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NUMBERS REPRESENTED BY RESTRICTED SUMS OF FOUR SQUARES

YUE-FENG SHE AND GUANG-LIANG ZHOU

ABSTRACT. In this paper, we prove some results of restricted sums of four squares using arithmetic of
quaternions in the ring of Lipschitz integers. In particular, we show that every nonnegative integer n can
be written as x2 + y2 + z2 + t2, where x,y,z, t are integers and x+3y+3z is a power of 2.

1. Introduction

In 1770 Lagrange established his well-known four-square theorem, which states that every positive
integer n can be written as the sum of four integral squares.

Let a,b,c,d be integers and S be a subset of Z, the ring of integers. For any positive integer m,
Z.-W. Sun considered the system

ES
m (a-b-c-d) :

{
m = x2 + y2 + z2 + t2,

ax+by+ cz+dt ∈S .

In [4], Z.-W. Sun proposed the following interesting 1-3-5 conjecture:

Let S denote the set of all the squares. The system ES
m (1-3-5-0) has natural solutions for each

positive integer m.

Y.-C. Sun and Z.-W. Sun [3] proved that any n ∈ N= {0,1,2,3, . . .} can be written as x2 + y2 + z2 + t2

with x,y,5z,5t ∈ Z and x+3y+5z a square using Euler’s four-square identity. Later, H.-L. Wu and
Z.-W. Sun [6] investigated the integer version of 1-3-5 conjecture. Finally, with the help of the Lipschitz
integers, the 1-3-5 conjecture was completely proved by A. Machiavelo and N. Tsopanidis [1] recently.

Let P = {2k : k ∈N}. Z.-W. Sun [5] proved some results concerning the solvability of EP
m (a-b-c-d).

For example, he [5, Theorem 1.1 (iv)] proved that the system EP
m (1-1-1-1) has a solution for every

positive integer m. Furthermore, Z.-W. Sun [5, Conjecture 4.4(i) and Conjecture 4.4(ii)] conjecture
that, the system EP

m (a-b-c-d) has a natural solution for each positive integer m if (a,b,c,d) is among

(1,3,−3,0),(4,−2,−1,0),(1,4,−2,0).

As an application of Lipschitz integers, in the present paper, we have the following result, which
covers the integer version of the conjecture.

Theorem 1.1. For any positive integer m, EP
m (a-b-c-d) has an integral solution if (a,b,c,d) is among

the four quadruples
(1,3,3,0),(1,2,4,0),(1,1,2,5),(1,2,3,5).
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NUMBERS REPRESENTED BY RESTRICTED SUMS OF FOUR SQUARES 2

For each nonnegative integer m, define r(m) to be the cardinality of the set

R(m) :={(x1,x2,x3,x4) ∈ N4 : 0≤ x1 ≤ x2 ≤ x3 ≤ x4

and x2
1 + x2

2 + x2
3 + x2

4 = m}.

Remark 1.1. In fact, the integral solution in the theorem can not be replaced by a natural solution. For
example,

46 ·4r = (6 ·2r)2 +(3 ·2r)2 +(1 ·2r)2 +(0 ·2r)2

= (5 ·2r)2 +(4 ·2r)2 +(2 ·2r)2 +(1 ·2r)2.

In light of [2, Theorem 2.6], it is easy to see that r(46 ·4r) = 2. Let A = {0 ·2r,1 ·2r,3 ·2r,6 ·2r} and
B = {1 ·2r,2 ·2r,4 ·2r,5 ·2r}. One can easily verify that

{x+3y+3z : {x,y,z} ⊂ A}
={6 ·2r,9 ·2r,10 ·2r,12 ·2r,15 ·2r,18 ·2r,19 ·2r,21 ·2r,

24 ·2r,27 ·2r,28 ·2r},

and

{x+3y+3z : {x,y,z} ⊂ B}
={13 ·2r,14 ·2r,17 ·2r,19 ·2r,20 ·2r,22 ·2r,23 ·2r,25 ·2r,

28 ·2r,29 ·2r}.

