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CONSTRUCTING MULTI-CUSPED HYPERBOLIC MANIFOLDS THAT ARE
ISOSPECTRAL AND NOT ISOMETRIC

BENJAMIN LINOWITZ

ABSTRACT. In a recent paper Garoufalidis and Reid constructed pairs of 1-cusped hyperbolic 3-manifolds
which are isospectral but not isometric. In this paper we extend this work to the multi-cusped setting by
constructing isospectral but not isometric hyperbolic 3-manifolds with arbitrarily many cusps. The manifolds
we construct have the same Eisenstein series, the same infinite discrete spectrum and the same complex
length spectrum. Our construction makes crucial use of Sunada’s method and the Strong Approximation
Theorem of Nori and Weisfeiler.

1. Introduction

In 1966 Kac [11] famously asked “Can one hear the shape of a drum?” In other words, can one deduce
the shape of a planar domain given knowledge of the frequencies at which it resonates? Long before
Kac had posed his question mathematicians had considered analogous problems in more general settings
and sought to determine the extent to which the geometry and topology of a Riemannian manifold is
determined by its Laplace eigenvalue spectrum.

Early constructions of isospectral non-isometric manifolds include 16-dimensional flat tori (Milnor
[15]), compact Riemann surfaces (Vignéras [24]) and lens spaces (Ikeda [10]). For an excellent survey of
the long history of the construction of isospectral non-isometric manifolds we refer the reader to [8].

In this paper we consider a problem posed by Gordon, Perry and Schueth [9, Problem 1.2]: to construct
complete, non-compact manifolds that are isospectral and non-isometric. This problem has received a
great deal of attention in the case of surfaces. For example, Brooks and Davidovich [1] were able to use
Sunada’s method [20] in order to construct a number of examples of isospectral non-isometric hyperbolic
2-orbifolds. For more examples, see [9].

In a recent paper Garoufalidis and Reid [5] constructed the first known examples of isospectral non-
isometric 1-cusped hyperbolic 3-manifolds. The main result of this paper extends the work of Garoufalidis
and Reid to the multi-cusped setting.

Theorem 1.1. There exist finite volume orientable n-cusped hyperbolic 3-manifolds that are isopectral
and not isometric for arbitrarily large positive integers n.

Moreover, the manifolds we construct will be shown to have the same Eisenstein series, the same
infinite discrete spectrum and the same complex length spectrum.
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comments. The work of the author is partially supported by NSF Grant Number DMS-1905437.
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2. Preliminaries

Given a positive integer d ≥ 2 we define Hd to be d-dimensional hyperbolic space, that is, the connected
and simply connected Riemannian manifold of dimension d having constant curvature −1. Let Γ be a
torsion-free discrete group of orientation preserving isometries of Hd such that the quotient space Hd/Γ

has finite hyperbolic volume. Thus M = Hd/Γ is a finite volume orientable hyperbolic d-manifold.
There exists a compact hyperbolic d-manifold M′ with boundary (possibly empty) such that the

complement M−M′ consists of at most finitely many disjoint unbounded ends of finite volume, the cusps
of M. Each cusp is homeomorphic to N× (0,∞) where N is a compact Euclidean (d−1)-manifold.

Let Λ denote the limit set of Γ (i.e., the set of limit points of all the orbits of the action of Γ on Hd). A
point c ∈ Λ is called a parabolic limit point if it is the fixed point of some parabolic isometry γ ∈ Γ. The
stabilizer Γc < Γ of such a c is called a maximal parabolic subgroup of Γ. A cusp of Γ is a Γ-equivalence
class of parabolic limit points and will be denoted by [c]Γ. We will omit the subscript when the group is
clear from context. The correspondence between cusps of M and cusps of Γ is given by the fact if C is a
cusp of M then C may be identified as C =Vc/Γc where Vc ⊂Hd is a precisely invariant horoball based at
c for some cusp [c] of Γ.

3. Spectrum of the Laplacian

It is known that the space L2(M) has a decomposition

L2(M) = L2
disc(M)⊕L2

cont(M)

where L2
disc(M) corresponds to the discrete spectrum of the Laplacian on M and L2

cont(M) corresponds to
the continuous spectrum of M. The discrete spectrum of M is a collection of eigenvalues 0≤ λ1 ≤ λ2 ≤ ·· ·
where each λ j occurs with a finite multiplicity. The continuous spectrum of M is empty when M is compact
and otherwise is a union of finitely many intervals (one for each cusp of M) of the form[

(d−1)2

4
,∞

)
.

