TWO MEROMORPHIC MAPPINGS HAVING THE SAME INVERSE IMAGES OF SOME MOVING HYPERPLANES WITH TRUNCATED MULTIPLICITY

SI DUC QUANG

ABSTRACT. Let \(f \) and \(g \) be two meromorphic mappings of \(\mathbb{C}^m \) into \(\mathbb{P}^n(\mathbb{C}) \) and let \(a_1, \ldots, a_{2n+2} \) be \(2n+2 \) moving hyperplanes which are slow with respect to \(f \) and \(g \). In this paper, we will show that if \(f \) and \(g \) have the same inverse images for all \(a_i \) (\(1 \leq i \leq 2n+2 \)) with multiplicities counted to level \(l_i \) such that \(\sum_{i=1}^{2n+2} \frac{1}{l_i} \leq \frac{2}{\binom{2n+2}{n+1}} \), then the map \(f \times g \) into \(\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C}) \) must be algebraically degenerated over the field \(\mathbb{R} \). Our result extends and improves the previous results in this topic.

1. Introduction

Let \(\mathcal{M} \) be the field of meromorphic functions on \(\mathbb{C}^m \) and \(\mathcal{R} \) be a subfield of \(\mathcal{M} \) which contains \(\mathbb{C} \). Let \(V \) be a projective subvariety of \(\mathbb{P}^N(\mathbb{C}) \) and \((x_0 : \cdots : x_N) \) be a homogeneous coordinates of \(\mathbb{P}^N(\mathbb{C}) \). For a homogeneous polynomial \(Q \) in \(\mathcal{R}[x_0, x_1, \ldots, x_N] \) of degree \(d \) given by

\[
Q = \sum_{I=(i_0, \ldots, i_N)} a_I x_0^{i_0} \cdots x_N^{i_N}, a_I \in \mathcal{R},
\]

we say that \(Q \) does not identically vanish on \(V \) if there exists a point \(z_0 \in \mathbb{C}^m \) such that the polynomial \(Q(z_0) = \sum_{I=(i_0, \ldots, i_N)} a_I(z_0) x_0^{i_0} \cdots x_N^{i_N} \) does not identically vanish on \(V \).

DEFINITION 1.1. A meromorphic mapping \(f \) from \(\mathbb{C}^m \) into \(V \) is said to be algebraically degenerate over \(\mathcal{R} \) if the image of \(f \) is contained in a proper algebraic subvariety of \(V \) over \(\mathcal{R} \), i.e., there exists a homogeneous polynomial \(Q \in \mathcal{R}[x_0, x_1, \ldots, x_N] \) not identically vanishing on \(V \) such that

\[
Q(f_0, f_1, \ldots, f_N) \equiv 0
\]

for a presentation \((f_0 : f_1 : \cdots : f_N)\) of \(f \) (when we consider \(f \) as a mapping into \(\mathbb{P}^N(\mathbb{C}) \)).

We see that the above definition does not depend on the choice of the presentation of \(f \). If \(\mathcal{R} = \mathbb{C} \), we just say that \(f \) is algebraically degenerate.

In 1999, Fujimoto [2] showed that if two meromorphic mappings \(f \) and \(g \) of \(\mathbb{C}^m \) into \(\mathbb{P}^n(\mathbb{C}) \) have the same inverse images of \(2n+2 \) hyperplanes in general position with multiplicities truncated by a level \(l_0 \), then \(f \times g \) into \(\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C}) \) is algebraically degenerate. His result is stated as follows.
Theorem 1.2 (see [2, Theorem 1.5]). Let H_1, \ldots, H_{2n+2} be hyperplanes of $\mathbb{P}^n(\mathbb{C})$ in general position. Then there exists an integer l_0 such that, for any two meromorphic mappings f and g of \mathbb{C}^n into $\mathbb{P}^n(\mathbb{C})$, if $\min(v_{f,H_i}, l_0) = \min(v_{g,H_i}, l_0)$ $(1 \leq i \leq 2n+2)$ then the mapping $f \times g$ into $\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C})$ is algebraically degenerate.

Here, $\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C})$ is considered as a projective subvariety of $\mathbb{P}^{(n+1)^2-1}(\mathbb{C})$ by Segre embedding, $f \times g$ is a mapping from \mathbb{C}^n into $\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C})$ defined by

$$(f \times g)(z) = (f(z), g(z)) \in \mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C})$$

for all z outside the union of the indeterminacy loci of f and g, $v_{(f,H_i)}$ is the pullback of divisor H_i by f.

In [4], S. D. Quang and L. N. Quynh extended the above result of Fujimoto to the case of moving targets, also the number l_0 is explicitly estimated by $l_0 > 3n^3q(q - 2)$, where $q = \binom{2n+2}{n+1}$. In another direction, recently the author [6] have successfully generalized the above result of H. Fujimoto to the case of meromorphic mappings on Kähler manifold having the same inverse images of 2n+2 hyperplanes. Motivated by the technique in [6], in this note we will extend and improve the result in [4] by considering the case where the truncated levels l_0 are different for each moving hyperplanes, moreover this number is also reduced. To state our result, we first recall the following from [4].

