MULTIPLICATIVE BI-SKEW LIE TRIPLE DERIVATIONS ON FACTOR VON NEUMANN ALGEBRAS

ABDUL NADIM KHAN

Abstract. Let \mathcal{A} be a factor von Neumann algebra. For any $A, B \in \mathcal{A}$, a product $[A, B] = AB^* - BA^*$ is called a bi-skew Lie product. In this paper, it is shown that every bi-skew Lie triple derivation $\psi : \mathcal{A} \to \mathcal{A}$ is an additive $*$-derivation.

Mathematics Subject Classification (2010) 16W25; 46L10.
Keywords and phrases: Bi-skew Lie triple derivations; $*$-derivation; factor von Neumann algebras.

1. Introduction

Let \mathcal{A} be a $*$-algebra. Denote by $[A, B] = AB - BA$ and $[A, B]_* = AB - BA^*$, we mean the Lie product and the skew Lie product of $A, B \in \mathcal{A}$, respectively. Latter product is also called $*$-Lie product. Recall that a map $\psi : \mathcal{A} \to \mathcal{A}$ is called additive derivation if $\psi(A + B) = \psi(A) + \psi(B)$ and $\psi(A B) = \psi(A)B + A\psi(B)$ for all $A, B \in \mathcal{A}$. Additionally, we say ψ is $*$-derivation if $\psi(A^*) = A^*$ for all $A \in \mathcal{A}$. Obviously, every $*$-derivation is a derivation. In particular, a derivation ψ is called inner if there exists some $X \in \mathcal{A}$ such that $\psi(A) = AX - XA$ for all $A \in \mathcal{A}$. We say a map (not necessarily linear) ψ from \mathcal{A} to itself Lie derivation if

$$\psi([A, B]) = [\psi(A), B] + [A, \psi(B)]$$

for all $A, B \in \mathcal{A}$. Similarly, a map (not necessarily linear) $\psi : \mathcal{A} \to \mathcal{A}$ is called skew Lie derivation or $*$-Lie derivation if

$$\psi([A, B]_*) = [\psi(A), B]_* + [A, \psi(B)]_*,$$

for all $A, B \in \mathcal{A}$. In [4], Daif initially proved that each nonadditive derivation is additive on a 2-torsion free prime ring containing a nontrivial idempotent. Many authors have studied nonadditive derivations corresponding to these products on some operator algebras and have obtained several results. A growing interest in this field can be seen in [3, 5, 11, 12, 14, 16, 19, 20]. Furthermore, without linearity assumption, if a map $\psi : \mathcal{A} \to \mathcal{A}$ satisfies

$$\psi([[A, B], C]) = [[\psi(A), B], C] + [[A, \psi(B)], C] + [[A, B], \psi(C)]$$

for all $A, B, C \in \mathcal{A}$, then ψ is called a multiplicative Lie triple derivation. The characterization of Lie triple derivations has attracted several authors attention, see for example [7, 8, 10, 17] and references therein. Similarly, a multiplicative
map \(\psi : A \rightarrow A \) is called multiplicative skew Lie triple derivation or \(* \)-Lie triple derivations if it satisfy

\[
\psi([[A, B], C]) = [\psi(A), B] + [[A, \psi(B)], C] + [[A, B], \psi(C)],
\]

for all \(A, B, C \in A \). Recently, Ashraf et al. [1] studied \(* \)-Lie triple derivations on standard operator algebras. Precisely, they established the following: Let \(A \) be a standard operator algebra on infinite dimensional complex Hilbert space \(H \) containing identity operator \(I \). If \(A \) is closed under adjoint operator and \(\delta : A \rightarrow B(H) \) is a multiplicative \(* \)-Lie triple derivation, then \(\delta \) is a linear \(* \)-derivation. Moreover, if there exists an operator \(S \in B(H) \) such that \(S + S^* = 0 \), then \(\delta(U) = US - SU \) for all \(U \in A \). Furthermore, they extended the case to a multiplicative \(* \)-Lie higher derivation on \(A \).

Inspired by Lie and skew Lie products, very recently Kong and Zhang [9] introduced the new product, namely bi-skew Lie product as \([A, B] = AB - BA^* \) for all \(A, B \in A \). They proved that any multiplicative bi-skew Lie derivation i.e., a map \(\psi \) from \(A \) to itself satisfying

\[
\psi([A, B]) = [\psi(A), B] + [A, \psi(B)],
\]

for all \(A, B \in A \), is an additive \(* \)-derivation on \(A \) provided \(\text{dim}(A) \geq 2 \). Similarly, a mapping \(\psi : A \rightarrow A \) is called multiplicative bi-skew Lie triple derivation if it satisfy the condition

\[
\psi([[A, B], C]) = [\psi(A), B] + [[A, \psi(B)], C] + [[A, B], \psi(C)],
\]

for all \(A, B, C \in A \). Motivated by the above mentioned works, we will concentrate on giving a description of multiplicative bi-skew Lie triple derivation on a factor von Neumann algebra.

2. Preliminaries and Main Result

Before beginning detailed demonstration and stating our main result, we need to give some notation and preliminaries. Throughout the paper, unless otherwise mentioned, \(A \) represents a factor von Neumann algebra. As usual, \(\mathbb{R} \) and \(\mathbb{C} \) denote respectively the real field and complex field. Let \(H \) be a complex Hilbert space. We denote by \(B(H) \) the algebra of all bounded linear operators on \(H \). Let \(A \subseteq B(H) \) be a von Neumann algebra. Recall that \(A \) is a factor if its center is \(\mathbb{C}I \), where \(I \) is the identity of \(A \).

From ring theoretic perspective, standard operator algebras and factor von Neumann algebras are both prime. Recall that an algebra \(A \) is prime if \(AB = 0 \) implies either \(A = 0 \) or \(B = 0 \). Every standard operator algebra has the center \(\mathbb{C}I \), which is also the center of an arbitrary factor von Neumann algebra. An operator \(P \in B(H) \) is said to be a projection provided \(P^2 = P \) and \(P^2 = P \). Any operator \(A \in B(H) \) can be expressed as \(A = aI + i\xi I \), where \(i \) is the imaginary unit, \(\text{Re}A = \frac{a + a^*}{2} \) and \(\text{Im}A = \frac{a - a^*}{2i} \). Note that both \(\text{Re}A \) and \(\text{Im}A \) are self-adjoint.