When M is compact it is known that the discrete spectrum is infinite and obeys Weyl’s Asymptotic
Law. The precise analogue of Weyl’s Asymptotic Law is in general not available when M is not compact,
though it is known in the case that Γ is an arithmetic congruence group [19, 21, 22, 23].

The following elementary lemma will be useful in proving that certain manifolds have infinite discrete
spectrum.

Lemma 3.1. Let M = Hd/Γ be a non-compact hyperbolic d-manifold and M′ = Hd/Γ′ be a finite cover
of M. If M has an infinite discrete Laplace spectrum then so does M′.

Proof. The eigenfunctions associated to the discrete Laplace spectrum of M are the set of eigenfunctions
of the Laplacian that are invariant under Γ and which are L2-integrable over some (and hence any)
fundamental domain for Γ. Any such function is also invariant under Γ′, and since the fundamental
domain of Γ′ is a finite union of fundamental domains of Γ, the function will also be L2 integrable over a
fundamental domain for Γ′. It follows that M′ has an infinite discrete Laplace spectrum if M does. �

In order to discuss the spectrum of M further we need to make clear the contribution of Eisenstein
series. Let [c] be a cusp of Γ with stabilizer Γc. The Eisenstein series on M associated to [c] is defined to
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be the convergent series

EM,c(w,s) = ∑
γ∈Γc\Γ

y(σ−1
γw)s, w ∈Hd,s ∈ C,Re(s)> d−1,

where γ ∈ Γ represents a non-identity coset Γcγ of Γc in Γ and σ is an orientation preserving isometry of
hyperbolic space taking the point at infinity to the cusp point c. This definition does not depend on the
choice of σ . Here we use the coordinates z = (x,y) ∈Hd = Rd−1×R+ for the upper half-space.

Let c1, . . . ,cκ be representatives of a full set of inequivalent cusps of Γ. To ease notation we will
temporarily refer to the Eisenstein series associated to the i-th cusp by Ei(w,s). The constant term of
Ei(w,s) with respect to c j is denoted Ei j(w,s) and satisfies

Ei j(w,s) = δi jy(σ−1
j w)s +φi j(s)y(σ−1

j w)d−1−s,

where σ j is the orientation preserving isometry of hyperbolic space taking the point at infinity to the
cusp point c j and where the coefficients φi j(s) define the scattering matrix Φ(s) = (φi j). We define the
scattering determinant to be the function ϕ(s) = detΦ(s). The Eisenstein series E j(w,s), the scattering
matrix Φ(s) and the scattering determinant φ(s) have meromorphic extensions to the complex plane.
The poles of ϕ(s) are poles of the Eisenstein series and all lie in the half-plane Re(s) < d−1

2 , except
for at most finitely many poles in the interval (d−1

2 ,d− 1]. The latter poles are related to the discrete
spectrum as follows. Taking the residue of E j(w,s) at one of the latter poles yields an eigenfunction of
the Laplacian with eigenvalue s(d−1− s). The subset of the discrete spectrum arising from residues of
poles of Eisenstein series (equivalently, of ϕ(s)) is called the residual spectrum. If t is such a pole then
we define the multiplicity at t to be the dimension of the eigenspace in the case when t contributes to the
residual spectrum as described above. This discussion motivates the following definition.

Definition 3.2. Let M1,M2 be n-cusped hyperbolic d-manifolds (for some positive integer n) of finite
volume with scattering determinants ϕ1(s),ϕ2(s). We say that M1 and M2 are isospectral if

• M1 and M2 have the same discrete spectrum, counting multiplicities;
• ϕ1(s) and ϕ2(s) have the same set of poles and multiplicities.

The scattering determinant is in general very difficult to compute explicitly, although it has been worked
out in several special case. For example, the scattering determinants associated to Hilbert modular groups
over number fields have been computed in terms of Dedekind zeta functions by Efrat and Sarnak [3]
and Masri [14]. Similarly, the scattering determinant of certain arithmetic lattices acting on hyperbolic
3-space were computed by Elstrodt, Grunewald, and Mennicke [4]. More recently, Kelmer and Yu [12]
have treated the case of certain arithmetic lattices acting on hyperbolic n-space.

4. Cusps of finite covers of hyperbolic manifolds

We begin with a group theoretic lemma. Let G be a group, g be an element of G, and H,K be subgroups
of G. We define the double coset HgK by

HgK = {hgk : h ∈ H,k ∈ K}.

Lemma 4.1. There is a bijection between the cosets of H in HgK and the cosets of gKg−1∩H in gKg−1.