Let f be a meromorphic mappings of \mathbb{C}^n into $\mathbb{P}^n(\mathbb{C})$ and let a be a meromorphic mapping of \mathbb{C}^n into $\mathbb{P}^n(\mathbb{C})^*$. We call a is a moving hyperplanes of $\mathbb{P}^n(\mathbb{C})$. Such a is said to be slow with respect to f if $\| T(r,a) = o(T(r,f))$ as $r \rightarrow \infty$ (see Section 2 for the notations). Similarly, a meromorphic function φ on \mathbb{C}^n is said to be “small” with respect to f if $\| T(r,\varphi) = o(T(r,f))$ as $r \rightarrow \infty$. Suppose that f and a have reduced representations $(f_0 : \cdots : f_n)$ and $(a_0 : \cdots : a_n)$ respectively. By changing the homogeneous coordinates of $\mathbb{P}^n(\mathbb{C})$ if necessary, throughout this paper, for each such a, we always assume that $a_0 \neq 0$ and set $\tilde{a} = \left(\frac{a_0}{a_0}, \frac{a_1}{a_0}, \ldots, \frac{a_n}{a_0}\right)$. We also define

$$(f, a) = \sum_{i=0}^{n} a_i f_i \text{ and } (f, \tilde{a}) = \sum_{j=0}^{n} \tilde{a}_j f_j.$$

Hence the divisor of zeros $v_{(f,a)}$ of the function (f,a) does not depend on the choice of these representations. Also the function (f, \tilde{a}) does not depend on the choice of the reduced representation of a.

Definition 1.3. Let a_1, \ldots, a_q $(q \geq n+1)$ be q moving hyperplanes of $\mathbb{P}^n(\mathbb{C})$ with reduced representations $a_i = (a_{i1} : \cdots : a_{in})$ $(1 \leq i \leq q)$. We say that a_1, \ldots, a_q are located in general position if $\det(a_{ij}) \neq 0$ for any $1 \leq i_0 < i_1 < \cdots < i_n \leq q$.

Throughout this paper, we will denote by $R_{(a)}(\mathbb{M}_{\mathbb{C}})$ the smallest subfield of \mathbb{M} containing \mathbb{C} and all a_{jk}/a_{ji} with $a_{ji} \neq 0$. Our main theorem is stated as follows.

Main Theorem. Let f and g be two meromorphic mappings of \mathbb{C}^n into $\mathbb{P}^n(\mathbb{C})$. Let a_1, \ldots, a_{2n+2} be $(2n+2)$ meromorphic mappings of \mathbb{C}^n into $\mathbb{P}^n(\mathbb{C})^*$ in general position, which are slow with respect to f and g. Let l_i $(1 \leq i \leq 2n+2)$ be positive integers or infinite. Assume that $\min(v_{(f,a_i)}, l_i) =$
where \(q = \binom{2n+2}{n+2} \). Then the map \(f \times g \) into \(\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C}) \) is algebraically degenerate over \(R_{(a_i)}^{2n+2} \).

Our result will valid with \(l_1 = \cdots = l_{2n+2} = l_0 > 3n^2(n+1)q(q-2) \), which is better than the result of H. Fujimoto and S. D. Quang-L. N. Quynh.

Remark 1.4. 1) In [4], the author and L. N. Quynh have obtained the estimate \(l_0 \geq 3n^3(n+1)q(q-2) \). However, in the proof of [4, Theorem 1.1], the inequalities:

\[
\frac{n_1 q}{2} \sum_{i=1}^{2n+2} (N_{h_i}^{[1]}(r) + N_{1/h_i}^{[1]}(r)) + o(T(r,g)) \leq \frac{\nu q}{2} \sum_{i=1}^{2n+2} N_{(g,a_i),>l_0}^{[1]}(r) + o(T(r,g))
\]

(in lines 12-14, page 1562) are not correct and must be corrected by

\[
\frac{n_1 q}{2} \sum_{i=1}^{2n+2} (N_{h_i}^{[1]}(r) + N_{1/h_i}^{[1]}(r)) + o(T(r,g)) \leq \frac{n_1 q}{2} \sum_{i=1}^{2n+2} N_{(g,a_i),>l_0}^{[1]}(r) + o(T(r,g))
\]

Then the number \((l_0 + 1) \) in the rest part of the proof of [4, Theorem 1.1] should be replaced by \(l_0 \).

Hence the corrected estimated for \(l_0 \) in [4, Theorem 1.1] should be \(l_0 > 3n^3(n+1)q(q-2) \). This gap will be fixed in this paper.