The key task of this section is to prove our main theorem.

Main Theorem. Let \(A \) be a factor von Neumann algebra on a complex Hilbert space \(H \) with \(\text{dim}(A) \geq 2 \) and \(\psi : A \rightarrow A \) be a multiplicative bi-skew Lie triple
derivation. Then ψ is an additive *-derivation on A.

Let \(P_1 \in A \) be a projection. Write \(P_2 = I - P_1 \) and \(A_{ij} = P_i A P_j \). Then \(A = A_{11} + A_{12} + A_{21} + A_{22} \). Let \(\mathcal{S} = \{ \mathcal{A} \in A | \mathcal{A}^* = \mathcal{A} \} \) and \(\mathcal{G} = \{ \mathcal{A} \in A | \mathcal{A}^* = -\mathcal{A} \} \). \(\mathcal{S}_{12} = \{ P_1 S P_2 + P_2 S P_1 | S \in \mathcal{S} \} \) and \(\mathcal{G}_{ii} = P_i \mathcal{G} P_i \) \((i = 1, 2) \). Thus, for every \(S \in \mathcal{G}, S = S_{11} + S_{12} + S_{22} \) for every \(S_{12} \in \mathcal{G}_{12} \) and \(S_{ii} \in \mathcal{G}_{ii} \) \((i = 1, 2) \).

Lemma 2.1. \(\psi(0) = 0 \).

Proof. It follows that
\[
\psi(0) = \psi([0,0],0) = \psi([0,0],0) + \psi(0) = 0.
\]

Lemma 2.2. \(\psi(S)^* = -\psi(S) \) for every \(S \in \mathcal{G} \).

Proof. Observe, for any \(S \in \mathcal{G} \) that \(S = [-\frac{1}{2}I, S], \frac{1}{2}I \). Thus
\[
(2.1) \quad \psi(S) = \psi([-\frac{1}{2}I, S], \frac{1}{2}I)
\]
\[
= \psi(-\frac{1}{2}I, S), \frac{1}{2}I + \psi(-\frac{1}{2}I, \psi(S)), \frac{1}{2}I + \psi(-\frac{1}{2}I, S), \frac{1}{2}I
\]
\[
= \psi(-\frac{1}{2}I, S)^* - S\psi(-\frac{1}{2}I)^* + \frac{1}{2}\psi(S)^* + \frac{1}{2}\psi(S)^* - S\psi(-\frac{1}{2}I)^* - \frac{1}{2}\psi(S)^*.
\]
This implies
\[
(2.2) \quad \psi(S) = -\psi(S)^* + 2\psi(-\frac{1}{2}I)S^* - 2S\psi(-\frac{1}{2}I)^*
\]
\[
+ 2S\psi(-\frac{1}{2}I)^* - 2\psi(-\frac{1}{2}I)S^*.
\]
It follows that
\[
(2.3) \quad \psi(S)^* = -\psi(S) + 2S\psi(-\frac{1}{2}I)^* - 2\psi(-\frac{1}{2}I)S^*
\]
\[
+ 2\psi(-\frac{1}{2}I)S^* - 2S\psi(-\frac{1}{2}I)^*.
\]
Addition of (2.2) and (2.3) yields \(\psi(S)^* = -\psi(S) \). This completes the proof. □

Lemma 2.3. For any \(\mathcal{A}_{11} \in \mathcal{S}_{11}, \mathcal{B}_{12} \in \mathcal{S}_{12} \) and \(\mathcal{C}_{22} \in \mathcal{G}_{22} \), we have

(i) \(\psi(\mathcal{A}_{11} + \mathcal{B}_{12}) = \psi(\mathcal{A}_{11}) + \psi(\mathcal{B}_{12}) \);

(ii) \(\psi(\mathcal{B}_{12} + \mathcal{C}_{22}) = \psi(\mathcal{B}_{12}) + \psi(\mathcal{C}_{22}) \).

Proof. (i) Assume that \(\mathcal{T} = \psi(\mathcal{A}_{11} + \mathcal{B}_{12}) - \psi(\mathcal{A}_{11}) - \psi(\mathcal{B}_{12}) \). It is obvious that \(\mathcal{T} \in \mathcal{G} \), so it follows from Lemma 2.2 that \(\mathcal{T}^* = -\mathcal{T} \). Our aim is to show \(\mathcal{T} = 0 \).
We have
\[
\psi([P_2, A_{11} + B_{12}], P_1) = \psi([P_2, A_{11}], P_1) + \psi([P_2, B_{12}], P_1)
\]
\[
= [\psi(P_2), A_{11}, P_1] + [[P_2, \psi(A_{11})], P_1] + [[P_2, \psi(B_{12})], P_1] + [P_2, \psi(P_1)]
\]
\[
+ \psi([P_2, A_{11} + B_{12}], P_1) + [P_2, \psi(A_{11} + B_{12})], P_1]
\]

On the other hand,
\[
\psi([P_2, A_{11} + B_{12}], P_1) = [\psi(P_2), A_{11} + B_{12}, P_1] + [P_2, \psi(A_{11} + B_{12})], P_1]
\]
\[
+ [P_2, \psi(A_{11} + B_{12})], \psi(P_1)
\]

It follows from the last two relations that \([P_2, T], P_1] = 0\). Which gives \(T_{12} = \mathcal{T}_{21} = 0\). Next, since \([P_1, B_{12}], P_1] = 0\), so we have
\[
[[\psi(P_1), A_{11} + B_{12}], P_1] + [P_1, \psi(A_{11} + B_{12})], P_1]
\]
\[
+ \psi([P_1, A_{11} + B_{12}], P_1)
\]
\[
= [\psi(P_1), A_{11}, P_1] + [[P_1, \psi(A_{11})], P_1] + [[P_1, \psi(B_{12})], P_1] + [P_1, \psi(P_1)]
\]
\[
+ \psi([P_1, A_{11} + B_{12}], P_1) + [P_1, \psi(A_{11} + B_{12})], P_1]
\]
\[
+ [P_1, \psi(A_{11} + B_{12})], \psi(P_1)
\]