Neither of the above two sets has an intersection with P . This implies that the system EP
m (1-3-3-0)

has no natural solutions for m = 46 ·4r. For systems EP
m (1-2-4-0), EP

m (1-1-2-5) and EP
m (1-2-3-5),

consider m = 12 ·4r, m = 18 ·4r and m = 36 ·4r respectively.

Our proof is based on properties of the Lipschitz integers defined by

L = {a+bi+ c j+dk : a,b,c,d ∈ Z and i2 = j2 = k2 = i jk =−1}.

For a quaternion α = a1 + a2i + a3 j + a4k, let N(α) = a2
1 + a2

2 + a2
3 + a2

4 be the norm of α and
ℜ(α) = a1 be the real part of α . For simplicity, we define En

m(a-b-c-d) := E{n}m (a-b-c-d). It is clear
that the system En

m(a-b-c-d) is equivalent to

(1.1)

{
m = N(γ),

n = ℜ(βγ),

where γ = x+ yi+ z j+ tk and β = a−bi− c j−dk are Lipschitz integers.
The paper is organized as follows. In section 2, we will show that, given a positive integer m,

the solvability of En
m(a-a-a-b) implies the solvability of En

m(
a+4b

5 -7a−2b
5 -3a+2b

5 -4a+b
5 ) and prove that

En
m(

a+4b
5 -7a−2b

5 -3a+2b
5 -4a+b

5 ) has an integer solution under certain conditions and when all these four
numbers are integers. We will prove Theorem 1.1 in section 3.

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



NUMBERS REPRESENTED BY RESTRICTED SUMS OF FOUR SQUARES 3

2. Solvability of En
m(

a+4b
5 -7a−2b

5 -3a+2b
5 -4a+b

5 )

Let a,b be distinct integers such that a ≡ b 6≡ 0 (mod 5), and suppose that `= 3a2 +b2 satisfies
that r(`) = 2. One can easily verify that(

a+4b
5

)2

+

(
7a−2b

5

)2

+

(
3a+2b

5

)2

+

(
4a+b

5

)2

= `,

and that a+4b
5 , 7a−2b

5 , 3a+2b
5 , 4a+b

5 are pairwise distinct since a 6= b.
To show the solvability of En

m(
a+4b

5 -7a−2b
5 -3a+2b

5 -4a+b
5 ), we need the following result due to A.

Machiavelo and N. Tsopanidis [1].

Lemma 2.1. ([1, Theorem 1]) Let m,n, ` ∈ N be such that n2 ≤ `m and `m− n2 is not of the form
4r(8s+7) for any r,s ∈ N. Then, for some a,b,c,d ∈ N satisfying that a2 +b2 + c2 +d2 = `, En

m(a-b-
c-d) has an integral solution for m.

Assume that η = a+ai+a j+bk and γ = x0− y0i− z0 j− t0k be Lipschitz integers with{
m = N(γ),

n = ℜ(ηγ),

Note that for any α,β ∈L with N(α) = N(β ) = 5,we have{
N(β−1γα) = m,

ℜ(α−1ηβ ·β−1γα) = ℜ(α−1ηγα) = ℜ(ηγ) = n,

where β−1 is the quarternion such that β−1β = 1.
Now, we choose α = 1+2 j,β = 1+2i, One can easily verify that

α
−1

ηβ =
a+4b

5
+

7a−2b
5

i+
3a+2b

5
j+

4a+b
5

k,

and

β
−1

γα =
x0−2y0 +2z0 +4t0

5
+
−2x0− y0−4z0 +2t0

5
i

+
2x0−4y0− z0−2t0

5
j+
−4x0−2y0 +2z0− t0

5
k.

