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Abstract

Given an m-isometric Hilbert space operator A ∈ B(H), 4m
A∗,A(I) =∑m

j=0(−1)j
(
m
j

)
A∗jAj = 0, with polar decompositionA = U |A|, the Aluthge

transform Ã = |A| 12U |A| 12 preserves almost all the spectral properties of A.
However, the m-isometric property of an operator neither implies nor is im-
plied by the m-isometric property of its Aluthge transform. The operator A
has an |A|-adjoint A, A∗ = [A]∗ = U∗|A| [4, Definition 1.1]. If Ai, i = 1, 2, dou-

bly commute and Ãi (resp., Ai) is strict mi-isometric, then Ã1A2 (resp., A1A2)
is strict (m1 +m2 − 1)-isometric. The converse fails for products A1A2, Ã1Ã2

and A1A2, but has a positive answer for tensor products A1 ⊗ A2, Ã1 ⊗ Ã2,
A1 ⊗ A2 (and their Hilbert-Schmidt class identifications with the elementary
operators LA1

RA∗
2
, LÃ1

RÃ∗
2

and LA1
RA∗

2
); if S ⊗ T , where S ⊗ T stands for

either of the three tensor products above, is strict m-isometric, then there exist
scalars c and d, |cd| = 1, and positive integers m1 and m2, m = m1 + m1 − 1,
such that cS is strict m1-isometric and dT is strict m2-isometric.

1. Introduction

Let B(H) denote the algebra of operators, i.e. bounded linear transformations, on an
infinite dimensional complex Hilbert spaceH into itself. A generalisation of isometric
operators A ∈ B(H) is obtained by calling A m-isometric, A ∈ m-isometric, if

4m
A∗,A(I) = (I − LA∗RA)m(I) =

m∑
j=0

(−1)j
(
m
j

)
A∗jAj = 0,

where LA∗ , RA ∈ B(B(H)) are, respectively, the operator LA∗(X) = A∗X of left
multiplication by A∗ and the operator RA(X) = XA of right multiplication by A.
Motivated by the work of W. Helton, the concept of m-isometric operators was intro-
duced bt J. Agler [1], and a study of the structure of the class of m-isometric opera-
tors was initiated by Agler and Stankus in [2]. This class of operators has since been
studied by a large number of authors, amongst them [3, 5, 8, 9, 11, 13, 14, 16, 18, 21].
If an A ∈ B(H) has the polar decomposition A = U |A|, then the Aluthge transform Ã
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2 Duggal, Kim

of A is the operator Ã = |A|
1
2U |A|

1
2 ∈ B(H) [17]. The Aluthge transforms preserve,

often improve upon, many a spectral property of the operator. However, as Botelho
and Jamison [10] point out in their study of elementary operators and Aluthge trans-
forms, the m-isometric property of an operator neither implies nor is implied by the
m-isometric property of its Aluthge transform. For example, if A1 ∈ B(`2) is the
operator A1x = A1(x1, x2, x3, x4, · · ·) =

(
0, 12x1, 2x2,

1
2x3, 2x4, · · ·

)
, then A1 is not 1-

isometric (i.e., isometric) and Ã1, Ã1x = (0, x1, x2, x3, x4, · · ·), is 1-isometric. Again,

the operator A2 ∈ B(`2), A2x = (0, a1x1, a2x2, a3x3, · · ·) and aj = eiθj
√

1+j
j , is

2-isometric but Ãx =
(

0, eiθ1 |a1a2|
1
2 , eiθ2 |a2a3|

1
2 , eiθ3 |a3a4|

1
2 , · · ·

)
is not 2-isometric.

Not all is, however, lost. In both the considered examples, the operator |Ai|, i = 1, 2,

is invertible, hence defines an equivalent norm ‖ · ‖|Ai|, ‖B‖|Ai| =
∥∥∥|Ai| 12B∥∥∥ and an

|Ai|-adjoint operator (in the terminology of [4, Definition 1.1]) [Ai]
∗ = U∗i |Ai|. It

is seen that A1 ∈ (1, |A1|)-isometric (i.e.,
∥∥∥|A1|

1
2A1x

∥∥∥ =
∥∥∥|A1|

1
2x
∥∥∥ for all x ∈ `2),

[A1] ∈ (1, |A1|−1)-isometric, Ã2 ∈ (2, |A2|)-isometric and [A2] ∈ 2-isometric. We
prove in the following that such phenomena are typical of m-isometric operators.

