$$
\left\{2^{-\left|\frac{k}{2}\right|} E_{i}\right\}_{i=1}^{r} \subset\left\{\Gamma_{i}\right\}_{i \in \sigma} \cup\left\{\Gamma_{S_{l}(i)}\right\}_{i \in \sigma^{c}} .
$$

Therefore, the conclusion is desired.
The previous examples are motivations for us to study the reordered weavings of a g-frame $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$, becuase in all of them $\Gamma_{i}=\Lambda_{\pi(i)}$ where π is a permutation function. The next theorem gives a necessary and sufficient condition about this subject. In following, $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$, and $\operatorname{dim} \mathcal{V}_{\mathrm{i}}<\infty$ for each $i \in \mathcal{I}$.

Theorem 4 Assume that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U}. For $\mathcal{J} \subset \mathcal{I}$, the following statements are equivalent:
(1) $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is not an exact g-frame for \mathcal{U}.
(2) There exists a set of permutation functions $\left\{\pi_{j}\right\}_{j \in \mathcal{J}}$ on \mathcal{I} such that for each $j \in \mathcal{J},\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$.

Proof (1) $\rightarrow(\mathbf{2}):$ If $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is not an exact g-frame for \mathcal{U}, then by Theorem 3, $\left\{\Lambda_{i}: i \in \mathcal{I} \backslash \mathcal{J}\right\}$ is a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}: i \in \mathcal{I} \backslash \mathcal{J}\right\}$. If $\Lambda_{j}=\Lambda_{i_{0}}$ for some $i_{0} \in \mathcal{I} \backslash \mathcal{J}$, define a permutation function π_{j} on \mathcal{I} as follows:

$$
\pi_{j}(i)=\left\{\begin{aligned}
i_{0}, & i=j \\
j, i & =i_{0} \\
i, & i \neq j, i_{0}
\end{aligned}\right.
$$

It is easy to see that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathcal{U}. On the other hand if $\Lambda_{j} \neq \Lambda_{i}$ for all $i \in \mathcal{I} \backslash \mathcal{J}$, then $\Lambda_{j}^{*}\left(\mathcal{V}_{j}\right) \subseteq \overline{\operatorname{span}}\left\{\Lambda_{i}^{*}\left(\mathcal{V}_{i}\right): i \in \mathcal{I} \backslash \mathcal{J}\right\}$ because of by Proposition 2, the set $\left\{\Lambda_{i}: i \in \mathcal{I} \backslash \mathcal{J}\right\}$ is g-complete in \mathcal{U}. Since $\operatorname{dim} \mathcal{V}_{\mathrm{i}}$ is finite for each $i \in \mathcal{I}$, there exist $\left\{\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right\} \subset \mathcal{I} \backslash \mathcal{J}$ such that $\Lambda_{j}^{*}\left(\mathcal{V}_{j}\right) \subseteq \operatorname{span}\left\{\Lambda_{\mathrm{i}}^{*}\left(\mathcal{V}_{\mathrm{i}}\right): \mathrm{i}=\right.$ $\left.\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}\right\}$. For any s with $1 \leq s \leq k$, one can define a permutation function π_{j} on \mathcal{I} by

$$
\pi_{j}(i)=\left\{\begin{aligned}
& i_{s}, i=j \\
& j, i=i_{s} \\
& i, i \neq j, i_{s}
\end{aligned}\right.
$$

Let $\sigma \subset \mathcal{I}$ be arbitrary. So $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \sigma^{c}}$ is a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$ when $j, i_{s} \in \sigma$ or $j, i_{s} \in \sigma^{c}$, and in these cases the conclusion is desired. On
the other hand assume that $j \notin \sigma$ and $i_{s} \in \sigma$. In this case $\Lambda_{j} \notin\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \sigma^{c}}$ but $\Lambda_{i_{s}} \in\left\{\Lambda_{i}\right\}_{i \in \sigma}$ and $\Lambda_{i_{s}} \in\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \sigma^{c}}$. Thus,

$$
\Lambda_{i_{s}}^{*}\left(\mathcal{V}_{i_{s}}\right) \subseteq \operatorname{span}\left\{\Lambda_{\mathrm{i}}^{*}\left(\mathcal{V}_{\mathrm{i}}\right): \mathrm{i}=\mathrm{j}, \mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}, \mathrm{i} \neq \mathrm{i}_{\mathrm{s}}\right\}
$$

because $\Lambda_{j}^{*}\left(\mathcal{V}_{j}\right) \subseteq \operatorname{span}\left\{\Lambda_{\mathrm{i}}^{*}\left(\mathcal{V}_{\mathrm{i}}\right): \mathrm{i}=\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{k}}, \mathrm{i} \neq \mathrm{j}\right\}$. This implies that

$$
\overline{\operatorname{span}}\left(\left\{\Lambda_{i}^{*}\left(\mathcal{V}_{i}\right)\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)}^{*}\left(\mathcal{V}_{\pi_{j}(i)}\right)\right\}_{i \in \sigma^{c}}\right)=\mathcal{U}
$$