Proof. Recall that HgK is the union of the cosets Hgk as k varies over the elements of K. As right cosets
of H in G, two cosets Hgk1 and Hgk2 intersect if and only if they are equal. Observe that Hgk1 = Hgk2 if
and only if there is an element h ∈ H such that gk1 = hgk2, or equivalently, if and only if k1k−1

2 ∈ g−1Hg
(and thus is an element of K ∩g−1Hg). This shows that Hgk1 = Hgk2 if and only if (K ∩g−1Hg)k1 =
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(K∩g−1Hg)k2. We have therefore shown that the map f given by f (Hgk) = (K∩g−1Hg)k is a bijection
between the cosets of H in HgK and of K∩g−1Hg in K. We can now conjugate by g to obtain a bijection
between the cosets of H in HgK and the cosets of (gKg−1∩H) in gKg−1. �

Let Γ be a discrete subgroup of Isom+(Hd) and x,y ∈ ∂Hd be Γ-equivalent. Let G be a subgroup of Γ

of finite index. We now define the set

Γx,y = {γ ∈ Γ : γx ∈ G · y}.

Lemma 4.2. There is an equality of sets Γx,y = GγPx, where Px = StabΓ(x) and γ is any element of Γ such
that γx = y.

Proof. That any element of GγPx lies in Γx,y is clear. Suppose therefore that δ ∈ Γx,y and that δx = gy =
g(γx). Then (gγ)−1δx = x, hence γ−1g−1δ ∈ Px and there exists p ∈ Px such that γ−1g−1δ = p. This
implies that δ = gγ p ∈ GγPx and completes the proof of the lemma. �

Let M = Hd/Γ and N = Hd/G be non-compact hyperbolic d-manifolds of finite volume and

π : N −→M

be a covering. Let c represent a cusp of Γ and P = StabΓ(c).

Definition. The preimage of a cusp of M is always a union of cusps of N. We say a cusp of M remains a
cusp of N relative to π when the preimage of that cusp has precisely one cusp of N. Algebraically, this is
equivalent to [c]Γ = [c]G.

Lemma 4.3. Suppose c is a cusp representative of both Γ and G and that [c]Γ = [c]G. Then there is an
equality of sets Γ = GP.

Proof. That GP ⊆ Γ is clear as both G and P are subgroups of Γ. Now let γ ∈ Γ. Since Γc = Gc there
exists an element g ∈ G such that γc = gc. It follows that (g−1γ)c = c, hence g−1γ ∈ P and there exists
p ∈ P such that g−1γ = p. This implies that γ = gp, concluding the proof. �

Theorem 4.4. Let {d1, . . . ,dm} represent the G-orbits on the elements of ∂ Hd belonging to the cusp [c] of
Γ. Then

[Γ : G] =
m

∑
i=1

[StabΓ(di) : StabΓ(di)∩G].

Proof. Write Γ as a disjoint union of cosets Gγi:

Γ =
r⋃

i=1

Gγi.

Since Γ acts transitively on [c], every element of [c] is in the G orbit of γid1 for some i. For each
j ∈ {1, . . . ,m}, fix δ j ∈ Γ such that δ jd1 = d j. By Lemma 4.2, Γd1,d j = Gδ jStabΓ(d1). Lemma 4.1 shows
that Γd1,d j is the union of n cosets of G, where n is the index of δ jStabΓ(d1)δ

−1
j ∩G in δ jStabΓ(d1)δ

−1
j .

As δ jStabΓ(d1)δ
−1
j = StabΓ(δ jd1) = StabΓ(d j), we see that n = [StabΓ(d j) : StabΓ(d j)∩G].

Putting all of this together, we see that Γ is the disjoint union of Γd1,d j as j varies over {1, . . . ,m}. Since
each of these is the disjoint union of [StabΓ(d j) : StabΓ(d j)∩G] cosets of G, we conclude that

[Γ : G] =
m

∑
i=1

[StabΓ(di) : StabΓ(di)∩G],

which completes our proof. �
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Corollary 4.5. We have an equality of indices [Γ : G] = [StabΓ(d) : StabΓ(d)∩G] for all cusps [d] of G if
and only if every cusp of M remains a cusp of N.

Proof. We first prove that if every cusp of M remains a cusp of N then [Γ : G] = [StabΓ(d) : StabG(d)] for
all cusps [d] of G. Fix a cusp [d] of G and define P = StabΓ(d). We must show that [P : P∩G] = [Γ : G].
To that end, suppose that p1, p2 ∈ P. Then

Gp1∩Gp2 6= /0 ⇐⇒ Gp1 = Gp2

⇐⇒ p1 = gp2 for some g ∈ G

⇐⇒ p1 p−1
2 = g

⇐⇒ p1 p−1
2 ∈ P∩G

⇐⇒ (P∩G)p1 = (P∩G)p2.

