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)
9 ABSTRACT. In this paper, we prove some results of restricted sums of four squares using arithmetic of
0 quaternions in the ring of Lipschitz integers. In particular, we show that every nonnegative integer n can
— be written as x2 + y* +z2 412, where x, y,z,¢ are integers and x + 3y 4 3z is a power of 2.
11
E .
3 1. Introduction
14

In 1770 Lagrange established his well-known four-square theorem, which states that every positive
'S integer n can be written as the sum of four integral squares.
6 Leta,b,c,d be integers and . be a subset of Z, the ring of integers. For any positive integer m,

17 Z.-W. Sun considered the system
18

9 E (a-b-c-d) : {
20

m=x>+y*+72+12,
ax+by+cz+dt € 7.

21 In [4], Z.-W. Sun proposed the following interesting 1-3-5 conjecture:
22

o Let . denote the set of all the squares. The system E,Zﬂ (1-3-5-0) has natural solutions for each
o4 Positive integer m.

25 Y.-C. Sun and Z.-W. Sun [3] proved that any n € N = {0,1,2,3,...} can be written as x> 4y 4+ z> + 2
26 with x,y,5z,5t € Z and x+ 3y + 5z a square using Euler’s four-square identity. Later, H.-L. Wu and
27 7.-W. Sun [6] investigated the integer version of 1-3-5 conjecture. Finally, with the help of the Lipschitz
28 integers, the 1-3-5 conjecture was completely proved by A. Machiavelo and N. Tsopanidis [1] recently.
29 Let & = {2F: k€ N}. Z.-W. Sun [5] proved some results concerning the solvability of E. (a-b-c-d).
30 For example, he [5, Theorem 1.1 (iv)] proved that the system E;” (1-1-1-1) has a solution for every
31 positive integer m. Furthermore, Z.-W. Sun [5, Conjecture 4.4(i) and Conjecture 4.4(ii)] conjecture

32 that, the system E;” (a-b-c-d) has a natural solution for each positive integer m if (a,b,c,d) is among

- (1,3,-3,0), (4,~2,~1,0),(1,4,~2,0).
35 As an application of Lipschitz integers, in the present paper, we have the following result, which

36 covers the integer version of the conjecture.

Z% Theorem 1.1. For any positive integer m, E;. (a-b-c-d) has an integral solution if (a,b,c,d) is among
o the four quadruples
0 (1,3,3,0),(1,2,4,0),(1,1,2,5),(1,2,3,5).

41 2020 Mathematics Subject Classification. Primary 11E25; Secondary 11D85, 20G20.
42 Key words and phrases. Quaternions, Lipschitz integers, sums of squares.
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For each nonnegative integer m, define r(m) to be the cardinality of the set

1
2
o R(m) :={(x1,%2,x3,%4) EN*:0<x; <xp<x3< x4
4 and x7 +x3 +x3 +x] =m}.
5

— Remark 1.1. In fact, the integral solution in the theorem can not be replaced by a natural solution. For
example,

46-4" = (6-2")2+(3-2")2 4+ (1-2")24(0-2")?
= (52 + (422 + (222 +(1-2)%

[efe|~]e

—_

0

" In light of [2, Theorem 2.6], it is easy to see that r(46-4") =2. Let A = {0-2",1-2",3-27,6-2"} and

2 B= {1:27,2-2",4.275.2"}. One can easily verify that
13

14 {x+3y+3z: {x,y,z} CA}

L ={6-2",9-2",10-2",12-2",15-2",18-2",19-2",21-2",
% 24.27,27-27,28-2",

Eand

19

20 {x+3y+3z:{x,y,z2} CB}

21 ={13-2",14-2",17-2",19-2",20-2",22-2",23.2" 252"
= 28.27,29.2'}.

23

ZZ Neither of the above two sets has an intersection with &2. This implies that the system E,Z] (1-3-3-0)
25 has no natural solutions for m = 46-4". For systems E. (1-2-4-0), E;” (1-1-2-5) and E./ (1-2-3-5),
26 consider m = 12-4", m = 18-4" and m = 36 - 4" respectively.

27

os  Our proof is based on properties of the Lipschitz integers defined by

2% L ={a+bi+cj+dk:ab,c,d€Zand ¥ = =k =ijk=—1}.

?Z For a quaternion a = aj + axi + azj + ask, let N(a) = a% —|—a§ —|—a§ + a% be the norm of o and
% R(a) = a be the real part of ¢. For simplicity, we define E" (a-b-c-d) := EM (a-b-c-d). Tt is clear
% that the system E”".(a-b-c-d) is equivalent to

ol

3 m=N(y),
— (1.1

e (0 {nzwﬁw,

38 where Yy = x+yi+zj+tk and B = a — bi — cj — dk are Lipschitz integers.