From this, we get \([P_1, T], P_1] = 0\). In view of Lemma 2.2, we obtain from the last relation that \(T_{11} = 0\). In a similar manner, one can easily get \(T_{22} = 0\). Therefore \(T = 0\) i.e.,
\[
\psi(A_{11} + B_{12}) = \psi(A_{11}) + \psi(B_{12})
\]

We can establish \(ii\) in the similar manner. Hence the proof.

\[\square\]

Lemma 2.4. For any \(A_{11} \in S_{11}, B_{12} \in S_{12}\) and \(C_{22} \in S_{22}\), we have
\[
\psi(A_{11} + B_{12} + C_{22}) = \psi(A_{11}) + \psi(B_{12}) + \psi(C_{22})
\]

Proof. Let \(T = \psi(A_{11} + B_{12} + C_{22}) - \psi(A_{11}) - \psi(B_{12}) - \psi(C_{22})\). It follows from Lemma 2.3 and \([P_1, C_{22}], P_2] = 0\) that
\[
\psi([P_1, A_{11} + B_{12} + C_{22}], P_2] = 0
\]

29 Jan 2021 13:59:31 PST

Proof. For any $i\in A$, Lemma 2.6.

Thus from the last two expressions, we have $[\{P_1, T\}, \{P_1, P_2\}] = 0$. This together with the fact $T^* = -T$ imply that $T_{12} = T_{21} = 0$. We now show that $T_{11} = T_{22} = 0$. Next, observe that $[\{P_2 - P_1, C_{22}\}, iF] = 0$. Reasoning as above, we obtain $T_{11} = T_{22} = 0$ i.e., $T = 0$. Hence the result.

Lemma 2.5. For any $A_{12}, B_{12} \in \mathcal{S}_{12}$, we have

$$\psi(A_{12} + B_{12}) = \psi(A_{12}) + \psi(B_{12}).$$

Proof. For any $A_{12}, B_{12} \in A_{12}$. Assume that $A_{12} = \chi_{12} - \chi_{12}^{*} \in \mathcal{S}_{12}$ and $B_{12} = \psi_{12} - \psi_{12}^{*} \in \mathcal{S}_{12}$. Thus,

$$[\{P_1 + i\chi_1 + i\chi_1^{*}, iP_2 + i\psi_1 + i\psi_1^{*}\}, \frac{1}{2}F] = (\chi_{12} - \chi_{12}^{*}) + (\psi_{12} - \psi_{12}^{*}) + (\chi_{12}\psi_{12}^{*} + \chi_{12}^{*}\psi_{12} - \psi_{12}^{*}\psi_{12} - \psi_{12}\psi_{12}^{*}) = A_{12} + B_{12} + A_{12}^{*}B_{12} - B_{12}^{*}A_{12}.

Note that $A_{12}B_{12}^{*} - B_{12}A_{12}^{*} = \chi_{12}\psi_{12}^{*} - \psi_{12}\chi_{12}^{*} + \chi_{12}\psi_{12} - \psi_{12}\chi_{12} = \psi_{11}^{*} + \psi_{22}$, where $\psi_{11} = \chi_{12}\psi_{12}^{*} - \psi_{12}\chi_{12}^{*} \in \mathcal{S}_{11}$ and $\psi_{22} = \psi_{12}\psi_{12}^{*} - \psi_{12}^{*}\psi_{12} \in \mathcal{S}_{22}$. Since $i\chi_{12} + i\chi_{12}^{*}, i\psi_{12} + i\psi_{12}^{*} \in \mathcal{S}_{12}$, so it follows from Lemma 2.3 and 2.4 that

$$\psi(A_{12} + B_{12}) + \psi(C_{11}) + \psi(C_{22}) = \psi(A_{12} + B_{12} + C_{11} + C_{22}) = \psi(A_{12} + B_{12} + A_{12}^{*}B_{12} - B_{12}^{*}A_{12}) = \psi([\{P_1 + i\chi_1 + i\chi_1^{*}, iP_2 + i\psi_1 + i\psi_1^{*}\}, \frac{1}{2}F]) + \psi([iP_1 + iP_2, \frac{1}{2}F]) + \psi([i\chi_1, \frac{1}{2}F] + \psi([i\psi_1, \frac{1}{2}F]) + \psi([i\psi_2, \frac{1}{2}F]), iP_2 + i\psi_1 + i\psi_1^{*}\frac{1}{2}F] = \psi(\{P_1 + i\chi_1 + i\chi_1^{*}, iP_2 + i\psi_1 + i\psi_1^{*}\}, \frac{1}{2}F]) = \psi([iP_1 + iP_2, \frac{1}{2}F]) + \psi([i\chi_1, \frac{1}{2}F] + \psi([i\psi_1, \frac{1}{2}F]) + \psi([i\psi_2, \frac{1}{2}F]) = \psi(A_{12}) + \psi(B_{12}) + \psi(A_{12}^{*}B_{12} - B_{12}^{*}A_{12}) = \psi(A_{12}) + \psi(B_{12} + \psi(C_{11}) + \psi(C_{22}).

Thus, we have $\psi(A_{12} + B_{12}) = \psi(A_{12}) + \psi(B_{12})$. Thereby the proof is completed.

Lemma 2.6. For every $A_{ii}, B_{ii} \in \mathcal{S}_{ii}$ ($i = 1, 2$), we have

(i) $\psi(A_{11} + B_{11}) = \psi(A_{11}) + \psi(B_{11})$;