Recall that A ∈ B(H) is said to be strict m-isometric if 4m
A∗,A(I) = 0 and

4m−1
A∗,A(I) 6= 0. If Ai ∈ B(H), i = 1, 2, commute, [A1, A2] = A1A2 − A2A1 = 0, and

Ai ∈ mi-isometric, then A1A2 ∈ (m1 + m2 − 1)-isometric [7]. A1 and A2 doubly
commute if [A1, A2] = 0 = [A∗1, A2]. For doubly commuting strict mi-isometric
operators Ai, “the product property” extends to their Aluthge transforms Ãi and
|Ai|-adjoints Ai = |Ai|Ui (see definition below). The converse, namely “does A1A2

(or, Ã1Ã2, or, A1A2) strict m-isometric imply the existence of positive integers mi

such that m −m1 + m2 − 1 and Ai (resp., Ãi ,or, Ai), or some multiple thereof, is
strict mi-isometric fails, even for doubly commuting A1 and A2. An exception here
is the tensor product A1 ⊗A2 (and its Hilbert-Schmidt class identification with the
elementary opetrator LA1RA∗

2
). It is seen that if (S, T ) is either of the pairs (A1, A2)

or (Ã1, Ã2) or (A1,A2) and S ⊗ T is strict m-isometric, then there exist scalars c
and d, |cd| = 1, and positive integers mi, m = m1 + m2 − 1, such that cS is strict
m1-isometric and dT is strict m2-isometric.

2. Results.

Let P ≥ 0 be a positive operator in B(H). Given an operator A ∈ B(H) with adjoint
A∗, an operator A∗ is a P -adjoint of A if

〈Ax, y〉P = 〈PAx, y〉 = 〈Px,A∗y〉 = 〈x,A∗y〉P

for all x, y ∈ H [4]. Equivalently, A∗ is a P -adjoint of A if and only if

PA∗ = A∗P (⇐⇒ AP = PA).

Not every A ∈ B(H) has a P -adjoint: A has a P -adjoint if and only if the operator
equation XP = PA has a solution and a necessary and sufficient condition for this
to happen, guaranteed by the following theorem, is that A∗P (H) ⊆ P (H).

Theorem 2.1 [12] Given operators A,B ∈ B(H), the following conditions are
equivalent:
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m-isometric operators 3

(i) B(H) ⊆ A(H).
(ii) There exists a positive scalar c such that BB∗ ≤ cAA∗.
(iii) There exists an operator C ∈ B(H) such that AC = B.
Furthermore, if one of these conditions is satisfied, then there exists a unique

operator D ∈ B(H) such that AD = B, D(H) ⊆ A∗(H), D−1(0) = B−1(0) and
||D||2 = inf{c > 0 : BB∗ ≤ cAA∗}.

If an operator A ∈ B(H) is m-isometric, then it is necessarily left invertible, hence
has a polar decomposition A = UP , where U is isometric and P ≥ 0 is invertible.
Thus an m-isometric operator A always has a unique P (= |A|)-adjoint, namely the
operator A defined by

A∗ = [A]∗ = P−1A∗P = U∗P (⇐⇒ A = PU).

The Aluthge transform Ã (i.e., the operator Ã = P
1
2UP

1
2 ) of the m-isometric oper-

ator A = UP is related to A via P
1
2 ÃP−

1
2 = A. Henceforth, given an operator T

with polar decomposition T = UT |T |, T ∗ = [T ]∗ = U∗T |T | shall denote the |T |-adjoint
of T .

Remark 2.2 For a given operator A = UP , the operator B = PU has been called
the Duggal transform of A [17]. It is a well known fact [6] that σx(Ã) = σx(A) =
σx(A) for most of the distinguished parts of the spectrum σ: in particular, the equality
holds for σx = σ, the spectrum, and σa, the approximate point spectrum.

The following technical lemma is important to our deliberations below.

Lemma 2.3 If A ∈ B(H) has the polar decomposition A = UP , Aluthge transform
Ã and P -adjoint A∗, then:

{A ∈ m− isometric} =⇒ {A ∈ m− isometric}
=⇒ {A ∈ (m,P 2)− isometric, 0 /∈ σa(A)} ∧
∧ {Ã ∈ (m,P )− isometric, 0 /∈ σa(Ã)},

{A ∈ m− isometric} ⇐⇒ {Ã ∈ (m,P )− isometric, 0 /∈ σa(Ã)

and
{A ∈ (m,P )− isometric} ⇐⇒ {Ã ∈ m− isometric, 0 /∈ σa(A)}.