39 The paper is organized as follows. In section 2, we will show that, given a positive integer m,

20 the solvability of EJ!(a-a-a-b) implies the solvability of EZ,(45¥2-7a-2b _3at2b _datb) and prove that

a1 E;},,(“Jg“b —7”g2b - 3‘”5“21’ —4“5+ b) has an integer solution under certain conditions and when all these four

42 numbers are integers. We will prove Theorem 1.1 in section 3.
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2. Solvability of EJ, (41:22-7a32b 3a12b dath)

Let a,b be distinct integers such that a = b # 0 (mod 5), and suppose that £ = 3a® + b? satisfies
that r(¢) = 2. One can easily verify that

a+4b 2+ Ta—2b 2+ 3a+2b 2+ da+b\> _
5 5 5 5 -
and that “+S4b , 7"g2b , 3‘@2” , 4"; b are pairwise distinct since a # b.
To show the solvability of EJ}(4-7a2b 3a12b datb) e need the following result due to A.
o Machiavelo and N. Tsopanidis [1].

ofe|~[ofo]a]o]n]~

E Lemma 2.1. ([1, Theorem 1]) Let m,n,£ € N be such that n> < {m and {m — n? is not of the form
12 47(8s+7) for any r,s € N. Then, for some a,b,c,d € N satisfying that a* +b*> +c* +d* = {, E"(a-b-
18 ¢-d) has an integral solution for m.

14

;5 Assume that N = a+ai+aj+ bk and Yy = xo — yoi —z0j — fok be Lipschitz integers with

1 m=N(y),

. n=Rny),

18

1o Note that for any «, B € .2 with N(a) = N(f) = 5,we have

= N(B~'ya) =m,

21 _ _ _

o R(a™'nB-p~'ya) =R(a 'nya) =R(ny) =n,
EE where B! is the quarternion such that B! = 1.

24 Now, we choose & = 1 +2j,8 = 1 +2i, One can easily verify that

25 a+4b Ta—2b. 3a+2b . 4a+b

= N

2 aan5+51+5J+5k,
27 and

28 —2y0+2z0+4tg  —2x0— yo — 420+ 24
= ﬁ—lya:xo yo-g 20+ 0, X0 y05 20 + 0;
30 2x0 —4yo—z0 — 2ty . —4x0 —2y0+2z0 — ¢
30 4 2% y05 0 0] 0 yg 0=t
31

5o By the equivalence of the system E’ (a-a-a-b) and the system 1.1, if (xo,y0,20,%) is an integral solution of
a3 E!(a-a-a-b) for m and xo —2yo+2z0 —to = 0 (mod 5), then E/t, (452 7a-2b _3a-t3b _datby hag an integral solution

5 5
34 form.

55 Similarly, we have

36 4 2 Ta—?2 4

36 (1—2j)71n(1—2i):a+ b+3a+ bi—l— a bj—l— a+bk’
37 5 5 5 5
. 2 Ta—2 4 4

38 (1+2k)*1n(1+2j):3a§ b "5 bi+aJ; bit a;bk,
39

— Ta—2b 3a+2b 4b 4a+b
0 (1-2k)"'n(1—2j) = as + a;_L i+a+5 i+ a5+ k,
#1

T Ta—2b 4b . 3a+2b 4a+b
42 (1+2)"'n(142k) = a5 +‘H; a a—g J+ a5+ k,
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3a+2b 4b. Ta—2b . 4a+b

i (1-20)"'n(1—2k) = 22520 | 4T3, Ja= 20, %a+h,

5 5 5 5 5

3 By computation, we have

4 2y0—2z0+4tg  2x0— Yo — dzo — 24

~ (1—2i)" (1 —2)) _Xo+2yo : 20+ 0, 2% Y0 : 20— 2o,

6 —2xg —4yg—z0+2f0 . —4xo+2y0 — 220 — 4

6 n 0 —4Y0 — 20 0]+ X0 +2Y0 — 220 Ok,

7 5 5

T NE X0 +4yg — 270 + 2t —4xo —yo — 220+ 21y .

9

E n —2x0 + Zyg —20— 4l‘0j+ 2x0 — 2y05_ dz0 — tok,

11

— N xo +4yo +2z0 — 2t —4xg —yo+2z0 — 21y .