Therefore, $\left.\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)}\right)\right\}_{i \in \sigma^{c}}$ is a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$ and the proof of this case is complete.
(2) \rightarrow (1): For each $j \in \mathcal{J}$ let $\pi_{j} \neq I_{d}$ be a permutation function on \mathcal{I} such that the g-frames $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}$ are woven. So for some $r, s \in \mathcal{I}$ with $r \neq s$, $\pi_{j}(r)=s$. Now one can consider $\sigma \subset \mathcal{I}$ as $\sigma=\mathcal{I} \backslash\{r\}$. Since $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames and

$$
\left\{\Lambda_{i}\right\}_{i \in \mathcal{I} \backslash\{r\}}=\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \sigma^{c}}
$$

then $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is not an exact g-frame. Thus by Proposition 2 the proof is finished.

A helpful result is brought in the following corollary.

Corollary 1 Assume that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U}. The following statements are equivalent:
(1) There exists a permutation function π on \mathcal{I} such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$.
(2) The excess of $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is nonempty.
(3) There exists a proper subset \mathcal{J} of \mathcal{I} such that for each $j \in \mathcal{J}$ the operator $I-\Theta_{j} \Lambda_{j}^{*}$ is invertible on \mathcal{V}_{j}, where $\left\{\Theta_{i}\right\}_{i \in \mathcal{I}}$ is the canonical g-dual frame of $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$.

Proof By the use of Theorems 3 and 4, the proof is easily to seen.

Example 4 In Examples 1 and 2, the g-frame $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is exact. Thus by Corollary 1 , there is no any permutation function π on \mathcal{I} such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$ can be woven. But the excess of g-frame $\left\{\Gamma_{i}\right\}_{i \in \mathcal{I}}$ in example 3 is nonempty and so by Corollary 1 , there exists a permutation function π on \mathcal{I} such that $\left\{\Gamma_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Gamma_{\pi(i)}\right\}_{i \in \mathcal{I}}$ are woven.

The following example shows the part (3) in Corollary 1 is beneficial.

Example 5 Let $\left\{E_{i}\right\}_{i=1}^{s}$ be a g-orthonormal basis for $B\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$. Consider the family $\left\{\Gamma_{i}\right\}_{i=1}^{2 s}$ by

$$
\left\{E_{1}, E_{1}, E_{2}, E_{2}, \ldots, E_{s}, E_{s}\right\}
$$

For each i, the operator $I-\Theta_{i} \Gamma_{i}^{*}$ is invertible on \mathbb{C}^{m}, where $\left\{\Theta_{i}\right\}_{i=1}^{2 s}$ is the canonical g-dual frame of $\left\{\Gamma_{i}\right\}_{i=1}^{2 s}$. So by Proposition 2 and Corollary 1, there exists a permutation function π on $\{1, \ldots, 2 s\}$ such that $\left\{\Gamma_{i}\right\}_{i=1}^{2 s}$ and $\left\{\Gamma_{\pi(i)}\right\}_{i=1}^{2 s}$ are woven g-frames.

The next theorem, presents conditions on a g-frame $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ such that the family $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I} \backslash \mathcal{J}}$ satisfies in Corollary 1, where $\mathcal{J} \subset \mathcal{I}$.

Theorem 5 Suppose $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} and A, B are the lower and upper bounds. If there exists $\mathcal{J} \subset \mathcal{I}$ such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I} \backslash \mathcal{J}}$ is a g-frame and $\left\{\Lambda_{i}\right\}_{i \in \mathcal{J}}$ is a g Bessel sequence with bound $0<D<A$, then there exists permutation function π on \mathcal{I} such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I} \backslash \mathcal{J}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I} \backslash \mathcal{J}}$ are woven g-frames with lower and upper bounds $A-D$ and $2 B$ respectively.