2) With the same reason, the inequality (in line 12, page 16 of the proof of [6, Theorem 1.1])

\[
\frac{q-2}{2} \sum_{i \in J} \sum_{i=1}^{2n+2} (v_{h_i}^{[1]} + v_{1/h_i}^{[1]}) \leq \frac{q(q-2)}{2(l_0+1)} \sum_{i=1}^{2n+2} v_{(g,H_i)}^{[1]}
\]

should be corrected by

\[
\frac{q-2}{2} \sum_{i \in J} \sum_{i=1}^{2n+2} (v_{h_i}^{[1]} + v_{1/h_i}^{[1]}) \leq \frac{q(q-2)}{2l_0} \sum_{i=1}^{2n+2} v_{(g,H_i)}^{[1]}
\]

Then the number \((l_0 + 1) \) in [6, Theorem 1.1] should be replaced by \(l_0 \). The correction of [6, Theorem 1.1] is stated as follows.

Theorem 1.5 (cf. [6, Theorem 1.1]). Let \(M \) be an \(m \)-dimensional complete Kähler manifold whose universal covering is biholomorphic to a ball \(\mathbb{B}^m(R_0) \) \((0 < R_0 \leq +\infty) \) of \(\mathbb{C}^m \). Let \(f \) and \(g \) be two linearly nondegenerate meromorphic mappings of \(M \) into \(\mathbb{P}^n(\mathbb{C}) \), and let \(H_1, \ldots, H_{2n+2} \) be \(2n+2 \) hyperplanes of \(\mathbb{P}^n(\mathbb{C}) \) in general position. Let \(q = \binom{2n+2}{n+1} \) and \(p \) be a positive number such that \((q-
2) \((q - 1)\rho < 2\). Assume that \(f\) and \(g\) satisfy the condition \((C_\rho)\) and \(\min\{v_{(f,H_1),l_0}\} = \min\{v_{(x,H_1),l_0}\}\) for all \(1 \leq i \leq 2n + 2\). If

\[
\frac{3n^2(q + 1)q(q - 2)}{l_0} + \rho \frac{(q - 2)(q - 1)}{2} < 1,
\]

then the mapping \(f \times g\) into \(\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C})\) is algebraically degenerate over \(\mathbb{C}\).

Here, we say that \(f\) satisfies the condition \((C_\rho)\) if there exists a nonzero bounded continuous real-valued function \(h\) on \(M\) such that

\[
\rho \Omega_f + dd^c \log h^2 \geq \text{Ric}\omega,
\]

where \(\Omega_f\) denotes the pull-back of the Fubini-Study metric form on \(\mathbb{P}^n(\mathbb{C})\) by \(f\), \(\omega\) is the Kähler form of \(M\).

2. Basic notions and auxiliary results from Nevanlinna theory

We recall some basic notions and auxiliary results from Nevanlinna theory from \([4, 5]\).

(a) We set \(|z| = (|z_1|^2 + \cdots + |z_m|^2)^{1/2}\) for \(z = (z_1, \ldots, z_m) \in \mathbb{C}^m\) and define

\[
\begin{align*}
B(r) &:= \{z \in \mathbb{C}^m; |z| < r\}, \quad S(r) := \{z \in \mathbb{C}^m; |z| = r\} \quad (0 < r < \infty), \\
\end{align*}
\]

Define

\[
v_{m-1}(z) := (dd^c|z|^2)^{m-1} \quad \text{and} \quad \sigma_m(z) := d^c \log |z|^2 \wedge (dd^c|z|^2)^{m-1}\text{ on } \mathbb{C}^m \setminus \{0\}.
\]

Let \(v\) be a divisor on \(\mathbb{C}^m\) which is given by a formal sum \(v = \sum v_\mu X_\mu\), where \(\{X_\mu\}\) is a locally finite family of irreducible analytic hypersurfaces in \(\mathbb{C}^m\) and \(v_\mu \in \mathbb{Z}\). We identify the divisor \(v\) with the function \(v(z)\) from \(\mathbb{C}^m\) into \(\mathbb{Z}\) defined as follows:

\[
v(z) = \sum_{X_\mu \ni z} v_\mu.
\]

For positive integers \(k, M\) or \(M = \infty\), we set \(v^{[M]}(z) = \min \{M, v(z)\}\) and define:

\[
\begin{align*}
v^{[M]}_{> k}(z) &= \begin{cases} v^{[M]}(z) & \text{if } v(z) > k, \\ 0 & \text{if } v(z) \leq k, \end{cases} \quad n(t) = \begin{cases} \int_{|v| \cap B(t)} v(z) v_{m-1} & \text{if } m \geq 2, \\ \sum_{|z| \leq t} v(z) & \text{if } m = 1. \end{cases}
\end{align*}
\]

Similarly, we define \(n^{[M]}(t)\) and \(n^{[M]}_{> k}(t)\).