We have therefore exhibited a bijection between the cosets of G in GP = Γ (the equality follows from
Lemma 4.3) and the cosets of (P∩G) in P, hence [Γ : G] = [P : P∩G].

As the reverse direction is an immediate consequence of Theorem 4.4, our proof is complete. �

Corollary 4.6. Suppose that N is a normal cover of M. Let [c] be a cusp of Γ and [d] be a cusp of G
contained in [c]. The number of cusps of G contained in [c] is

[Γ : G]

[StabΓ(d) : StabΓ(d)∩G]
.

Proof. In light of Theorem 4.4 it suffices to prove that if [di], [d j] are cusps of G contained in the cusp
[c] of Γ then [StabΓ(di) : StabΓ(di)∩G] = [StabΓ(d j) : StabΓ(d j)∩G]. To that end, let γ ∈ Γ be such that
γdi = d j. Then

StabΓ(d j) = StabΓ(γdi) = γStabΓ(di)γ
−1,

hence, as G = γGγ−1, we have

[StabΓ(d j) : StabΓ(d j)∩G] = [γStabΓ(di)γ
−1 : γStabΓ(di)γ

−1∩ γGγ
−1] = [StabΓ(di) : StabΓ(di)∩G],

which completes the proof. �

5. Eisenstein series

Theorem 5.1. Let M = Hd/Γ be a non-compact hyperbolic d-manifold and N = Hd/G be a finite cover of
M with covering degree n. If a cusp [c] of Γ is also a cusp of G (i.e., the preimage in N of the corresponding
cusp of M is a single cusp) then EM,c(w,s) = EN,c(w,s).

Proof. Let c represent a fixed cusp of Γ and P = StabΓ(c). We begin our proof by noting that Theorem
4.4 shows that [Γ : G] = [P : P∩G], hence we may select a collection of coset representatives for P∩G in
P which is also a collection of coset representatives for G in Γ. Let {δ1, . . . ,δn} ⊂ P be such a collection.

An arbitrary term of EM,c(w,s) is of the form y(σ−1γw)s where γ ∈ Γ represents a non-identity coset
Pγ of P in Γ and σ is the orientation preserving isometry of hyperbolic space taking the point at infinity
to the cusp point c. Here we use the coordinates z = (x,y) ∈Hd = Rd−1×R+ for the upper half-space.
Using our decomposition of Γ into cosets of G we see that there exists δ j and g ∈ G such that γ = δ jg.
Because δ j ∈ P, the coset Pγ = Pδ jg is equal to the coset Pg as cosets of P\Γ. In particular this implies
that we may choose representatives for the cosets P\Γ to all lie in G. Note that for all g1,g2 ∈ G we have

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

5



Pg1 = Pg2 ⇐⇒ g1g−1
2 ∈ P

⇐⇒ g1g−1
2 ∈ P∩G

⇐⇒ (P∩G)g1 = (P∩G)g2.

It follows that

EM,c(w,s) = ∑
γ∈P\Γ

y(σ−1
γw)s = ∑

g∈P∩G\G
y(σ−1gw)s = EN,c(w,s).

�

The following is an immediate consequence of Theorem 5.1.

Corollary 5.2. Suppose that M is a cusped orientable finite volume hyperbolic d-manifold and that
M1,M2 are finite covers of M with the same covering degree and having the property that every cusp of M
remains a cusp of Mi (i = 1,2). Then all of the Eisenstein series of M1 and M2 are equal.

6. Congruence covers and p-reps

Let M be a non-compact finite volume orientable hyperbolic 3-manifold. Let c1, . . . ,cκ represent a
complete set of inequivalent cusps of π1(M) and Pi be the subgroup of π1(M) that fixes ci.

Remark. Throughout this paper we adopt the convention that for a prime number p, the groups SL2(Fp)
and PSL2(Fp) are denoted SL(2, p) and PSL(2, p).

Definition 6.1. A surjective homomorphism ρ : π1(M)→ PSL(2, p) is called a p-rep if, for all i, ρ(Pi) is
non-trivial and all non-trivial elements of ρ(Pi) are parabolic elements of PSL(2, p).

We remark that if ρ : π1(M)→ PSL(2, p) is a p-rep then ρ(Pi) must be a subgroup of PSL(2, p) of
order p.