(ii) $\psi(A_{22} + B_{22}) = \psi(A_{22}) + \psi(B_{22})$.
Proof. Let $\mathcal{T} = \psi(\mathcal{A}_1 + \mathcal{B}_1) - \psi(\mathcal{A}_1) - \psi(\mathcal{B}_1)$. We shall prove $\mathcal{T} = 0$. To show this, see that

$$\psi([[P_2, \mathcal{A}_1 + \mathcal{B}_1], \mathcal{P}_1]) = \psi([[P_2, \mathcal{A}_1], \mathcal{P}_1]) + \psi([[P_2, \mathcal{B}_1], \mathcal{P}_1])$$

$$+ [[P_2, \psi(\mathcal{A}_1 + \mathcal{B}_1)], \mathcal{P}_1] + [[P_2, \psi(\mathcal{A}_1)], \mathcal{P}_1]$$

$$+ [[P_2, \psi(\mathcal{B}_1)], \mathcal{P}_1] + [[P_2, \psi(\mathcal{A}_1 + \mathcal{B}_1)], \psi(\mathcal{P}_1)]$$

$$+ [[P_2, \psi(\mathcal{A}_1 + \mathcal{B}_1)], \psi(\mathcal{P}_1)].$$

Alternatively,

$$\psi([[P_2, \mathcal{A}_1 + \mathcal{B}_1], \mathcal{P}_1]) = [[\psi(P_2), \mathcal{A}_1 + \mathcal{B}_1], \mathcal{P}_1]$$

$$+ [[P_2, \psi(\mathcal{A}_1 + \mathcal{B}_1)], \mathcal{P}_1] + [[P_2, \psi(\mathcal{A}_1)], \mathcal{P}_1]$$

Thus, we have $[[P_2, \mathcal{T}, \mathcal{P}_1], \mathcal{T}] = 0$, and hence $\mathcal{T}_{12} = \mathcal{T}_{21} = 0$. Observe next that, for any $\mathcal{X}, \mathcal{Y} \subset \mathcal{A}, \mathcal{Z} = \mathcal{X}_{12} - \mathcal{Y}_{12} \in \mathcal{S}_{12}$. Then $[[\mathcal{C}, \mathcal{A}_1], \mathcal{X}], [[\mathcal{C}, \mathcal{B}_1], \mathcal{X}] \in \mathcal{S}_{12}$. Therefore, it follows from Lemma 2.5 that

$$[[\psi(\mathcal{C}), \mathcal{A}_1 + \mathcal{B}_1], \mathcal{X}] + \frac{1}{2} \mathcal{Y} + [[\mathcal{C}, \psi(\mathcal{A}_1 + \mathcal{B}_1)], \mathcal{X}] + \frac{1}{2} \mathcal{Y}$$

$$+ [[\mathcal{C}, \mathcal{A}_1 + \mathcal{B}_1], \psi(\frac{1}{2} \mathcal{Y})]$$

$$= \psi([[\mathcal{C}, \mathcal{A}_1 + \mathcal{B}_1], \mathcal{X}] + \frac{1}{2} \mathcal{Y})$$

$$= \psi([[\mathcal{C}, \mathcal{A}_1 + \mathcal{B}_1], \mathcal{X}] + \frac{1}{2} \mathcal{Y}) + \psi([[\mathcal{C}, \mathcal{B}_1], \mathcal{X}] + \frac{1}{2} \mathcal{Y})$$

$$= [[\psi(\mathcal{C}), \mathcal{A}_1 + \mathcal{B}_1], \mathcal{X}] + \frac{1}{2} \mathcal{Y} + [[\mathcal{C}, \psi(\mathcal{A}_1 + \mathcal{B}_1)], \mathcal{X}] + \frac{1}{2} \mathcal{Y}$$

Using the similar arguments as used above, we get $[[\mathcal{C}, \mathcal{T}], \mathcal{X}] + \frac{1}{2} \mathcal{Y} = 0$. This leads to $\mathcal{T}_{11} = \mathcal{T}_{22} = 0$, which completes the proof. \hfill \square

Remark 2.7. It follows from Lemma 2.3–2.6 that ψ is additive on \mathcal{S}.

Lemma 2.8. $\psi(\mathcal{I}) = 0$.

Proof. (i) In view of Remark 2.7 that

$$\psi(4i\mathcal{I}) = \psi([[i, \mathcal{I}], \mathcal{I}]) = \psi(4i\mathcal{I}) + 4i(\psi(\mathcal{I}) + \psi(\mathcal{I}^*)).$$

This implies $\psi(\mathcal{I}^*) = -\psi(\mathcal{I})$. Also, for any $\mathcal{S} \in \mathcal{S}$, we have

$$\psi(4S) = \psi([[\mathcal{S}, \mathcal{I}], \mathcal{I}]) = \psi(4S) + 2(\psi(\mathcal{I})S + S\psi(\mathcal{I}^*)).$$

Since $\psi(\mathcal{I}^*) = -\psi(\mathcal{I})$, so we have $\mathcal{S}\psi(\mathcal{I}) = \psi(\mathcal{I})S$ for all $\mathcal{S} \in \mathcal{S}$. This implies $\psi(\mathcal{I}) \in i\mathcal{I}$. Without loss of generality, we may assume $\psi(\mathcal{I}) = i\gamma\mathcal{I}$ for some $\gamma \in \mathbb{R}$. We claim that $\gamma = 0$. To prove this, let us assume $\psi(\mathcal{P}_1) = \mathcal{H} + i\mathcal{H}'$, where $\mathcal{H}, \mathcal{H}' \in \mathcal{I}$. Thus, we have

$$0 = \psi([[\mathcal{I}, \mathcal{P}_1], \mathcal{I}^*]),$$

$$= \psi(\mathcal{P}_1^* - \psi(\mathcal{I}))\mathcal{P}_1 - \mathcal{P}_1\psi(\mathcal{I}^*),$$

$$= 2i\gamma\mathcal{P}_1 - 2i\mathcal{H}'.
This gives $\mathcal{H}^\prime = \gamma \mathcal{P}_1$, and hence $\psi(\mathcal{P}_1) = \mathcal{H} + i\gamma \mathcal{P}_1$. Next, for any $\mathcal{A} \in \mathcal{G}$ observe that $[[\mathcal{A}, i\mathcal{I}]*, \mathcal{I}]_* = 0$. Thus $\psi([[\mathcal{A}, i\mathcal{I}]*, \mathcal{I}]_*) = 0$ gives $\psi(i\mathcal{I}) \in i\mathbb{R}$. Assume, for some $\eta \in \mathbb{R}$ that $\psi(i\mathcal{I}) = i\eta \mathcal{I}$. Now, in view of Remark 2.7, we have

$$4\psi(i\mathcal{P}_1) = \psi([[i\mathcal{I}, \mathcal{P}_1]*, \mathcal{I}]*)$$

$$= [[\psi(i\mathcal{I}), \mathcal{P}_1]*, \mathcal{I}]* + [[i\mathcal{I}, \psi(\mathcal{P}_1)]*, \mathcal{I}]*$$