The counting function of \(v\) is defined as follows

\[
N(r, v) = \int_{1}^{r} \frac{n(t)}{t^{2m-1}} dt \quad (1 < r < \infty).
\]

Similarly, we define \(N(r, v^{[M]}), N(r, v^{[M]}_{> k})\) and denote them by \(N^{[M]}(r, v), N^{[M]}_{> k}(r, v)\), respectively. For brevity, we will omit the character \([M]\) if \(M = \infty\).
For a nonzero meromorphic function φ on \mathbb{C}^m, denote by v_φ^0 its divisor of zeros and set

$$N_\varphi(r) = N(r, v_\varphi^0), \quad N^{[M]}_\varphi(r) = N^{[M]}(r, v_\varphi^0), \quad N^{[M]}_{\varphi, > k}(r) = N^{[M]}_{\varphi, > k}(r, v_\varphi^0).$$

(b) Let $f : \mathbb{C}^m \to \mathbb{P}^n(\mathbb{C})$ be a meromorphic mapping with a reduced representation $f = (f_0 : \cdots : f_n)$. The characteristic function of f is defined by

$$T(r, f) = \int_{S(r)} \log \|f\| \sigma_m - \int_{S(1)} \log \|f\| \sigma_m,$$

where $\|f\| = (|f_0|^2 + \cdots + |f_n|^2)^{1/2}$. We note that this definition does not depend on the choice of the reduced representation of f.

Let a be a meromorphic mapping of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})^*$ with a reduced representation $a = (a_0 : \cdots : a_n)$. If $(f, a) \neq 0$, then we define

$$m_{f,a}(r) = \int_{S(r)} \frac{\|f\| \cdot |a|}{|(f,a)|} \sigma_m - \int_{S(1)} \frac{\|f\| \cdot |a|}{|(f,a)|} \sigma_m,$$

where $|a| = (|a_0|^2 + \cdots + |a_n|^2)^{1/2}$.

The first main theorem for moving hyperplanes (see [3]) states

$$T(r, f) + T(r, a) = m_{f,a}(r) + N_{(f,a)}(r).$$

Let φ be a nonzero meromorphic function on \mathbb{C}^m, which is occasionally regarded as a meromorphic map into $\mathbb{P}^1(\mathbb{C})$. The proximity function of φ is defined by

$$m(r, \varphi) := \int_{S(r)} \log \max (|\varphi|, 1) \sigma_m.$$

(c) The following play essential roles in Nevanlinna theory.

Theorem 2.1 (see [7, Theorem 2.1]). \emph{Let $f = (f_0 : \cdots : f_n)$ be a reduced representation of a meromorphic mapping f of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$. Assume that f_{n+1} is a holomorphic function with $f_0 + \cdots + f_n + f_{n+1} = 0$. If $\sum_{i \in I} f_i \neq 0$ for all subsets $I \subseteq \{0, \ldots, n+1\}$, then}

$$\|T(r, f)\| \leq \sum_{i=0}^{n+1} N^{[i]}_{f_i}(r) + o(T(r, f)).$$

Theorem 2.2 (see [3] and [2, Theorem 5.5]). \emph{Let f be a nonzero meromorphic function on \mathbb{C}^m. Then}

$$\left\| m\left(r, \frac{\varphi^\alpha(f)}{f}\right) \right\| = O(\log^+ T(r, f)) \quad (\alpha \in \mathbb{Z}^m_+).$$

Here, by the notation “$\| P \|$, we mean the assertion P holds for all $r \in [0, \infty)$ excluding a Borel subset E of the interval $[0, \infty)$ with $\int_E dr < \infty$.

Theorem 2.3 (see [3, Theorem 5.2.29]). \emph{Let f be a meromorphic mapping from \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$ with a reduced representation $f = (f_0 : \cdots : f_n)$. Suppose that $f_k \neq 0$. Then}

$$T(r, \frac{f_j}{f_k}) \leq T(r, f) \leq \sum_{j=0}^n T(r, \frac{f_j}{f_k}) + O(1).$$
3. Proof of Main Theorem

In order to prove Main Theorem, we need the following algebraic propositions.

Let H_1, \ldots, H_{2n+1} be $(2n+1)$ hyperplanes of $\mathbb{P}(\mathbb{C})$ in general position given by

$$H_i : x_0\omega_0 + x_1\omega_1 + \cdots + x_n\omega_n = 0 \quad (1 \leq i \leq 2n+1).$$

We consider the rational map $\Phi : \mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C}) \to \mathbb{P}^{2n}(\mathbb{C})$ as follows:

For $v = (v_0 : v_1 : \cdots : v_n), \ w = (w_0 : w_1 : \cdots : w_n) \in \mathbb{P}^n(\mathbb{C})$, we define the value $\Phi(v, w) = (u_1 : \cdots : u_{2n+1}) \in \mathbb{P}^{2n}(\mathbb{C})$ by

$$u_i = \frac{x_0 v_0 + x_1 v_1 + \cdots + x_n v_n}{x_0 w_0 + x_1 w_1 + \cdots + x_n w_n}.$$

Proposition 3.1 (see [2, Proposition 5.9]). The map Φ is a birational map of $\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C})$ to $\mathbb{P}^{2n}(\mathbb{C})$.

