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ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS

HELEN G. GRUNDMAN, JOSHUA HARRINGTON, AND TONY W. H. WONG

ABSTRACT. A positive integer is a b-Niven number (or b-harshad number) if it is a multiple of the sum
of the digits of its base-b representation. For each base b ≥ 2, the maximum length of a sequence of
consecutive b-Niven numbers is known to be 2b. In this article, we investigate the maximum lengths of
arithmetic progressions of b-Niven numbers.

1. Introduction

Let Z+ and Z≥0 denote the sets of positive and nonnegative integers, respectively. For each b ∈ Z+

with b≥ 2, let sb : Z+→ Z+ be the function mapping a positive integer to the sum of the digits in its
base b expansion. More precisely, for b≥ 2,

sb

(
m

∑
j=0

a jb j

)
=

m

∑
j=0

a j,

where m ∈ Z≥0 and 0≤ a j ≤ b−1 for each 0≤ j ≤ m. We say that n ∈ Z+ is a b-Niven number (also
known as a b-harshad number) if sb(n) | n. When b = 10, n is called simply a Niven number.

In 1993, Cooper and Kennedy [1] showed that the length of a sequence of consecutive Niven
numbers is at most 20. In 1994, Grundman [2] generalized this result and proved that, for each base
b ≥ 2, the length of a sequence of consecutive b-Niven numbers is at most 2b. In this article, we
investigate the more general question of the possible lengths of arithmetic progressions of b-Niven
numbers. For ease in terminology, we use d-AP as a shorthand for “arithmetic progression with a
common difference d,” and b-Niven d-AP for “d-AP in which each term is a b-Niven number.” Our
main results concern the maximum length of a b-Niven d-AP for d ≥ 2 and b≥ 2d.

In the following section, we give some initial results, including very general, though weak, upper and
lower bounds for the maximum lengths of b-Niven d-APs. We present our main results in Section 3,
giving upper bounds for the maximum lengths in order of increasing generality, but potentially less
tight bounds. Finally, in Section 4, we restrict our study to the case d = 2, providing tighter bounds in
most cases and determining the actual maximum lengths for some small values of b.
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2. Initial results

In this section, we provide upper and lower bounds for the maximum length of a b-Niven d-AP that
apply to every case with d ≥ 2 and b ≥ 2d. We note that the upper bound given in Theorem 2.2
guarantees that a finite maximum length exists for each of these cases. For most of these, we improve
upon this initial bound in later sections. In Theorem 2.3, we provide a lower bound for the maximum
length (though lower bounds are not the focus of this paper). Finally, we give an auxiliary theorem that
will be used in the following sections.

We begin with a lemma that simplifies many of the arguments throughout this paper.

Lemma 2.1. Let b≥ 2. If x and y are two b-Niven numbers such that sb(x) = sb(y), then sb(x) | (x−y).

Proof. Since x and y are b-Niven numbers, sb(x) | x and sb(y) | y. It follows from sb(x) = sb(y) that
sb(x) | y. Thus sb(x) | (x− y). �

Theorem 2.2. Let b≥ 4 and d ≥ 2 be such that b≥ 2d. A b-Niven d-AP is of length at most⌈
bd+1 +(d−1)b

d

⌉
.

Proof. For each a ∈ Z≥0 and 0≤ j ≤ b−d−1, let

xa, j = abd+1 +
d

∑
i=2

(b−1)bi +(b−d−1)b+( j+d)

and

ya, j = abd+1 +
d

∑
i=1

(b−1)bi + j.

Note that ya, j− xa, j = (b−1)d, so xa, j and ya, j lie in the same d-AP.
Suppose that S is a b-Niven d-AP of length greater than the bound given in the theorem. Then S

contains at least one term of the form xa, j. Let a be minimal such that xa, j is in S for some 0≤ j ≤
b−d−1. By the minimality of a, the first term of S is at least (a−1)bd+1+∑

d
i=2(b−1)bi+(b−d)b.

Since the length of S is greater than (bd+1 +(d−1)b)/d, the last term of S is at least abd+1 +

∑
d
i=1(b−1)bi. It follows that there exists at least one k with 0≤ k≤ b−d−1 such that S contains the

terms xa,k and ya,k. Applying Lemma 2.1 to these two numbers yields (sb(a)+(b−1)d+k) | (b−1)d,
implying that sb(a)+(b−1)d + k ≤ (b−1)d. Hence, a = k = 0, and so x0,0 and y0,0 are in S , while
y0,d is not. As a result, the length of S is at most dy0,0/de, which is strictly less than the bound given
in the theorem, contradicting our supposition. �

In 1997, Wilson [4] proved that for each b ≥ 2, the bound of 2b on the maximum length of a
sequence of consecutive b-Niven numbers is sharp. This immediately leads to the following theorem,
which provides a lower bound for the maximal length of a b-Niven d-AP.