$$+ [[i\mathcal{I}, \mathcal{P}_1]*, \psi(\mathcal{I})]*$$

$$= [[i\eta \mathcal{I}, \mathcal{P}_1]*, \mathcal{I}]* + [[i\mathcal{I}, \mathcal{H} + i\gamma \mathcal{P}_1]*, \mathcal{I}]*$$

$$+ [[i\mathcal{I}, \mathcal{P}_1]*, i\gamma \mathcal{I}]*$$

$$= 4i\eta \mathcal{P}_1 + 4i\mathcal{H}.$$

So, we have $\psi(i\mathcal{P}_1) = i\eta \mathcal{P}_1 + i\mathcal{H}$. Also, we have

$$4\psi(i\mathcal{P}_1) = \psi([[i\mathcal{P}_1, \mathcal{P}_1]*, \mathcal{I}]*)$$

$$= [[\psi(i\mathcal{P}_1), \mathcal{P}_1]*, \mathcal{I}]* + [[i\mathcal{P}_1, \psi(\mathcal{P}_1)]*, \mathcal{I}]*$$

$$+ [[i\mathcal{P}_1, \mathcal{P}_1]*, \psi(\mathcal{I})]*$$

$$= [[i\eta \mathcal{P}_1 + i\mathcal{H}, \mathcal{P}_1]*, \mathcal{I}]* + [[i\mathcal{P}_1, \mathcal{H} + i\gamma \mathcal{P}_1]*, \mathcal{I}]*$$

$$+ [[i\mathcal{P}_1, \mathcal{P}_1]*, i\gamma \mathcal{I}]*$$

$$= 4i\eta \mathcal{P}_1 + 4i\mathcal{H} \mathcal{P}_1 + 4i\mathcal{P}_1 \mathcal{H}.$$

We obtain from (2.6) and (2.7) that

$$\mathcal{H} = \mathcal{H} \mathcal{P}_1 + \mathcal{P}_1 \mathcal{H}.$$

Multiply (2.8) by \mathcal{P}_1 from left and \mathcal{P}_2 from right, alternatively. This yields

$$\mathcal{P}_1 \mathcal{H} \mathcal{P}_1 = \mathcal{P}_2 \mathcal{H} \mathcal{P}_2 = 0.$$

Let $\mathcal{A}_1 \in \mathcal{A}$ and taking $\mathcal{X} = \mathcal{A}_1 - \mathcal{A}_2 \in \mathcal{G}$. Then, it follows from Remark 2.7 and Lemma 2.2 that

$$2\psi(\mathcal{X}) = -\psi([[\mathcal{P}_1, \mathcal{X}]*, \mathcal{I}]*$$

$$= -[[\psi(\mathcal{P}_1), \mathcal{X}]*, \mathcal{I}]* - [[\mathcal{P}_1, \psi(\mathcal{X})]*, \mathcal{I}]*$$

$$= 2\psi(\mathcal{P}_1)\mathcal{X} + \mathcal{X}\psi(\mathcal{P}_1)^* + \mathcal{P}_1\psi(\mathcal{X}) + \psi(\mathcal{X})\mathcal{P}_1.$$

Multiply above equation by \mathcal{P}_1 from left and \mathcal{P}_2 from right. So, we get

$$\mathcal{P}_1\psi(\mathcal{P}_1)\mathcal{X}\mathcal{P}_2 + \mathcal{P}_1\mathcal{X}\psi(\mathcal{P}_1)^*\mathcal{P}_2 = 0.$$

Since $\mathcal{X} = \mathcal{A}_1 - \mathcal{A}_2^*$, so we obtain

$$\mathcal{P}_1\psi(\mathcal{P}_1)\mathcal{A}_1 + \mathcal{A}_2\psi(\mathcal{P}_1)^*\mathcal{P}_2 = 0.$$

Also, as $\psi(\mathcal{P}_1) = \mathcal{H} + i\gamma \mathcal{P}_1$, it follows that

$$i\gamma \mathcal{A}_1 + \mathcal{P}_1 \mathcal{H} \mathcal{A}_1 + \mathcal{A}_1 \mathcal{H} \mathcal{P}_2 = 0.$$

Thus,

$$i\gamma \mathcal{A}_1 + (\mathcal{P}_1 \mathcal{H} \mathcal{P}_1) \mathcal{A}_2 + \mathcal{P}_1 \mathcal{A} (\mathcal{P}_2 \mathcal{H} \mathcal{P}_2) = 0.$$

In view of (2.9), we have $\gamma \mathcal{A}_1 = 0$. Therefore $\gamma = 0$, and hence $\psi(\mathcal{I}) = 0$. □

Lemma 2.9. For any $\mathcal{H} \in \mathcal{H}$, $\psi(\mathcal{H})^* = \psi(\mathcal{H})$.

29 Jan 2021 13:59:31 PST

Proof. Since for any $H \in \mathfrak{S}$, $[[\mathcal{I}, H], \mathcal{I}] = 0$, so from Lemma 2.8 and the hypothesis, we have
\begin{equation}
0 = \psi([[\mathcal{I}, H], \mathcal{I}]) = [[\mathcal{I}, \psi(H)], \mathcal{I}] = \psi(H) - \psi(H)^*.
\end{equation}
Therefore, we have $\psi(H)^* = \psi(H)$ for all $H \in \mathfrak{S}$. \hfill \Box

Lemma 2.10. For any $H \in \mathfrak{S}$, $\psi(iH) = i\psi(H) + i\eta H$.

Proof. In view of Lemma 2.2, 2.8 and 2.9, we have
\begin{equation}
\psi([i, \mathcal{I}], H) = [[\psi(i, \mathcal{I}), \mathcal{I}], H] + [[i, \mathcal{I}], \psi(H)] = 4\psi(i, \mathcal{I})H + 4\psi(H).
\end{equation}
Also, since $\psi([i, \mathcal{I}], H) = 4\psi(iH)$ and $\psi(i, \mathcal{I}) = i\eta$, so $\psi(iH) = i\psi(H) + i\psi(H)$. \hfill \Box

Lemma 2.11. ψ is additive on \mathfrak{S}.