Proof. Since A = PU ,

{A ∈ m− isometric} ⇐⇒ 4m
A∗,A(I) = 0

⇐⇒
m∑
j=0

(−1)j
(
m
j

)
A∗jAj = 0

⇐⇒ U∗

 m∑
j=1

(−1)j
(
m
j

)
PA∗j−1Aj−1P + I

U = 0

=⇒
m∑
j=0

(−1)j
(
m
j

)
A∗jAj = 0, 0 /∈ σa(A)

⇐⇒ {A ∈ m− isometric}
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4 Duggal, Kim

⇐⇒ P

 m∑
j=1

(−1)j
(
m
j

)
U∗A∗j−1P 2Aj−1U + I

P = 0,

0 /∈ σa(A)

⇐⇒
m∑
j=0

(−1)j
(
m
j

)
A∗jP 2Aj = 0, 0 /∈ σa(A)

⇐⇒ 4m
A∗,A(P 2) = 0, 0 /∈ σa(A)

⇐⇒ P−
1
24m

A∗,A(P 2)P−
1
2 = 0, 0 /∈ σa(A)

⇐⇒
m∑
j=0

(−1)j
(
m
j

)(
P

1
2U∗P

1
2

)j
P
(
P

1
2UP

1
2

)j
= 0,

0 /∈ σa(P
1
2UP

1
2 )

⇐⇒ 4m
Ã∗,Ã

(P ) = 0.

For the two way implication, we have:

{A ∈ m− isometric} ⇐⇒ 4m
A∗,A(I) = 0⇐⇒

m∑
j=0

(−1)j
(
m
j

)
A∗jAj = 0

⇐⇒
m∑
j=1

(−1)j
(
m
j

)
U∗P

1
2 Ã∗j−1PÃj−1P

1
2U + I = 0

⇐⇒ P
1
2

 m∑
j=1

(−1)j
(
m
j

)
U∗P

1
2 Ã∗j−1PÃj−1P

1
2U + I

P
1
2 = 0,

0 /∈ σa(Ã)

⇐⇒
m∑
j=0

(−1)j
(
m
j

)
Ã∗jPÃj = 0, 0 /∈ σa(Ã)

⇐⇒ 4m
Ã∗,Ã

(P ) = 0, 0 /∈ σa(Ã).

If Ã ∈ m-isometric, then

4m
Ã∗,Ã

(I) = 0

⇐⇒ P
1
2 [4m

A∗,A(I)]P
1
2 = 0, 0 /∈ σa(Ã) = σa(A)

⇐⇒ 4m
A∗,A(P ) = 0, 0 /∈ σa(A).

This completes the proof.

Observe that if the operator A in the first part of Lemma 2.3 is invertible, then
U in the polar decomposition A = UP is unitary, all the implications in the proof
of the first set of implications are two way implications, hence the items in the
statement of the lemma are equivalences. In the general case, A ∈ m-isometric

implies
(
P4m

A∗,A(I)P = 0 =⇒
)
A∗4m

A∗,A(I)A = 0. Such operators A have been

called 1-quasi m-isometric and have been considered, amongst other papers, in [15].
A ∈ m-isometric is said to be strictly m-isometric, denoted A ∈ strict m-isometric
if

4m
A∗,A(I) = 0 and 4m−1

A∗,A(I) 6= 0.
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m-isometric operators 5

It is well known, see [15, Lemma 4.1], that if A,B ∈ B(H) commute, [A,B] =
AB −BA = 0, A ∈ m1-isometric and B ∈ m2-isometric, then AB ∈ (m1 +m2 − 1)-
isometric. Indeed:

Proposition 2.4 (a.) Given [A,B] = 0, any two of the following three implications
implies the other.

(i) AB ∈ (m1 +m2 − 1)-isometric.
(ii) A ∈ m1-isometric.
(iii) B ∈ m2-isometric.
(b.) Again, , given [A,B] = 0,
(i) AB ∈ strict (m1 +m2 − 1)-isometric if and only if 4m2−1

B∗,B (4m1−1
A∗,A (I) 6= 0;

(ii) if A ∈ m1-isometric and B ∈ m2-isometric, then AB ∈ strict (m1 +m2−1)-
isometric implies A ∈ strict m1-isometric and B ∈ strict m2-isometric. Further-
more, AB ∈ strict (m1 +m2 − 1)-isometric and A ∈ strict m1 isometric (similarly,
AB ∈ strict (m1 + m2 − 1)-isometric and B ∈ strict m2 isometric) implies B ∈
strict m2-isometric (resp., A ∈ strict m1-isometric).