Theorem 2.3. Let b≥ 2 and d ≥ 2. There exists a b-Niven d-AP of length
⌈2b

d

⌉
.

The next theorem, unlike others herein, imposes the restriction that the elements of the arithmetic
progression are odd. With this and related restrictions, we determine the maximum length of such a
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ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 3

b-Niven d-AP and provide information about the terms of a sequence of this length. Theorem 2.4 is
used in proving more general results in the rest of the paper.

Theorem 2.4. Let b≥ 2 and d ≥ 2 both be even with b≥ d. The maximum length of a b-Niven d-AP
containing an odd term is exactly

⌈2b
d

⌉
. Any b-Niven d-AP of length at least b

d +1 containing an odd
term consists of numbers strictly between mb2−b and mb2 +b for some m ∈ Z+.

Proof. By Wilson [4], there exists a sequence of 2b consecutive b-Niven numbers. It follows easily
that there exists a b-Niven d-AP of length

⌈2b
d

⌉
containing an odd term.

Let S be a b-Niven d-AP of length at least b
d +1 that contains an odd term. Since d is even, every

term of S is odd, and since b is even, the last digit of every term is odd. Hence, if ab+ i is an element
of S with a≥ 0 and 0≤ i < b, then (sb(a)+ i) | (ab+ i) implies that sb(a) is even.

Now, fix c ∈ Z+ and 0 < j < b such that (c−1)b+ j is the first term of S . Since S is of length at
least b

d +1, S contains a term of the form cb+ j′ for some 0 < j′ < b. It follows that both sb(c−1)
and sb(c) are even. Hence, c is a multiple of b. Further, since c+1 is not a multiple of b, each term of
S is strictly less than (c+1)b. The theorem follows by letting c = mb. �

3. Main results

We now present our main results. Theorem 3.1 considers the case in which b is even and d is odd.
Theorem 3.2 yields a less strong bound, but covers a much wider range of cases. Then, Theorems 3.4
and 3.5 focus on the cases in which d | (b− 1) and d | b, respectively, providing bounds that are
particularly useful when Theorems 3.1 and 3.2 do not apply.

Theorem 3.1. Let b≥ 6 be even and d ≥ 3 be odd with b≥ 2d. A b-Niven d-AP is of length at most
2
⌈ b

d

⌉
+1. Any b-Niven d-AP of length at least 2

⌈ b
d

⌉
consists of numbers strictly between mb2−b−d

and mb2 +b+d for some m ∈ Z+.
Furthermore:

(a) if d | (b− 1), then a b-Niven d-AP is of length at most 2
⌈ b

d

⌉
. Any b-Niven d-AP of this length

consists of the numbers mb2−b+1, mb2−b+d +1, . . . , mb2 +b+d−1 for some m ∈ Z+.
(b) if d | (b−1), and if every factor f of b−1 such that f > d satisfies f ≡ −d (mod 4), then the

maximum length of a b-Niven d-AP is exactly 2
⌈ b

d

⌉
−1. Any b-Niven d-AP of this length consists

of numbers strictly between mb2−b−d and mb2 +b+d for some m ∈ Z+.

Proof. Let S be a b-Niven d-AP. Let x be the first odd term in S , y be the last odd term in S , and
T be the b-Niven 2d-AP starting with x and ending with y. By Theorem 2.4, T is of length at most⌈ 2b

2d

⌉
=
⌈ b

d

⌉
, and if T is of this length, then

(1) mb2−b < x < y < mb2 +b

for some m∈Z+. Noting that S has at most one term before x and one term after y, the main statement
of the theorem follows.

Assume now that d | (b−1) and that S is of length at least 2
⌈ b

d

⌉
. The sequence T is of length

at least
⌈ b

d

⌉
, which, combined with inequality (1), implies that x = mb2−b+1 and y = mb2 +b−1.

Suppose that S also contains the term x−d = (m−1)b2 +(b−2)b+(b−d +1). Note that x+b−
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ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 4

1−d is in S and has the same base b digit sum as x−d. Applying Lemma 2.1 to x+b−1−d and
x−d yields (sb(m−1)+2b−d−1) | (b−1), which is impossible since b > d. Hence, S does not
contain x−d and part (a) of the theorem follows.

Next, assume the hypotheses of part (b) of the theorem and that S is of length at least 2
⌈ b

d

⌉
−1.

Since b is even, d is odd, and d | (b−1),

b+d−1
2d

−1 =
b−d−1

2d
<

b
2d

<
b+d−1

2d
∈ Z

implies that

2
⌈

b
2d

⌉
= 2

(
b+d−1

2d

)
=

b+d−1
d

=

⌈
b
d

⌉
.

So T is of length at least

2
⌈ b

d

⌉
−2

2
=

⌈
b
d

⌉
−1 = 2

⌈
b

2d

⌉
−1≥

⌈
b

2d

⌉
+1,

since b≥ 2d and d - b. Applying Theorem 2.4 with 2d in place of d we conclude that inequality (1)
again holds.