Proof. We know that $iH, iH' \in \mathfrak{S}$, where $H, H' \in \mathfrak{S}$. Then, in view of Remark 2.7 and Lemma 2.10, we have
\begin{equation}
\psi(iH + iH') = \psi(iH) + \psi(iH') = i\psi(H) + i\psi(H') + i\eta(H + H').
\end{equation}
Also
\begin{equation}
\psi(i(H + H')) = i\psi(H + H') + i\eta(H + H').
\end{equation}
From (2.17) and (2.18), we have the desired result. \hfill \Box

Lemma 2.12. $\psi(\alpha^*) = \psi(\alpha)^*$ for all $\alpha \in \mathcal{A}$.

Proof. It follows, for any $H, H' \in \mathfrak{S}$, Remark 2.7, Lemma 2.8, 2.10 and $[[H, \mathcal{I}], \mathcal{I}] = 0$ that
\begin{equation}
\psi([iH, \mathcal{I}], \mathcal{I}) = \psi([[H, \mathcal{I}], \mathcal{I}], \mathcal{I}) + \psi([iH', \mathcal{I}], \mathcal{I}) = 4i\psi(H') + i\eta H' + 4i\eta H.
\end{equation}
On the other hand,
\begin{equation}
\psi([iH, \mathcal{I}], \mathcal{I}) = 4i\psi(H') + i\eta H'.
\end{equation}
So, we have from (2.19) and (2.20) that
\begin{equation}
4i\psi(H') + i\eta H' = 2\psi(H + iH') - \psi(H + iH'^*).
\end{equation}
Also, note that $[i, \mathcal{I}, H, \mathcal{I}] = 0$, so we have
\begin{equation}
4i\psi(H) + i\eta H = 2i\psi(H + iH') + \psi(H + iH'^*) + 4i\eta H.
\end{equation}
In view of (2.21) and (2.22), we get
\begin{equation}
\psi(H + iH') = \psi(H) + i\psi(H') + i\eta H'.
\end{equation}
Next, since we know that any element $\alpha \in \mathcal{A}$ can be written as $\alpha = H + iH'$ for all $H, H' \in \mathfrak{S}$, so it follows from (2.23), Lemma 2.9 and 2.11 that
\begin{equation}
\psi(\alpha)^* = \psi(H + iH')^* = (\psi(H) + i\psi(H') + i\eta H')^* = \psi(H) - i\psi(H') - i\eta H' = \psi(H - iH') = \psi(\alpha^*).
This gives the assertion.

\textbf{Lemma 2.13.} \(\psi \) is additive on \(\mathcal{A} \).

\textit{Proof.} Let \(\mathcal{A}, \mathcal{B} \in \mathcal{A} \) such that \(\mathcal{A} = \mathcal{H}_1 + i\mathcal{H}_2 \) and \(\mathcal{B} = \mathcal{X}_1 + i\mathcal{X}_2 \) for all \(\mathcal{H}_1, \mathcal{H}_2, \mathcal{X}_1, \mathcal{X}_2 \in \mathcal{H} \). Observe from (2.23) and Lemma 2.11

\begin{equation}
\psi(\mathcal{A} + \mathcal{B}) = \psi((\mathcal{H}_1 + \mathcal{X}_1) + i(\mathcal{H}_2 + \mathcal{X}_2)) \nonumber
\end{equation}

\begin{equation}
= \psi(\mathcal{H}_1 + \mathcal{X}_1) + i\psi(\mathcal{H}_2 + \mathcal{X}_2) + i\eta(\mathcal{H}_2 + \mathcal{X}_2) \nonumber
\end{equation}

\begin{equation}
= (\psi(\mathcal{H}_1) + i\psi(\mathcal{H}_2) + i\eta\mathcal{H}_2) + (\psi(\mathcal{X}_1) + i\psi(\mathcal{X}_2) + i\eta\mathcal{X}_2) \nonumber
\end{equation}

\begin{equation}
= \psi(\mathcal{H}_1 + i\mathcal{H}_2) + \psi(\mathcal{X}_1 + i\mathcal{X}_2) \nonumber
\end{equation}

\begin{equation}
= \psi(\mathcal{A}) + \psi(\mathcal{B}). \nonumber
\end{equation}

Hence the result.

\textbf{Lemma 2.14.} \(\psi(i\mathcal{A}) = 0 \).

\textit{Proof.} Since we know from Lemma 2.8 that \(\psi(i\mathcal{A}) = i\eta \mathcal{A} \). Our aim is to show \(\eta = 0 \). Also, we know that \(\psi(i\mathcal{P}_1) = i\eta\mathcal{P}_1 + i\mathcal{H} \). In view of (2.8) and (2.9), we have

\begin{equation}
\psi(i\mathcal{P}_1) = i\eta\mathcal{P}_1 + i\mathcal{P}_1\mathcal{H}\mathcal{P}_2 + i\mathcal{P}_2\mathcal{H}\mathcal{P}_1. \nonumber
\end{equation}

Observe, for any \(\mathcal{A}_{12} \in \mathcal{A} \) that

\begin{equation}
\psi([[i\mathcal{P}_1, \mathcal{A}_{12} - \mathcal{A}_{12}^*] \mathcal{A}]_\bullet) = -2i\psi(i(\mathcal{A}_{12} + \mathcal{A}_{12}^*)). \nonumber
\end{equation}

In view of Lemma 2.10, we have

\begin{equation}
2i\psi(i(\mathcal{A}_{12} + \mathcal{A}_{12}^*)) = -2i(\psi(\mathcal{A}_{12}) + \psi(\mathcal{A}_{12})^* + \eta(\mathcal{A}_{12} + \mathcal{A}_{12}^*)). \nonumber
\end{equation}

Thus,

\begin{equation}
\psi([[i\mathcal{P}_1, \mathcal{A}_{12} - \mathcal{A}_{12}^*] \mathcal{A}]_\bullet) = -2i(\psi(\mathcal{A}_{12}) + \psi(\mathcal{A}_{12})^* + \eta(\mathcal{A}_{12} + \mathcal{A}_{12}^*)). \nonumber
\end{equation}