By the equivalence of the system En
m(a-a-a-b) and the system 1.1, if (x0,y0,z0, t0) is an integral solution of

En
m(a-a-a-b) for m and x0−2y0+2z0−t0 ≡ 0 (mod 5), then En

m(
a+4b

5 - 7a−2b
5 - 3a+2b

5 - 4a+b
5 ) has an integral solution

for m.
Similarly, we have

(1−2 j)−1
η(1−2i) =

a+4b
5

+
3a+2b

5
i+

7a−2b
5

j+
4a+b

5
k,

(1+2k)−1
η(1+2 j) =

3a+2b
5

+
7a−2b

5
i+

a+4b
5

j+
4a+b

5
k,

(1−2k)−1
η(1−2 j) =

7a−2b
5

+
3a+2b

5
i+

a+4b
5

j+
4a+b

5
k,

(1+2i)−1
η(1+2k) =

7a−2b
5

+
a+4b

5
i+

3a+2b
5

j+
4a+b

5
k,
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(1−2i)−1
η(1−2k) =

3a+2b
5

+
a+4b

5
i+

7a−2b
5

j+
4a+b

5
k.

By computation, we have

(1−2i)−1
γ(1−2 j) =

x0 +2y0−2z0 +4t0
5

+
2x0− y0−4z0−2t0

5
i

+
−2x0−4y0− z0 +2t0

5
j+
−4x0 +2y0−2z0− t0

5
k,

(1+2 j)−1
γ(1+2k) =

x0 +4y0−2z0 +2t0
5

+
−4x0− y0−2z0 +2t0

5
i

+
−2x0 +2y0− z0−4t0

5
j+

2x0−2y0−4z0− t0
5

k,

(1−2 j)−1
γ(1−2k) =

x0 +4y0 +2z0−2t0
5

+
−4x0− y0 +2z0−2t0

5
i

+
2x0−2y0− z0−4t0

5
j+
−2x0 +2y0−4z0− t0

5
k,

(1+2k)−1
γ(1+2i) =

x0 +2y0 +4z0−2t0
5

+
2x0− y0−2z0−4t0

5
i

+
−4x0 +2y0− z0−2t0

5
j+
−2x0−4y0 +2z0− t0

5
k,

(1−2k)−1
γ(1−2i) =

x0−2y0 +4z0 +2t0
5

+
−2x0− y0 +2z0−4t0

5
i

+
−4x0−2y0− z0 +2t0

5
j+

2x0−4y0−2z0− t0
5

k.

Hence we can get the following lemma.

Lemma 2.2. Given an integral solution (x0,y0,z0, t0) of En
m(a-a-a-b) for m, if either of the following

conditions holds:

• x0−2y0 +2z0− t0 ≡ 0 (mod 5),
• x0 +2y0−2z0− t0 ≡ 0 (mod 5),
• x0− y0−2z0 +2t0 ≡ 0 (mod 5),
• x0− y0 +2z0−2t0 ≡ 0 (mod 5),
• x0 +2y0− z0−2t0 ≡ 0 (mod 5),
• x0−2y0− z0 +2t0 ≡ 0 (mod 5),

En
m(

a+4b
5 -7a−2b

5 -3a+2b
5 -4a+b

5 ) has an integral solution.

In view of Lemma 2.1 and Lemma 2.2, we can deduce the following lemma.

Proposition 1. Let a,b be two distinct integers such that a≡ b 6≡ 0 (mod 5). Suppose that `= 3a2+b2

is such that r(`) = 2. Assume that m,n ∈ N are such that `m−n2 is nonnegative and not of the form
of 4r(8s+7) for any r,s ∈ N. When `m−n2 ≡ 0,1 or 4 (mod 5), En

m(
a+4b

5 -7a−2b
5 -3a+2b

5 -4a+b
5 ) has an

integral solution.