Now let b_1, \ldots, b_{2n+1} be $(2n+1)$ moving hyperplanes of $\mathbb{P}^n(\mathbb{C})$ in general position with reduced representations

$$b_i = (b_{i0} : b_{i1} : \cdots : b_{in}) \quad (1 \leq i \leq 2n+1).$$

Let f and g be two meromorphic mappings of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$ with reduced representations

$$f = (f_0 : \cdots : f_n) \quad \text{and} \quad g = (g_0 : \cdots : g_n).$$

Define $h_i = (f, b_i)/(g, b_i)$ $(1 \leq i \leq 2n+1)$ and $h_I = \prod_{i \in I} h_i$ for each subset I of $\{1, \ldots, 2n+1\}$. Set

$$\mathcal{I} = \{(i_1, \ldots, i_n) ; 1 \leq i_1 < \cdots < i_n \leq 2n+1\}.$$ We have the following proposition.

Proposition 3.2 (see [4, Proposition 3.2]). If there exist functions $A_I \in \mathcal{R}^{2n+1}_{b_i} (I \in \mathcal{I})$, not all zero, such that

$$\sum_{I \in \mathcal{I}} A_I h_I \equiv 0,$$

then the map $f \times g$ into $\mathbb{P}^n(\mathbb{C}) \times \mathbb{P}^n(\mathbb{C})$ is algebraically degenerate over $\mathcal{R}^{2n+1}_{b_i}$.

Proposition 3.3 (see [4, Proposition 3.3]). Let f be a meromorphic mapping of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$ and let b_1, \ldots, b_{n+1} be moving hyperplanes of $\mathbb{P}^n(\mathbb{C})$ in general position with reduced representations

$$f = (f_0 : \cdots : f_n), \ b_i = (b_{i0} : \cdots : b_{in}) \quad (1 \leq i \leq n+1).$$

Then for each regular point z_0 of the analytic subset $\bigcup_{i=1}^{n+1}\{z ; (f, b_i)(z) = 0\}$, which does not belong to the indeterminacy set of f, we have

$$\min_{1 \leq i \leq n+1} v^0_{(f, b_i)}(z_0) \leq v^0_{\det \Phi}(z_0),$$

where Φ is the matrix (b_{ij}).

Lemma 3.4. Let f and g be two meromorphic mappings of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})$. Let a_1, \ldots, a_q be $q \geq 2n+1$ meromorphic mappings of \mathbb{C}^m into $\mathbb{P}^n(\mathbb{C})^*$ in general position, which are slow with respect to f and g. Assume that $\min(v_{(f, a_i)}, 1) = \min(v_{(g, a_i)}, 1) \quad (1 \leq i \leq q)$. Then $\|T(r, f) = O(T(r, g))$ and $\|T(r, g) = O(T(r, f))$.

Proof. Assume that f, g, a_i have reduced representations

$$f = (f_0 : \cdots : f_n), \quad g = (g_0 : \cdots : g_n), \quad a_i = (a_{i_0} : \cdots : a_{i_m}).$$

Then by the second main theorem for moving hyperplanes \cite[Corollary 1.2]{5}, we have

$$\| \frac{q}{n(n+2)} T(r,f) \| \leq \sum_{i=1}^{q} N_{(f,a_i)}^{[1]}(r) + o(T(r,f))$$

$$= \sum_{i=1}^{q} N_{(g,a_i)}^{[1]}(r) + o(T(r,f))$$

$$\leq q(T(r,g)) + o(T(r,f)).$$

Then we have $\| T(r,f) \| = O(T(r,g)).$ Similarly, we also have $\| T(r,g) \| = O(T(r,f)).$ \hfill \Box

PROOF OF MAIN THEOREM. Assume that f, g, a_i have reduced representations

$$f = (f_0 : \cdots : f_n), \quad g = (g_0 : \cdots : g_n), \quad a_i = (a_{i_0} : \cdots : a_{i_m}).$$

We suppose contrarily that the map $f \times g$ is algebraically non-degenerate over $\mathcal{R}_{\{a_i\}_{i=1}^{2n+2}}$. In particular, we suppose that f and g are linear non-degenerate over $\mathcal{R}_{\{a_i\}_{i=1}^{2n+2}}$.