Finally, suppose for a contradiction that S is of length at least 2
⌈ b

d

⌉
. Then from part (a), S

contains the term y+d = mb2 +b+(d−1). Applying Lemma 2.1 to mb2 +d and mb2 +b+(d−1)
yields (sb(m)+d) | (b−1). Since sb(m)+d > d, the hypothesis implies that sb(m)+d ≡−d (mod 4).
Thus, sb(mb2 +2d) = sb(m)+2d ≡ 0 (mod 4). But mb2 +2d is a term in S and so sb(mb2 +2d) |
(mb2 +2d), implying that mb2 +2d ≡ 0 (mod 4). This is a contradiction, since b is even and d is odd.
Thus, under the hypotheses of part (b), S cannot be of length 2

⌈ b
d

⌉
. By Theorem 2.3, there exists a

b-Niven d-AP of length 2
⌈ b

d

⌉
−1, implying that this bound is optimal. �

The next theorem is broadly applicable to achieve a better bound than the remaining theorems in
this section. The key, however, is whether there exists a small value of n that satisfies the theorem’s
hypotheses.

Theorem 3.2. Let b ≥ 4, d ≥ 2, and n ≥ 2 be such that b ≥ nd, gcd(n,d) = 1, and n - (b− 1). A
b-Niven d-AP is of length at most

⌈2b
d

⌉
+2n−2. Any b-Niven d-AP of length at least

⌈ b
d

⌉
+2n−1

consists of numbers strictly between mb2−b−nd +d−1 and mb2 +b+nd−d for some m ∈ Z+.

The proof of Theorem 3.2 uses the following lemma.

Lemma 3.3. Let b ≥ 4, d ≥ 2, and n ≥ 2 be such that b ≥ nd, gcd(n,d) = 1, and n - (b− 1). If a
b-Niven d-AP has at least n terms less than ab and at least n terms greater than or equal to ab for
some a ∈ Z+, then a is a multiple of b.

Proof. Let S be a b-Niven d-AP as in the hypothesis of the lemma. Then S contains the terms
(a−1)b+(b−nd + i), (a−1)b+(b− (n−1)d + i), . . . , (a−1)b+(b−d + i), ab+ i, ab+(d + i),
. . . , ab+(n−1)d + i for some 0≤ i≤ d−1.

Suppose for a contradiction that b - a. Then the corresponding digit sums of the above terms of S are
sb(a)−1+b−nd+ i, sb(a)−1+b−(n−1)d+ i, . . . , sb(a)−1+b−d+ i, sb(a)+ i, sb(a)+d+ i, . . . ,
sb(a)+(n−1)d+ i, respectively. Since gcd(n,d) = 1, the first n terms of this digit sum sequence form
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ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 5

a complete set of representatives of the congruence classes modulo n. Hence, there exists 1≤ j ≤ n
such that n | (sb(a)−1+b− jd + i). Since the terms of S are b-Niven numbers, the corresponding
number (a−1)b+(b− jd + i) in S is also divisible by n. Similarly, by focusing on the last n terms
of the digit sum sequence, we see that there exists 0≤ j′ ≤ n−1 such that n | (sb(a)+ j′d + i) and so
n | (ab+ j′d + i).

Combining these, we have that n is a factor of (sb(a)+ j′d+ i)−(sb(a)−1+b− jd+ i) = j′d+ jd−
(b−1) and (ab+ j′d+ i)−((a−1)b+(b− jd+ i)) = j′d+ jd. Hence, n | (b−1), a contradiction. �

Proof of Theorem 3.2. Let S be a b-Niven d-AP of length at least
⌈ b

d

⌉
+ 2n− 1. Let a ∈ Z+ be

minimal such that at least n terms of S are less than ab. Then at most n−1 terms of S are less than
(a−1)b. Together with the terms strictly between (a−1)b−1 and ab, there are at most

⌈ b
d

⌉
+n−1

terms less than ab. Consequently, at least n terms of S are greater than or equal to ab. Thus, Lemma 3.3
applies and b | a. Since b - (a+1), Lemma 3.3 further implies that at most n−1 terms of S are greater
than or equal to (a+1)b. Noting that there are at most

⌈2b
d

⌉
terms strictly between (a−1)b−1 and

(a+1)b, the bound on the length follows. The first term of S is at least (a−1)b−d(n−1) and the
last term is at most (a+1)b−1+d(n−1). Letting a = mb completes the proof. �

The next two theorems give bounds under assumptions on the relationship between d and b. In
Theorem 3.4, we require that d is a factor of b−1 and in Theorem 3.5, we require that d is a factor of
b.