Does a similar result hold for products of Aluthge transforms and P -adjoints? More
precisely, if [A,B] = 0, then does Ã is m1-isometric and B̃ is m2-isometric (resp., A
is m1-isometric and B is m2-isometric) imply ÃB is m1 + m2 − 1-isometric (resp.,
AB is m1 + m2 − 1-isometric)? The problem here is that of ensuring a reasonable
relationship between the polar forms U |A|, V |B| and W |AB| of A, B and AB,
respectively. Assuming merely that [A,B] = 0 is not enough to conclude |AB| =
|A||B|, or [U, |B|] = [V, |A|] = 0; additional hypotheses are required.

The following terminology will come in handy in the statement of our result.
Given a non-negative operator P ∈ B(H), P ≥ 0, P generates a new semi-inner
product 〈., .〉P on H deined by

〈x, y〉P = 〈Px, y〉 for every x, y ∈ H.

The semi-norm induced by this semi-inner product is a norm whenever P is injective
and an equivalent norm whenever P is invertible. Choose P ≥ 0 to be such that

||x||2P = 〈Px, x〉 = ||P
1
2x||2, x ∈ H,

defines an equivalent norm on H. For an operator T ∈ B(H) such that T ∈ (1, P )-
isometric,

1∑
j=0

(−1)j
(

1
j

)
T ∗jPT j = 0⇐⇒ ||Tx||2P = ||x||2P ,

i.e., P defines an equivalent norm such that T is isometric in this equivalent norm.
Generalising this concept, we say in the following that ”an operator T ∈ B(H) is m-
isometric in an equivalent norm on H if there exists a positive operator P ∈ B(H)
defining an equivalent norm such that T ∈ (m,P )-isometric”. Translated to this
terminology, Lemma 2.3 says that ” A ∈ m-isometric implies Ã is m-isometric in
the equivalent norm ||.|||A|” .

Theorem 2.5 Let A,B ∈ B(H) be doubly commuting operators (thus: [A,B] =

[A,B∗] = 0) with polar decompositions A = UP and B = V Q, let ÃB denote the
Aluthge transform of AB and let [AB]∗ denote the |AB|-adjoint of AB.
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6 Duggal, Kim

(i) If Ã ∈ m1-isometric and B̃ ∈ m2-isometric (resp., A ∈ m1-isometric and

B ∈ m2-isometric), then ÃB ∈ (m1 +m2−1)-isometric (resp., AB ∈ (m1 +m2−1)-
isometric).

(ii) If A ∈ m1-isometric and B ∈ m2-isometric, then AB ∈ (m1 + m2 − 1)-

isometric, and ÃB ∈ (m1 +m2 − 1)-isometric in an equivalent norm.

Proof. The hypotheses Ã ∈ (m1, P )-isometric and B̃ ∈ (m2, Q)-isometric (similarly,
A ∈ m1-isometric and B ∈ m2-isometric) imply σa(A) and σa(B) are contained in
∂D; in particular, A and B are left invertible, hence U, V are isometries and P,Q
are positive invertible in the polar decomposition for A and B. This, combined with
the doubly commuting property of A and B, implies:

[A,Q] = [B,P ] = [P,Q] = 0 = [U,Q] = [V, P ] = [U, V ] = [U, V ∗]

and
AB = UPV Q = UV PQ = V UPQ = BA,

so that

AB = W |AB| = UV |A||B|, [Ã, B̃] = [Ã, B̃∗] = 0 = [A,B] = [A,B∗],
ÃB = ÃB̃, [AB] = AB.

where Ã, B̃ are the Aluthge transforms of A,B, respectively, A∗ and B∗ are the
|A|-adjoint of A and the |B|-adjoint of B, respectively. Let m = m1 +m2 − 1.

(i) Since ÃB = ÃB̃ = B̃Ã and [AB] = [A][B] = [B][A], the proof of (i) is a
straightforward consequence of Proposition 2.4(a).