Proof. According to the assumptions, we have `= 3a2 +b2 or `=
(a+4b

5

)2
+
(7a−2b

5

)2
+
(3a+2b

5

)2
+(4a+b

5

)2
. By Lemma 2.1, either En

m(
a+4b

5 -7a−2b
5 -3a+2b

5 -4a+b
5 ) or En

m(a-a-a-b) has an integral solution. If
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En
m(

a+4b
5 -7a−2b

5 -3a+2b
5 -4a+b

5 ) has an integral solution, we are done. If not, we have an integral solution
of En

m(a-a-a-b). Using the notations above, we have

γη = n+Ai+B j+Ck,

where 
n = ax0 +ay0 +az0 +bt0,
A = ax0−ay0−bz0 +at0,
B = ax0 +by0−az0−at0,
C = bx0−ay0 +az0−at0.

By solving the equations and taking the coefficients modulo 5, we have
x0

y0

z0

t0

≡ a−1


−1 −1 −1 −1

−1 1 −1 1

−1 1 1 −1

−1 −1 1 1




n

A

B

C

 (mod 5).

Hence the congruence condition of Lemma 2.2 is

1 −2 2 −1

1 2 −2 −1

1 −1 −2 2

1 −1 2 −2

1 2 −1 −2

1 −2 −1 2




x0

y0

z0

t0

≡ a−1



0 0 2 −1

0 0 −1 2

0 −1 0 2

0 2 0 −1

0 2 −1 0

0 −1 2 0




n

A

B

C

 (mod 5),

which means that if either of the following conditions holds:

• A≡±2B (mod 5),
• A≡±2C (mod 5),
• B≡±2C (mod 5),

En
m(

a+4b
5 -7a−2b

5 -3a+2b
5 -4a+b

5 ) has an integral solution.
On the other hand, A2 +B2 +C2 = `m−n2 ≡ 0,1 or 4 (mod 5). Since

0≡ 0+0+0≡ 0+1+4 (mod 5),
1≡ 0+0+1≡ 1+1+4 (mod 5),
4≡ 0+0+4≡ 1+4+4 (mod 5).

are the only decompositions of 0, 1, 4 as a sum of three squares modulo 5, one can easily verify that
one of A2 +B2, A2 +C2 and B2 +C2 must be divisible by 5, hence one of the conditions must hold.
This completes the proof. �

Now we take (a,b) with (1,−4), (1,6), (2,−3) and (3,−2), then we have the following lemma.
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Corollary 2.1. When either 19m− n2, 39m− n2, 21m− n2, 31m− n2 is not of the form 4r(8s+ 7),
for any r,s ∈ N and is congruent to 0,1,4 modulo 5, then En

m(1-3-3-0), En
m(1-2-3-5), En

m(1-2-4-0),
En

m(1-1-2-5), respectively, has an integral solution.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. For u∈N, define Pu as the set of {k∈N : u−4k≥ 0 and u−4k is not of the form 4r(8s+
7) for any r,s ∈ N}. We describe some of the elements of Pu:

• If u≡ 1,2 (mod 4), any integer k satisfying 1≤ k ≤ log4 u is in Pu.
• If u≡ 3 (mod 8), any integer k satisfying 0≤ k ≤ log4 u and k 6= 1 is in Pu.
• If u≡ 7 (mod 8), {0,1} ⊆ Pu.

When m is divisible by 4, assume m = 4αm′ with α ≥ 1 a positive integer and 4 - m′. If{
m′ = x2 + y2 + z2 + t2,

ax+by+ cz+dt = 2k ∈P,

then {
m = (2αx)2 +(2αy)2 +(2αz)2 +(2αt)2,

a(2αx)+b(2αy)+ c(2αz)+d(2αt) = 2k+α ∈P.