E 2x0—2yo—z()—4t0 . —2x0+2y0—4z()—to

14 + 5 J+ 5 k,

15 2 4zo — 2t 2x0 — yo — 2z0 — 4t

e (l+2k)_1}/(1+2i) :xo-i- y045— 20 0+ X0 — Y0 - 20 0;

- —4xg+2y0—z0—200 . —2x0—4yo+220—1

17 " X0 +2y0 — 20 0]+ X0 —4y0 + 220 0k7

18 5 5

— -2 4 21 —2x0 — 270 — 4,

19 (1—2k)'y(1 —2i) _%o )’0-; 20 + 0, X0 YO5+ 20 = %o,

20

— —4x0—2y0—2z0+2ty . 2x9—4yo—2z20— 1o

21 + jt+ k.

- 5 5

22

. Hence we can get the following lemma.

24 Lemma 2.2. Given an integral solution (xo,yo,z0,%0) of E(a-a-a-b) for m, if either of the following
25 conditions holds:

2 o x0—2y0+220 —fo = 0 (mod 5),

s ° xO—i—Zy()—ZZo—toEO(mOdS),

e ® xo—yo—2z0+2tp =0 (mod 5),

o e xo—yo+2z0 — 2t =0 (mod 5),

- ° x0+2y0—z()—2t050(m0d5),

. ° x0—2y0—z()+2t0£0(m0d5),

SE E,’Z,(“?b -7“g2b - 3“?[’ -4“; b) has an integral solution.

% Inview of Lemma 2.1 and Lemma 2.2, we can deduce the following lemma.
35

3E Proposition 1. Let a,b be two distinct integers such that a = b # 0 (mod 5). Suppose that { = 3a* + b*
37 is such that r(¢) = 2. Assume that m,n € N are such that {m — n? is nonnegative and not of the form
38 of 4"(8s+7) for any r,s € N. When m —n*> = 0,1 or 4 (mod 5), E;;(a?b-mgz”-3";2]’-4“5%) has an
39 integral solution.

40

‘E Proof. According to the assumptions, we have £ = 3a®> +b? or { = (#)2 + (7“§2b)2 + (3“J§2b)2 +

2 . _ . .
42 (34£2)" By Lemma 2.1, either E\ (45 7a2b _3atab _datb) or F1 (g-g-a-b) has an integral solution. If
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1 E,’Z,("Jg‘”’ —7ag2b —3“J5r2b —4“5+ b) has an integral solution, we are done. If not, we have an integral solution

2 of E" (a-a-a-b). Using the notations above, we have
Yn =n+Ai+ Bj+Ck,
where
n = axg + ayo + azo + bry,
A = axy — ayg — bz + aty,
B = axo + byo — azo — aty,
C = bxy — ayo + azg — aty.

.
[Ble|e|~|ofa]s]e|

11 By solving the equations and taking the coefficients modulo 5, we have
12

i X0 -1 -1 -1 -1 n

e 1 1 1 1 A

14 Yo - -

14 — 1

o o | = 101 1 -1 B (mod 5).
16 0 -1 -1 1 1 C

17

18 Hence the congruence condition of Lemma 2.2 is

19 1 -2 2 -1 0 O 2 -1

z% 1 2 -2 —1 o 0 0 -1 2 n
o 1 -1 -2 2 Yo ] 0o -1 0 2 A
28 1 -1 2 =2 o |4 1o 2 o -1 g | (mods),
2 1 2 -1 -2 to 0 2 -1 0 C
= 1 -2 -1 2 0 -1 2

26

27 which means that if either of the following conditions holds:
28 e A=+2B (mod5),
29 e A=+2C (mod5),
%0 e B=+2C (mod 5),

31
— pn(a+4b _Ta—2b 3a+2b _4a+b : :
o Em(F57-H5=2-24L=2 22 has an integral solution.

55 On the other hand, A%+ B? +C? = fm —n?> = 0,1 or 4 (mod 5). Since

34

35 0=04+0+0=0+1+4 (mod5),
SE 1=04+0+1=1+1+4 (mod>5),
37 4=0+0+4=1+4+4 (mod5).

x are the only decompositions of 0, 1, 4 as a sum of three squares modulo 5, one can easily verify that
Lo one of A2+ B2, A2+ (C? and B% + C? must be divisible by 5, hence one of the conditions must hold.
o This completes the proof. O

g Now we take (a,b) with (1,—4), (1,6), (2,—3) and (3,—2), then we have the following lemma.
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1+ Corollary 2.1. When either 19m — n?, 39m —n?, 21m —n?, 31m —n? is not of the form 4"(8s+7),
2 for any r,s € N and is congruent to 0,1,4 modulo 5, then E!(1-3-3-0), E!(1-2-3-5), E}! (1-2-4-0),
3 EI(1-1-2-5), respectively, has an integral solution.