Theorem 3.4. Let b≥ 4 and d ≥ 2 be such that b≥ 2d and d | (b−1). A b-Niven d-AP is of length
at most b+2

(b−1
d

)
. Any b-Niven d-AP of this length consists of numbers mb2−b, mb2−b+d, . . . ,

mb2 +db+(b−d−2) for some m ∈ Z+.

Proof. Let S be a b-Niven d-AP of length at least b+2
(b−1

d

)
. Since d | (b−1), we have gcd(b,d) = 1,

and so each 0≤ i≤ b−1 occurs as the last digit of at least one term in S . Let a≥ 0 be maximal such
that S contains (a+1)b+(b−2). Since S does not contain (a+d +1)b+(b−2), the first term
of S is at most ((a+d +1)b+(b−2))−d

(
b+2

(b−1
d

))
= ab. Hence, a > 0 and S also contains

ab+(b−1).
If b - (a+1), then sb(a+1) = sb(a)+1. Applying Lemma 2.1 to ab+(b−1) and (a+1)b+(b−2)

yields (sb(a)+b−1) | (b−1), which is impossible. Therefore, b | (a+1), and so there exists m ∈ Z+

such that a = mb−1.
Now suppose that ab = (mb− 1)b is not the first term of S . Then (mb− 1)b− d = (m− 1)b2 +

(b−2)b+(b−d) is in S . Applying Lemma 2.1 to this and (m−1)b2 +(b−1)b+(b−d−1) gives
us that (sb(m−1)+2b−2−d) | (b−1), a contradiction, since b≥ 2d. Thus, the first term of S is
ab = mb2−b, the last term is (a+d +1)b+(b−d−2) = mb2 +db+(b−d−2), and the length of
S is exactly b+2

(b−1
d

)
. �

Theorem 3.5. Let b≥ 4 and d ≥ 2 be such that b≥ 2d and d | b. A b-Niven d-AP is of length at most
4b− 2b

d . Any b-Niven d-AP of this length consists of the numbers mb2−(2d−1)b, mb2−(2d−1)b+d,
. . . , mb2 +(2d−1)b−d for some m ∈ Z+.
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ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 6

Lemma 3.6. Let b≥ 4 and d ≥ 2 be such that b≥ 2d and d | b. If a b-Niven d-AP of length at least
2b− b

d contains a multiple of d but no multiple of b2, then its first term is a multiple of b and its length
is exactly 2b− b

d .

Proof. Let S be a b-Niven d-AP of length at least 2b− b
d that contains a multiple of d but no multiple

of b2. Note that every term of S is a multiple of d.
Suppose for a contradiction that the first term of S is not a multiple of b. Since S does not contain a

multiple of b2, the first term is of the form ab2+ ib+ j for some a≥ 0, 0≤ i≤ b−2d, and d≤ j≤ b−d
such that d | j. It follows that the last term of S is at least (ab2 + ib+ j)+d

(
2b− b

d −1
)
= ab2 +(i+

2d−1)b+( j−d).
Let 0≤ k ≤ d−1 be such that d | (sb(a)+ i+ k). If k 6= 0, let k′ = k−1; if k = 0, let k′ = 1. Then

0≤ k′≤ d−1 and gcd(d,sb(a)+ i+k′) = 1. Since d | j, we also have that gcd(d,sb(a)+ i+k′+ j) = 1.
Note that S contains both ab2 +(i+ k′)b+ j and ab2 +(i+ k′+d)b+( j−d), so by Lemma 2.1,

(sb(a)+ i+k′+ j) | d(b−1). Hence, (sb(a)+ i+k′+ j) | (b−1), implying that j≤ (b−1)− (sb(a)+
i+ k′)≤ b− (sb(a)+ i+ k). It follows that ab2 +(i+ k)b+(b− (sb(a)+ i+ k)) is in S since it is a
multiple of d between the first and the last terms of S .

If sb(a)+ i+k 6= 0, then sb(ab2+(i+k)b+(b−(sb(a)+ i+k))) = b, implying that ab2+(i+k)b+
(b− (sb(a)+ i+ k)) is a multiple of b, a contradiction. If sb(a)+ i+ k = 0, then a = i = 0, implying
that db+(b−d) is in S . This again is impossible since sb(db+(b−d)) = b and b does not divide
db+(b−d). Therefore, the first term of S is a multiple of b, as desired.

Suppose now that the length of S is greater than 2b− b
d . Let S ′ be the sequence obtained by

removing the first term of S . The length of S ′ is at least 2b− b
d , so by the above argument, the first

term of S ′ is a multiple of b, which is impossible since d < b. Therefore, S is of length exactly
2b− b

d . �

Proof of Theorem 3.5. Let S be a b-Niven d-AP of length at least 4b− 2b
d .