Theorem 6.2. Let M be a 1-cusped, non-arithmetic, finite volume orientable hyperbolic 3-manifold
with p-reps ρ : π1(M)→ PSL(2,7) and ρ ′ : π1(M)→ PSL(2,11). Let k be a number field with ring of
integers Ok and degree not divisible by 3. Assume that the faithful discrete representation of π1(M) can be
conjugated to lie in PSL(2,Ok). There exist infinitely many prime powers q and covers Mq of M such that:

(i) the composite homomorphism

ρq := ρ ◦ ι : π1(Mq) ↪→ π1(M)→ PSL(2,7)

is a p-rep,
(ii) the degree over M of the cover Mq is 11

2 (q
3−q),

(iii) the number of cusps of Mq is at least q+1, and
(iv) Mq has an infinite discrete spectrum.

Proof. We begin by constructing a finite cover M̃ of M which has an infinite discrete spectrum. The
manifold Mq will arise as a finite cover of M̃ and will therefore have an infinite discrete spectrum by
virtue of Lemma 3.1. To that end, let H be an index 11 subgroup of PSL(2,11). Such a subgroup is
well-known to exist, and the cover of M associated to the pullback subgroup of H by ρ ′ is a degree 11
cover of M. Denote this cover by M̃. We claim that M̃ has one cusp. Let P be the subgroup of π1(M)
stabilizing the cusp of M. As was commented above, ρ ′(P) must be a cyclic subgroup of PSL(2,11) of
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order 11. Since H has index 11 in PSL(2,11) and |PSL(2,11)|= 660 = 22 ·3 ·5 ·11 it must be the case
that ρ ′(P)∩H is trivial. It follows that [P : P∩π1(M̃)] = 11 = [π1(M) : π1(M̃)], hence M̃ has one cusp by
Corollary 4.5. It now follows from [5, Theorem 2.4] that M̃ has an infinite discrete spectrum. We note that
[5, Theorem 2.4] has two hypotheses: that M̃ be non-arithmetic and that M̃ not be the minimal element
in its commensurability class. That M̃ is non-arithmetic is clear, since it is a finite cover of M, which is
non-arithmetic. It is equally clear that M̃ is not the minimal element of its commensurability class, since
such an element cannot be a finite cover of another hyperbolic 3-manifold.

We claim that π1(M̃) also admits a p-rep to PSL(2,7). In particular, we will show the homomorphism
to PSL(2,7) obtained by composing the inclusion map π1(M̃) ↪→ π1(M) with ρ : π1(M)→ PSL(2,7) is
a p-rep. To see this, note that because gcd(11, |PSL(2,7)|) = 1, the map g 7→ g11 is a bijection from
PSL(2,7) to itself, hence our claim follows from the fact that for every γ ∈ π1(M) the element γ11 lies in
π1(M̃).

Given a proper, non-zero ideal I of Ok we have a composite homomorphism

φI : π1(M̃)−→ PSL(2,Ok)−→ PSL(2,Ok/I)

called the level I congruence homomorphism. It follows from the Strong Approximation Theorem of
Nori [16] and Weisfeiler [25] that for all but finitely many prime ideals p of Ok the level p congruence
homomorphism φp is surjective.

By Dirichlet’s Theorem on Primes in Arithmetic Progressions we may choose a prime p satisfying
p≡ 5 (mod 168) which does not divide the discriminant of k. Let p be a prime ideal of Ok lying above
p which has inertia degree f satisfying gcd( f ,3) = 1. Note that the existence of such a prime ideal p
follows from the well-known equality in algebraic number theory

[k : Q] =
g

∑
i=1

e(pi/p) f (pi/p),

where pOk = p1 · · ·pg, e(pi/p) denotes the ramification degree of pi over p and f (pi/p) denotes the inertia
degree of pi over p. In particular our assertion follows from the hypothesis that [k : Q] not be divisible
by 3 and the fact that all of the ramification degrees e(pi/p) are equal to one (since p doesn’t divide the
discriminant of k and thus does not ramify in k).

We observed above that it follows from the Strong Approximation Theorem that for all but finitely
many primes the associated congruence homomorphism is surjective. In light of our use of Dirichlet’s
Theorem on Primes in Arithmetic Progressions in the previous paragraph we may assume that p was
selected so that φp is surjective. Let Mq be the cover of M̃ associated to the kernel of φp. The cover Mq of
M̃ is normal of degree

|PSL(2,Ok/p)|= |PSL(2, p f )|= p3 f − p f

2
,

which proves (ii) upon setting q = p f .
Assertion (iii) follows from assertion (ii) and Corollary 4.6 since the image under φp of a cusp stabilizer