4
5 3. Proof of Theorem 1.1

£ Proof of Theorem 1.1. For u € N, define P, as the set of {k € N: u—4k > 0 and u — 4 is not of the form 47 (8s+

_7) for any r,s € N}. We describe some of the elements of P,:
o e If u=1,2 (mod 4), any integer k satisfying 1 < k <log, u is in P,.
o e If u =3 (mod 8), any integer k satisfying 0 < k < log,u and k # 1 is in P,.

- e Ifu=7 (mod38),{0,1} CP,.

1> When m is divisible by 4, assume m = 4%m’ with o > 1 a positive integer and 4 { m'. If

& m =x>+y?+22+12,
I ax+by+cz+dt =2k e 2,

15
15 then

0 m= (2% + (2%9)2 + (2%2)° + (2%,

s a(2%x) +b(2%) +c(2%) +d(2%) = 2% ¢ 2.

19 Therefore, it suffices to assume that m is not divisible by 4. When ¢ € {19,39,21,31} and ¢m > 64,
20 {0,1} C Py, or {2,3} C Py, according as fm =7 (mod 8) or not. When ¢m # 1,2 (mod 5), ¢m —4 =
21 fm—43=0,1,4 (mod 5) and when fm = 1,2 (mod 5), fm —4° = fm — 4% = 0,1 (mod 5), therefore
22 there exists k € Py, such that {m — 4k is congruent to 0, 1,4 modulo 5. Hence in this case, we may
23 define

24 g i=min{2% 1 k € P, {0,1,2,3} and ¢m — 4 =0,1,4 (mod 5)}.

25 (i) Solvability of E7(1-3-3-0).

26 Whenm=1,

= 1=12+0%+0%+0?%,

= 1-143-043-040-0=1¢ 2.

29

20 When m = 2,

o 2=12+0"+0*+17,

32 {1-1+3-0+3-0+0-1:1633.
?E When m = 3,

34 3=124+(=1)2+ 12402

% 1-143-(=1)+3-1+0-0=1¢€ 2.

36
- When m > 35, Corollary 2.1 guarantees that EZIQ’”'(1—3—3—O) has an integral solution, and so does

37 )
8 E7 (1-3-3-0) since nigm € .
5 (i) Solvability of E;/(1-2-3-5).

o Whenm=1,

" {1:12+02+02+02,

42 1-142-04+3-0+5-0=1¢€ 2.
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When m > 2, Corollary 2.1 guarantees that E,7139""(1—2—3—5) has an integral solution, and so does
E7 (1-2-3-5) since n3o m € 2.

h

2

5 (iii) Solvability of EZ (1-2-4-0).

Z When m = 1,

5 1 =1240>+0%>40%,

6 1-142-0+4-0+0-0=1€¢ £.
7 Whenm=2,

& 2=(—124+12+0%+0%,

9

o 1-(-1)4+2-144-0+0-0=1€ 2.
117 Whenm=3,

2 3=(=1)2+124+0%+12

15 1-(~1)+2-14+4-040-1=1€ 2.

" When m > 5, Corollary 2.1 guarantees that Ep2'™(1-2-4-0) has an integral solution, and so does

 EZ(1-2-4-0) since nay , € 2.

18 (iv) Solvability of £ (1-1-2-5).

7 Whenm = 1,

8 {1:12+02+02+02,

19
1-1+1-04+2-0+5-0=1€ 2.

20
51 Whenm=2,

2 2=(=1)*+0*+12+0%

I-(-1)+1-04+2-1+5-0=1€ 2.
f When m > 3, Corollary 2.1 guarantees that Ep'"(1-1-2-5) has an integral solution, and so does
 EZ(1-1-2-5) since n3im € &. This completes our proof. O
26

23

27 Remark 3.1. One can see from the proof that if m is not divisible by 4, & can be replaced by {1,2,4,8}.
28 However, for m divisible by 4, £ can not be reduced to a finite set. In fact, by [2, Theorem 2.6], it is
29 easy to see that for each r € N,

30 R(2-4") = {(0,0,2",2")}.
% Setting T, (a-b-c-d) := {ax+by+cz+dt : x,y,z,t € Z, x> +y* + 7>+ 1> = 2-4"}, one may verify that
o T(1-2-3-5) = {427, 4227, 432", +4.27, +5.2" +6.2",+7.2",48.2'}.

3 Hence if .7 is a subset of integers, and E-” ,(1—2—3—5) has an integral solution for every positive integer
35 m, then ./ must have an intersection with 7}.(1-2-3-5) for each r € N, which forces .#” to be infinite

36 since T,(1-2-3-5) N T,4.4(1-2-3-5) = 0. Similar argument works for the remaining three quadruples.
37
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