Suppose that S does not contain a multiple of d. Then, since d | b, there exists a≥ 0 such that S
contains at least 2b− b

d terms strictly between ab2 and (a+1)b2. The smallest term in S that is greater
than ab2 is of the form ab2 + ib+ j with 0≤ i≤ b−2d +1 and 1≤ j ≤ b−1. Then S contains the
terms ab2 + ib+ j, ab2 +(i+1)b+ j, . . . , ab2 +(i+d−1)b+ j, whose digit sums are sb(a)+ i+ j,
sb(a)+ i+1+ j, . . . , sb(a)+ i+d−1+ j, respectively. This sequence of digit sums forms a complete
set of representatives of the congruence classes modulo d. Hence, there exists i≤ k ≤ i+d−1 such
that d | (sb(a)+ k+ j). However, ab2 + kb+ j is not a multiple of d, contradicting that ab2 + kb+ j is
in S . Hence, S contains a multiple of d.

Now, since the length of S is more than 2b− b
d , by Lemma 3.6, there exists m ∈ Z+ such that

mb2 is in S . By Lemma 3.6 again, S has at most 2b− b
d terms less than mb2 and at most 2b− b

d
terms greater than mb2. Suppose for a contradiction that S contains exactly 2b− b

d terms greater than
mb2. Then mb2 + d is the first term of a b-Niven d-AP of length 2b− b

d and is not a multiple of b,
contradicting Lemma 3.6. Hence, S has at most 4b− 2b

d terms, and the theorem follows. �
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ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 7

4. Arithmetic Progressions with d = 2

In this section, we consider b-Niven 2-APs for b≥ 2. We begin with Theorem 4.1, giving results for
small values of b, which is proved at the end of the section. We then state and prove theorems that
apply more generally. Theorems 4.2 and 4.4 provide bounds for odd bases, while Theorem 4.6 and
Corollary 4.8 give bounds for even bases.

Theorem 4.1. The maximum length of a
(a) 2-Niven 2-AP is 6. The only 2-Niven 2-AP of this length consists of numbers 2, 4, 6, 8, 10, 12.
(b) 3-Niven 2-AP is 6. The only 3-Niven 2-AP of this length consists of the numbers 2, 4, 6, 8, 10, 12.
(c) 4-Niven 2-AP is 9. Any 4-Niven 2-AP of this length is of the form 16m−8, 16m−6, . . . , 16m+8

for some m ∈ Z+.
(d) 5-Niven 2-AP is 6 or 7. If a 5-Niven 2-AP of length 7 exists, it is of the form 5t+2−5, 5t+2−3, . . . ,

5t+2 +7 for some t ∈ Z+.
(e) 6-Niven 2-AP is 7. Any 6-Niven 2-AP of this length is of the form 36m−6, 36m−4, . . . , 36m+6

for some m ∈ Z+.
( f ) 7-Niven 2-AP is 8. Any 7-Niven 2-AP of this length consists of numbers strictly between 49m−8

and 48m+9 for some m ∈ Z+.

The next two theorems consider the case when b is odd.

Theorem 4.2. Let b≥ 7 be odd. Then a b-Niven 2-AP is of length at most
⌊5b

4

⌋
. Any b-Niven 2-AP of

length greater than b consists of numbers strictly between mb2−b−1 and mb2 +b+ b−3
2 for some

m ∈ Z+.

Lemma 4.3. Let b≥ 7 be odd. If there exist a≥ 1 and 1≤ i≤ b−3 such that (a−1)b+ i, (a−1)b+
(i+ 2), ab+(i− 1), and ab+(i+ 1) are all b-Niven numbers and sb(a)+ i+ 1 > b−1

2 , then a is a
multiple of b.

Proof. Assume by way of contradiction that a is not a multiple of b. Then sb(a) = sb(a− 1)+ 1.
Applying Lemma 2.1 to (a−1)b+(i+2) and ab+(i+1) yields that (sb(a)+ i+1) | (b−1). Since
sb(a)+ i+ 1 > b−1

2 , we have sb(a)+ i+ 1 = b− 1. Similarly, applying Lemma 2.1 to (a− 1)b+ i
and ab+ (i− 1) yields that (sb(a) + i− 1) | (b− 1). Noting that sb(a) + i− 1 = b− 3, we have
(b−3) | (b−1), which is impossible for b≥ 7. �

Proof of Theorem 4.2. Let S be a b-Niven 2-AP of length greater than b. Since b is odd, each
0≤ i≤ b−1 occurs as the last digit of at least one term in S . Let (a−1)b+ i be the smallest term of
S satisfying a≥ 1 and i = b−3

2 or b−1
2 . It follows that the first term of S is at least (a−2)b+(i+1),

which implies that ab+(i+1) is also in S . Since 1≤ i≤ b−3 and sb(a)+ i+1 > b−1
2 , by Lemma 4.3,

a is a multiple of b.
Now, suppose that (a+ 1)b+ i is in S . Then ab+(i− 1), ab+(i+ 1), (a+ 1)b+(i− 2), and

(a+1)b+ i are all in S . Moreover, 1≤ i−1≤ b−3 and sb(a+1)+(i−1)+1 = sb(a)+ i+1 > b−1
2 .