Alternatively, from (2.26) and Lemma 2.8, we have

\begin{equation}
\psi([[i\mathcal{P}_1, \mathcal{A}_{12} - \mathcal{A}_{12}^*] \mathcal{A}]_\bullet) \nonumber
\end{equation}

\begin{equation}
= [[\psi(i\mathcal{P}_1), \mathcal{A}_{12} - \mathcal{A}_{12}^*] \mathcal{A}]_\bullet + [[i\mathcal{P}_1, \psi(\mathcal{A}_{12} - \mathcal{A}_{12}^*)] \mathcal{A}]_\bullet \nonumber
\end{equation}

\begin{equation}
= [[i\eta\mathcal{P}_1 + i\mathcal{P}_1\mathcal{H}\mathcal{P}_2 + i\mathcal{P}_2\mathcal{H}\mathcal{P}_1, \mathcal{A}_{12} - \mathcal{A}_{12}^*] \mathcal{A}]_\bullet \nonumber
\end{equation}

\begin{equation}
+ [[i\mathcal{P}_1, \psi(\mathcal{A}_{12}) - \psi(\mathcal{A}_{12}^*)] \mathcal{A}]_\bullet \nonumber
\end{equation}

\begin{equation}
= 2(i\eta\mathcal{P}_1 + i\mathcal{P}_1\mathcal{H}\mathcal{P}_2 + i\mathcal{P}_2\mathcal{H}\mathcal{P}_1)(\mathcal{A}_{12}^* - \mathcal{A}_{12}) \nonumber
\end{equation}

\begin{equation}
+ 2(\mathcal{A}_{12} - \mathcal{A}_{12}^*)(i\eta\mathcal{P}_1 + i\mathcal{P}_1\mathcal{H}\mathcal{P}_2 + i\mathcal{P}_2\mathcal{H}\mathcal{P}_1) \nonumber
\end{equation}

\begin{equation}
+ 2i\mathcal{P}_1(\psi(\mathcal{A}_{12})^* - \psi(\mathcal{A}_{12})) + 2i(\psi(\mathcal{A}_{12}) - \psi(\mathcal{A}_{12}^*))\mathcal{P}_1. \nonumber
\end{equation}

Now from (2.27) and (2.28), we obtain

\begin{equation}
\psi(\mathcal{A}_{12}) - \psi(\mathcal{A}_{12})^* - \eta(\mathcal{A}_{12} - \mathcal{A}_{12}^*) \nonumber
\end{equation}

\begin{equation}
= (\eta\mathcal{P}_1 + \mathcal{P}_1\mathcal{H}\mathcal{P}_2 + \mathcal{P}_2\mathcal{H}\mathcal{P}_1)(\mathcal{A}_{12}^* - \mathcal{A}_{12}) \nonumber
\end{equation}

\begin{equation}
+ (\mathcal{A}_{12} - \mathcal{A}_{12}^*)(\eta\mathcal{P}_1 + \mathcal{P}_1\mathcal{H}\mathcal{P}_2 + \mathcal{P}_2\mathcal{H}\mathcal{P}_1) \nonumber
\end{equation}

\begin{equation}
+ \mathcal{P}_1(\psi(\mathcal{A}_{12})^* - \psi(\mathcal{A}_{12})) + (\psi(\mathcal{A}_{12}) - \psi(\mathcal{A}_{12}^*))\mathcal{P}_1. \nonumber
\end{equation}
Multiply (2.29) by \(P_1 \) from left and \(P_2 \) from right, we get \(P_1 \psi(\mathcal{A}_{12})^* P_2 = 0 \). Next, consider

\[
(2.30) \quad 2(\psi(\mathcal{A}_{12}) - \psi(\mathcal{A}_{12})^*) = \psi([iP_1, i(\mathcal{A}_{12} + \mathcal{A}_{12}^*)] \cdot \mathcal{I}, \cdot) = \psi([i\psi(P_1), i(\mathcal{A}_{12} + \mathcal{A}_{12}^*)] \cdot \mathcal{I}, \cdot) + [[iP_1, \psi(i(\mathcal{A}_{12} + \mathcal{A}_{12}^*))] \cdot \mathcal{I}, \cdot].
\]

It follows from (2.31) and (2.32) that \(\psi = 0 \).

\[\eta \mathcal{A}_{12} = 0. \]

This complete the proof. \(\square \)

Lemma 2.15. \(\psi(i \mathcal{A}) = i \psi(\mathcal{H}) \) for all \(\mathcal{A} \in \mathcal{A} \).

Proof. It follows from Lemma 2.10 and 2.14 that \(\psi(i \mathcal{H}) = i \psi(\mathcal{H}) \) for all \(\mathcal{H} \in \mathcal{Y} \). Thus, for any \(\mathcal{A} \in \mathcal{A} \) and \(\mathcal{H}_1, \mathcal{H}_2 \in \mathcal{Y} \) and using the fact that \(\psi \) is additive on \(\mathcal{A} \), we have

\[\psi(i \mathcal{A}) = \psi(i \mathcal{H}_1 - \mathcal{H}_2) = i \psi(\mathcal{H}_1) - i \psi(\mathcal{H}_2) = i(\psi(\mathcal{H}_1) + i \psi(\mathcal{H}_2)) = i \psi(\mathcal{A}).\]

This gives the result. \(\square \)

Lemma 2.16. \(\psi \) is a derivation on \(\mathcal{A} \).