(ii) Since, for an operator T ∈ B(H), T ∈ m-isometric implies T ∈ m-isometric
(by Lemma 2.3), the hypothesis that A ∈ m1-isometric and B ∈ m2-isometric
implies A ∈ m1-isometric and B ∈ m2-isometric, and hence ,by Proposition 2.4,
AB ∈ (m1 +m2 − 1)-isometric. To complete the proof of (ii), let m = m1 +m2 − 1.
Keeping in view the commutativity properties of P,Q, V, U etc., a straightforward
argument proves that

A ∈ m1 − isometric ⇐⇒
m1∑
j=0

(−1)j
(
m1

j

)
A∗jAj = 0

⇐⇒ P
1
2

m1∑
j=0

(−1)j
(
m1

j

)
Ã∗jP−1Ãj

P
1
2 = 0

⇐⇒ Ã ∈ (m,P−1)− isometric,

similarly
B ∈ m2 − isometric⇐⇒ B̃ ∈ (m,Q−1 − isometric

and

4m
(ÃB)∗,ÃB

(P−1Q−1) = (I − L
ÃB

∗R
ÃB

)m(P−1Q−1)

= (I − LÃ∗LB̃∗RÃRB̃)m(P−1Q−1)

=
(
LÃ∗RÃ4B̃∗,B̃ +4Ã∗,Ã

)m
(P−1Q−1)

=
m∑
j=0

(
m
j

)(
LÃ∗RÃ

)m−j4m−j
B̃∗,B̃

(
4j

Ã∗,Ã
(P−1Q−1)

)
.
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m-isometric operators 7

Since 4j

Ã∗,Ã
(P−1Q−1) = Q−1

(
4j

Ã∗,Ã
(P−1)

)
, and since 4j

Ã∗,Ã
(P−1) = 0 for all

j ≥ m1,

4m
(ÃB)∗,ÃB

(P−1Q−1)

=

m1−1∑
j=0

(−1)j
(
m
j

)(
LÃ∗RÃ

)m−j4m−j
B̃∗,B̃

(
Q−14j

Ã∗,Ã
(P−1)

)

=

m1−1∑
j=0

(−1)j
(
m
j

)(
LÃ∗RÃ

)m−j4j

Ã∗,Ã

(
P−14m−j

B̃∗,B̃
(Q−1

)
.

But then m− j ≥ m1 +m2 − 1− (m1 − 1) = m2, and hence, since 4t
B̃∗,B̃

(Q−1) = 0

for all t ≥ m2,
4m

(ÃB)∗,ÃB
(P−1Q−1) = 0,

equivalently, ÃB is m-isometric in the equivalent norm ||.||P−1Q−1 .

Remark 2.6 If A,B are the doubly commuting operators of Theorem 2.5 such that
Ã is m1-isometric and B̃ is m2-isometric, then Proposition 2.4 implies that ÃB is
strict (m1 +m2 − 1)-isometric if and only if

4m1−1
Ã∗,Ã

(
4m2−1
B̃∗,B̃

(I)
)

= 4m2−1
B̃∗,B̃

(
4m1−1
Ã∗,Ã

(I)
)
6= 0;

ÃB ∈ strict (m1 +m2− 1)-isometric implies Ã ∈ strict m1-isometric and B̃ ∈ strict
(m2 − 1)-isometric. A similar statement holds for operator A, B and AB.

Let H⊗̄Hdenote the completion, endowed with a reasonable uniform cross norm,
of the algebraic tensor product of H with itself. Given operators S, T ∈ B(H), let
S ⊗ T denote the tensor product of S and T . Define A,B ∈ B(H⊗̄H) by

A = S ⊗ I and B = I ⊗ T.

Then A,B doubly commute and σa(AB) = σa(S⊗T ) = σa(S)σa(T ) = σa(A)σa(B);
if S and T have the polar decompositions S = US |S| and T = UT |T |, then AB has
the polar decomposition AB = (US ⊗ UT ) (|S| ⊗ |T |). It is straightforward to see
that

A ∈ strict m1 − isometric ⇐⇒ S ⊗ I ∈ strict m1 − isometric

⇐⇒ S ∈ strict m1 − isometric

and

B ∈ strict m2 − isometric ⇐⇒ I ⊗ T ∈ strict m2 − isometric

⇐⇒ T ∈ strict m2 − isometric

If we let S ⊗ I = A and I ⊗ T = B, then (as already observed) A ∈ m1-isometric,
B ∈ m2-isometric and AB ∈ strict (m1 +m2 − 1)-isometric implies A (hence S) in
strict m1-isometric and B (hence T ) in strict m2-isometric . The reverse implications
fail; thus (i) A strictm1-isometric andB strictm2-isometric does not imply AB strict
(m1 +m2 − 1)-isometric (even for commuting A and B), and (ii), given commuting
A and B, AB strict m-isometric does not imply the existence of positive integers
m1,m2 ≤ m, m = m1 + m2 − 1, such that A, or some multiple of A, is strict
m1-isometric and B, or some multiple thereof, is strict m2-isometric.