By Lemma 4.3 again, a+ 1 is also a multiple of b, contradicting that a is a multiple of b. Hence,
(a+1)b+ i is not in S .

Next, suppose that S contains (a− 2)b+(b− j) for some j ∈ {1,2}. Applying Lemma 2.1 to
(a−2)b+(b− j) and (a−1)b+(b− j−1), we have (sb(a−1)+b− j−1) | (b−1), so sb(a−1) =
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ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 8

j ≤ 2. Since a is a multiple of b, we have sb(a−1)≥ b−1 > 2, a contradiction. Hence, S does not
contain (a−2)b+(b− j).

Therefore, letting a = mb with m ∈ Z+, S consists of numbers strictly between mb2−b−1 and
mb2 +b+ b−3

2 , and the rest of the theorem follows. �

Theorem 4.4. Let b≥ 9 and n≥ 3 both be odd such that b≥ 2n and n - (b−1). Then a b-Niven 2-AP
is of length at most b+n−1. Any b-Niven 2-AP of this length consists of numbers strictly between
mb2−b−1 and mb2 +b+2n−2 for some m ∈ Z+.

Proof. Let S be a b-Niven 2-AP of length at least b+ n− 1. Since b ≥ 2n and b is odd, b−1
2 ≥ n,

implying that b+ n− 1 ≥ b+1
2 + 2n− 1. By Theorem 3.2, S consists of numbers strictly between

mb2−b−2n+1 and mb2 +b+2n−2 for some m ∈ Z+.
Suppose that S contains a term less than mb2− b. Then for some j ∈ {1,2}, S contains both

mb2− b− j = (m− 1)b2 +(b− 2)b+(b− j) and mb2− j− 1 = (m− 1)b2 +(b− 1)b+(b− j− 1).
By Lemma 2.1, (sb(m−1)+2b−2− j) | (b−1), a contradiction. Therefore, S consists of numbers
strictly between mb2−b−1 and mb2 +b+2n−2, and the rest of the theorem follows. �

The following corollary establishes that Theorem 4.4 provides better bounds than Theorem 4.2 for
b≥ 21 and odd.

Corollary 4.5. Let b≥ 21 be odd. Then a b-Niven 2-AP is of length at most b+2bb+1
8 c−2.

Proof. We apply Theorem 4.4 with n = 2bb+1
8 c−1. Note that n≥ 3 and b≥ 2n. It is easy to verify

that n - (b−1) when 21≤ b≤ 25 is odd. It remains to consider b≥ 27.
Note that 4n≤ 8

(b+1
8

)
−4 < b−1. On the other hand, since b≥ 27 is odd,

b−1 < 12
(

b+1−6
8

)
−6≤ 12

⌊
b+1

8

⌋
−6 = 6n.

Thus, 4n < b−1 < 6n. Since n is odd and b−1 is even, b−1 6= 5n. Hence n - (b−1), and Theorem 4.4
applies. �

We now consider even bases. The following theorem provides bounds for all even bases with at least
one odd prime factor.

Theorem 4.6. Let b ≥ 6 be even and let p be an odd prime such that p | b. A b-Niven 2-AP is of
length at most b+ p−2. Any b-Niven 2-AP of length greater than b consists of terms strictly between
mb2− b− p+ 2 and mb2 + b+ p− 2 for some m ∈ Z+. In particular, any b-Niven 2-AP of length
b+ p−2 is of the form mb2−b− p+3, mb2−b− p+5, . . . , mb2 +b+ p−3 for some m ∈ Z+.

Lemma 4.7. Let b≥ 6 and let p≥ 3 be odd such that b≥ 2p and p | b. If a b-Niven 2-AP has at least
p terms strictly between ab−1 and (a+1)b for some a ∈ Z+, then p | sb(a).

Proof. Fix i ≥ 0 such that ab+ i is the first of p terms between ab− 1 and (a+ 1)b of a b-Niven
2-AP. The digit sums of ab+ i, ab+ i+ 2, . . . , ab+ i+ 2(p− 1) are sb(a) + i, sb(a) + i+ 2, . . . ,
sb(a)+ i+ 2(p− 1), respectively, which form a complete set of representatives of the congruence
classes modulo p. Hence, there exists 0≤ j ≤ p−1 such that p | (sb(a)+ i+2 j). Since ab+ i+2 j is
a b-Niven number, we have p | (ab+ i+2 j), which further implies that p | (i+2 j). Thus p | sb(a), as
desired. �

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 9

Proof of Theorem 4.6. Let S be a b-Niven 2-AP of length greater than b. By Theorem 2.4, every term
of S is even.