Proof By the use of Corollary 1, there exists a permutation function π on \mathcal{I} such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathcal{U} with bounds A, B. Let $\sigma \subset \mathcal{I} \backslash \mathcal{J}$ be arbitrary. It is easy to see that the family $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$ is a g-Bessel sequence for \mathcal{U} with bound $2 B$. On the other hand for each $f \in \mathcal{U}$ we have:

$$
\begin{aligned}
\sum_{i \in \sigma}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in \sigma^{c} \cap(\mathcal{I} \backslash \mathcal{J})}\left\|\Lambda_{\pi(i)} f\right\|^{2} & =\sum_{i \in \sigma \cup \mathcal{J}}\left\|\Lambda_{i} f\right\|^{2}-\sum_{i \in \mathcal{J}}\left\|\Lambda_{i} f\right\|^{2} \\
& +\sum_{i \in \sigma^{c} \cap(\mathcal{I} \backslash \mathcal{J})}\left\|\Lambda_{\pi(i)} f\right\|^{2} \\
& \geq(A-D)\|f\|^{2} .
\end{aligned}
$$

Thus, the conclusion is desired.
At the end of this section, by using the subsets of a g-Bessel sequence which are g-frames, we give a proposition that tries to furnish the conditions of Corollary 1.

Proposition 6 Suppose $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-Bessel sequence with bound B, and for some $\mathcal{J} \subset \mathcal{I},\left\{\Lambda_{i}\right\}_{i \in \mathcal{J}}$ is a g-frame for \mathcal{U} with lower bounds A. There exists a permutation function π on \mathcal{I} such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames with bounds $A, 2 B$.

Proof If $\left\{\Lambda_{i}\right\}_{i \in \mathcal{J}}$ is an exact g-frame, take $\pi=I_{d}$. Then we assume that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{J}}$ is not an exact g-frame. So by Corollary 1 , there exists a permutation function π on \mathcal{J} such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{J}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{J}}$ are woven g-frames. Let $\sigma \subset \mathcal{I}$ be arbitrary. For each $f \in \mathcal{U}$

$$
\sum_{i \in \sigma}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in \sigma^{c}}\left\|\Lambda_{\pi(i)} f\right\|^{2} \leq 2 B\|f\|^{2}
$$

On the other hand

$$
\begin{aligned}
\sum_{i \in \sigma}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in \sigma^{c}}\left\|\Lambda_{\pi(i)} f\right\|^{2} & \geq \sum_{i \in \sigma \cap \mathcal{J}}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in \sigma^{c} \cap \mathcal{J}}\left\|\Lambda_{\pi(i)} f\right\|^{2} \\
& \geq A\|f\|^{2} .
\end{aligned}
$$

Therefore, the proof is complete.

4 Reordered weavings of a \boldsymbol{g}-frame and operators

In this section, we consider the subjects which are relative to reordered weavings and g-frame operators. At first, we give some notations which are used in this section.

Notations. For each $j \in\{1, \ldots, m\}$ one can define the followings:

$$
\left(l^{2}\left(\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}\right)\right)_{j}=\left\{\left\{a_{i j}\right\}_{i \in \sigma_{j}}: a_{i j} \in \mathcal{V}_{i}, \sigma_{j} \subset \mathcal{I}, \sum_{i \in \sigma_{j}}\left\|a_{i j}\right\|^{2}<\infty\right\}
$$

Also, we define the space:

$$
\bigoplus_{j=1}^{m}\left(l^{2}\left(\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}\right)\right)_{j}=\left\{\left\{a_{i j}\right\}_{i \in \mathcal{I}, j \in[m]}:\left\{a_{i j}\right\}_{i \in \mathcal{I}} \in l^{2}\left(\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}\right)_{j}, \forall j \in[m]\right\}
$$

with the inner product

$$
\left\langle\left\{a_{i j}\right\}_{i \in \mathcal{I}, j \in[m]},\left\{b_{i j}\right\}_{i \in \mathcal{I}, j \in[m]}\right\rangle=\sum_{j \in[m]} \sum_{i \in \mathcal{I}}\left\langle a_{i j}, b_{i j}\right\rangle,
$$

where $[m]=\{1,2, \ldots, m\}$.
The next proposition, with using operators provides conditions that the different reordered weavings of a g-frame can be woven.