Proof. First we prove that \(\psi \) is a derivation on \(\mathcal{Y} \), and then on \(\mathcal{A} \). Let \(\mathcal{H}_1, \mathcal{H}_2 \in \mathcal{Y} \). Then

\[
(2.31) \quad 2\psi(\mathcal{H}_1 \mathcal{H}_2 - \mathcal{H}_2 \mathcal{H}_1) = \psi([\mathcal{H}_1, \mathcal{H}_2] \cdot \mathcal{I}, \cdot) = [\psi(\mathcal{H}_1), \mathcal{H}_2] \cdot \mathcal{I}, \cdot + [[\mathcal{H}_1, \psi(\mathcal{H}_2)] \cdot \mathcal{I}, \cdot] = 2(\psi(\mathcal{H}_1) \mathcal{H}_2 - \mathcal{H}_1 \psi(\mathcal{H}_2) + \mathcal{H}_1 \psi(\mathcal{H}_2) - \psi(\mathcal{H}_1) \mathcal{H}_2).
\]

Also,

\[
(2.32) \quad 2i\psi(\mathcal{H}_1 \mathcal{H}_2 + \mathcal{H}_2 \mathcal{H}_1) = \psi([i\mathcal{H}_1, \mathcal{H}_2] \cdot \mathcal{I}, \cdot) = [\psi(i\mathcal{H}_1), \mathcal{H}_2] \cdot \mathcal{I}, \cdot + [[i\mathcal{H}_1, \psi(\mathcal{H}_2)] \cdot \mathcal{I}, \cdot] = 2i(\psi(\mathcal{H}_1) \mathcal{H}_2 + \mathcal{H}_1 \psi(\mathcal{H}_2) + \mathcal{H}_1 \psi(\mathcal{H}_2) - \psi(\mathcal{H}_1) \mathcal{H}_2).
\]

It follows from (2.31) and (2.32) that \(\psi(\mathcal{H}_1 \mathcal{H}_2) = \psi(\mathcal{H}_1) \mathcal{H}_2 + \mathcal{H}_1 \psi(\mathcal{H}_2) \) for all \(\mathcal{H}_1, \mathcal{H}_2 \in \mathcal{Y} \). Next, for any \(\mathcal{A}, \mathcal{B} \in \mathcal{A} \) assume that \(\mathcal{A} = \mathcal{H}_1 + i \mathcal{H}_2 \) and \(\mathcal{B} = \mathcal{H}_3 + i \mathcal{H}_4 \).
Given the consideration of bi-skew Lie derivations and bi-skew Lie triple derivations, we can further develop them in a natural way. Suppose that \(n \geq 2 \) is a fixed positive integer. Let us see a sequence of polynomials with involution

\[
\begin{align*}
 p_1(X_1) & = X_1, \\
p_2(X_1, X_2) & = [p_1(X_1), X_2]_\bullet = [X_1, X_2]_\bullet, \\
p_3(X_1, X_2, X_3) & = [p_2(X_1, X_2), X_3]_\bullet = [[X_1, X_2]_\bullet, X_3]_\bullet, \\
p_4(X_1, X_2, X_3, X_4) & = [p_3(X_1, X_2, X_3), X_4]_\bullet = [[[X_1, X_2]_\bullet, X_3]_\bullet, X_4]_\bullet, \\
& \quad \vdots \\
p_n(X_1, X_2, \ldots, X_n) & = [p_{n-1}(X_1, X_2, \ldots, X_{n-1}), X_n]_\bullet \\
& = \ldots[[X_1, X_2]_\bullet, X_3]_\bullet, \ldots, X_{n-1}]_\bullet, X_n]_\bullet.
\end{align*}
\]

Accordingly, a multiplicative/nonlinear bi-skew Jordan \(n \)-derivation is a mapping \(\delta : \mathcal{A} \rightarrow \mathcal{A} \) satisfying the condition

\[
(3.1) \quad \delta(p_n(X_1, X_2, \ldots, X_n)) = \sum_{k=1}^{n} p_n(X_1, \ldots, X_{k-1}, \delta(X_k), X_{k+1}, \ldots, X_n),
\]

for all \(X_1, X_2, \ldots, X_n \in \mathcal{A} \). This notion makes the best use of the definition of Lie \(n \)-derivations. By the definition, it is clear that every bi-skew Lie derivation is a bi-skew \(2 \)-derivation and every bi-skew Lie triple derivation is a bi-skew Lie \(3 \)-derivation. One can easily check that every multiplicative bi-skew Lie derivation on any \(* \)-algebra is a multiplicative bi-skew Lie triple derivation. But we do not know whether the converse statement is still valid. bi-skew \(2 \)-derivations, bi-skew \(3 \)-derivations and bi-skew Lie \(n \)-derivations are collectively referred to as bi-skew Lie-type derivations. This leads us to write the following open problem, which in fact more interesting, as:
Question 1. Let \mathcal{A} be a factor von Neumann algebra/a von Neumann algebra on a complex Hilbert space \mathcal{H} and $\psi : \mathcal{A} \to \mathcal{A}$ be a multiplicative bi-skew Lie-type derivation. Then what can we say about the structure of ψ?

Let $p_n(X_1, X_2, ..., X_n)$ be the polynomial defined by n indeterminates $X_1, ..., X_n$ and their bi-skew Lie n-derivations. Let \mathbb{N} be the set of non-negative integers and $\mathcal{D} = \{\delta_n\}_{n \in \mathbb{N}}$ be a family of nonlinear mappings $\delta_n : \mathcal{A} \to \mathcal{A}$ such that $\delta_0 = \text{id}_\mathcal{A}$, the identity mapping on \mathcal{A}. Then \mathcal{D} is called a multiplicative/nonlinear bi-skew Lie n-higher derivation if \mathcal{D} satisfies the condition

$$\delta_m(p_n(X_1, X_2, ..., X_n)) = \sum_{i_1+\cdots+i_n=m} p_n(\delta_{i_1}(X_1), \delta_{i_2}(X_2), ..., \delta_{i_n}(X_n))$$

for all $X_1, X_2, ..., X_n \in \mathcal{A}$. In the case of $n = 2$, δ_m is called a bi-skew Lie higher derivation, and is called a bi-skew Lie triple higher derivation whenever $n = 3$. In the spirit of above literature, we write the following:

Question 2. Let \mathcal{A} be a factor von Neumann algebra/a von Neumann algebra on a complex Hilbert space \mathcal{H} and $\psi : \mathcal{A} \to \mathcal{A}$ be a multiplicative bi-skew Lie triple higher derivation. Then what can we say about the structure of ψ?

Acknowledgment. The author would like to take this opportunity to express his best honest gratitude to the anonymous referee for very thorough reading of the paper and insightful suggestions which have improved the paper immensely.

References

ABDUL NADIM KHAN
DEPARTMENT OF MATHEMATICS
Faculty of Science & Arts - Rabigh
King Abdulaziz University
Saudi Arabia
E-mail address: abdulnadimkhan@gmail.com