10 Mar 2023 03:39:50 PST
210930-Duggal Version 3 - Submitted to Rocky Mountain J. Math.



8 Duggal, Kim

Example 2.7 (i). Let A1, B1 ∈ B(H) be such that A1, B1 ∈ strict m-isometric.
Then the operators A = A1⊕I, B = I⊕B1 and AB are strict m-isometric operators
(in B(H⊕H)). Evidently, m = m+m− 1 if and only m = 1.

(ii). Let A1, B1 ∈ B(H) be two commuting (Hilbert space) isometries and let
B2 ∈ B(H) be the operator B2 = I + V , where V is the Volterra integral operator
(and I is the identity of B(H)). Define A2, A and B by A2 = B−12 , A = A1 ⊕ A2

and B = B1⊕B2. Then [A,B] = 0 and the operator AB = A1B1⊕ I is 1-isometric.
However, neither of the operators A and B, or a multiple thereof, is 1-isometric.
Even double commutativity fails to be sufficient. Choose, for example, A1, B1 to be
commuting unitaries and choose B2 to be a normal invertible operator such that no
multiple of B2 is 1-isometric, i.e,, no multiple of B2 is unitary. Let A2 = B−12 . Then
A = A1⊕A2 and B = B1⊕B2 doubly commute, AB is 1-isometric, and no multiple
of A or B is 1-isometric.

For tensor products, “the converse problem (ii)” has a positive answer. The following
theorem, indeed a more general version, is proved in [20] using techniques from
algebraic geometry. We give here a more transparent proof which uses little more
than some basic operator theory.

Theorem 2.8 If S ⊗ T ∈ strict m-isometric, then there exist non-zero scalars c
and d, |cd| = 1, and positive integers mi ≤ m, i = 1, 2, satisfying m = m1 +m2 − 1
such that dS ∈ strict m1-isometric and cT ∈ strict m2-isometric.

Proof. The operator S ⊗ T being m-isometric, σa(S ⊗ T ) = σa(S)σa(T ) is a subset
of the boundary of the unit disc (i.e., a subset of the unit circle) in the comples
plane C. There exist non-zero scalar c ∈ σa(S) and d ∈ σa(T ) such that |cd| = 1.
Let {en} be a sequence of unit vectors in H such that limn→∞||(S − cI)en|| = 0; let
x ∈ H. The S ⊗ T is m-isometric implies

0 = 4m
S∗⊗T ∗,S⊗T (I ⊗ I) =

m∑
j=0

(−1)j
(
m
j

)
(S∗ ⊗ T ∗)m−j(S ⊗ T )m−j

=⇒ 0 =

m∑
j=0

(−1)j
(
m
j

)
(S∗ ⊗ T ∗)m−j(S ⊗ T )m−j〈en ⊗ x, en ⊗ x〉

⇐⇒ 0 =

m∑
j=0

(−1)j
(
m
j

)
〈S∗(m−j)Sm−jen, en〉〈T ∗(m−j)Tm−jx, x〉.

Taking limits as n→∞,

0 =

m∑
j=0

(−1)j
(
m
j

)
||Tm−jx||2|| lim

n→∞
||Sm−jen||2

=

m∑
j=0

(−1)j
(
n
j

)
||(cT )m−jx||2

for all x ∈ H. Hence, upon letting cT = T1,

0 =
m∑
j=0

(−1)j
(
m
j

)
T
∗(m−j)
1 Tm−j = 4m

T ∗
1 ,T1

(I),
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i.e., T1 is m-isometric. A similar argument shows that S1 = dS is m-isometric.