Proposition 7 Let $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ be a g-frame for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$. The followings are equivalent.
(1) There exists a set of permutation functions $\left\{\pi_{j}\right\}_{j=1}^{m}$ on \mathcal{I} such that the g-frames $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}$ are woven for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$.
(2) There exist a bounded linear operator $T: \bigoplus_{j=1}^{m}\left(l^{2}\left(\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}\right)\right)_{j} \longrightarrow \mathcal{U}$ and a positive number A such that $T\left(E_{i j}\right)=\Lambda_{\pi_{j}(i)}$ and $A I_{\mathcal{U}} \leq T T^{*}$, where $\left\{E_{i j}\right\}$ is the orthonormal basis for $\bigoplus_{j=1}^{m}\left(l^{2}\left(\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}\right)\right)_{j}$.

Proof For the proof of (1) $\boldsymbol{\rightarrow} \mathbf{(2)}$, let $\left\{\sigma_{j}\right\}_{j=1}^{m}$ be a sequence of subsets of \mathcal{I} such that $\bigcup_{j=1}^{m} \sigma_{j}=\mathcal{I}$. Without lose of generality we can assume that $\left\{\sigma_{j}\right\}_{j=1}^{m}$ is a partition of \mathcal{I}. Define the operator $T: \bigoplus_{j=1}^{m}\left(l^{2}\left(\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}\right)\right)_{j} \longrightarrow \mathcal{U}$ as follows:

$$
T\left(\left\{a_{i j}\right\}_{j \in[m], i \in \sigma_{j}}\right)=\sum_{j \in[m]} \sum_{i \in \sigma_{j}} \Lambda_{\pi_{j}(i)}^{*}\left(a_{i j}\right) .
$$

It is easy to see that T is a well define, bounded and linear operator and $T\left(E_{i j}\right)=$ $\Lambda_{\pi_{j}(i)}$. On the other hand $T^{*} f=\left\{\Lambda_{\pi_{j}(i)} f\right\}$ for each $f \in \mathcal{U}$. Now by using the assumption, let $A>0$ be the universal lower g-frame bound for $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}, j \in[m]$. So for each $f \in \mathcal{U}$ we have

$$
\begin{aligned}
A\|f\|^{2} & =A\langle f, f\rangle \\
& \leq \sum_{j \in[m]} \sum_{i \in \sigma_{j}}\left\|\Lambda_{\pi_{j}(i)} f\right\|^{2} \\
& =\sum_{j \in[m]} \sum_{i \in \sigma_{j}}\left\langle\Lambda_{\pi_{j}(i)}^{*} \Lambda_{\pi_{j}(i)} f, f\right\rangle \\
& =\left\langle T T^{*} f, f\right\rangle,
\end{aligned}
$$

which implies that $A I_{\mathcal{U}} \leq T T^{*}$. For the proof of (2) \rightarrow (1), let $\left\{\sigma_{j}\right\}_{j=1}^{m}$ be a partition of \mathcal{I}. Then

$$
\begin{aligned}
A\|f\|^{2} & =A\langle f, f\rangle \\
& \leq\left\langle T T^{*} f, f\right\rangle \\
& =\sum_{j \in \mathcal{J}} \sum_{i \in[m]}\left\|\Lambda_{\pi_{j}(i)} f\right\|^{2} .
\end{aligned}
$$

So $A>0$ is the universal lower g-frame bound for $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \sigma_{j}}$ for each $j \in[m]$. Now we have

$$
\begin{aligned}
\sum_{j \in[m]} \sum_{i \in \sigma_{j}}\left\|\Lambda_{\pi_{j}(i)} f\right\|^{2} & =\left\|T^{*} f\right\|^{2} \\
& \leq\left\|T^{*}\right\|^{2}\|f\|^{2}
\end{aligned}
$$

Thus for all $j \in[m],\left\|T^{*}\right\|^{2}$ is the universal upper g-frame bound for $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \sigma_{j}}$ and the proof is finished.

The next theorem is about the canonical g-duals of the reordered weavings of a g-frame.

Theorem 8 Suppose $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} with frame bounds A, B and g frame operator S. There exists a set of permutation functions $\left\{\pi_{j}\right\}_{j \in \mathcal{J}}$ on \mathcal{I} such that for each $\sigma \subset \mathcal{I}$ the family $\left\{\Lambda_{i} S^{-1}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)} S^{-1}\right\}_{i \in \sigma^{c}}$ is a g-frame for \mathcal{U} with universal bounds $\frac{1}{2 B}, \frac{1}{A}$ respectively.