Pi will be an abelian subgroup of PSL(2, p f ) and thus will have order at most p f (p f−1)
2 by the classification

of subgroups of PSL(2,q) (see [2]).
We now prove assertion (i). We will abuse notation and denote by ρ the p-rep from π1(M̃) onto

PSL(2,7). Because this p-rep was obtained by composing the inclusion of π1(M̃) into π1(M) with the
p-rep from π1(M) onto PSL(2,7) (which was also denoted ρ), it suffices to prove assertion (i) with M̃ in
place of M. Let N = p3 f−p f

2 = [π1(M̃) : π1(Mq)]. As ρq(π1(Mq)) contains ρq(γ
N) = ρ(γN) = ρ(γ)N for
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all γ ∈ π1(M̃) and ρ : π1(M)→ PSL(2,7) is surjective, the surjectivity of ρq follows from the fact (easily
verifiable in SAGE [18]) that PSL(2,7) is generated by the Nth powers of its elements whenever p≡ 5
(mod 168) and gcd( f ,3) = 1.

Let P0 be the subgroup of π1(Mq) which fixes some cusp of Mq and P be the subgroup of π1(M̃)

fixing the corresponding cusp of M̃. Because ρ : π1(M̃)→ PSL(2,7) is a p-rep, ρ(P) consists entirely
of parabolic elements and therefore is a subgroup of PSL(2,7) of order 7. Note that [P : P0] = d for
some divisor d of N. We will show that N, and thus d, is not divisible by 7. Because p was chosen so
that p≡ 5 (mod 168), we also have p≡ 5 (mod 7) (since 168 = 23 ·3 ·7). It is now an easy exercise in
elementary number theory to show that N = p3 f−p f

2 is not divisible by 7 whenever gcd( f ,3) = 1. Having
shown that gcd(d,7) = 1, we observe that if γ ∈ P has non-trivial image in PSL(2,7) then γd ∈ P0 and
thus ρq(γ

d) = ρ(γ)d is non-trivial in PSL(2,7). Since ρq(P0) is a subgroup of ρ(P) and thus also consists
entirely of parabolic elements, this proves assertion (i). �

Remark. As the proof of Theorem 6.2 shows, the prime powers q appearing in the theorem’s statement
may be taken to be powers of infinitely many different primes. Indeed, that this is possible follows
immediately from our application of Dirichlet’s Theorem on Primes in Arithmetic Progressions.

7. Sunada’s Method for constructing isospectral manifolds

We begin this section by recalling the statement of Sunada’s theorem [20].
Given a finite group G with subgroups H1 and H2 we say that H1 and H2 are almost conjugate if, for all

g ∈ G,
#(H1∩ [g]) = #(H2∩ [g])

where [g] denotes the conjugacy class of g in G.

Theorem 7.1 (Sunada). Let M be a Riemannian manifold and ρ : π1(M)→ G be a surjective homo-
morphism. The coverings MH1 and MH2 of M with fundamental groups ρ−1(H1) and ρ−1(H2) are
isospectral.

The following is a group theoretic lemma of Prasad and Rajan [17, Lemma 1] which they used to
reprove Sunada’s theorem. In what follows, if G is a group and V is a G-module then V G is the submodule
of invariants of G.

Lemma 7.2. Suppose that G is a finite group with almost conjugate subgroups H1 and H2. Assume that
V is a representation space of G over a field k of characteristic zero. Then there exists an isomorphism
i : V H1 →V H2 , commuting with the action of any endomorphism ∆ of V which commutes with the action
of G on V ; i.e. the following diagram commutes:

V H1 V H2

V H1 V H2

∆

i
∆

i

Theorem 7.3. Let M = H3/Γ be a cusped finite volume orientable hyperbolic 3-manifold that is non-
arithmetic and that is the minimal element in its commensurability class (i.e., Γ = Comm(Γ) where
Comm(·) denotes the commensurator). Let M0 = H3/Γ0 be a finite cover of M, G be a finite group and
H1,H2 be non-conjugate almost conjugate subgroups of G. Suppose that Γ admits a homomorphism onto
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G such that the induced composite homomorphism Γ0 ↪→ Γ→ G is also onto. Let M1,M2 be the finite
covers of M0 associated to the pullback subgroups of H1 and H2 and assume that M1 and M2 both have
the same number of cusps as M0. Then M1 and M2 are are isospectral, have the same complex length
spectra, are non-isometric and have infinite discrete spectra.

Proof. Our proof will largely follow the proof of the analogous result of Garoufalidis and Reid [5,
Theorem 3.1].