Let m1 and m2 be the smallest positive integers such that S1 is m1-isometric and
T1 is m2-isometric. Necessarily m1,m2 ≤ m and m ≥ m1 +m2− 1. (Observe that if
m1+m2−1 > 1, S1 is strict m1-isometric and T1 is strict m2-isometric, then S1⊗T1
is strictly (m1 +m2 − 1)-isometric, hence S1 ⊗ T1 is not (strictly) m1 +m2 − 1 > m
isometric.) We need to prove m = m1 +m2 − 1 and that

4m1−1
S∗

1⊗I,S1⊗I(I ⊗ I) 6= 0 6= 4m2−1
I⊗T ∗

1 ,I⊗T1
(I ⊗ I).

Suppose that m1 +m2 − 1 < m. Since

4S∗⊗T ∗,S⊗T (I ⊗ I) = 4S∗
1⊗T ∗

1 ,S1⊗T1(I ⊗ I)

= {LI⊗T ∗
1
RI⊗T14S∗

1⊗I,S1⊗I +4I⊗T ∗
1 ,I⊗T1}(I ⊗ I),

S ⊗ T is strict m-isometric implies

0 6= 4m−1
S∗⊗T ∗,S⊗T (I ⊗ I)

=
m−1∑
j=0

(−1)j
(
m− 1
j

)
(LI⊗T ∗

1
RI⊗T1)m−1−j4m−1−j

S∗
1⊗I,S1⊗I4

j
I⊗T ∗

1 ,I⊗T1
(I ⊗ I)

=

m2−1∑
j=0

(−1)j
(
m− 1
j

)
(LI⊗T ∗

1
RI⊗T1)m−1−j4j

I⊗T ∗
1 ,I⊗T1

4m−1−j
S∗

1⊗I,S1⊗I(I ⊗ I)

(since 4j
I⊗T ∗

1 ,I⊗T1
(I ⊗ I) = 0 for all j ≥ m2)

= 0

for the reason that 0 ≤ j ≤ m2 − 1 implies m − j − 1 ≥ m − m2 > m1 − 1 and
4t
S∗

1⊗I,S1⊗I(I ⊗ I) = 0 for all t ≥ m1.

If either of the hypotheses S ∈ m1-isometric and T ∈ m2-isometric or S̃ ⊗ T ∈ m-
isometric is satisfied, then the polar(decompositions A = S ⊗ I = UP and B =
I ⊗ T = V Q satisfy all the properties listed in the proof of Theorem 2.5, hence the
polar) decomposition S ⊗ T = (US ⊗ UT ) (|S| ⊗ |T |) satisfies

S̃ ⊗ T = (S̃ ⊗ I)(I ⊗ T̃ ), [S ⊗ T ]∗ = S∗ ⊗ T ∗

(where [S ⊗ T ]∗ is the |S ⊗ T |-adjoint of S ⊗ T , S∗ is the |S|-adjoint of S and T ∗ is
the |T |-adjoint of T ). We note here that if [S ⊗ T ] is left invertible (in particular, if
[S ⊗ T ] is m-isometric), then S and T are left invertible. This follows from the fact
that S ⊗ T = (US ⊗ UT )(|S| ⊗ |T |) implies [S ⊗ T ] = (|S| ⊗ |T |)(US ⊗ UT ), hence
σa(S ⊗ T ) = σa(S)σa(T ).

Theorem 2.5 translates to:

Theorem 2.9 (i) If S̃ ⊗ T ∈ strict m-isometric, then there exist non-zero scalars
c and d, |cd| = 1, and positive integers mi ≤ m, i = 1, 2, such that m = m1 +m2 −
1, cS̃ ∈ strict m1-isometric and dT̃ ∈ strict m2-isometric.

(ii) If [S⊗T ] ∈ strict m-isometric, then there exist non-zero scalars c and d, |cd| = 1,
and positive integers mi ≤ m, i = 1, 2, such that m = m1 + m2 − 1, c[S] = cS is
strict m1-isometric and d[T ] = dT is strict m2-isometric.
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Proof. Since S̃ ⊗ T , respectively [S⊗T ], is strict m-isometric if and only if S̃ ⊗ T =
S̃⊗ T̃ , respectively [S⊗T ] = [S]⊗ [T ], is strict m-isometric, S⊗ I and I ⊗T satisfy
the doubly commutative hypothesis and σa( ˜S ⊗ T ) = σa(S ⊗ T ) = σa(A)σa(B) =
σa(S)σa(T ), the argument of Theorem 2.8 applies.