Proof If $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is an exact g-frame then by Corollary 1, there is no nontrivial permutation function π on \mathcal{I} such that $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathcal{U}. In this case we put $\pi=I_{d}$, and the conclusion is desired. Assume $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is not an exact g-frame. By Theorem 4, there exists a set of permutation functions $\left\{\pi_{j}\right\}_{j \in \mathcal{J}}$ on \mathcal{I} such that for each $j \in \mathcal{J},\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}$ are woven g frames for \mathcal{U}. On the other hand, the g-frame operator of $\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \mathcal{I}}$ is S. Since S is a bounded operator on \mathcal{U} with close range, so $\left\{\Lambda_{\pi_{j}(i)} S^{-1}\right\}_{i \in \mathcal{I}}$ is a g-frame for \mathcal{U} with bounds $A\|S\|^{-2}$ and $B\left\|S^{-1}\right\|^{2}$ for each $j \in \mathcal{J}$. Now, since for each $\sigma \subset \mathcal{I}$ the family $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)}\right\}_{i \in \sigma^{c}}$ is a g-frame for \mathcal{U} with bounds A and $2 B$, then
$\left\{\Lambda_{i} S^{-1}\right\}_{i \in \sigma} \cup\left\{\Lambda_{\pi_{j}(i)} S^{-1}\right\}_{i \in \sigma^{c}}$ is a g-frame for \mathcal{U} with bounds $\frac{1}{2 B}$ and $\frac{1}{A}$, and the proof is finished.

In following proposition, T_{Λ} and T_{Λ}^{*} are the analysis and synthesis operators for the g-frame $\Lambda=\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$. Also for $\sigma \subset \mathcal{I}, T_{\Lambda}^{\sigma}$ and $T_{\Lambda}^{* \sigma}$ are the analysis and synthesis operators for the g-frame $\left.\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup \Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$.

Proposition 9 Assume $\Lambda=\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ is a g-Bessel sequences for \mathcal{U} with respect to $\left\{\mathcal{V}_{i}\right\}_{i \in \mathcal{I}}$ and bound B. Let π be a permutation function on \mathcal{I} such that
(1) $T_{\Lambda}^{*} T_{\Lambda_{\pi}}=I_{\mathcal{U}}$
(2) $T_{\Lambda}^{* \sigma} T_{\Lambda_{\pi}}^{\sigma}=T_{\Lambda_{\pi}}^{* \sigma} T_{\Lambda}^{\sigma}$,
where $\Lambda_{\pi}=\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$. Then $\left\{\Lambda_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{\Lambda_{\pi(i)}\right\}_{i \in \mathcal{I}}$ are woven g-frames for \mathcal{U}.

Proof It is easily seen taht for all $\sigma \subset \mathcal{I}$ the families $\left.\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup \Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$ are g Bessel seqences for \mathcal{U} with universal bound $2 B$. Now let $f \in \mathcal{U}$ and let $\sigma \subset \mathcal{I}$ be arbitrary, so we have:

$$
\begin{aligned}
\|f\|^{4} & =\langle f, f\rangle^{2} \\
& =\left\langle T_{\Lambda}^{*} T_{\Lambda_{\pi}} f, f\right\rangle^{2} \\
& =\left\langle T_{\Lambda}^{* \sigma} T_{\Lambda_{\pi}}^{\sigma} f+T_{\Lambda}^{* \sigma^{c}} T_{\Lambda_{\pi}}^{\sigma^{c}} f, f\right\rangle^{2} \\
& \leq 2\left|\left\langle T_{\Lambda}^{* \sigma} T_{\Lambda_{\pi}}^{\sigma} f, f\right\rangle\right|^{2}+2\left|\left\langle T_{\Lambda}^{* \sigma^{c}} T_{\Lambda_{\pi}}^{\sigma^{c}} f, f\right\rangle\right|^{2} \\
& =2\left|\left\langle\sum_{i \in \sigma} \Lambda_{i}^{*} \Lambda_{\pi(i)} f, f\right\rangle\right|^{2}+2\left|\left\langle\sum_{i \in \sigma^{c}} \Lambda_{\pi(i)}^{*} \Lambda_{i} f, f\right\rangle\right|^{2} \\
& =2\left|\sum_{i \in \sigma}\left\langle\Lambda_{\pi(i)} f, \Lambda_{i} f\right\rangle\right|^{2}+2\left|\sum_{i \in \sigma^{c}}\left\langle\Lambda_{i} f, \Lambda_{\pi(i)} f\right\rangle\right|^{2} \\
& \leq 2 \sum_{i \in \sigma}\left\|\Lambda_{\pi(i)} f\right\|^{2} \sum_{i \in \sigma}\left\|\Lambda_{i} f\right\|^{2}+2 \sum_{i \in \sigma^{c}}\left\|\Lambda_{i} f\right\|^{2} \sum_{i \in \sigma^{c}}\left\|\Lambda_{\pi(i)} f\right\|^{2} \\
& \leq 2 B\|f\|^{2} \sum_{i \in \sigma}\left\|\Lambda_{i} f\right\|^{2}+2 B\|f\|^{2} \sum_{i \in \sigma^{c}}\left\|\Lambda_{\pi(i)} f\right\|^{2} \\
& \leq 2 B\|f\|^{2}\left(\sum_{i \in \sigma}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in \sigma^{c}}\left\|\Lambda_{\pi(i)} f\right\|^{2}\right) .
\end{aligned}
$$