Define $h_i = (f, a_i)/(g, a_i)$ $(1 \leq i \leq 2n+2).$ Then h_i/h_j does not depend on the choice of representations of f and g. Since $\sum_{k=0}^{n} a_{ik}f_k - h_i \cdot \sum_{k=0}^{n} a_{ik}g_k = 0$ $(1 \leq i \leq 2n+2),$ we have

$$\Phi := \det (\tilde{a}_{0i}, \cdots, \tilde{a}_{im}, \tilde{a}_{0i}h_i, \cdots, \tilde{a}_{im}h_i; 1 \leq i \leq 2n+2) \equiv 0.$$

For each subset $I \subset \{1,2,\ldots,2n+2\}$, put $h_I = \prod_{i \in I} h_i, \quad \tilde{h}_I = \prod_{i \in I} \frac{h_i}{h_1}.$ Denote by \mathcal{I} the set

$$\mathcal{I} = \{(i_1, \ldots, i_{n+1}) : 1 \leq i_1 < \cdots < i_{n+1} \leq 2n+2\}.$$

For each $I = (i_1, \ldots, i_{n+1}) \in \mathcal{I}$, define

$$A_I = (-1)^{(n+1)(n+2)/2+i_1+\cdots+i_{n+1}} \times \det (\tilde{a}_{i_I}, 1 \leq r \leq n+1, 0 \leq l \leq n)$$

$$\times \det (\tilde{a}_{j_I}, 1 \leq s \leq n+1, 0 \leq l \leq n),$$

where $I^c = (j_1, \ldots, j_{n+1}) \in \mathcal{I}$ such that $I \cup I^c = \{1,2,\ldots,2n+2\}.$ We have

$$\sum_{I \in \mathcal{I}} A_I h_I = 0.$$

Then there is a partition $\mathcal{I} = \mathcal{I}_1 \cup \cdots \cup \mathcal{I}_k$ of \mathcal{I} satisfying the following properties:

- $\mathcal{I}_t \cap \mathcal{I}_s = \emptyset$, $1 \leq t < s \leq k.$
- $\sum_{I \in \mathcal{I}_t} A_I h_I = 0$, $1 \leq t \leq k.$
- $\sum_{I \in J} A_I h_I \neq 0$ for any proper subset J of \mathcal{I}_t, $1 \leq t \leq k.$

For each $1 \leq t \leq k$, we set $n_t = \frac{1}{2} \mathcal{I}_t - 2$ and assume that $\mathcal{I}_t = \{I_{0t}, \ldots, I_{n_{t}+1}t\}$. We denote by F_t the meromorphic mapping from \mathbb{C}^m into $\mathbb{P}^m(\mathbb{C})$ given by $F_t = (A_{I_{0t}} h_{I_{0t}} : \cdots : A_{I_{n_{t}+1}t} h_{I_{n_{t}+1}t})$ (outside an analytic set).
For each \(1 \leq i \leq 2n+2 \), we define \(S(i) \) the set of all indices \(j \neq i \) such that there exist \(I, I' \in \mathcal{I} \) satisfying
\[
\frac{h_I}{h_{I'}} = \frac{h_i}{h_j},
\]

CLAIM 3.5. For each \(1 \leq p \leq 2n+2 \), \(\# S(p) \geq n+1 \),
\[
T(r, \frac{h_I}{h_p}) \leq \sum_{j=1}^{2n+2} \frac{q(q-2)}{2l_j} T(r, g) + o(T(r, g)), \forall l \in S(p),
\]
and
\[
T(r, \frac{h_I}{h_p}) \leq \sum_{j=1}^{2n+2} \frac{q(q-2)}{I_j} T(r, g) + o(T(r, g)), \forall l \not\in S(p),
\]
where \(q = \binom{2n+2}{n+1} \).

Without loss of generality, we prove the claim for \(p = n+2 \). Indeed, suppose contrarily that \(\# S(n+2) \leq n \), we may assume that \(1, \ldots, n+1 \not\in S(n+2) \). Put \(I_0 = (1, \ldots, n+1) \) and suppose that \(I_0 \in \mathcal{I} \). Since \(f \times g \) is supposed to be algebraically non-degenerate over \(\mathcal{R}_{(a_i)_{i=1}^{2n+2}} \),
\[
\sum_{s=0}^{n+1} A_{I_i}(z) \frac{W^{I_i}(z)}{V^{I_i}(z)} \equiv 0, \forall z \in \mathbb{C}^m,
\]
where \(W^I(z) = \prod_{i \in I} z_i \) and \(V^I(z) = \prod_{i \in I} 1 \). We take a point \(z_0 \) which is not zero neither pole of any \(A_I \) nor pole of any \(a_{ij} \), not in the indeterminacy loci of all \(a_i \) and such that \(I_0 \not\in \mathcal{I} \). Hence, we have
\[
\sum_{I_i \subset \{1, \ldots, n+2\}}^{n+1} A_{I_i}(z_0) \frac{W^{I_i}(z_0)}{V^{I_i}(z_0)} \equiv 0, \forall v.
\]
This yields that there exists \(1 \leq s' \leq n+1 \) such that \(I_{s'} \subset \{1, \ldots, n+2\}, I_{s'} \neq I_0 \). Therefore \(n+2 \in I' \) and
\[
\frac{h_{I_0}}{h_I} = \frac{h_{I_{s'}}}{h_{n+2}},
\]
for some \(j \in \{1, \ldots, n+1\} \). This contradicts the supposition that \(1, \ldots, n+1 \not\in S(n+2) \). Hence, we must have \(\# S(n+2) \geq n+1 \).