Suppose for a contradiction that no term of S is a multiple of b2. Since the length of S is greater
than b, there is some a ∈ Z+ such that both ab and (a+1)b are in S . Note that b≥ 2p since b is an
even multiple of the odd prime p. This implies that there are at least p terms of S strictly between
ab−1 and (a+1)b. Hence, p | sb(a) by Lemma 4.7.

Since S contains no multiple of b2, sb(a±1) = sb(a)±1. So, sb((a±1)b+(p∓1)) = sb(a)+ p,
which is a multiple of p. Since the even numbers (a±1)b+(p∓1) are not multiples of p, they are not in
S . This implies that the length of S is less than ((a+1)b+(p−1)−(a−1)b+(p+1))/2= b−1< b,
a contradiction.

Thus, S contains mb2 for some m ∈ Z+. If mb2 +b+ p−1 is in S , then by Lemma 4.7, p | sb(m).
Thus sb(mb2+b+ p−1) = sb(m)+ p is a multiple of p. This is impossible since p - (mb2+b+ p−1).
Similarly, if mb2− b− p+ 1 = (m− 1)b2 + (b− 2)b+ (b− p+ 1) is in S , then by Lemma 4.7
again, p | sb((m− 1)b+ (b− 1)) and so p | (sb(m− 1) + (b− 1)). It follows that sb((m− 1)b2 +
(b− 2)b+(b− p+ 1)) = sb(m− 1)+ 2b− p− 1 is a multiple of p. This is also impossible since
p - ((m−1)b2 +(b−2)b+(b− p+1)). The theorem follows. �

The following corollary to Theorem 3.2 addresses the remaining case of b equal to a power of 2.

Corollary 4.8. Let b = 2t for some integer t ≥ 3. If t = 4, then a b-Niven 2-AP is of length at most 28;
if t is odd, then a b-Niven 2-AP is of length at most 2t +4; and if t > 4 and even, then a b-Niven 2-AP
is of length at most 2t +2t(log t + log log t)−2.

Proof. The proofs for t = 4 and t odd follow from Theorem 3.2 with n = 7 and 3, respectively.
For t ≥ 6, observe that d(b− 1) = 2(64 · 2t−6− 1) < 2 · 81 · 3t−6 = 2 · 3t−2, and so d(b− 1) has

fewer than t−1 distinct prime factors. Hence, there exists a prime p such that p - d(b−1) that is less
than the t th smallest prime. By Rosser and Schoenfeld [3], for t ≥ 6, the t th smallest prime is less than
t(log t + log log t). Letting n = p < t(log t + log log t), the result follows from Theorem 3.2. �

We now prove Theorem 4.1. The examples provided in parts (a), (b), (c), and (e) are each the
b-Niven 2-AP of maximal length with terms as small as possible. The numbers in parts (c) and (e) were
found by a direct computer search. See Remark 4.9 for information on the example given in part ( f ).

Proof of Theorem 4.1. We consider each part of the theorem separately.

(a) Note that 2, 4, 6, 8, 10, 12 is a 2-Niven 2-AP of length 6. Suppose for a contradiction that S is a
different 2-Niven 2-AP of length at least 6. By Theorem 2.4, every term of S is even. Since 14 is
not a 2-Niven numbers, the first term of S is at least 16.

For any a ≥ 1, if 16a+ 10 and 16a+ 12 are both in S , then by Lemma 2.1, (s2(a)+ 2) | 2,
which is impossible. Hence, since S is of length at least 6, for some a≥ 2, S contains the terms
16a+2, 16a+4, and 16a+6.

Applying Lemma 2.1 to 16a+ 2 and 16a+ 4 yields that (s2(a) + 1) | 2. Thus, s2(a) = 1,
implying that a = 2t for some t ∈ Z+. It follows that s2(16a+6) = s2(16 ·2t +6) = 3, which does
not divide 16 ·2t +6. Hence, 16a+6 is not in S , a contradiction.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS 10

(b) Note that 2, 4, 6, 8, 10, 12 is a 3-Niven 2-AP of length 6. Suppose for a contradiction that S is a
different 3-Niven 2-AP of length at least 6. Since 7 and 14 are not 3-Niven numbers, the first term
of S is greater than 9.

Since S is a 3-Niven 2-AP of length at least 6, S must contains both 9a+ 4 and 9a+ 6 or
both 9a+5 and 9a+7 for some a ∈ Z+. By Lemma 2.1, we have (s3(a)+2) | 2 or (s3(a)+3) | 2,
contradictions. Hence, no such S exists.

(c) The number 17528 is the first term of a 4-Niven 2-AP of length 9. Let S be any 4-Niven 2-AP of
length at least 9. By Theorem 2.4, every term of S is even. Since S is of length at least 9, there
exists m ∈ Z+ such that 16m is a term in S .