This implies that

$$
\frac{1}{2 B}\|f\|^{2} \leq\left(\sum_{i \in \sigma}\left\|\Lambda_{i} f\right\|^{2}+\sum_{i \in \sigma^{c}}\left\|\Lambda_{\pi i} f\right\|^{2}\right) .
$$

Thus, $\frac{1}{2 B}$ is the universal lower bound for the reordered weavings $\left\{\Lambda_{i}\right\}_{i \in \sigma} \cup$ $\left.\Lambda_{\pi(i)}\right\}_{i \in \sigma^{c}}$ and the proof is finished.

Acknowledgements: I would like to thank the referees for many helpful suggestions

References

[1] A. Askarizadeh, A. Ahmadi, Reordered Frames and Weavings. Bull. Iran. Math. Soc. 48,(2022), 41-51.
[2] T. Bemrose, P. G. Casazza, K. Gröchenig, M. C. Lammers, and R. G. Lynch, Weaving frames, OAM, 10,4 (2016) 1093-1116.
[3] J. Benedetto, and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5 (1998), 389-427.
[4] J. Benedetto, and S. Li, Subband coding and noise reduction in frame multiresolution analysis, Proceeding of SPIE Conference on Mathematical Imaging, San Diego, (1994).
[5] B.G. Bodmann, and D.W. Kribs, V.I. paulsen, Decoherence-insensitive quantum communication by optimal C^{*}-encoding, IEEE Trans. Inf. Theory, 53 (2007) 4738-4749.
[6] O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, Basel, Berlin, 2002.
[7] P. G. Casazza, G. Kutyniok, and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 25 (2008) pp. 114-132.
[8] C.E.d'Attellis, and E.M. Fernfedez-Berdaguer, Wavelet theory and harmonic analysis in applied Sciences, Birkhäuser, Boston - Basel - Berlin, 1997.
[9] I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986) 1271-1283.
[10] D. Li, J. Leng, T. Hunge, and X. Li, On weaving g-frames for Hilbert spaces, Complex Anal. Oper. Theory, 14(2) (2020), 1-25.
[11] R. Duffin, and A. Schaeffer, A class of nonharmonic Fourier series, Trans. Am. Math. Soc. , 72 (1952) 341-366.
[12] K. Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, 2001.
[13] A. B. Hafshejani, and M. A. Dehghan, P-woven frames,J. Math. Anal. Appl., 479 (2019) 673-687.
[14] A. A. Hemmat, and J. P. Gabardo, Properties of oblique dual frames in shift-invariant systems, J. Math. Anal. Appls., 356 (2009) 346-354.
[15] A. Nejati, and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topol., 14 (3) (2008), 271-286.
[16] W. Sun, g-frames and g-Riesz bases, J. Math. Anal. Appls., 322 (2006) 437-452.
[17] W. Sun, Stability of g-frames, J. Math. Anal. Appls., 326 (2007) 858-868.
[18] X. Guo, On Redundancy, dilations and canonical duals of g-frames in Hilbert spaces, Banach J. Math. Anal. , 9 (4) (2015) 81-99.
[19] R. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980.
[20] L. Zang, W. Sun, and D. Chen, Excess of a class of g-frames, J. Math. Anal. Appls., 352 (2009) 711-717.