Now for \(l \in S(n+2) \), we may assume that there exist two elements \(I, I' \in \mathcal{I} \) satisfying
\[
\frac{h_I}{h_{I'}} = \frac{h_l}{h_{n+2}},
\]
We suppose that \(F_1 \) has a reduced representation \(F_1 = (uA_{I_0}a_{I_0}; \ldots; uA_{I_{n+1}}a_{I_{n+1}}) \), where \(u \) is a meromorphic function. Thus, by Theorem 2.1 and Theorem 2.3, we have
\[
T(r, \frac{h_I}{h_{n+2}}) \leq T(r, F_1) \leq \sum_{i=0}^{n+1} I_{uA_{I_i}a_{I_i}}(r) + o(T(r, g)).
\]
On the other hand, consider a point \(z \), which is neither a zero nor a pole of any \(A_{l_{1i}} \)'s. Then there is a neighborhood \(U \) of \(z \), which contains neither zeros nor poles of any \(A_{l_{1i}} \)'s. Hence, in this neighborhood \(F_1 \) will have a presentation

\[
\left(\frac{A_{h_{11}}(\Pi_{j \in h_{11}}(f, a_j))(\Pi_{j \in I_{h_{11}}}^j(g, a_j))}{\prod_{j=1}^{2n+2} v_j} : \cdots : \frac{A_{l_{1n}}(\Pi_{j \in l_{1n}}(f, a_j))(\Pi_{j \in I_{l_{1n}}}^j(g, a_j))}{\prod_{j=1}^{2n+2} v_j} \right),
\]

where \(v_j (1 \leq j \leq 2n+2) \) is a holomorphic function on \(U \) such that \(v_j = \min\{v(f, a_j), v(g, a_j)\} \). This implies that

\[
\sum_{i=0}^{n_1+1} v_{\lambda_{h_{11}}}^{[n_{11}]}(z) \leq n_1 \sum_{i=0}^{n_1+1} \left(\sum_{j \in h_{11}} v_{f, a_j}^{[1]}(z) + \sum_{j \in l_{1n}} v_{g, a_j}^{[1]}(z) \right)
\]

\[
\leq (q-2) \sum_{l \not \in I} \left(\sum_{j \in l} v_{f, a_j}^{[1]}(z) + \sum_{j \in l} v_{g, a_j}^{[1]}(z) \right)
\]

\[
\leq (q-2) \sum_{l \not \in I} \sum_{j \in l} \min\{1, |v_{f, a_j}^{[1]}(z) - v_{g, a_j}^{[1]}(z)|\}
\]

\[
\leq (q-2) \sum_{l \not \in I} \sum_{j \in l} v_{g, a_j}^{[1]}(z)
\]

\[
= \frac{q(q-2)}{2} \sum_{j \in l} v_{g, a_j}^{[1]}(z).
\]

Hence, it implies that

\[
T(r, \frac{h_{1}}{h_{n+2}}) \leq \frac{q(q-2)}{2} \sum_{j=1}^{2n+2} N_{g, a_j}^{[1]}(r) + o(T(r, g))
\]

\[
\leq \frac{q(q-2)}{2} \sum_{j=1}^{2n+2} \frac{1}{l_j} N_{g, a_j}^{[1]}(r) + o(T(r, g))
\]

\[
\leq \sum_{j=1}^{2n+2} \frac{q(q-2)}{2l_j} T(r, g) + o(T(r, g)).
\]

For \(l \not \in S(n+2) \), since \(l \not \in S(l) \geq n+1 \), there exists \(l' \in S(l) \cap S(n+2) \). Hence, by the above proof, we have

\[
T(r, \frac{h_{1}}{h_{n+2}}) \leq T(r, \frac{h_{1}}{h_{l'}}) + T(r, \frac{h_{l'}}{h_{n+2}}) \leq \sum_{j=1}^{2n+2} \frac{q(q-2)}{l_j} T(r, g) + o(T(r, g)).
\]

The claim is proved.

We now continue the proof of Main Theorem. We see that there exist functions \(b_{ij} \in \mathcal{R}_{[a_i]}^{2n+2} \) \((n + 2 \leq i \leq 2n+2, 1 \leq j \leq n+1) \) such that

\[
\tilde{a}_i = \sum_{j=1}^{n+1} b_{ij} \tilde{a}_j.
\]
By the identity (3.1), we have
\[\det (\bar{a}_0, \ldots, \bar{a}_n, \bar{a}_0 h_i, \ldots, \bar{a}_n h_i; 1 \leq i \leq 2n+2) \equiv 0. \]

It easily implies that
\[\det (\bar{a}_0 h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j, \ldots, \bar{a}_n h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j; n+2 \leq i \leq 2n+2) \equiv 0. \]

Therefore, the matrix
\[\Psi = (\bar{a}_0 h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j, \ldots, \bar{a}_n h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j; n+2 \leq i \leq 2n+2) \]

has the rank at most \(n \).