We begin by proving that the manifolds M1 and M2 are non-isometric. Let Γ1,Γ2 be such that
M1 = H3/Γ1 and M2 = H3/Γ2. If M1 and M2 are isometric then there exists g ∈ Isom(H3) such that
gΓ1g−1 = Γ2. Such an element g necessarily lies in the commensurator Comm(Γ) of Γ, and since
Γ = Comm(Γ) we see that g ∈ Γ. By hypothesis there exists a surjective homomorphism ρ : Γ→ G.
Projecting onto G we see that ρ(g)H1ρ(g)−1 = H2, which contradicts our hypothesis that H1 and H2 be
non-conjugate.

To prove that M1 and M2 are isospectral we must show that their scattering determinants have the same
poles with multiplicities and that they have the same discrete spectrum. Since M1 and M2 have the same
covering degree over M0, that their scattering determinants have the same poles with multiplicities follows
immediately from Theorem 5.1, which in fact shows that all of their Eisenstein series coincide. That M1
and M2 have the same discrete spectrum follows from Lemma 7.2 with k = C, V = L2

disc(M0) and ∆ the
Laplacian.

That M1 and M2 have the same complex length spectra follows from the proof given by Sunada [20,
Section 4].

That M1 and M2 have infinite discrete spectra follows from [5, Theorem 2.4].
�

8. Proof of Theorem 1.1

In light of Theorems 6.2 and 7.3 it suffices to exhibit a non-arithmetic, 1-cusped finite volume hyperbolic
3-manifold M which is the minimal element in its commensurability class and which admits p-reps onto
PSL(2,7) and PSL(2,11). Our example of such a manifold is taken from Section 4 of [5].

To prove this assertion, let M be a hyperbolic 3-manifold as in the previous paragraph and assume that
π1(M) can be conjugated to lie in PSL(2,Ok) for some number field k whose degree is not divisible by 3.
(We will construct such a manifold below.) It follows from Theorem 6.2 that there exist infinitely many
prime powers q and covers Mq of M such that composing the inclusion π1(Mq) ↪→ π1(M) with the p-rep
π1(M)→ PSL(2,7) yields a p-rep and such that Mq has at least q+1 cusps.

We have seen that there is a surjective homomorphism ρ : π1(Mq)→ PSL(2,7). It is well known that
PSL(2,7) contains a pair of non-conjugate, almost conjugate subgroups of index 7. Call these subgroups
H1 and H2 and observe that since |PSL(2,7)| = 168, it must be that H1 and H2 have order 24. Let
Mi = H3/Γi (i = 1,2) be the manifold covers of Mq associated to H1 and H2.

Fix i ∈ {1,2} and let [d] be a cusp of Γi. Let Pi = StabΓi(d) and P = Stabπ1(Mq)(d). Because the
homomorphism ρ : π1(Mq)→ PSL(2,7) is a p-rep, ρ(P) is a cyclic subgroup of PSL(2,7) of order 7.
Since Hi has order 24 it must be that ρ(P)∩Hi is trivial. In particular it follows that ρ(Pi) = 1 and
consequently that [π1(Mq) : Γi] = 7 = [P : Pi]. Corollary 4.5 now implies that every cusp of Mq remains a
cusp of Mi. In particular this shows that M1 and M2 both have the same number of cusps as Mq, and this
number can be made arbitrarily large by taking the prime power q (from Theorem 6.2) to be arbitrarily
large. Theorem 1.1 now follows from Theorem 7.3.
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We now construct a non-arithmetic, 1-cusped finite volume hyperbolic 3-manifold M which is the
minimal element in its commensurability class and which admits p-reps onto PSL(2,7) and PSL(2,11).
We will additionally show that π1(M) can be conjugated to lie in PSL(2,Ok) where k is a number field of
degree 8.

FIGURE 1. The knot K11n116. Image taken from [5].

To that end, let K be the knot K11n116 of the Hoste-Thistlethwaite table shown in Figure 1. The
manifold M = S3 \K = H3/Γ has 1 cusp, volume 7.7544537602 · · · and invariant trace field k = Q(t)
where t = 0.00106+ 0.9101192i is a root of the polynomial x8− 2x7− x6 + 4x5− 3x3 + x+ 1. It was
proven in [7] that M is the minimal element in its commensurability class (i.e., that Γ = Comm(Γ) where
Comm(Γ) denotes the commensurator of Γ). The work of Margulis [13] shows that this implies M must
be non-arithmetic. Moreover, a computation in Snap [6] shows that Γ has presentation

Γ = 〈a,b,c | aaCbAccBB, aacbCbAAB〉,

and peripheral structure
µ =CbAcb, λ = AAbCCbacb.