We note here that if S ⊗ T has the polar decomposition S ⊗ T = W (|S| ⊗ |T |),
then [S ⊗ T ] = (|S| ⊗ |T |)W by our standing hypothesis. Hence [S ⊗ T ] is left
invertible implies S and T are left invertible, S ⊗ T = (US ⊗ UT ) (|S| ⊗ |T |) and
[S ⊗ T ] = |S|US ⊗ |T |UT = (|S| ⊗ |T |) (US ⊗ UT ).

Extension to multiplication operator EA,B = LARB. The extension of tensor
products results of Theorems 2.8 and 2.9 to multiplication operators EA,B on the
bimodule C2(H), the Hilbert-Schmidt class, is almost automatic. We observe that
”the prime condition” [16]

EA,B = 0 ∈ B(C2(H)) =⇒ 0 ∈ {A,B} ⊆ B(H) ∪ B(H)

says that the operators EA,B induced by A,B ∈ B(H) on C2(H) are just the tensor
products A⊗B∗ and ”the ultra prime condition”

‖EA,B‖ = ‖A‖2‖B‖2, ‖ · ‖2 the Hilbert− Schmidt norm,

ensures that the operator norm of B(C2(H)) induces a uniform cross norm on the
tensor product H⊗̄H. We have:

Theorem 2.10 Let A,B ∈ B(H). If EA,B ∈ B(C2(H)) is strictly m-isometric, then
there exist scalars c, d, |cd| = 1, and positive integers mi ≤ m, i = 1, 2, such that
m = m1 +m2 − 1, cA ∈ strict m1-isometric and dB∗ ∈ strict m2-isometric.

Theorem 2.10 generalises [10, Theorem 1.1] (see also [19, Theorem 7]).

Theorem 2.11 Let A,B ∈ B(H), and let (as before) Ã and A∗ (etc.) denote the
Aluthge transform and the |A|-adjoint of A, respectively. Let A,B have the polar
decompositions A = UP,B = V Q.

(i) If A ∈ (m1, P )-isometric and B ∈ (m2, Q)-isometric, then EÃ,B̃∗ ∈ (m1+m2−1)-
isometric.

(ii) If A ∈ m1-isometric and B ∈ m2-isometric, then EA,B∗ ∈ (m1 + m2 − 1)-
isometric.

(iii) If EÃ,B̃∗ ∈ strict m-isometric, then there exist scalars c, d, |cd| = 1, and positive
integers mi ≤ m, i = 1, 2, such that m = m1+m2−1, cA ∈ strict (m1, P )-isometric.
and dB∗ ∈ strict (m2, Q)-isometric.

(iv) If EA,B∗ ∈ strict m-isometric, then there exist scalars c, d, |cd| = 1, and positive
integers mi ≤ m, i = 1, 2, such that m = m1+m2−1, cÃ ∈ strict (m1, P )-isometric.
and dB̃∗ ∈ strict (m2, Q)-isometric.

Proof. The proof of the theorem is immediate from Theorems 2.8 and 2.9. The only

details needing attention here are the identifications Ã⊗B and EÃ,B̃∗ , and [A⊗B]
and EA,B∗ . If A = UP and B = V Q, then A⊗B = (U ⊗ V )(P ⊗Q), hence

EA,B∗ = LARB∗ = LULPRV ∗RQ = LURV ∗LPRQ

10 Mar 2023 03:39:50 PST
210930-Duggal Version 3 - Submitted to Rocky Mountain J. Math.
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and

ẼA,B∗ = (LPRQ)
1
2 LURV ∗ (LPRQ)

1
2

= L
1
2
PR

1
2
QLURV ∗L

1
2
PR

1
2
Q

= L
1
2
PLUL

1
2
PR

1
2
QRV ∗R

1
2
Q

= LÃRB̃∗

= EÃ,B̃∗ .

Again, since the adjoints A∗ and B∗ have the forms A∗ = U∗P and B∗ = V ∗Q,

EA,B∗ = LPURV ∗Q = LPRQLURV ∗ .

The hypothesis EA,B∗ ∈ m-isometric implies EA,B∗ is left invertible; hence LPRQ,
therefore P ⊗Q, is invertible. By definition, [A⊗B]|A⊗B| = |A⊗B|(A⊗B), i.e.,
[A⊗B](P ⊗Q) = (P ⊗Q)(U ⊗V )(P ⊗Q), equivalently, [A⊗B] = (P ⊗Q)(U ⊗V ).
Conclusion [EA,B]∗ = EA,B∗ .

The corresponding author declares on behalf of the authors no conflict of interest.
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