Therefore, it suffices to assume that m is not divisible by 4. When ` ∈ {19,39,21,31} and `m≥ 64,
{0,1} ⊆ P̀ m or {2,3} ⊆ P̀ m according as `m≡ 7 (mod 8) or not. When `m 6≡ 1,2 (mod 5), `m−4≡
`m−43 ≡ 0,1,4 (mod 5) and when `m≡ 1,2 (mod 5), `m−40 ≡ `m−42 ≡ 0,1 (mod 5), therefore
there exists k ∈ P̀ m such that `m− 4k is congruent to 0,1,4 modulo 5. Hence in this case, we may
define

n`,m := min{2k : k ∈ P̀ m∩{0,1,2,3} and `m−4k ≡ 0,1,4 (mod 5)}.
(i) Solvability of EP

m (1-3-3-0).
When m = 1, {

1 = 12 +02 +02 +02,

1 ·1+3 ·0+3 ·0+0 ·0 = 1 ∈P.

When m = 2, {
2 = 12 +02 +02 +12,

1 ·1+3 ·0+3 ·0+0 ·1 = 1 ∈P.

When m = 3, {
3 = 12 +(−1)2 +12 +02,

1 ·1+3 · (−1)+3 ·1+0 ·0 = 1 ∈P.

When m ≥ 5, Corollary 2.1 guarantees that E
n19,m
m (1-3-3-0) has an integral solution, and so does

EP
m (1-3-3-0) since n19,m ∈P .
(ii) Solvability of EP

m (1-2-3-5).
When m = 1, {

1 = 12 +02 +02 +02,

1 ·1+2 ·0+3 ·0+5 ·0 = 1 ∈P.
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When m ≥ 2, Corollary 2.1 guarantees that E
n39,m
m (1-2-3-5) has an integral solution, and so does

EP
m (1-2-3-5) since n39,m ∈P .
(iii) Solvability of EP

m (1-2-4-0).
When m = 1, {

1 = 12 +02 +02 +02,

1 ·1+2 ·0+4 ·0+0 ·0 = 1 ∈P.

When m = 2, {
2 = (−1)2 +12 +02 +02,

1 · (−1)+2 ·1+4 ·0+0 ·0 = 1 ∈P.

When m = 3, {
3 = (−1)2 +12 +02 +12,

1 · (−1)+2 ·1+4 ·0+0 ·1 = 1 ∈P.

When m ≥ 5, Corollary 2.1 guarantees that E
n21,m
m (1-2-4-0) has an integral solution, and so does

EP
m (1-2-4-0) since n21,m ∈P .
(iv) Solvability of EP

m (1-1-2-5).
When m = 1, {

1 = 12 +02 +02 +02,

1 ·1+1 ·0+2 ·0+5 ·0 = 1 ∈P.

When m = 2, {
2 = (−1)2 +02 +12 +02,

1 · (−1)+1 ·0+2 ·1+5 ·0 = 1 ∈P.

When m ≥ 3, Corollary 2.1 guarantees that E
n31,m
m (1-1-2-5) has an integral solution, and so does

EP
m (1-1-2-5) since n31,m ∈P . This completes our proof. �

Remark 3.1. One can see from the proof that if m is not divisible by 4, P can be replaced by {1,2,4,8}.
However, for m divisible by 4, P can not be reduced to a finite set. In fact, by [2, Theorem 2.6], it is
easy to see that for each r ∈ N,

R(2 ·4r) = {(0,0,2r,2r)}.
Setting Tr(a-b-c-d) := {ax+by+ cz+dt : x,y,z, t ∈ Z, x2 + y2 + z2 + t2 = 2 ·4r}, one may verify that

Tr(1-2-3-5) = {±2r,±2 ·2r,±3 ·2r,±4 ·2r,±5 ·2r,±6 ·2r,±7 ·2r,±8 ·2r}.

Hence if S ′ is a subset of integers, and ES ′
m (1-2-3-5) has an integral solution for every positive integer

m, then S ′ must have an intersection with Tr(1-2-3-5) for each r ∈ N, which forces S ′ to be infinite
since Tr(1-2-3-5)∩Tr+4(1-2-3-5) = /0. Similar argument works for the remaining three quadruples.
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