Here A = a−1,B = b−1,C = c−1. In terms of matrices, we may represent Γ as a subgroup of PSL(2,Ok)
via

a =

(
−t2 + t−1 t7−3t6 +4t5− t4 + t2− t
−t2 + t−1 0

)
,

b =

(
−t7 +2t6−2t5−3t3 +2t2−3t−1 t6−2t5 + t4 +3t3−2t2 +3t +2

−t7 +3t6−5t5 +4t4−4t3 +2t2−2t−1 t7−3t6 +5t5−4t4 +4t3− t2 + t +2

)
,

and

c =
(
−t6 +4t5−8t4 +7t3−5t2− t −2t7 +7t6−14t5 +15t4−12t3 + t2 +3t−1

t5−3t4 +4t3−3t2 + t −t7 +4t6−9t5 +11t4−9t3 +3t2 + t−2

)
.

We now show that Γ admits p-reps onto PSL(2,7) and PSL(2,11). We begin by exhibiting the p-rep
onto PSL(2,7). As the discriminant of k is 156166337, which is not divisible by 7, we see that 7 is
unramified in k/Q. Using SAGE [18] we find that 7Ok = p1p2p3, where the inertia degrees of the pi are
1,2,5. We note that the prime p1 of norm 7 is equal to the principal ideal (t−1). Upon identifying Ok/p1
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with F7 we obtain a homomorphism from Γ to PSL(2,7) by reducing the matrix entries of a,b,c modulo
p1. The images of a,b,c in PSL(2,7) are represented by

a =

(
6 1
6 0

)
, b =

(
1 6
3 5

)
, c =

(
3 4
0 5

)
,

while the images of µ,λ in PSL(2,7) are represented by the parabolic matrices

µ =

(
0 4
5 5

)
, λ =

(
2 5
1 3

)
.

It remains only to show that the homomorphism we have defined, call it ρ7, is surjective. Our proof of this
will make use of the following easy lemma.

Lemma 8.1. Let p be a prime. The group SL(2, p) is generated by the matrices

T =

(
1 1
0 1

)
, U =

(
1 0
1 1

)
.

Proof. The lemma follows from the fact that SL(2,Z) is generated by the matrices in the lemma’s
statement. To see this, note that the usual generators of SL(2,Z) are

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
,

and S = T−1UT−1. �

Surjectivity of our homomorphism ρ7 : Γ→ PSL(2,7) now follows from the fact that(
1 1
0 1

)
= ρ7(b)−1

ρ7(a)−2
ρ7(b)−1

ρ7(a)ρ7(b)−1

and (
1 0
1 1

)
= ρ7(c)ρ7(a)−1

ρ7(b)ρ7(c)2.

We have just shown that Γ admits a p-rep onto PSL(2,7). We now show that Γ admits a p-rep onto
PSL(2,11) as well. In k we have the factorization 11Ok = p1p2p3 where the inertia degrees of the pi are
1,1,6. We may assume without loss of generality that p1 = (t−4). Identifying Ok/p1 with F11 we see
that the images in PSL(2,11) of a,b,c are represented by the matrices

a =

(
9 6
9 0

)
, b =

(
4 3
1 1

)
, c =

(
10 1
6 4

)
,

while the images of µ,λ in PSL(2,11) are represented by the parabolic matrices

µ =

(
10 10
10 10

)
, λ =

(
10 0
6 10

)
.

Finally, we show that our homomorphism ρ11 : Γ→ PSL(2,11) is surjective by applying Lemma 8.1. To
that end we simply note that (

1 1
0 1

)
= ρ11(a)−1

ρ11(b)ρ11(c)−1

and (
1 0
1 1

)
= ρ11(c)ρ11(a)2.
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This completes the proof of Theorem 1.1.
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[24] Marie-France Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), no. 1,
21–32.

[25] B. Weisfeiler. Strong approximation for Zariski-dense subgroups of semisimple algebraic groups. Ann. of Math. (2),
120(2):271–315, 1984.

DEPARTMENT OF MATHEMATICS, 10 NORTH PROFESSOR STREET, OBERLIN, OH 44074
Email address: benjamin.linowitz@oberlin.edu

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

12

https://arxiv.org/abs/2209.06696
https://arxiv.org/abs/2209.06696

	1. Introduction
	2. Preliminaries
	3. Spectrum of the Laplacian
	4. Cusps of finite covers of hyperbolic manifolds
	5. Eisenstein series
	6. Congruence covers and p-reps
	7. Sunada's Method for constructing isospectral manifolds
	8. Proof of Theorem 1.1
	References