Suppose that rank \(\Psi < n \). Then, the determinant of the square submatrix
\[(\bar{a}_i h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j, \ldots, \bar{a}_i h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j; n+2 \leq i \leq 2n+1) \]

vanishes identically. It follows that \(f \times g \) is algebraically degenerate over \(\mathbb{R} \{ a \}_{i=1}^{2n+2} \) by Proposition 3.2. This is a contradiction. Hence rank \(\Psi = n \).

Without loss of generality, we may assume that the determinant of the square submatrix
\[(\bar{a}_i h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j, \ldots, \bar{a}_n h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j; n+2 \leq i \leq 2n+1) \]

of \(\Psi \) does not vanish identically. On the other hand, we have
\[(\bar{a}_0 h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j) g_0 + \cdots + (\bar{a}_n h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j) g_n = 0 \ (n+2 \leq i \leq 2n+1). \]

Thus
\[(\bar{a}_0 h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j) \frac{h_0}{h_1} + \cdots + (\bar{a}_i h_i - \sum_{j=1}^{n+1} b_{ij} \bar{a}_j h_j) \frac{h_i}{h_1} g_{n-1} \frac{g_n}{h_1} = 0 \]
\[= -\bar{a}_0 h_i \frac{h_i}{h_1} + \sum_{j=1}^{n+1} b_{ij} \bar{a}_j \frac{h_j}{h_1} (n+2 \leq i \leq 2n+1). \]

We regard the above identities as a system of \(n \) equations in unknown variables \(g_0/h_1, \ldots, g_{n-1}/h_1 \) and solve these to obtain that \(g_i/h_i \ (0 \leq i \leq n-1) \) has the form
\[g_i/h_i = P_i/P_n, \]
where \(P_i \ (0 \leq i \leq n) \) are homogeneous polynomials in \(h_j/h_1 \ (1 \leq j \leq 2n+1) \) of degree \(n \) with coefficients in \(\mathbb{R} \{ a \}_{i=1}^{2n+2} \). Then, there are holomorphic functions \(\phi, \varphi \) such that \(g_j = \phi(\Psi) P_j \ (0 \leq j \leq n) \) and
\[V_\phi = \min \{ V_{P_i}^0; 0 \leq i \leq n \}, \ V_\varphi = \max \{ V_{P_i}^\infty; 0 \leq i \leq n \} \leq n \sum_{j=2}^{2n+1} V_{h_j/h_1}^\infty. \]
By the definition of the characteristic function, we have

\[
T(r, g) = \lim_{S(r)} \int \log \sqrt{|g_0|^2 + \cdots + |g_n|^2} \sigma_m
\]

\[
= N_\varphi(r) - N_\varphi(r) + \lim_{S(r)} \int \log \sqrt{|P_0|^2 + \cdots + |P_n|^2} \sigma_m
\]

\[
\leq n \sum_{j=2}^{2n+1} N_{h_j/h_j}(r) + n \sum_{j=2}^{2n+1} m \left(r, \frac{h_j}{h_1} \right) + o(T(r, g))
\]

\[
= n \sum_{j=2}^{2n+1} T(r, \frac{h_j}{h_1}) + o(T(r, g))
\]

\[
\leq n \left(\sum_{2 \leq j \leq 2n+1} \sum_{s=1}^{2n+2} \frac{q(q-2)}{2I_s} T(r, g) + 2 \sum_{2 \leq j \leq 2n+1} \sum_{s=1}^{2n+2} \frac{q(q-2)}{2I_s} T(r, g) \right) + o(T(r, g)).
\]

\[
\leq 3n^2 \sum_{s=1}^{2n+2} \frac{q(q-2)}{2I_s} T(r, g) + o(T(r, g)),
\]

where the last inequality comes from the fact that there are at most \(n \) indices \(j \notin S(1) \). Letting \(r \to +\infty \), we get

\[
1 \leq 3n^2 \sum_{s=1}^{2n+2} \frac{q(q-2)}{2I_s}, \quad \text{i.e.,} \quad \sum_{s=1}^{2n+2} \frac{1}{I_s} \leq \frac{2}{3n^2(q(q-2))}.
\]

This is a contradiction. Thus the supposition is untrue.

Hence, \(f \times g \) is algebraically degenerate over \(\mathcal{R}_{\{a_i\}} \). The theorem is proved. \(\square \)

ACKNOWLEDGMENTS. The author would like to thank the referee for his/her carefully reading our paper and helpful comments. Especially, the referee had pointed out a gap in the first version of this paper, which lead us to give Remark 1.4 to correct our results in [4, 6].

References

1 DEPARTMENT OF MATHEMATICS, HANOI NATIONAL UNIVERSITY OF EDUCATION, 136-XUAN THUY, CAU GIAY, HANOI, VIETNAM.

2 THANG LONG INSTITUTE OF MATHEMATICS AND APPLIED SCIENCES, NGHIEM XUAN YEM, HOANG MAI, HA NOI.

E-mail address: quangsd@hnue.edu.vn