Suppose that 16(m−1)+6 is in S . Applying Lemma 2.1 to 16(m−1)+6 and 16(m−1)+12
yields that (s4(m− 1) + 3) | 6, and so s4(m− 1) = 0 or 3. If s4(m− 1) = 0, then s4(16(m−
1) + 10) = 4, which does not divide 16(m− 1) + 10, a contradiction. If s4(m− 1) = 3, then
s4(16(m− 1)+ 14) = 8, which does not divide 16(m− 1)+ 14, again a contradiction. Hence,
16(m−1)+6 is not in S .

Next, suppose that 16m+ 10 is in S . Applying Lemma 2.1 to 16m+ 2 and 16m+ 8 yields
that (s4(m)+2) | 6, so s4(m) = 1 or 4. If s4(m) = 1, then s4(16m+6) = 4, which does not divide
16m+6, a contradiction. If s4(m) = 4, then s4(16m+10) = 8, which does not divide 16m+10,
again a contradiction. Hence, 16m+10 is not in S , and the result follows.

(d) Since 2, 4, 6, 8, 10, 12 is a 5-Niven 2-AP of length 6, the maximum length is at least 6. Suppose
that S is a 5-Niven 2-AP of length at least 7. Since 11, 14, 22, 23, and 34 are not 5-Niven
numbers, the first term of S is at least 25.

Suppose that for some a ≥ 1 and 1 ≤ j ≤ 4, 25a+ 4 j and 25a+ 4 j + 4 are both in S . By
Lemma 2.1, (s5(a)+4) | 4, a contradiction. Similarly, suppose that for some a≥ 1 and 2≤ j ≤ 4,
25a+ 4 j + 1 and 25a+ 4 j + 5 are both in S . Again by Lemma 2.1, (s5(a) + 5) | 4, also a
contradiction. Finally, suppose that for some a≥ 1, S contains both 25a+18 and 25a+22 or
both 25a+19 and 25a+23. Then (s5(a)+6) | 4 or (s5(a)+7) | 4, again contradictions.

Therefore, for some a ∈ Z+, S is a subsequence of 25a+20, 25a+22, . . . , 25(a+1)+11.
Since S is of length at least 7, 25(a+1)+3 and 25(a+1)+7 are both in S . By Lemma 2.1,
(s5(a+1)+3) | 4, which implies that s5(a+1) = 1, and so a+1 = 5t for some t ∈ Z+. It follows
that sb(25(a+1)+9) = 6, which does not divide 25(a+1)+9 = 5t+2 +9. Hence, 25(a+1)+9
is not in S . The result follows.

(e) By Theorem 4.6, the length of a 6-Niven 2-AP is at most 7. A computer check verifies that
10285274079642 is the first term of a 6-Niven 2-AP of length 7.

( f ) By Theorem 4.2, the length of a 7-Niven 2-AP is at most 8. A computer check verifies that
740 +736 +728 +74−6 is the first term of a 7-Niven 2-AP of length 8. �

Remark 4.9. Finally, we provide some notes on finding the example given in the proof of Theo-
rem 4.1( f ). By Theorem 4.2, a 7-Niven 2-AP of length 8 consists of numbers strictly between 49m−8
and 49m+9 for some m∈Z+. We restrict our search to 2-APs of the form 49m−6,49m−4, . . . ,49m+
8. Applying Lemma 2.1 to 49m+2 and 49m+8 yields (s7(m)+2) | 6, which implies that s7(m) = 1
or 4. We further restrict our search to the case in which s7(m) = 4.
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Since s7(m) = 4, we have 49m = 7k4 + 7k3 + 7k2 + 7k1 for some 2 ≤ k1 ≤ k2 ≤ k3 ≤ k4. Note
that s7(49m+4) = 8, so 8 | (49m+4), implying that (−1)k4 +(−1)k3 +(−1)k2 +(−1)k1 ≡ 49m≡ 4
(mod 8). Hence, k1, k2, k3, and k4 are either all odd or all even. Suppose for a contradiction that they
are all odd. Then, reducing modulo 4, s7(49m−2) = s7(7k4 +7k3 +7k2 +(7k1−2)) = 3+s7(7k1−2) =
3+ 6k1− 1 ≡ 0 (mod 4). Since 8 | (49m+ 4), we have that 49m− 2 ≡ 2 (mod 4), a contradiction.
Therefore, k1, k2, k3, and k4 are all even.

Finally, note that s7(49m+ 6) = 10. By reducing modulo 5, we have 0 ≡ 49m+ 6 ≡ 2k4 + 2k3 +

2k2 +2k1 +1 ≡ (−1)k4/2 +(−1)k3/2 +(−1)k2/2 +(−1)k1/2 +1 (mod 5), which implies that each of
k1, k2, k3, and k4 is divisible by 4.

This characterization of 49m leads to an efficient computer search for a 7-Niven 2-AP of length 8,
yielding the example given above.
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